-
中国东南沿海地区属于太平洋陆缘火山岩带西部,中生代时期受古太平洋板块向西俯冲作用的影响,导致强烈的岩浆活动(孙卫东等,2008),造就了东南沿海山脉,后期经隆升剥蚀作用,形成了现如今地表广泛分布的火山岩和侵入岩等( 何岸北等,2022),一直是国内外研究中生代岩浆活动的热门之地(徐克勤等,1982; Charvet et al.,1994; 林间等,2017; 周新民等,2000; 舒良树等,2004; 徐鸣洁等,2001; 俞云文等,1999; 曹明轩等,2020)。浙江东南部地区中生代火山岩和侵入岩分布广泛,岩性较为齐全,成为研究古太平洋板块俯冲—后撤机制、火山活动期次、地层旋回划分等的重要载体(陶奎元等,2000; 冯长明,2001; 邢光福等,2009; 崔玉荣等,2011; 贺振宇等,2022)。
-
浙闽沿海地区分布的侵入岩形成时间多为晚中生代,以早白垩世晚期和晚白垩世为主,具有由西向东呈现年轻的趋势(高丽等,2019; 舒良树,2002)。近些年,前人通过测年、岩石地球化学、同位素特征等方法技术,在浙闽沿海地区开展了大量研究工作(杨文采,2022; 段政等,2013; 余明刚等,2006; 贺振宇等,2022),重点研究了花岗岩形成时代、成因、构造环境等,取得了较多的成果,且较多学者认为浙闽沿海地区晚中生代花岗岩的形成是受到壳幔相互作用的结果(李艳军等,2009; 邱检生等,2000a,2000b; 廖圣兵等,2017; 张延青等,2022; 高万里等,2014)。
-
玉苍山—彭溪碱长花岗岩位于浙江东南沿海地区,笔者等通过锆石 U-Pb 测年、岩石地球化学等方面的测试数据,重点研究了该岩体花岗岩类型归属、形成的构造环境等,研究结果可为中国东南沿海地区中生代花岗岩带成因机制以及岩浆演化提供支撑。
-
1 研究区概况
-
玉苍山—彭溪岩体位于浙江苍南县西南侧,整体呈北东向条带状展布,地表展现为两个岩体,二者成因时代和岩性特征均具有一致性,故认为二者为同一岩浆房同时期沿着不同构造面或地壳薄弱区上侵形成,笔者等将二者作为一个整体来研究。玉苍山系南雁荡山别支,山势高峻,以石海奇石为特色,是一个与其他风景区风格迥异的国家森林公园和 4A 级旅游景区,出露面积约 40.3 km 2; 彭溪岩体位于泰顺县彭溪镇,出露面积约 21.4 km 2,距离玉苍山约 11 km(图1)。两处岩体岩性均为碱长花岗岩,与围岩以侵入接触关系为主(图2a),接触面一般倾向岩体外围,倾角 35°~70°,局部为断层接触关系; 围岩岩性主要是早白垩世早期西山头组的流纹质晶玻屑凝灰岩、流纹质玻屑凝灰岩等,接触面处由于岩体上侵导致部分区域围岩岩性呈现角岩化蚀变,呈现黑色致密块状(图2a)。区域上受温州—镇海断裂等构造影响,岩体周边断裂构造发育,附近还发育有石英闪长岩、二长斑岩(94. 0±1.4 Ma,本研究团队测试)、流纹岩、石英正长斑岩等岩体。
-
2 样品与分析方法
-
为了开展玉苍山—彭溪碱长花岗岩岩体的岩石地球化学和年代学特征研究工作,选取新鲜露头,采集 2 套开展锆石 U-Pb 测年工作,采集 5 套样品开展岩相学特征鉴定以及岩石地球化学主量、微量、稀土元素测试分析工作,样品采样位置及编号见图1。
-
薄片鉴定工作委托浙江省地矿科技有限公司(自然资源部杭州矿产资源检测中心)完成。锆石颗粒的挑选、制靶、CL 图像采集、锆石定年及地球化学分析工作均由武汉上谱分析科技有限责任公司完成。锆石 U-Pb 测年样品经实验室首先分离出精样,然后人工挑选符合要求的锆石颗粒样品并制靶,最后对锆石样品开展阴极发光(CL)、透射、反射照相。笔者等结合照片中锆石颗粒形态,选择形态较好的锆石颗粒,在锆石振荡环的边部区域圈定 U-Pb 测年激光束斑测试点位。
-
锆石 U-Pb 同位素定年分析工作所用激光剥蚀系统为 GeoLas HD,等离子体质谱仪为 Agilent 7900,激光能量 80 mJ,频率 5 Hz,激光束斑直径 24 μm,采用锆石标准 91500 作为校正标准样、玻璃标准物质 NIST610 作外标分馏校正、GJ-1 作为监控标准样,采用 ICPMSDataCal10.8 和 Isoplot / Ex_ver3 等软件完成原始分析数据的处理、谐和图绘制、年龄加权平均计算等工作(雷海佳等,2021; Liu Yongsheng et al.,2008,2010; Ludwijk,2003)。
-
岩石地球化学分析工作开展前,首先对野外采集的新鲜样品进行破碎、研磨。采用 XRF 方法测定主量元素,首先将样品粉末烧熔制成薄片,然后用 ZSX Primus Ⅱ型波长色散 X 射线荧光光谱仪开展分析测试工作,利用 α 系数法理论对测试数据进行校正,测试不确定度(RSD<2%)符合要求。微量元素的分析是利用 HNO3 和 HF 混合溶液加热溶解样品粉末,采用 Agilent 7700e 型电感耦合等离子质谱(ICP-MS)完成分析,分析方法流程见参考文献( Li Xiaoling et al.,2021)。
-
图1 浙东南玉苍山—彭溪地区地理位置(a)和地质简图及采样位置(b)
-
Fig.1 Location (a) and sketch geological map and sampling location (b) of the Yucangshan—Pengxi area, Southeastern Zhejiang
-
Q─第四系; K2x─晚白垩世小雄组; K12g─早白垩世晚期馆头组; K11x─早白垩世早期西山头组; K12λ E─早白垩世早期侵出相流纹岩; χργK2─晚白垩世碱长花岗岩; ηπK2─晚白垩世二长斑岩; ξοπK1─晚白垩世石英正长斑岩; δοK1 2─早白垩世晚期石英闪长岩
-
Q─Quaternary; K2x─Late Cretaceous Xiaoxiong Formation; K12g─Late Early Cretaceous Guantou Formation; K11x─Early Cretaceous Xishantou Formation; K12λ E─Early Cretaceous intrusive rhyolite; χργK2─ Late Cretaceous alkali feldspar granite; ηπK2─ Late Cretaceous monzonite porphyry; ξοπK1─Late Cretaceous quartz syenite porphyry; δοK1 2─late Early Cretaceous quartz diorite
-
图2 碱长花岗岩宏观及显微照片(正交偏光):(a)碱长花岗岩新鲜面;(b)中细粒花岗结构;(c)石英与钾长石集合体呈文象交生体;(d)钾长石内嵌布斜长石
-
Fig.2 Macroscopic and microscopic photos of alkali feldspar granite ( orthogonally polarized) : ( a) fresh alkali feldspar granite surface; (b) medium to fine grained granite structure; (c) quartz and potassium feldspar aggregates exhibit a textural alternation; (d) Potassium feldspar embedded with plagioclase feldspar
