en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

谭金萍,女,2000年生,硕士研究生,主要从事石油地质学研究;E-mail: 1835166511@qq.com。

通讯作者:

谢小敏,女,1984年生,博士,教授,主要从事烃源岩生烃潜力评价、非常规页岩油气赋存及储层发育特征、有机与无机岩石学与地球化学综合研究;E-mail: xiaominxie2019@sina.com。

参考文献
蔡全升, 陈孝红, 张保民, 刘安, 韩京, 张国涛, 李炎桂. 2020. 鄂西宜昌地区五峰组——龙马溪组黑色岩系硅质来源及其油气地质意义. 地质学报, 94(3): 931~946.
参考文献
邓大飞, 梅廉夫, 沈传波, 刘昭茜, 汤济广, 凡元芳. 2014. 江南—雪峰隆起北缘海相油气富集主控因素和破坏机制. 吉林大学学报(地球科学版), 44(5): 1466~1477.
参考文献
丁振举, 刘丛强, 姚书振, 周宗桂. 2000. 海底热液沉积物稀土元素组成及其意义. 地质科技情报, 19(1): 27~30+34.
参考文献
范德廉, 杨秀珍, 王连芳, 陈南生. 1973. 某地下寒武统含镍钼多元素黑色岩系的岩石学及地球化学特点. 地球化学, 1973(3): 143~164.
参考文献
戢兴忠, 李楠, 张闯, 邱昆峰, 华北, 余金元, 吴春俊, 韩日. 2014. 勉略构造带硅质岩元素地球化学特征及其形成环境. 岩石学报, 30(9): 2619~2630.
参考文献
梁狄刚, 郭彤楼, 边立曾, 陈建平, 赵喆. 2009. 中国南方海相生烃成藏研究的若干新进展(三)南方四套区域性海相烃源岩的沉积相及发育的控制因素. 海相油气地质, 14(2): 1~19.
参考文献
林良彪, 陈洪德. 朱利东. 2010. 川东茅口组硅质岩地球化学特征及成因. 地质学报, 84(4): 500~507.
参考文献
刘浩, 徐大良, 牛志军, 韩练红, 魏运许, 赵小明. 2015. 湖北竹山杨家堡组硅质岩成因及沉积环境分析. 沉积学报, 33(6): 1087~1096.
参考文献
梅廉夫, 邓大飞, 沈传波, 刘昭茜. 2012. 江南—雪峰隆起构造动力学与海相油气成藏演化. 地质科技情报, 31(5): 85~93.
参考文献
邱振, 王清晨. 2011a. 广西来宾中上二叠统硅质岩海底热液成因的地球化学证据. 中国科学: 地球科学, 41(5): 725~737.
参考文献
邱振, 王清晨, 严德天. 2011b. 广西来宾蓬莱滩剖面中上二叠统硅质岩的地球化学特征及沉积背景. 岩石学报, 27(10): 3141~3155.
参考文献
王淑芳, 邹才能, 董大忠, 王玉满, 黄金亮, 郭召杰. 2014. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义. 北京大学学报(自然科学版), 50 (3): 476~486.
参考文献
王秀平, 牟传龙, 肖朝晖, 郑斌嵩, 陈尧, 王启宇, 刘惟庆. 2018. 湖北鹤峰地区二叠系大隆组黑色岩系成因——来自鹤地1井的元素地球化学证据. 石油学报, 39 (12): 1355~1369.
参考文献
王卓卓, 陈代钊, 汪建国. 2007. 广西南宁地区泥盆系硅质岩地球化学特征及沉积环境. 沉积学报, 25(2): 239~245.
参考文献
夏鹏, 付勇, 杨镇, 郭川, 黄金强, 黄明勇. 2020. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系. 地质学报, 94(3): 947~956.
参考文献
谢小敏, 腾格尔, 秦建中, 张庆珍, 边立曾, 尹磊明. 2015. 贵州凯里寒武系底部硅质岩系生物组成、沉积环境与烃源岩发育关系研究. 地质学报, 89(2): 425~439.
参考文献
谢小敏, 刘伟新, 张瀛, 赵迪斐, 唐友军, 申宝剑, 李志明. 2021. 四川盆地下古生界硅质页岩层系中硅质来源及其对有机质保存的影响初探. 地质论评, 67(2): 429~440.
参考文献
杨贵园, 高军波, 杨瑞东, 刘志臣, 徐海. 2022. 贵州纳雍营盘中二叠统茅口组硅质岩成因及其地质意义. 地质论评, 68(5): 1621~1633.
参考文献
杨兴莲, 朱茂炎, 赵元龙, 张俊明, 郭庆军, 皮道会. 2008. 黔东震旦系—下寒武统黑色岩系稀土元素地球化学特征. 地质论评, 54(1): 3~15.
参考文献
杨兴莲, 赵元龙, 朱茂炎, 崔滔, 扬凯迪. 2010. 贵州丹寨寒武系牛蹄塘组海绵动物化石及其环境背景. 古生物学报, 49(3): 348~359.
参考文献
张聪, 黄虎, 侯明才. 2017. 地球化学方法在硅质岩成因与构造背景研究中的进展及问题. 成都理工大学学报(自然科学版), 44(3): 293~304.
参考文献
张江江. 2011. 黔南坳陷构造演化研究. 导师: 王伟锋. 北京: 中国石油大学硕士学位论文. 1~111.
参考文献
张位华, 姜立君, 高慧, 扬瑞东. 2003. 贵州寒武系底部黑色硅质岩成因及沉积环境探讨. 矿物岩石地球化学通报, 22(2): 174~178.
参考文献
张亚冠, 杜远生, 徐亚军, 余文超, 黄虎, 焦良轩. 2015. 湘中震旦纪—寒武纪之交硅质岩地球化学特征及成因环境研究. 地质论评, 61 (3): 499~510.
参考文献
朱笑青, 王中刚. 1994. 冲绳海槽热水区沉积物的地球化学特征. 北京: 地震出版社: 108~112.
参考文献
Banerjee D M, Schidlowski M, Siebert F, Brasier M D. 1997. Geochemical changes across the Proterozoic-Cambrian transition in the Durmala phosphorite mine section, Mussoorie Hills, Garhwal Himalaya, India——Science Direct. Palaeogeography Palaeoclimatology Palaeoecology, 132: 183~194.
参考文献
Barrett T J. 1981. Chemistry and mineralogy of Jurassic bedded chert overlying ophiolites in the North Appennines. Italy. Chem. Geol. , 34: 289~317.
参考文献
Bierlein F P. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid—rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3~4): 219~230.
参考文献
Bock M J, Mayer L M. 2000. Mesodensity organo—clay associations in a near-shore sediment. Marine geology, 163: 65~75.
参考文献
Burd Brenda J, Thomson Richard E. 1994. Hydrothermal venting at Endeavor Ridge-effect on zooplankton biomass throughout the water column. Deep Sea Research Part I Oceanographic Research Papers, 41(9): 1407~1423.
参考文献
Cai Quansheng, Chen Xiaohong, Zhang Baomin, Liu An, Han Jing, Zhang Guotao, Li Yangui. 2020&. Origin of siliceous minerals in the black shale of the Wufeng and Longmaxi Formations in the Yichang area, western Hubei Province: geological significance for shale gas. Acta Geologica Sinica, 94(3): 931~946.
参考文献
Cheng Meng, Li Chao, Jin Chengsheng, Wang Haiyang, Algeo Thomas J, Lyons Timothy W, Zhang Feifei, Anbar Ariel. 2020. Evidence for high organic carbon export to the early Cambrian seafloor. Geochimica et Cosmochimica Acta, 287: 125~140.
参考文献
Craig J, Thurow J, Thusu B, Whitham A, Abutarruma Y. 2009. Global neoproterozoic petroleum systems: The emerging potential in north Africa. Geological Society London Special Publications, 326(1): 1~25.
参考文献
Deng Dafei, Mei Lianfu, Shen Chuanbo, Liu Zhaoqian, Tang Jiguang, Fan Yuanfang. 2014&. Major factor of accumulation and destruction mechanisms of marine strata-related hydrocarbon in the northern margin of the Jiangnan—Xuefeng uplift. Journal of Jilin University (Earth Science Edition), 44(5): 1466~1477.
参考文献
Ding Zhenju, Liu Congqiang, Yao Shuzhen, Zhou Zonggui. 2000&. Ree composition and implication of hydrothermal sedimentation of sea-floor. Geological Science And Technology Information, 19(1): 27~30+34.
参考文献
Edmond J M, Damm K L. 1985. Chemistry of ridge crest hot springs: Hydrothermalv ents of the Eastern Pacific: An overview.Bulletin of theBiological Societyof Washington, 6: 43~47.
参考文献
Fan Delian, Yang Xiuzhen, Wang Lianfang, Chen Nansheng. 1973&. Petrological and geochemical characteristics of a nickel— molybdenum— multe- element - bearing Lower-cambrian black shale from a certain district in south china. Geochimica, 1973(3): 143~164.