-
Kfs─钾长石; Pl─斜长石; Qtz─石英
-
Kfs─feldspar; Pl─plagioclase; Qtz─quartz
-
3 岩相学特征
-
碱长花岗岩新鲜面呈浅肉红色(图2b),表面可见少量晶洞,呈中细粒花岗结构(图2c),主要矿物成分为钾长石(60%~70%)、石英(25%~35%),少量斜长石(<5%)、黑云母(<2%)等。钾长石主要为条纹长石,晶内钠质条纹呈细脉状、补片状、穿插状等,负低突起,部分可见卡式双晶,粒径以 0.2~2. 0 mm 的细粒为主,2. 0~5. 0 mm 的中粒次之,个别为大于 5. 0 mm 的粗粒,与石英呈文象交生体状产出(图2d),部分粒内嵌布石英、黑云母、斜长石等矿物颗粒(图2e),具高岭土化、绢云母化,并局部交代斜长石。石英呈他形粒状,粒径以 0. 05~2 mm 细粒为主,少量粒径为大于 2 mm 的中粒。斜长石呈半自形板状,粒径为 0.2~1 mm,部分嵌布于钾长石中,单偏光下无色。黑云母呈鳞片状、片状,以 0.1~1 mm 为主,部分具褐铁矿化。
-
4 年代学
-
本次开展 U-Pb 测年的 2 个样品锆石颗粒基本呈淡黄色—无色、粒度大、晶形完整度好、柱状或长柱状、透明—半透明状态,单颗锆石长度多为 100~200 μm,宽度 50~100 μm,长宽比一般 2 ∶ 1~3 ∶ 1,图3 展示了在被测锆石颗粒中选取的具有代表性的锆石阴极发光( CL)图像、测定点位和相应的206 Pb / 238U 年龄。
-
表1 为 LA-ICP-MS 锆石 U-Pb 年龄分析结果。玉苍山 D1380 样品共测定 23 个点,除去 8 个偏离谐和线较远的测点,其余 15 个测定点 Th / U 值变化范围为 0.90~1.96(均值 1.21); 彭溪 PX01 样品共测定 25 个点,Th / U 值变化范围为 0.90~2.50(均值 1.47); 二者与典型岩浆锆石具有较高的 Th / U 值特征( Rubatto et al.,2002; Moller et al.,2003; Rowley et al.,1997; Mojzsis et al.,2002; Wu Yuanbao et al.,2004)较为一致,结合锆石颗粒的阴极发光图像(CL)中大部分锆石颗粒可以看到清晰的振荡环带结构(图3),这些特征指示被测锆石为典型的岩浆结晶形成,且没有发生显著的 Pb 丢失(Connelly et al.,2000)。
-
图3 碱长花岗岩样品代表性锆石的阴极发光图像、LA-ICP-MS 分析点位及206Pb / 238U 视年龄
-
Fig.3 CL images, localities of the points for LA-ICP-MS measurements and the 206Pb / 238U apparent ages of representative detected zircons from alkali feldspar granite samples
-
锆石206 Pb / 238U—207 Pb / 235U 谐和图上(图4),可以看出两个样品测定点均投影在谐和线上,且分布比较集中,谐和度较好(≥95%),指示了测试锆石在结晶之后未遭受后期热事件的影响,测年结果可代表岩石的成岩年龄(邱检生等,2011)。对 2 件样品的206 Pb / 238U 年龄进行加权平均计算,获得玉苍山 D1380 样品年龄为 96.50 ± 1.81 Ma( MSWD = 2.5,2σ)、彭溪 PX01 样品年龄为 98.27 ± 0.39 Ma(MSWD = 1.3,2σ),所获得的年龄指示该区域碱长花岗岩岩体形成于晚白垩世早期。
-
5 岩石地球化学特征
-
5.1 主量元素
-
玉苍山—彭溪碱长花岗岩主量元素测试结果、 CIPW 标准矿物及主要岩石化学参数列于表2,主要表现出以下特征:①SiO2 含量变化范围为 75.71%~77.62%,均值 76.79%; ②Al2O3 含量介于 11.88%~12.73%,平均值为 12.3 %; ③MgO 含量范围 0. 07%~0.14%(均值 0.1%),CaO 含量范围为 0.1%~0.44%( 均值 0.29%),TiO2 含量范围 0. 09%~0.22%(均值 0.18%),P2O5 含量范围为 0. 011%~0. 022%( 均值 0. 017%),FeO 含量范围 0. 08%~0.24%(均值 0.15%),含量均处于极低状态; ④计算得到的 CIPW 标准矿物中石英含量平均值为 36.64%,可以归为花岗岩类岩石,且岩浆硅酸达过饱和状态; ⑤标准矿物中出现少量刚玉(平均含量 0.64%,小于 1%); ⑥全碱(ALK)含量较高,均值为 8.56%,样品中 K2O 含量均高于 Na2O 含量,在 TAS 图上,样品点均落在亚碱性花岗岩区域(图5a); ⑦ 碱铝指数( AKI)平均值为 0.91,按照洪大卫等(1987)建议的 AKI 分界线:碱性( >1. 0)、偏碱性(0.9~1. 0)、钙碱性花岗岩(小于 0.9),玉苍山— 彭溪碱长花岗岩可归属为偏碱性花岗岩,与镜下未发现碱性暗色矿物特征一致。 ⑧铝饱和指数较高(A/ CNK 均值为 1. 06),归属过铝质,且在 A/ CNK— A/ NK 图解(图5b)样品投影点均落入过铝质区域; ⑨里特曼指数 σ 平均值为 2.17,属于高钾钙碱性系列,且反映在 SiO2—K2O 图解(图5c)中,样品投影点主要落入高钾钙碱性系列区域( 邓晋福等,2015b); ⑩分异指数 D. I 平均值为 96.29,表明该岩体岩浆演化程度较高。
-
图4 浙南玉苍山—彭溪地区碱长花岗岩锆石 U-Pb 谐和图:(a)玉苍山碱长花岗岩样品锆石 U-Pb 协和图;(b)彭溪碱长花岗岩样品锆石 U-Pb 协和图;(c)玉苍山碱长花岗岩样品锆石加权年龄图;(d)彭溪碱长花岗岩样品锆石加权年龄图
-
Fig.4 U-Pb concordia diagrams of zircons of Alkali feldspar Granite in Yuchangshan—Pengxi area, southern Zhejiang: (a) zircon U-Pb concordance diagram of alkali feldspar granite Sample in Yucangshan; ( b) Zircon U-Pb concordance diagram of alkali feldspar granite Sample in Pengxi; ( c) Zircon weighted age map of the alkali feldspar granite sample from Yucangshan; ( d) Zircon weighted age map of the alkali feldspar granite sample from Pengxi