参考文献
Folk R L, Weaver C E. 1952. A study of the texture and composition of chert. American Journal of Science, 250(7): 498~510.
参考文献
Folk R L, Stuart Pittman. 1957. Length-slow chalcedony; a new testament for vanished evaporites. Journal of Sedimentary Research, 41: 1045~1058.
参考文献
Gao Ping, He Zhiliang, Li Shuangjian, Lash Gary G, Li Boyuan, Huang Boyu, Yan Detian. 2018. Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China. Palaeogeography, Palaeoclimatology, Palaeoecology: An International Journal for the Geo-Sciences, 505: 381~397.
参考文献
Holdaway H K, Clayton C J. 1982. Preservation of shell microstructure in silicified brachiopods from the Upper Cretaceous Wilmington Sands of Devon. Geological Magazine, 119(4): 371~382.
参考文献
Ji Xingzhong, Li Nan, Zhang Chuang, Qiu Kunfeng, Hua Bei, Yu Jinyuan, Wu Chunjun, Han Ri. 2014&. Elemental geochemistry characteristics and forming environment of cherts in the Mianlue tectonic zone. Acta Petrologica Sinica, 30(9): 2619~2630.
参考文献
Kaufman Alan J, Jacobsen Stein B, Knoll Andrew H. 1993. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth & Planetary Science Letters, 120(3~4): 409~430.
参考文献
Liang Digang, Guo Tonglou, Bian Lizeng, Chen Jianping, Zhao Zhe. 2009&. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 3): Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks. " Marine Origin Petroleum Geology, 14(2): 1~19.
参考文献
Lin Liangbiao, Chen Hongde, Zhu Lidong. 2010&. The origin and geochemical characteristics of Maokou Formation silicalites in the eastern Sichuan basin. Acta Geologica Sinica, 84(4): 500~507.
参考文献
Liu Hao, Xu Daliang, Niu Zhijun, Han Lianhong, Wei Yunxu, Zhao Xiaoming. 2015&. Petrogenesis and Sedimentary Environment of Siliceous Rocks of Yangjiabao Formation in Zhushan Area, Northwestern Hubei. Acta Sedimentologica Sinica, 33(6): 1087~1096.
参考文献
Liu Zhanhong, Zhuang Xingguo, Tenger, Xie Xiaomin, Yin Leimiing, Bian Lizeng, Feng Qinglai, Algeo T J. 2015. The lower Cambian Niutitang Formation at Yangtiao (GuiZhou, SW China): organic matter enrichment, source rock potential, and hydrothermal influences. Journal of Petroleum Geology, 38(4): 411~432.
参考文献
Mei Lianfu, Deng Dafei, Shen Chuanbo, Liu Zhaoqian. 2012&. Tectonic dynamics and marine hydrocarbon accumulation of Jiangnan—Xuefeng uplift. Geological Science and Technology Information, 31(5): 85~93.
参考文献
Murray Richard W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90(3~4): 213~232.
参考文献
Murray Richard W, Buchholtzt B M R, Jones David L, Gerlach David C, Lii Price Russ. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18(3): 268.
参考文献
Murray Richard W, Brink Marilyn R Buchholtz Ten, Gerlach David C, Lii Price Russ, Jones David L. 1991. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochimica Et Cosmochimica Acta, 55(7): 1875~1895.
参考文献
Niu Xing, Yan Detian, Zhuang Xinguo, Liu Zixuan, Li Baoqing, Wei Xiaosong, Xu Hanwen, Li Dawei. 2018. Origin of quartz in the Lower Cambrian Niutitang Formation in south Hubei Province, upper Yangtze platform. Marine and Petroleum Geology, 96: 271~287.
参考文献
Qiu Zhen, Wang Qingchen. 2011a&. Geochemical characteristics and sedimentary background of the Middle and Upper Permian siliceous rocks in the Penglaitan section of Laibin, Guangxi. Science China: Earth Science, 41(5): 725~737.
参考文献
Qiu Zhen, Wang Qingchen, Yan Detian. 2011b&. Geochemistry and sedimentary background of the Middle—Upper Permian cherts in the Penglaitan section, Laibin, Guangxi Province. Acta Petrologica Sinica, 27(10): 3141~3155
参考文献
Ramseyer Karl, Amthor Joachim E, Matter Albert, Pettke Thomas, Wille Martin, Fallick Anthony E. 2013. Primary silica precipitate at the precambrian/cambrian boundary in the south Oman Salt basin, sultanate of Oman. Marine and Petroleum Geology, 39: 187~197.
参考文献
Renaut R W, Jones B, Tiercelin J J. 2010. Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya Rift Valley. Sedimentology. 45(6): 1083~1103.
参考文献
Rona Peter A, Boström Kurt, Laubier Lucien, Smith Kenneth L. 1983. Genesis of ferromanganese deposits—diagnostic criteria for recent and dld deposits (chapter 20). US: Springer: 473~489.
参考文献
Schultz-Lam S, Ferris F G, Konhauser K O, Wiese R G. 1995. In situ silicification of an icelandic hot spring microbial mat: Implications for microfossil formation. Canadian Journal of Earth Sciences. 32: 2021~2026.
参考文献
Straeten Charles A Ver, Brett Carlton E, Sageman Bradley B. 2011. Mudrock sequence stratigraphy: A multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeography Palaeoclimatology Palaeoecology, 304(1~2): 54~73.
参考文献
Sylvestre Ganno, Laure Njiosseu Tanko Evine, Djibril Kouankap Nono Gus, Arlette Djibril Soh, Cyriel Moudioh, Timoleon Ngnotue, Paul Nzenti Jean. 2017. A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: Constraints from petrography and geochemistry. Ore Geology Reviews, 80: 860~875.
参考文献