-
以上特征反映了玉苍山—彭溪碱长花岗岩总体具高硅、富碱、低铝的特征,同时镁、钙、磷、钛、铁等元素含量极低,属于过铝质高钾钙碱性花岗岩系列。
-
5.2 微量及稀土元素
-
玉苍山—彭溪碱长花岗岩微量元素、稀土元素的分析测试结果及特征值列于表3。
-
图5 浙南玉苍山—彭溪地区碱长花岗岩 TAS 图(a)(底图据 Middlemost et al.,1994); A/ CNK—A/ NK 关系图(b)(底图据 Maniar et al.,1989)及 SiO2—K2O 关系图(c)(底图据 Peccerillo et al.1976)
-
Fig.5 TAS diagram (a) (after Middlemost et al., 1994) ; A/ CNK—A/ NK diagram (b) (after Maniar et al., 1989) and SiO2— K2O diagram (c) (after Peccerillo et al.1976) of alkali feldspar granite in Yuchangshan—Pengxi area, southern Zhejiang
-
微量元素主要呈现以下特征:①微量元素原始地幔标准化蛛网图(图6a)可以看到 Rb、K 等大离子亲石元素和 Th、U、Zr、Hf 等高场强元素富集,Nb、 Sr、P、 Ti 等元素含量较少; ② K/ Rb 值为 106~184.85( 均值 165.63),Th / Ta 值为 14.47~24. 06( 均值 19.78),Rb / Ba 值为 1.11~28.44( 均值 7.29),Rb / Sr 值为 9.32~101.46(均值 34.26),呈现高比值状态,指示该碱长花岗岩经历了强烈的结晶分异作用(吴福元等,2007); ③亲铁元素 Co、Ni、 Cr、V 等含量较低。微量元素表现出的这些特征,指示了在成岩过程中斜长石、钛铁矿、磷灰石等矿物发生了分离结晶,岩浆分异演化程度高,且地壳部分物质参与了熔融(邱检生等,2011)。
-
稀土元素主要具有以下几方面特征:①稀土元素总量(ΣREE)较高,含量变化范围 140×10 -6~263 ×10-6,均值为 213×10-6; ②轻稀土元素富集程度远大于重稀土元素,LREE / HREE 变化范围为 6.62~9.51,均值为 8.21; ③(La / Yb)N 变化范围为 5.41~10.34,均值为 7.75,表明轻重稀土元素分馏程度大; ④Sm / Nd 值(0.18~0.21)接近地壳初始值(≈ 0.208)及壳源花岗岩(0.10~0.31)(Collins et al.,1982),显示壳源的特征。 ⑤稀土元素球粒陨石标准化分配曲线均呈右倾斜状(图6b),轻稀土元素部分向右陡倾,重稀土元素部分则较为平坦; ⑥具有明显的铕负异常(δEu 均值 0.25),在图6b 中 Eu 显示出明显的亏损,说明在碱长花岗岩成岩过程中发生了斜长石的分离结晶作用,且岩浆演化分异作用较强(邱检生等,1999)。
-
注:TFe2O3 为全铁; Qtz-石英; An-钙长石; Ab-钠长石; Fk-钾长石; C-刚玉; Hy-紫苏辉石; Il-钛铁矿; Mt-磁铁矿; Ap-磷灰石; ; A 碱性长石; Pl 斜长石; SI-固结指数; σ-里特曼指数; τ-戈蒂尼指数(τ =(Al2O3-Na2O)/ TiO2); D. I-分异指数。
-
图6 浙南玉苍山—彭溪地区碱长花岗岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化分配曲线(b)(原始地幔标准化值据 Mcdonough et al.1995,球粒陨石标准化值据 Sun et al.1989)
-
Fig.6 Primitive mantle-normalized multi-element spider diagram ( a) and chondrite-normalized REE distribution patterns ( b) of alkali feldspar granite in Yuchangshan—Pengxi area, southern Zhejiang (the standardized values of the primitive mantle are based on Mcdonough et al.1995, the standardized values of chondrites are based on Sun et al.1989)
-
注:tZr 为据 Watson 等(1983)方法计算得出的锆石饱和温度。
-
6 讨论
-
6.1 形成时代
-
本次测年结果得到的锆石206 Pb / 238U 加权平均年龄分别为 96.50±1.81 Ma 和 98.27±0.39 Ma,根据国际地层表(2024 年)采用 100.5 Ma 作为晚白垩世—早白垩世的分界年龄,故研究区碱长花岗岩形成时代为晚白垩世。这与周边白云山火山机构流纹质晶屑熔结凝灰岩(94.8±1. 0 Ma)、流纹岩(98.37±0.88 Ma)、中央侵入体正长斑岩(94. 0±1.4 Ma)等的形成时代处于同一时期(潘少军等,2024),表明在晚白垩世时期,浙东南苍南县—平阳顺溪镇—泰顺彭溪镇一带存在规模大、范围广、活动强烈的岩浆活动。
-
6.2 类型归属
-
几十年来,诸多研究者对花岗岩的形成开展了大量的研究工作,提出了多种花岗岩分类方案(洪大卫等,1995; 邱检生等,1999),主要被广大研究者接受的分类方案是将花岗岩分为 I 型、S 型、A 型和 M 型,M 型为地幔岩浆形成,地表分布极少,故大陆地表花岗岩类型归属主要讨论前三类型。针对花岗岩类型归属鉴别手段,国内外研究者发表有大量文献,有研究者利用花岗岩中某些特定矿物如角闪石、铁镁矿物等对花岗岩进行分类(许保良等,1998),也有通过岩石地球化学特征的不同研究出一些列图解来鉴别花岗岩类型(Collins et al.,1982; Eby et al.,1990,1992; Whalen et al.,1987; 吴福元等,2007)。笔者等在岩相学上并未发现有特定矿物出现,故笔者等主要从岩石地球化学特征上来判定研究区碱长花岗岩类型。
-
该区域碱长花岗岩铝饱和指数 A/ CNK 均值为 1. 06,归属过铝质,虽然大部分研究者认为过铝质为 S 型花岗岩特征,但高度结晶分异作用的花岗岩,矿物组成和化学成分与低共结的花岗岩较为类似,使用铝饱和指数来划分成因类型会出现偏差(吴福元等,2007),且 Anderson(1983,1984)研究并报道过含白云母的过铝质 A 型花岗岩,故过铝质花岗岩中也有一部分会是 A 型花岗岩,不能用过铝质来完全判定是 S 型花岗岩。而 Al、P、Zr、Nb、Ce、Y、Ga 等元素是判断花岗岩成因类型的可靠标志(Eby et al.,1990,1992; Whalen et al.,1987)。
-