Turner R D, Lutz R A. 1984. Growth and distribution of Mollusks at deep—sea vents and seeps. Environmental Science (Biology Oceanus), 27: 55~62.
参考文献
Wang Chao, Zhang Baiqiao, Lu Yongchao, Shu Zhiguo, Lu Yaqiu, Bao Hanyong, Meng Zhiyong, Chen Lei. 2018. Lithofacies distribution characteristics and its controlling factors of shale in Wufeng Formation—Member 1 of Longmaxi Formation in the Jiaoshiba area, 3(4): 306~319.
参考文献
Wang Shufang, Zou Caineng, Dong Dazhong, Wang Yuman, Huang Jinliang, Guo Zhaojie. 2014&. Biogenic silica of organic-rich shale in sichuan basin and its significance for shale gas. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(3): 476~486.
参考文献
Wang Shufang, Zou Caineng, Dong Dazhong, Wang Yuman, Li Xinjing, Huang Jinliang, Guan Quanzhong. 2015. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence. Marine & Petroleum Geology, 66: 660~672.
参考文献
Wang Xiuping, Mou Chuanglong, Xiao Zhaohui, Zheng Binsong, Chen Yao, Wang Qiyu, Liu Weiqing. 2018&. Genesis of black rock series of Upper Permian Dalong Formation in Hefeng area, Hubei province: an evidence from the analysis of element geochemistry in Well HD1. Acta Petrolei Sinica, 39(12): 1355~1369.
参考文献
Wang ZhuoZhuo, Chen Daizhao, Wang Jianguo. 2007&. Element Geochemistry and depositional setting of the Chert in Devonian, Nanning Area, Guangxi. Acta Sedimentologica Sinica, 25(2): 239~245.
参考文献
Wen Hanjie, Fan Haifeng, Tian Shihong, Wang, Qilian, Hu Ruizhong. 2016. The formation conditions of the Early Ediacaran cherts, South China. Chemical Geology, 430: 45~69.
参考文献
Xia Peng, Fu Yong, Yang Zhen, Guo Chuan, Huang Jinqiang, Huang Mingyong. 2020&. The relationship between sedimentary environment and organic matter accumulation in the Niutitang black shale in Zhenyuan, northern Guizhou. Acta Geologica Sinica, 94(3): 947~56.
参考文献
Xie Xiaomin, Tenger, Qin Jianzhong, Zhang Qingzhen, Bian Lizeng, Yin Leiming. 2015&. Depositional environment, organisms components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation, Kaili, Guizhou. Acta Geologica Sinica, 89(2): 425~439.
参考文献
Xie Xiaomin, Zhu Guangyou, Wang Ye. 2021. The influence of syngenetic hydrothermal silica fluid on organic matter preservation in lower cambrian niutitang formation, south china. Marine and Petroleum Geology, 129(1): 105098.
参考文献
Xie Xiaomin, Liu Weixin, Zhang Yin, Zhao Dife, Tang Youjun, Shen Baojian, Li Zhiming, 2021&. Siliceous source and its influence on organic matter preservation of the two Lower Paleozoic siliceous shale reserviors in Sichuan Basin. Geological Review, 67(2): 429~440.
参考文献
Yang Guiyuan, Gao Junbo, Yang Ruidong, Liu Zhichen, Xu Hai. 2022&. The genesis and geological significance of the siliciclastic rocks of the Middle Permian Maokou Formation at Yingpan, Nayong, Guizhou. Geological Review, 68(5): 1621~1633.
参考文献
Yang Xinglian, Zhu Maoyan, Zhao Yuanlong, Zhang Junming, Guo Qingjun, Pi Daoyou. 2008&. REE Geochemical Characteristics of the Ediacaran—Lower Cambrian Black Rock Series in Eastern Guizhou. Geological Review, 54(1): 3~15.
参考文献
Yang Xinglian, Zhao Yuanlong, Zhu Maoyan, Cui Tao, Yang Kaidi. 2010&. Sponges from the Early Cambrian Niutitang Formation at Danzhai, Guizhou and their environmental background. Acta Palaeontologica Sinica, 49(3): 348~359.
参考文献
Zhang Cong, Huang Hu, Hou Mingcai. 2017&. Progress and problems in the geochemical study on chert genesis for interpretation of tectonic background. Journal of Chengdu University of Technology (Science and Technology Edition), 44(3): 293~304.
参考文献
Zhang Jiangjiang. 2011&. The Research of Tectonic Evolution in Southern Guizhou Depression. Supervisor: Wang Weifeng. Beijing: Master thesis of China University of Petroleum (East China): 1~111.
参考文献
Zhang Weihua, Jiang Lijun, Gao Hui, Yang Ruidong. 2003&. Study on sedimentary environment and origin of black siliceous rocks of the Lower Cambrian in Giuzhou Province. Bulletin of Mineralogy Petrology & Geochemistry, 22(2): 174~178.
参考文献
Zhang Yaguan, Du Yuansheng, Xu Yajun, Yu Wenchao, Huang Hu, Jiao Liangxuan. 2015&. Geochemical characteristics of siliceous rocks during the transition from Sinian(Ediacaran) to Cambrian in central Hunan and its implication for genesis and sedimentary environment. Geological Review, 61(3): 499~510.
参考文献
Zhao Jianhua, Jin Zhijun, Hu Qinhong, Liu Keyu, Jin Zhenkui, Hu Zonngquan, Nie Haikuan, Du Wei, Yan Caina, Wang Ruyue. 2018. Mineral composition and seal condition implicated in pore structure development of organic-rich Longmaxi shales, Sichuan Basin, China. Marine and Petroleum Geology, 98: 507~522.
参考文献
Zhou Yongzhang, Chown E H, Guha Jayanta, Lu Huangzhang, Tu Guangzhi. 1994. Hydrothermal origin of Late Proterozoic bedded chert at Gusui, Guangdong, China: Petrological and geochemical evidence. Sedimentology, 41(3): 605~619.
参考文献
Zhu Xiaoqing, Wang Zhonggang. 1994&. Geochemical Characterization of Sediments in the Hot Water Zone of the Okinawa Trough. Beijing: Earthquake Publishing House: 108~112.
目录contents

    摘要

    早寒武世早期,贵州麻江羊跳剖面发育了一套灰黑色优质烃源岩,目前,针对该烃源岩中 SiO2 成因及定量分析缺乏系统研究,笔者等综合有机岩石学、扫描电镜、主量元素及稀土元素等分析测试,探讨了该剖面 SiO2 成因类型,并建立相关模型,对不同来源 SiO2 含量进行定量分析计算。结果表明:①羊跳剖面下寒武统牛蹄塘组底部烃源岩样品中发现热液活动的岩石学证据,即玉髓和热液生物(海绵骨针和须腕动物),表明牛蹄塘组底部烃源岩沉积过程受热液影响。 ②硅质岩与硅质页岩的 Fe / Ti 平均值分别为 51. 04、17. 24;Al / (Al+Fe) 平均值分别为 0. 41、 0. 65,同时硅质岩系 ΣLREE/ ΣHREE 整体大于 1,稀土元素配分模式具有 Eu 正异常、Ce 负异常的特征,表明硅质岩受热液影响较大,硅质页岩不受或受热液影响较小。 ③定量分析结果显示:烃源岩中,碎屑硅平均值为 30. 52%;热液硅平均值为 34. 67%;生物硅平均值为 34. 81%,这表明羊跳剖面牛蹄塘组底部烃源岩主要为生物成因和热液成因。研究结果将为确定该地区有利的页岩气富集和开采层段提供参考依据。

    Abstract

    Objectives: In the Early Cambrian, a set of gray—black good source rocks developed in the Yangqiao section of Majiang, Guizhou. At present, in view of the lack of systematic research on the genesis and quantitative analysis of source rocks in this stratum.

    Methods: This paper discusses the types of SiO2 genesis in this section based on the analysis and testing of organic petrology, SEM, major elements and rare earth elements, and establishes relevant models to quantitatively analyze and calculate the SiO2 content from different sources.

    Results: The results show that: ① In the early Cambrian, petrological evidence of hydrothermal activity was found in the source rock samples at the bottom of the Niutitang Formation in the Yangtiao outcrop, indicating that the sedimentary process of the source rock at the bottom of the Niutitang Formation was influenced by hydrothermal activity, including chalcedony and hydrothermal organisms such as sponge spicules and Pogonophoran worms. ② The average values of Fe / Ti in siliceous rock and siliceous shale were 51. 04 and 17. 24, respectively, and the average values of Al / (Al +Fe) were 0. 41 and 0. 65, respectively. At the same time, ΣLREE / ΣHREE overall greater than 1, and the rare earth element distribution pattern has the characteristics of Eu positive anomaly and Ce negative anomaly, which indicates that siliceous rocks are greatly affected by hydrothermal fluids, while siliceous shales are not affected by hydrothermal fluids or are less affected by hydrothermal fluids. ③ The results of quantitative analysis showed that in source rocks; The average value of detrital silicon is 30. 52%; The average value of hydrothermal silicon is 34. 67%; The average value of biosilicon is 34. 81%, which indicated that the source rocks at the bottom of the Niutitang Formation in the Yangqiao section were mainly of biogenetic and hydrothermal fluids origin.

    Conclusions: The results of the study will provide a reference for identifying favorable shale gas enrichment and production intervals in the area.