图7 浙南玉苍山—彭溪地区碱长花岗岩成因类型判别图
-
Fig.7 Genetic type discrimination chart of alkali feldspar granite in Yuchangshan—Pengxi area, southern Zhejiang
-
(a)—(f)底图据 Whalen et al.(1987);(g)—(i)底图据 Collins et al.(1982); A、I、S 分别代表 A 型、I 型、S 型花岗岩
-
(a) — (f) after Whalen et al. (1987) ; (g) — (i) after Collins et al. (1982) ; A, I, S represent A-type, I-type, and S-type granite
-
玉苍山—彭溪碱长花岗岩具有高硅、富碱、低铝特征,P2O5 含量均值为 0. 017%(远小于 0.20%),CIPW 标准矿物中含有少量刚玉,矿物组合中未见堇青石、石榴石、白云母等富铝矿物,这些特征不同于 S 型花岗岩。
-
在 A 型还是 I 型花岗岩判定上:①5 个样品中有 4 个样品的 ΣREE 含量远大于 200×10-6; ②高场强元素 Zr+Nb+Ce+Y 含量变化范围 252×10-6~392× 10-6(均值 345×10 -6),4 个样品大于 350×10-6,满足 A 型花岗岩特征; ③Sr 含量变化范围 3.42 × 10-6~32.4 × 10-6( 均值 14.27 × 10-6),远低于 Whalen(1987)划定的典型的钙碱性 I 型花岗岩均值(142× 10-6); ④Ga / Al × 10 4 变化范围 2.63~3.13( 均值 2.84),符合 A 型花岗岩最低下限(Whalen,1987); ⑤K2O 含量均大于 Na2O,稀土元素具有明显的铕负异常(δEu 均值 0.25); ⑥Rb / Ba 除 PX02 外,其余 4 个均值为 2. 0,与瑶坑(肖娥等,2007)、外北山(段政等,2017)、桃花岛(谢磊等,2005)等 A 型花岗岩相似; ⑦在以 10 4×Ga / Al 为基础的花岗岩成因类型判别图解上,各样品投影点基本全部落在 A 型花岗岩区域(图7)。以上特征均不同于 I 型花岗岩,而与 A 型花岗岩相似,由此,判定玉苍山—彭溪碱长花岗岩类型属于 A 型花岗岩。
-
6.3 岩浆来源及构造环境
-
玉苍山—彭溪碱长花岗岩的 Nb 元素在原始地幔标准化蛛网图中显示出负异常,且 w( Rb)/ w(Nb)值平均为 8.77,远大于地壳均值(5.36),结合微量元素中 Co、Ni、Cr、V 等亲铁元素含量较低,稀土元素球粒陨石标准化分配曲线中出现明显的铕负异常现象,综合反映出研究区碱长花岗岩陆壳来源的特征(鲁艳明等,2016)。
-
图8 浙南玉苍山—彭溪地区碱长花岗岩构造环境判别图(底图据 Pearce,1984)
-
Fig.8 Identification map of the tectonic environment of alkali feldspar granite in Yuchangshan—Pengxi area, southern Zhejiang (base map according to Pearce, 1984)
-
WPG─板内花岗岩; ORG─造山带花岗岩; VAG─火山弧花岗岩; Syn-COLG─同碰撞花岗岩; Post-COLG─后碰撞花岗岩
-
WPG─ granite inside the slab; ORG ─ orogenic granite; VAG ─ volcanic arc granite; Syn-COLG ─ Syn-collisional granite; PostCOLG─Post-collision granite
-
锆石 U-Pb 年龄表明研究区碱长花岗岩形成于中生代晚白垩世,地球化学特征指示该岩体属于过铝质高钾钙碱性花岗岩系列中的 A 型花岗岩,与浙闽沿海地区 A 型花岗岩具有相同的侵位时间(李良林等,2013; 夏炎等,2016; 单强等,2014; 胡建等,2005)。对于沿海地区花岗岩成因构造背景,前人也做了相关研究,如 Li Xianhua 等(2000)认为白垩纪时期的花岗岩是在岩石圈减薄背景下形成的,地球化学特征显示出岩石圈的减薄与古太平洋板块俯冲有关; 李三忠等(2017)认为晚中生代古古太平洋板块俯冲角度增大、俯冲后撤,岩石圈伸展减薄,地幔物质上涌,在此构造环境下形成了浙闽沿海地区晚中生代花岗岩。
-
国内外学者通过微量元素的一些特征来判别岩石成岩构造环境获得了广泛的应用,如 Pearce 等(1984)认为通过 Rb、Y、Nb、Yb、Ta 等微量元素特征能够判别成岩构造环境,特别是对花岗岩类能够取得很好的判别作用。在微量元素构造环境判别图上(图8),玉苍山—彭溪碱长花岗岩样品点均投影在板内花岗岩(WPG)环境中,表明其形成于板内构造环境,南雁荡山地区晚白垩世时期受古太平洋板块后撤伸展背景导致区域内岩浆活动剧烈(潘少军等,2024),认为玉苍山—彭溪碱长花岗岩为晚白垩世时期板内伸展环境下,地壳物质熔融上涌形成的(洪迪等,2019)。
-
7 结论
-
(1)玉苍山—彭溪碱长花岗岩 LA-ICP-MS 锆石 U-Pb 测年结果分别为 96.50 ± 1.81 Ma 和 98.27 ± 0.39 Ma,表明该岩体侵位于燕山晚期的晚白垩世,与浙闽沿海地区花岗岩形成于同期岩浆活动。
-
(2)岩石地球化学特征表明,该岩体具有具高硅、富碱、低铝的特征,同时镁、钙、磷、钛、铁等元素含量极低,属于过铝质高钾钙碱性花岗岩系列; 稀土元素总量高,且轻稀土元素富集程度远大于重稀土元素,岩浆演化分异程度高,同时具有明显的铕负异常; Rb、K 等大离子亲石元素和 Th、U、Zr、Hf 等高场强元素富集,亲铁元素 Co、Ni、Cr、V 等含量较低,反映出强烈的壳源特征。
-
(3)综合各方面地球化学特征、多种花岗岩类型判别图等,判定玉苍山—彭溪岩体属于 A 型花岗岩。
-
(4)玉苍山—彭溪碱长花岗岩形成于板内构造环境,为晚白垩世时期板内伸展环境下壳源物质熔融形成的。
-
致谢:审稿专家对本文的修改提出了很多宝贵意见和建议,在此表示衷心的感谢。
-
参考文献
-
曹明轩, 褚平利, 段政, 余明刚, 陈荣, 范飞鹏, 邢光福. 2020. 华南中生代火山活动时空演化及其问题探讨. 地质论评, 66(4): 795~812.
-
崔玉荣, 谢智, 王斌, 陈江峰, 俞云文, 贺剑锋. 2011. 浙东南晚中生代玄武岩的地球化学特征及其对源区物质的指示意义. 高校地质学报, 17(4): 492~512.
-
邓晋福, 冯艳芳, 狄永军, 刘翠, 肖庆辉, 苏尚国, 赵国春, 孟斐马帅, 姚图. 2015a. 岩浆弧火成岩构造组合与洋陆转换. 地质论评, 61(3): 473~484.
-
邓晋福, 刘翠, 冯艳芳, 肖庆辉, 狄永军, 苏尚国, 赵国春, 段培新, 戴蒙. 2015b. 关于火成岩常用图解的正确使用: 讨论与建议. 地质论评, 61(4): 717~734.