  • 烃源岩中的 SiO2 成因十分复杂,据前人研究认为 SiO2 来源有 3 种形式,即热液来源( Zhou Yongzhang et al.,1994; 林良彪等,2010; 邱振等,2011a)、生物来源(邱振等,2011b; 王淑芳等,2014; 王秀平等,2018)(如放射虫、海绵骨针等)及陆源碎屑来源(大陆岩石的风化产物)。不同形式的 SiO2 对烃源岩的形成和生烃潜力有所影响,Xie Xiaomin 等(2021) 对同生热液硅流体对下寒武统牛蹄塘组有机质保存的影响研究中发现:受热液硅流体影响大的燧石样品有机碳含量最低,生烃潜力小; 受热液硅流体影响较小的硅质页岩和泥岩有机碳含量高,具有较大的生烃潜力。因此,研究烃源岩中 SiO2 来源对优质烃源岩的生烃潜力评价至关重要,目前华南地区下寒武统海相黑色页岩层段是全球重要的烃源岩( Craig et al.,2009),与四川盆地重要的五峰—龙马组页岩相比,早寒武世的黑色页岩和燧石层段在更高的成熟阶段含有更高的 TOC 含量和更高的 SiO2 含量( Wang Chao et al.,2018; Zhao Jianhua et al.,2018),平均 SiO2 含量高达约 80%,在该页岩层段或等效层段中检测到保存完好的硅质生物(如海绵和放射虫)(Ramseyer Karl et al.,2013 年; 谢小敏等,2015)。陆源石英输入(Wen Hanjie et al.,2016)和从蒙脱石到伊利石过渡的成岩转化过程中释放的硅(Niu Xing et al.,2018)也是埃迪卡拉纪—寒武纪区间主要 SiO2 来源。

  • 目前,针对华南地区寒武系底部烃源岩的研究成果较为丰富。前人研究认为,扬子板块下寒武统牛蹄塘组烃源岩在沉积过程中经历了相对剧烈的热液活动(Liu Zhanhong et al.,2015),同时期的火山活动和热液活动导致了富有机质沉积物的聚集和磷结核的生长( Gao Ping et al.,2018)。张位华等(2003)通过分析 δ18O 值得出,贵州羊跳地区烃源岩形成温度很高(162.5℃),而此地区的 δ30 Si 值最低(-1‰),其 δ30 Si 值具有热液喷口的特征,认为其形成过程受热水影响。夏鹏等(2020) 对黔北牛蹄塘组黑色页岩进行了矿物组分、元素分析和碳氧同位素分析,结果表明牛蹄塘组页岩中有机质的富集主要受控于氧化还原条件。张亚冠等(2015) 通过对湘中震旦纪—寒武纪硅质岩的主量、稀土元素分析研究认为研究区的硅质岩属于正常的海水沉积成因,整体受热液和碎屑影响较小。烃源岩中 SiO2 的成因往往是复杂的,常常是多种因素共同作用的结果。目前,缺乏对不同来源 SiO2 进行定量或半定量分析的研究。准确判定 SiO2 来源对于研究烃源岩中的硅质成因、沉积环境和有机质富集模式具有重要意义,也有助于确定有利的页岩气富集和开采层段。

  • 笔者等针对贵州麻江羊跳剖面牛蹄塘组底部一套灰黑色优质烃源岩,通过有机岩石学观察、扫描电镜、主量元素和稀土元素等研究方法,并结合定量分析计算模型(谢小敏等,2021),对不同来源的 SiO2 含量进行定量分析。探讨牛蹄塘组底部烃源岩 SiO2 成因,以期为该地区页岩气勘探和开发提供参考依据。

  • 1 区域地质背景

  • 新元古代裂谷事件后,扬子板块在埃迪卡拉纪—寒武纪过渡时期演化为被动大陆边缘盆地,这一地块位于中国南方,包括新元古代到早古生代的一系列地层,其中记录了多个冰期和间冰期事件(Kaufman et al.,1993)。震旦纪南沱冰期以后,随着冰川的消融,海平面上升,扬子板块海侵范围扩大,全球经历了长时间的海洋缺氧期,这导致在全球范围内产生了富有机质黑色页岩的沉积(范德廉等,1973; Banerjee et al.,1997),形成了一整套早寒武世黑色页岩。该套烃源岩广泛分布于我国南方,且具有层位稳定,厚度大,黑色、灰黑色薄层至中厚层状硅质岩与硅质页岩互层的特征,其下伏地层为震旦系白云岩,上覆地层为寒武系牛碲塘组黑色碳质泥岩。黔南坳陷位于贵州省中南部,大地构造位置上处于扬子板块的西南缘(梅廉夫等,2012; 邓大飞等,2014),东部以铜仁—三都断裂为界相接雪峰山隆起,东南部以荔波断裂为界,西南部以紫云罗甸 —南丹—都安断裂为界相邻罗甸断坳,西北部以贵阳—镇远断裂为界(张江江,2011)。黔南坳陷可划分为安顺凹陷、贵定断阶、黄平凹陷、长顺凹陷和独山鼻状凸起 5 个构造单元(图1)。

  • 研究区位于贵州省东南部凯里市麻江县羊跳村。从底部向上依次出露埃迪卡拉系灯影组、寒武系牛蹄塘组和九门冲组(图2)。羊跳剖面下寒武统牛蹄塘组大约为 76 m,底部样品主要为黑色—灰黑色硅质岩与硅质页岩互层,硅质岩主要呈薄层到中厚层状,层厚不稳定,介于 1~10 cm,致密坚硬; 而硅质页岩层很薄约为 1~5 cm,具水平层理,常见磷结核; 中部岩性主要为灰黑色碳质泥岩夹少量黄色、浅灰色泥岩; 上部岩性主要为土黄色泥岩夹灰黑色泥岩。该剖面与下伏地层埃迪卡拉系灯影组灰色白云岩假整合接触,与上覆地层九门冲组灰色灰岩呈整合接触。

  • 2 样品及分析方法

  • 为了对该套烃源岩的 SiO2 成因进行精细研究,对这套烃源岩进行了逐层取样,3.2 m 的地层共取样 68 件。利用有机岩石学、扫描电镜、主量元素和稀土元素等元素数据分析,并对样品进行不同来源 SiO2 的定量分析,探讨该套烃源岩的 SiO2 成因。

  • 野外剖面样品去除表面风化部分后,制成光薄片。先将岩石切片,对其中一面进行粗磨和细磨处理,接着使用固体光学树胶将细抛光面粘附在玻璃片上,随后将样品反转,磨至厚度达到 0. 03 mm。最后,进行抛光处理。在显微镜 MF43 下观察样品在不同光条件下的光学特性,以分析样品的有机质类型和有机质与矿物的相互关系。

  • 总有机碳含量测试在长江大学地球化学实验室完成,样品先用 10%的稀盐酸水浴加热 2 h 后除去碳酸盐、硅酸盐等无机物,再经超纯水洗净烘干,送入 CS-230 碳硫分析仪分析得到总有机碳(TOC,%)与总硫(TS,%)结果,分析精度为碳 2×10-6 或 RSD ≤0.5%,硫 2×10-6 或 RSD ≤ 1.5%。

  • 所有样品进行主量元素与稀土元素分析。样品烘干、碎样,过 75 μm 筛。称取 0.1000 ± 0. 0002 克试料,放置于 30 mL 聚四氟乙烯坩埚中,加入 10 mL HNO3 +HClO4 +HF(1 ∶ 1 ∶ 2)混酸,加盖,置于控温电热板上进行样品消解。待冒白烟后,于 100℃ 保温 3 h。蒸至近干,加入 5 mL 王水(1 ∶ 1)趁热提取,待冷却。将提取液转移至 50 mL 容量瓶,用蒸馏水稀释至刻度,充分摇匀留于备用。同时制备 3 份空白样品。配制标液及标准空白。内标:103 Rh、 185 Re( 10 × 10-9 混标)。常量元素通过 ICP-OES(PE 8300 V)检测、稀土元素通过 ICP-MS(Agilent 7700 Series)检测。

  • 3 结果

  • 3.1 有机质丰度

  • 羊跳下寒武统牛蹄塘组底部烃源岩有机质丰度较高(图3),由于 Y-30 号样品量很少未作详细分析,Y-38 样品具有异常高的 TOC 值(27.52%),镜下观察发现样品中含有大量固体沥青充注,因此在分析讨论中已将这两个样品排除。牛蹄塘底部为一套黑色优质烃源岩,该剖面 TOC 总体分布在 0.57%~19.64%(表1),66 个样品平均值为 3.70%。硅质岩与硅质页岩有机质丰度差别较大。硅质岩 TOC 含量相对硅质页岩较低,39 件样品 TOC 分布在 0.62%~3. 08%,平均值为 1.61%,除 Y-4 为 3. 08%,Y-20 为 3. 04%,Y-29 为 2.77%,其余样品均小于 2.5%。对比硅质岩,硅质页岩有机质丰度相对较高,27 件样品 TOC 分布在 0.57%~19.6%,平均值为 6.48%。

  • 图1 黔南地区构造单元划分图(改自张江江等,2011

  • Fig.1 Division of tectonic units in southern Guizhou Province (modified from Zhang Jiangjiang et al., 2011&)

  • 3.2 生物组成特征

  • 对羊跳牛蹄塘组底部烃源岩所有样品进行有机岩石学观察,样品生物类型以单细胞浮游藻类和多细胞底栖藻类为主,部分样品可见海绵骨针、须腕动物等。在对生物类型鉴定的基础上,按照生物种类的不同,以及生物组成和岩性间的关系,可归纳出三大类生物微相(即浮游藻类生物微相、底栖藻类生物微相和其他生物微相),主要特征为:①浮游藻类生物微相:有机质生物种类以浮游藻、疑源类(图4a—c)和少量蓝藻为主。 ②底栖藻类生物微相:有机质组成以底栖藻类(图4e、f)为主,可见多细胞藻类、底栖红藻(图4d)及红藻囊果。 ③其他生物微相:其他生物微相是指以其他生物为主的生物微相,如海绵、须腕动物(图4h、i)等,海绵骨针是指海绵的矿物骨骼单元,镜下可观察到海绵骨针切面,呈圆形及小针状(图4g)。该地区从底部往上沉积的 3.2m厚的烃源岩生物组成主要以底栖藻类为主,部分样品含浮游藻类和其他生物类型,本次研究结果与谢小敏等(2015) 对贵州凯里寒武系底部烃源岩生物组成研究结果一致,其将鉴定出的生物微相与有机碳含量进行相关性分析,结果显示,不同生物微相样品有机碳含量不同(即底栖藻类微相>浮游藻类微相>其他生物微相)。

  • 图2 黔东南麻江羊跳下寒武统牛蹄塘组剖面柱状图

  • Fig.2 Column of the section of the Cambrian Niutitang Formation in Yangtiao, Majiang County, southeastern Guizhou

  • 表1 麻江羊跳牛蹄塘组底部烃源岩 TOC 含量(%)及主量元素组成(%)

  • Table1 Major elements composition (%) of the source rocks at the bottom of the Niutitang Formation in Yangtiao, Majiang

  • 对羊跳牛蹄塘组部分样品进行扫描电镜观察,并做能谱成分分析,在扫描电镜下的结构有机质具有规则的形态,可见疑似导管、孔洞等生物特征。图5a 为疑源类被保存在以 Si 为主的矿物中,部分保存了完整的形态,有机质主要含 C、O,还含有少量 Al、 P。图5b 为底栖藻类,可见圆形结构和多细胞藻类叶状体结构。图5c 为须腕动物,周围为硅质矿物,有机质主要含 C、O,还含有少量 Si。图5d 为海绵有机质被保存在以 Al、Ca、Si 为主的矿物中,横截为圆形,形态保存较好,元素组成主要为 C、O,C 相对含量较高为 77. 00%;