-
段政, 邢光福, 余明刚, 赵希林, 靳国栋. 2017. 浙江外北山铝质A1型花岗岩成因: 矿物学、年代学、地球化学及Hf同位素制. 地质学报, 91(1): 180~197.
-
段政, 邢光福, 余明刚, 赵希林, 靳国栋, 陈志洪. 2013. 浙闽边界区晚中生代火山作用时序与过程分析. 地质论评, 59(3): 454~469.
-
冯长明. 2001. 浙东沿海燕山期花岗岩类岩石谱系单位特征及成因机制. 中国区域地质, 20(2): 170~177.
-
高丽, 洪文涛, 杨祝良, 余明刚. 2019. 浙东小雄破火山晚白垩世火山—侵入杂岩成因及岩浆演化. 华东地质, 40(3): 161~16.
-
高万里, 王宗秀, 王对兴, 李春麟. 2014. 浙东南晚中生代花岗岩的锆石U-Pb年代学、地球化学及其地质意义. 吉林大学学报(地球科学版), 44(3): 861~875.
-
何岸北. 2022. 东南沿海古海岸山脉演化: 永安盆地晚中生代沉积及古气候响应. 导师: 闫义. 广州: 中国科学院大学(中国科学院广州地球化学研究所)博士学位论文: 1~90.
-
贺振宇, 颜丽丽, 褚平利, 向华, 蒋子堃. 2022. 中国东南沿海晚白垩世长屿火山的活动过程与古环境意义. 岩石学报, 38(5): 1419~1442.
-
洪大卫, 王式洗, 韩宝福, 靳满元. 1995. 碱性花岗岩的构造环境分类及其鉴别标志. 中国科学(B辑), 25(4): 418~426.
-
洪迪. 2019. 中国东部中生代板内花岗岩类的成因是古古太平洋板块俯冲运动的结果. 导师: 牛耀龄. 青岛: 中国科学院大学(中国科学院海洋研究所) 硕士学位论文: 1~33.
-
胡建, 邱检生, 王德滋, 王汝, 张晓琳. 2005. 中国东南沿海与南岭内陆A型花岗岩的对比及其构造意义. 高校地质学报, 11(3): 404~414.
-
雷海佳, 沈晓明, 刘希军, 唐秀党. 2021. LA-ICP-MS锆石U-Pb定年实验流程的建立及其在滇西剑川正长岩锆石年代学中的应用. 大地构造与成矿学, 45(4): 822~838.
-
李良林, 周汉文, 陈植华, 王锦荣, 肖依. 2011. 福建太姥山地区花岗岩岩石地球化学特征及其地质意. 岩石矿物学杂志, 30(4): 593~609.
-
李良林, 周汉文, 陈植华, 王锦荣, 陈正华, 肖依. 2013. 福建太姥山地区和鼓山地区A型花岗岩对比及其地球动力学意义. 现代地质, 27(3): 509~524.
-
李三忠, 臧艺博, 王鹏程, 索艳慧, 李玺瑶, 刘鑫, 周在征, 刘晓光, 王倩. 2017. 华南中生代构造转换和古太平洋俯冲启动. 地学前缘, 24(4): 213~225.
-
李艳军, 魏俊浩, 姚春亮, 鄢云飞, 谭俊, 付乐兵, 潘锦勃, 李伟. 2009. 浙东南石平川花岗岩体LA-ICP-MS锆石U-Pb年代学及构造意义. 地质论评, 55(5): 673~684.
-
廖圣兵, 陈荣, 褚平利, 曾剑威, 张彦杰, 王存智, 黄文成. 2017. 浙东地区东园花岗岩体年代学、地球化学特征及其地质意. 大地构造与成矿学, 41(5): 974~988.
-
林间, 徐敏, 周志远, 王月. 2017. 全球俯冲带大洋专探进展与启示. 地球科学进展, 32(12): 1253~1266.
-
鲁艳明, 所承逊, 专少鹏, 殷敏. 2016. 内蒙古阿鲁科尔沁地区早白垩世侵入岩地球化学特征及其成矿潜力. 物探与化探, 40(5): 885~892.
-
潘少军, 陈小友, 张建芳, 曾凡飞, 顾明光, 马俊祥. 2024. 浙江东南部南雁荡山地区首次发现晚白垩世火山岩及地层厘定. 现代地质, DOI: 10. 19657/j. geoscience. 1000~8527. 2024. 036.
-
邱检生, 刘亮, 李真. 2011. 浙江黄岩望海岗石英正长岩的锆石U-Pb 年代学与Sr—Nd—Hf 同位素地球化学及其对岩石成因的制约. 岩石学报, 27(6): 1557~1572.
-
邱检生, 蟹泽聪史, 王德滋. 2000a. 浙江苍南瑶坑碱性花岗岩的地球化学及其成因类型岩石. 矿物学杂志, 19(2): 97~10.
-
邱检生, 王德滋, 蟹泽聪史, BrentI A McInnes. 2000b. 福建沿海铝质A型花岗岩的地球化学及岩石成因. 地球化学, 29(4): 313~321.
-
邱检生, 王德滋, Mclnnes B I A. 1999. 浙闽沿海地区I型—A型复合花岗岩体的地球化学及成因. 岩石学报, 15(2): 237~246.
-
单强, 曾乔松, 李建康, 卢焕章, 侯茂洲, 于学元, 吴传军. 2014. 福建魁岐晶洞花岗岩锆石U-Pb年代学及其地球化学研究. 岩石学报, 30(4): 1156~1167.
-
舒良树, 周新民. 2002. 中国东南部晚中生代构造作用. 地质论评, 48(3): 249~260.
-
舒良树, 周新民, 邓平, 余心起, 王彬, 祖辅平. 2004. 中国东南部中、新生代盆地特征与构造演化. 地质通报, 23(9~10): 876~884.
-
孙卫东, 凌明星, 汪方跃, 丁兴, 胡艳华, 周继彬, 杨晓勇. 2008. 太平洋板块俯冲与中国东部中生代地质事件. 矿物岩石地球化学通报, 27(3): 218~225.
-
陶奎元, 邢光福, 杨祝良, 毛建仁, 赵宇, 许乃政. 2000. 浙江中生代火山岩时代厘定和问题讨论——兼评Lapierre 等关于浙江中生代火山岩活动时代的论述. 地质论评, 46(1): 14~21.
-
王亚妹, 万天丰. 2008. 中国东部新生代岩石圈构造滑脱、岩浆活动和地震. 现代地质, 22(2): 207~229.
-
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217~1238.
-
夏炎, 刘磊, 徐夕生. 2016. 中国东南部晚中生代A型花岗岩类与古古太平洋板块俯冲—后撤. 矿物岩石地球化学通报, 35(6): 1109~1119.
-
肖娥, 邱检生, 徐夕生, 蒋少涌, 胡建, 李真. 2007. 浙江瑶坑碱性花岗岩体的年代学、地球化学及其成因与构造指示意义. 岩石学报, 23(6): 1431~1440.