  • 3.3 主量元素特征

  • 研究区主量元素分析结果表明(表1),羊跳剖面牛蹄塘组底部烃源岩中主量元素 SiO2 的含量最高,为 30.22%~98.64%,平均为 81.9%; 硅质岩中 TiO2 含量为 0. 01%~0.48%,平均值为 0. 06; 硅质页岩中 TiO2 含量为 0. 01%~0.53%,平均值为 0.21%,略高于硅质岩。硅质岩中 Al2O3 含量为 0.17%~9. 08%,平均含量为 1.32%,硅质页岩中 Al2O3 含量为 0.28%~14. 03%,平均值为 5.84%,硅质页岩中的 Al2O3 含量明显大于硅质岩。硅质岩中 Fe2O3 含量介于 0.68%~5.97%,平均值为 1.27%。硅质页岩中 Fe2O3 含量介于 0.2%~6.27%,平均值为 3.13%,硅质页岩中的 Fe2O3 含量大于硅质岩。硅质页岩中的 SiO2、Al2O3、Fe2O3、TiO2 等各种主量元素都具有明显大于硅质岩的特征,指示硅质岩与硅质页岩所处沉积环境有所差异。

  • 3.4 稀土元素特征

  • 羊跳剖面牛蹄塘组底部烃源岩稀土元素分析数据结果显示( 表2)。整体上看烃源岩稀土总量 ΣREE 范围在 3.93~1088.68 μg / g 之间,平均值为 198.69 μg / g; 对比硅质岩与硅质页岩稀土元素含量特征,硅质岩稀土总量 ΣREE 范围在 3.93~609.86 μg / g,平均为 51.1 μg / g; 硅质页岩稀土总量 ΣREE 范围在 11.99~1088.68 μg / g,平均为 407.79 μg / g; 相比硅质岩,硅质页岩中稀土元素相对富集。硅质岩轻、重稀土比值 ΣLREE / ΣHREE 范围在 2.35~6.36,平均为 4. 06; 硅质页岩轻、重稀土比值 ΣLREE / ΣHREE 范围在 2.29~8.42,平均为 3.99。 ΣLREE / ΣHREE 整体大于 1,有轻稀土元素相对富集的特征。

  • 图3 麻江羊跳寒武系底部烃源岩样品 TOC 分布柱状图

  • Fig.3 TOC distribution column of source rocks at the bottom of the Cambrian Niutitang Formation in Yangtiao, Majiang

  • 图4 麻江羊跳寒武系底部烃源岩样品中生物组成显微照片(油浸,500×)

  • Fig.4 Microscopic under transmitted light photos of biological composition in source rocks at the bottom of the Cambrian Niutitang Formation in Yangtiao, Majiang

  • (a)Y-63:光面球藻,透射光;(b)Y-53:底栖红藻、疑源类、固体沥青,透射光;(c)Y-27:疑源类,透射光;(d)Y-42:底栖红藻,透射光;(e)Y-34:底栖藻类,透射光;(f)为(e)反射光下图片;(g)Y-52:海绵骨针,透射光;(h)Y-24:须腕动物,透射光;(i)为(h)反射光下图片

  • (a) Y-63: Leiosphaeridia, transmission light; ( b) Y-53: benthic algae、 acritarchs、 solid bitumen, transmission light; ( c) Y-27: Acritarchs, transmission light; (d) Y-42:benthic red algae, transmission light; ( e) Y-34:benthic algae, transmission light; ( f) image under ( e) reflected light; (g) Y-52:sponge spicules, transmission light; (h) Y-24:pogonophora, transmission light; (i) image under (h) reflected light

  • 4 成因探讨

  • 4.1 热液活动研究

  • 4.1.1 岩石学特征

  • 燧石最初定义为由微晶硅质(以玉髓和微晶石英形式)构成的沉积岩,硅质含量大于 75%( Folk and Weaver,1952)。 Folk 和 Pittman(1971)将燧石定义为化学沉淀的沉积岩,主要由隐晶质石英、微晶石英或玉髓组成。本次研究样品 Y-51 和 Y-52 具不同程度的玉髓化,显微镜透光下硅质呈圆形,正交光下具十字消光(图6a—c)。部分玉髓呈扇状( 图6d),扇状向不同方向辐射呈放射状圆球,具玛瑙纹层。显示贵州凯里麻江剖面寒武系底部牛蹄塘组烃源岩受热液活动影响。

  • 现代海底热水喷口附近海绵动物繁盛( Turner et al.,1984; Edmond et al.,1985; Burd et al.,1994)。在古代热水沉积地层中同样也可见有大量海绵动物化石,谢小敏等(2015)在贵州麻江羊跳牛蹄塘组底部烃源岩中发现大量典型的热水生物(海绵骨针和须腕动物),梁狄刚等(2009)在该剖面烃源岩样品中发现了须腕动物蠕虫,杨兴莲等(2010) 在贵州丹寨寒武系牛蹄塘组观察到大量海绵动物化石,认为其可能与热液活动有关。本次研究过程中,在该剖面烃源岩样品中发现大量海绵骨针和须腕动物蠕虫(图4g—i)。表明贵州凯里麻江剖面寒武系底部牛蹄塘组烃源岩形成过程中多次受到热液活动的影响。

  • 图5 麻江羊跳寒武系底部烃源岩样品中底栖藻类与须腕动物扫描电镜及能谱分析图

  • Fig.5 SEM and EDS diagrams of benthic algae and Pogonophora in source rocks at the bottom of the Cambrian Niutitang Formation in Yangtiao, Majiang

  • (a)Y-53:疑源类扫描电镜图片;(b)Y-34:底栖藻类扫描电镜图片;(c)Y-24:须腕动物扫描电镜图片;(d)Y-52:海绵骨针横切面扫描电镜图片

  • (a) Y-53:SEM photographs of Acritarchs; (b) Y-34:SEM photographs of benthic algae; (c) Y-24:SEM photographs of Pogonophora; (d) Y-52:SEM photographs of cross section of sponge spicules