-
谢磊, 王汝成, 王德滋, 邱检生. 2005. 浙江桃花岛碱性和普陀山铝质A型花岗岩副矿物对比研究. 高校地质学报, 11(3): 390~403.
-
邢光福, 陈荣, 杨祝良, 周宇章, 李龙明, 姜杨, 陈志洪. 2009. 东南沿海晚白垩世火山岩浆活动特征及其构造背景. 岩石学报, 25(1): 77~91.
-
徐克勤, 胡受奚, 孙明志, 叶俊. 1982. 华南两个成因系列花岗岩及其成矿特征. 矿床地质, 2: 1~14.
-
徐鸣洁, 舒良树. 2001. 中国东南部晚中生代岩浆作用的深部条件制约. 高校地质学报, 7(1): 21~33.
-
许保良, 阎国翰, 张臣, 李之彤, 何中甫. 1998. A型花岗岩的岩石学亚类及其物质来源. 地学前缘, 5(3): 113~124.
-
杨文采. 2022. 形成闽浙火山岩带的洋陆转换作用. 地质论评, 68(2): 375~384.
-
余明刚, 邢光福, 沈加林, 陈荣, 周宇章, 隗合明, 陶奎元. 2006. 雁荡山世界地质公园火山岩年代学研究. 地质学报, 80(11): 1683~l690.
-
俞云文, 徐步台. 1999. 浙江晚中生代火山—沉积岩系层序和年龄. 地层学报, 23(2): 136~145.
-
张延青, 丁嘉林, 高秦, 周鹏, 曾志杰, 厉子龙. 2022. 浙江大陈岛花岗岩的成因—来自地球化学、锆石U-Pb年代学和Sr—Nd—Hf同位素的证据. 地质通报, 41(10): 1798~1812.
-
周新民, 李武显. 2000. 中国东南部晚中生代火成岩成因: 岩石圈消减和玄武岩底侵相结合的模式. 自然科学进展, 10(3): 240~247.
-
Anderson A T. 1983. Oscillatory zoning of plagioclase: Nomarski interference contrast microscopy of etched polished sections. American Mineralogist, 68(1~2): 125~129.
-
Anderson A T. 1984. Probable relations between plagioclase zoning and magma dynamics, Fuego Volcano, Guatemala. Amercan Mineralogist, 69(7~8): 660~676.
-
Cao Mingxuan, Chu Pingli, Duan Zheng, Yu Minggang, Chen Rong, Fan Feipeng, Xing Guangfu. 2020&. Spatial—temporal evolution and controversy of the Mesozoic volcanism in south China. Geological Review, 66(4): 795~812.
-
Charvet J, Lapierre H, Yu Y W. 1994. Geodynamic significance ofthe Mesozoic volcanism of southeastem China. Joumal of SoutheastAsian Earth Sciences, 9(4): 387~396.
-
Collins W, Beams S, White A. 1982. Nature and Origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189~200.
-
Connelly J N. 2000. Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U-Pb geochronology. Chem. Geol. , 172: 25~39.
-
Cui Yurong, Xie Zhi, Wang Bin, Chen Jiangfeng, Yu Yunwen, He Jianfeng. 2011&. Geochemical Characteristics of the Late Mesozoic Basalts in Southeastern Zhejiang Province and Constraints on Magma Source Materials. Geological Journal of China Universities, 17(4): 492~512.
-
Deng Jinfu, Feng Yanfang, Di Yongjun, Liu Cui, Su Shangguo, ZhaoGuochun, Meng Fei, Ma Shuai, Yao Tu. 2015a&. Magmatic arcand ocean—continent transition: discussion. Geological Review, 61(3): 473~484.
-
Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Di Yongjun, Su Shangguo, Zhao Guochun, Duan Peixin, Dai Meng. 2015b&. 0nthe correct application in the common igneous petrologicaldiagrams: discussion and suggestion. Geological Review, 61(4): 717~734.
-
Duan Zheng, Xing Guangfu, Yu Minggang, Zhao Xilin, Ji Guodong. 2017&. The Petrogenesis of Waibeishan Aluminous A_1-type Granite in Zhejiang Province: Constraints from Mineralogy, Zircon U-Pb Dating, Geochemistry and Hf Isotope. Acta Geologica Sinica, 91(1): 180~197.
-
Duan Zheng, Xing Guangfu, Yu Minggang, Zhao Xilin, Ji Guodong, Chen Zhihong. 2013&. Time Sequence and Geological Process of Late Mesozoic Volcanic Activities in the Area of Zhejiang—Fujian Boundary. Geological Review, 59(3): 454~469.
-
Eby GN. 1990. The A—type granitoids: A review of their occurrence, chemical characteristics, speculations on their petrogenesis. Lithos, 26(1~2): 115~134.
-
Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641~644.
-
Feng Changming. 2001&. Features and genetic mechanism of hierarchial units of Yanshanian granitoids along the coast of eastern Zhejiang. Regional Geology of China, 20(2): 170~177.
-
Gao Li, Hong Wentao, Yang Zhuliang, Yu Minggang. 2019&. Petrogenesis and magmatic process of Late Cretaceous volcano—intrusive complex from Xiaoxiong Caldrea, Eastern Zhejiang Province. East China Geology, 40(3): 161~16.
-
Gao Wangli, Wang Xiuzong, Wang Duixing, Li Chunlin. 2014&. Zircon U-Pb Geochronology, Geochemistry of Late-Mesozoic Granite in Southeastern (SE) Zhejiang Province and Its Tectonic Implication. Journal of Jilin University: Earth Science Edition, 44(3): 861~875.
-
He Anbei. 2022&. Evolution of Paleo-coastal mountains along the southeast coast: sedimentation and paleoclimate response in Yong'an Basin of the late Mesozoic. Supervisor: Yan Yi. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences Doctor of Philosophy Dissertation: 1~90.
-
He Zhenyu, Yan Lili, Chu Pingli, Xiang Hua, Jiang Zikun. 2022&. Volcanological evolution and paleoenvironment of the Late Cretaceous Changyu volcano in the coastal SE China. Acta Petrologica Sinica, 38(5): 1419~1442.
-
Hong Dawei, Wang Shixi, Han Fubao, Ji Manyuan. 1995&. Classification and identification criteria of the tectonic environment of alkaline granite. Science in China(Series B), 25(4): 418~426.
-
Hong Di. 2019&. Origin of the Jurassic—Cretaceous intraplate granitoids in Eastern China as a consequence of paleo-Pacific plate subduction. Supervisor: Niu Yaoling. Qindao: Institute of Oceanology, Chinese Academy of Sciences Master of Engineering Dissertation: 1~33.
-
Hu Jian, Qiu Jiansheng, Wang Dezi, Wang Rucheng, Zhang Xiaolin. 2005&. Comparative Investigations of A-type Granites in the Coastal and the Nanling Inland Areas of SE China, and Their Tectonic Significances. Geological Journal of China Universities, 11(3): 404~414.
-
Lei Haijia, Shen Xiaoming, Liu Xijun, Tang Xiudang. 2021&. LA-ICP-MS In-situ Zircon U-Pb Dating and its Application in Zircon Geochronology of the Jianchuan Syenite in Western Yunnan. Geotectonica et Metallogenia, 45(4): 822~838.
-
Li Lianglin, Zhou Hangwen, Chen Zhihua, Wang Jinrong, Xiao Yi. 2011&. Geochemical characteristics of granites in Taimushan area, Fujian Province, and their geological significance. Acta Petrologica et Mineralogica, 30(4): 593~609.
-
Li Lianglin, Zhou Hangwen, Chen Zhihua, Wang Jinrong, Chen Zhenghua, Xiao Yi. 2013&. Comparison of A-type Granites from Taimushan and Gushan Regions in Fujian Province and Their Geodynamic Significance. Geoscience, 27(3): 509~524.
-
Li Sanzhong, Zang Yibo, Wang Pengcheng, Suo Yanhui, Li Xiyao, Liu Xin, Zhou Zaizheng, Liu Xiaoguang, Wang Qian. 2017&. Mesozoic tectonic transition in South China and initiation of Palaeo-Pacific subduction. Earth Science Frontiers, 24(4): 213~225.
-
Li Xianhua. 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18: 293~305.
-
Li Xiaoling, Yu Jinhai, Jiang Dingsheng, Griffin W, Jiang Weicheng, Xu Huan. 2021. Linking ocean subduction with Eary Paleozoic intracontinental orogeny in South China: Insights from the Xiaying complex in eastern Guangxi Province. Lithos, 398~399.
-
Li Yanjun, Wei Junhao, Yao Chunliang, Yan Yunfei, Tan Jun, Fu Lebing, Pan Jinbo, Li Wei. 2009&. Zircon U-Pb Dating and Tectonic Significance of the Shipingchuan Granite in Southeastern Zhejiang Province, SE China. Geological Review, 55(5): 673~684.
-
Liao Shengbing, Chen Rong, Chu Pingli, Zeng Jianwei, Zhang Yanjie, Wang Cunzhi, Huang Wencheng. 2017&. Geochronological and Geochemical Characteristics of the Dongyuan Granite Pluton in Eastern Zhejiang Province, and their Geological Significance. Geotectonica et Metallogenia, 41(5): 974~988.
-
Lin Jian, Xu Min, Zhou Zhiyuan, Wang Yue. 2017. Ocean drilling invesigation of the global subduction processes. Advances in Earh Science, 32(12): 1253~1266.
-
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqin, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt—peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51(1~2): 537~571.
-
Liu Yongsheng, Hu Zhaochu, Gao Shan, Gunther Detlef, Xu Juan, Gao Changgui, Chen Haihong. 2008. Insitu analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1~2): 34~43.
-
Ludwijk R. 2003. ISOPLOT 3. 00: A geochronological toolkit for microsoft excel berkeley geochronology center, California, Berkeley.
-
Lu Yanming, Suo Chengxun, Zhuan Shaopeng, Yin Min. 2016&. Geochemistry and metallogenic potentiality of Early Cretaceous intrusive rocks in Ar Horqin area, Inner Mongolia. Geophysical and Geochemical Exploration, 40(5): 885~892.
-
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.
-
Mcdonough W F, Sun S S. 1995. The composition of the Earth. Chem. Geol. , 120: 223~253.
-
Middlemost E A K. 1994. Naming materials in the magma igneous rock system. Annual Review of Earth & Planetary Sciences, 37(3~4): 215~224.
-
Mojzsis S J, Harrison T M. 2002. Establishment of a 3. 83-Ga magmatic age for the Akilia tonalite (southern West Greenland). Earth and Planetary Science Letters, 202(3): 563~576.
-
Moller A, Obrien P J, Kennedy A. 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). Geological Society, London, Special Publications, 220(1): 65.
-
Pan Shaojun, Chen Xiaoyou, Zhang Jianfang, Zeng Fanfei, Gu Mingguang, Ma Junxiang. 2024&. The First Discovery of Late Cretaceous Volcanic Rocks in the Nanyandang Mountain Area of Southeastern Zhejiang and Stratigraphic Determination. Geoscience, DOI: 10. 19657/j. geoscience. 1000~8527. 2024. 036.
-
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956~983.
-
Peccerillo R, Tayloe S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63~81.
-
Qiu Jiansheng, Liu Liang, Li Zhen. 2011&. Zircon U-Pb geochronology and Sr—Nd—Hf isotopic geochemistry of quartz syenite from Wanghaigang pluton in Huangyan County, Zhejiang Province and their implications for petrogenesis. Acta Petrologica Sinica, 27(6): 1557~1572.
-
Qiu Jiansheng, Xie Zecongsi, Wang Dezi. 2000a&. Geochemical Characteristics and Genetic Type of Yaokeng Alkali Granites in Cangnan County, Zhejiang Province. Acta Petrologica et Mineralogica, 19(2): 97~10.
-
Qiu Jiansheng, Wang Dezi, Xie Zecongsi, BrentI A McInnes. 2000b&. Geochemistry and petrogenesis of aluminous A-type granitesin the coastal area of Fujian Province. Geochimica, 29(4): 313~321.
-
Qiu Jiansheng, Wang Dezi, Mclnnes B I A. 1999&. Geochemistry and petrogenesis of the I and A type composite granite masses in the coastal area of Zhejiang and Fujian province. Acta Petrologica Sinica, 15(2): 237~246.
-
Rowley D B. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth and Planetary Science Letters, 151(3): 191~203.
-
Rubatto D, Gebauer D. 2002. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (Eds. ), Cathodoluminescence in Geosciences. Springer Berlin Heidelberg, Berlin, Heidelberg, 373~400.
-
Shan Qiang, Zeng Qiaosong, Li Jiankang, Lu Huanzhang, Hou Maozhou, Yu Xueyuan, Wu Cchuanjun. 2014&. U-Pb geochronology of zircon and geochemistry of Kuiqi miarolitic granites, Fujian Province. Acta Petrologica Sinica, 30(4): 1155~1167
-
Shu Liangshu, Zhou Xinmin. 2002&. Late Mesozoic Tectonism of Southeast China. Geological Review, 48(3): 249~260.
-
Shu Liangshu, Zhou Xinmin, Deng Ping, Yu Xinqi, Wang Bin, Zu Fuping. 2004&. Geological features and tectonic evolution of Meso—Cenozoic basins in southeastern China. Geological Bulletin of China, 23(9~10): 876~884.
-
Sun S S, Mcdonough W F. 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42: 313~345.
-
Sun Weidong, Ling Mingxing, Wang Fangyue, Ding Xing, Hu Yanhua, Zhou Jibin, Yang Xiaoyong. 2008&. Pacific Plate Subduction and Mesozoic Geological Event in Eastern China. Bulletin of Mineralogy, Petrology and Geochemistry, 27(03): 218~225.
-
Tao Kuiyuan, Xing Guangfu, Yang Zuliang, Mao Jianren, Zhao Yu, Xu Naizheng. 2000&. Determination of and Discussion on the Ages of Mesozoic Volcanic Rocks in Zhejiang ——Comments on the argumentation of Lapierre et al. Geological Review, 46(1): 14~21.
-
Wang Yamei, Wan Tianfeng. 2008&. Cenozoic Lithosphere Tectonic Detachments, Magmatism and Earthquake in Eastern China. Geoscience, 22(2): 207~229.
-
Watson E B, Hrrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. , 64: 295~304.
-
Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: geochemical characteristics, discriminatuon and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407~419.
-
Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007&. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217~1238.
-
Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Sci. Bull. , 49: 1554~1569.
-
Xia Yan, Liu Lei, Xu Xisheng. 2016&. Late Mesozoic A-Type Granitoids in SE China and Paleo-Pacific Plate Subduction and Slab Rollback. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1109~1119.
-
Xiao E, Qiu Jiansheng, Xu Xisheng, Jiang Shaoyong, Hu Jian, Li Zhen. 2007&. Geochronology and geochemistry of the Yaokeng alkaline granitic pluton in Zhejiang province: Pelrogenetic and tectonic implications. Acta Petrologica Sinica, 23(6): 1431~1440.
-
Xie Lei, Wang Rucheng, Wang Dezi, Qiu Jiansheng. 2005&. Contrasting Accessory Mineral Assemblages in the Taohuadao Peralkaline and Putuoshan Aluminous A-type Granites, Zhejiang Province. Geological Journal of China Universities, 11(3): 390~403.
-
Xing Guangfu, Chen Rong, Yang Zuliang, Zhou Yuzhang, Li Longming, Jiang Yang, Chen Hongzhi. 2009&. Characteristics and tectonic setting of Late Cretaceous volcanic magmatism in the coastal Southeast China. Acta Petrologica Sinica, 25(1): 77~91.
-
Xu Keqin, Hu Shouxi, Sun Mingzhi, Ye Jun. 1982&. On the two genetic series of granites in Southeastem China and their metallogenic characteristics. Mineral Deposits, 2: 1~14.
-
Xu Mingjie, Shu Liangshu. 2001&. Deep Geological Conditions Constraning the Late Mesozoic Magmatism in SE China. Geological Journal of China Universities, 7(1): 21~33.
-
Xu Baoguo, Yan Guohan, Zhang Chen, Li Zhitong, He Zhongpu. 1998#. Petrological subclasses and their substances of A-type granite. Earth Science Frontiers, 5(3): 113~124.
-
Yang Wencai. 2022&. The ocean—continent transition process on formation of Zhejiang—Fujian volcanic rock belt. Geological Review, 68(2): 375~384.
-
Yu Minggang, Xing Guangfu, Shen Jialin, Chen Rong, Zhou Yuzhang, Huai Heming, Tao Kuiyuan. 2006&. Chronologic Study on Volcanic Rocks in the Mt. Yandangshan World Geopark. Acta Geologica Sinica, 80(11): 1683~l690.
-
Yu Yunwen, Xu Butai. 1999#. Sequence and Age of Late Mesozoic Volcanic Sedimentary Rocks in Zhejiang Province. Journal of Stratigraphy, 23(2): 136~145.
-
Zhang Yanqing, Ding Jialin, Gao Qin, Zhou Peng, Zeng Zhijie, Li Zilong. 2022&. Petrogenesis of granites in Dachen Island, Zhejiang Province: constraints from geochemistry, zircon U-Pb ages and Sr—Nd—Hf isotope. Geological Bulletin of China, 41(10): 1798~1812.
-
摘要
玉苍山—彭溪岩体位于东部沿海花岗岩带北端,受古太平洋板块俯冲制约。笔者等以该岩体碱长花岗岩为研究对象,开展锆石 U-Pb 测年,获得其加权平均年龄为 96. 50±1. 81 Ma 和 98. 27±0. 39 Ma,表明该岩体为晚白垩世岩浆活动的产物。该岩体主要矿物组成为钾长石(60% ~ 70%)、石英(25% ~ 35%),少量斜长石( <5%)、黑云母(<2%)等,呈中细粒花岗结构。该岩体地球化学特征上呈现高硅、富碱、低铝,镁、钙、磷、钛、铁等元素含量极低, Rb、K 等大离子亲石元素和 Th、U、Zr、Hf 等高场强元素富集,亲铁元素 Co、Ni、Cr、V 等含量较低;K/ Rb 值低,Rb / Sr、 Rb / B 值高;稀土元素总量高,且轻稀土元素富集程度远大于重稀土元素,同时具有明显的铕负异常,分异指数高;反映了该岩体具有强烈的壳源特征,且形成时岩浆演化分异程度高,存在斜长石、磷灰石等矿物的分离结晶,属于过铝质高钾钙碱性花岗岩系列。认为该岩体属于 A 型花岗岩,为晚白垩世时期板内伸展构造环境下软流圈地幔上涌、部分地壳参与熔融形成的。
Abstract
Objectives: The Yucangshan—Pengxi pluton is geographically located in the southeastern part of Zhejiang Province, at the northern end of the granite belt along the eastern coast of China. Magmatic activity is constrained by the subduction of the Pacific Plate, and is also controlled by the Wenzhou Zhenhai Fault in the region, trending northeast.
Methods: Based on the field investigation, We conducted microscopic observations, whole-rock geochemical analysis, and LA-ICP-MS zircon U-Pb dating for the Yucangshan—Pengxi alkali feldspar granite.
Results: Two sets of high-precision dating data were obtained, with weighted average ages of 96. 50 ± 1. 81 Ma and 98. 27 ± 0. 39 Ma, respectively, indicating that the rock mass is a product of Late Cretaceous magmatic activity. Under the microscope, the main mineral composition of the rock mass is potassium feldspar ( 60% ~ 69%), quartz (25% ~35%), as well as a small amount of plagioclase (<5%), biotite (<2%), etc. , presenting a medium to fine-grained granite structure. The rock mass exhibits high Si, rich alkali, low Al; depleted in Mg, Ca, P, Ti, Fe. The samples are enriched in large ion lithophilic elements such as Rb, K, etc; as well as high field strength elements such as Th, U, Zr, and Hf, are enriched. The content of ferrophilic elements such as Co, Ni, Cr, and V is relatively low; The K/ Rb ratio is low, while the Rb / Sr and Rb / Ba ratios are high; The total amount of rare earth elements is high, and the enrichment degree of light rare earth elements is much higher than that of heavy rare earth elements. At the same time, it has obvious europium negative anomalies and a high differentiation index; This reflects the strong crustal characteristics of the rock mass, and the high degree of differentiation in magma evolution during its formation.
Conclusions: During the diagenesis process, minerals such as plagioclase and apatite were separated and crystallized, belonging to the peraluminous high potassium calcium alkaline granite series. Through exploration of the rock type and tectonic environment, it is believed that the rock mass belongs to A-type granite, which was formed by the upwelling of the asthenosphere mantle and partial melting of the crust in the late Cretaceous intraplate extensional tectonic environment.