  • 4.1.2 主量元素特征

  • 由于 Al、Ti、Fe 等主量元素在后期成岩作用中几乎不受影响,在硅质岩后期成岩过程中能够保持稳定,常用于探讨硅质来源及成因(Murray et al.,1994; Zhou Yongzhang et al.,1994; 邱振等,2011a; 张立杨等,2023)。 Al 和 Ti 是陆壳的主要成分,Al 主要存在于黏土矿物之中,在硅质岩沉积和成岩过程中能够保持稳定,不参与海洋中的各种反应,Ti 则是多种重矿物(如钛铁矿等)的主要成分,硅质岩中元素 Fe 和 Mn 的富集多源于热液,Al 和 Ti 的富集通常指示有更多的陆源碎屑输入(Straeten et al.,2011; 杨贵园等,2022)。羊跳剖面主量元素检测显示(表1),硅质页岩相比于硅质岩,具有更高的 Al2O3 和 TiO2 含量,表明硅质岩和硅质页岩来自不同的沉积物源,硅质页岩具有更多的陆源碎屑输入。

  • Boström 等(1973)认为受热液活动影响的沉积物具有富 Fe 和 Mn,贫 Al 和 Ti 的特征,指出 Al /(Al +Fe)值<0.4 和 Fe / Ti 值>20 时指示为热液沉积特征,Al /(Al+Fe)值>0.4 与 Fe / Ti 值<20 时指示碎屑沉积特征。

  • 图6 麻江羊跳寒武系底部烃源岩样品中玉髓显微镜下照片

  • Fig.6 Transmitted microscopical photos of chalcedony in source rock at the bottom of the Cambrian Niutitang Formation in Yangtiao, Majiang

  • (a)—(c)硅质页岩中玉髓,100×,(a)、(b)为透射光下照片,(c)为透射光正交偏光下照片(引自谢小敏等,2021);(d)—(f):硅质岩中玉髓,(d)、(e)为透射光下照片,(f)为透射光正交偏光下照片

  • (a) — (c) are the chalcedony in siliceous shale, 100 ×; ( a) , ( b) are the micrographs of polarized transmitted light, ( c) is the micrograph of orthogonal transmitted light (quoted from Xie Xiaomin et al., 2021) . ( d) — ( f) are the chalcedony in siliceous rock, 100×; ( d) , ( e) are the micrographs of polarized transmitted light, (f) is the micrograph of orthogonal transmitted light

  • 表2 贵州羊跳牛蹄塘组底部烃源岩稀土元素组成

  • Table2 Ree composition of thesource rocks at the bottom of Yangtiao Niutitang Formation in Guizhou Province

  • 羊跳牛蹄塘组底部烃源岩 Fe / Ti 特征显示(图7),硅质岩的 Fe / Ti 值为 3.17~156.29,平均值为 51. 04,39 件硅质岩样品中有 7 件样品的 Fe / Ti 值小于 20,但都很接近 20; 硅质页岩 Fe / Ti 值为 5.54~34.67,平均值为 17.24,28 件硅质页岩样品中 7 件样品的 Fe / Ti 值大于 20,但都不超过 40。 Al /(Al +Fe)结果显示(图7),硅质岩的 Al /(Al+Fe)值为 0.17~0.85,平均值为 0.41,硅质页岩 Al /(Al+Fe)值为 0.52~0.79,平均值为 0.65。 Al /(Al+Fe)和 Fe / Ti 特征可以说明硅质岩主要为热液成因,受热液影响程度更深,硅质页岩受热液影响程度小。

  • 4.1.3 稀土元素特征

  • 前人研究表明,稀土元素在地质样本中提供了有关岩石成因和形成环境的重要线索(王卓卓等,2007; 戢兴忠等,2014; 刘浩等,2015)。在海底高温热流体中,常常观察到明显的 Eu 正异常,轻稀土元素( LREE)往往富集( Bierlein,1991)。丁振举等(2000) 对海底热液及其沉积物的稀土元素组成特征进行了研究,认为只有当沉积物沉淀前通过海水与热液对流混合才能同时出现 Eu 正异常(铕元素富集)和 Ce 负异常(铈元素亏损)。将样品数据对后太古宙澳大利亚平均页岩(PAAS)进行标准化后获得硅质岩(图8a)与硅质页岩(图8b)稀土配分模式图。可以看出,硅质岩与硅质页岩的稀土元素分配整体较为平坦,有略微左倾的趋势,呈现出 Eu 正异常,Ce 负异常的特征。

  • 麻江羊跳剖面牛蹄塘组底部烃源岩稀土元素轻、重稀土比值 ΣLREE / ΣHREE 整体大于 1,硅质岩 ΣLREE / ΣHREE 值略大于硅质页岩(图7); 硅质岩 δEu 平均值为 14.93,硅质页岩的 δEu 平均值为 5.46; 硅质岩 Eu 正异常程度远大于硅质页岩; 硅质岩 δCe 平均值为 0.14,硅质页岩的 δCe 平均值为 0.46; 硅质页岩的 Ce 负异常程度大于硅质页岩。

  • 图7 麻江羊跳牛蹄塘组 TOC 含量及元素分布特征

  • Fig.7 TOC content and elements distribution characteristics of the Niutitang Formation in Yangtiao, Majiang

  • 图8 麻江羊跳牛蹄塘组硅质岩(a)与硅质页岩(b)稀土元素澳大利亚页岩标准化配分图

  • Fig.8 PAAS standardized distribution of siliceous rock (a) and siliceous shale (b) in the Niutitang Formation in Yangtiao, Majiang

  • 前人研究认为,δCe 与(La / Ce)N 对环境具有指示意义(Murray et al.,1990,1991,1994)。 δCe 约为 0.29,(La / Ce)N ≥ 3.5 指示大洋中脊附近区域沉积的硅质岩; 远洋盆地的硅质岩 δCe 约为 0.55,( La / Ce)N 为 1~2.5; δCe 为 0.90~1.3,( La / Ce)N 值为 0.5~1.5,指示大陆边缘环境的硅质岩(杨兴莲等,2008; 张聪等,2017)。研究区 δCe 值为 0.31~0.62,平均值为 0.46;(La / Ce)N 为 0.71~3.85,平均值为 2.36; δCe 值贴近于大洋中脊,( La / Ce)N 值则在远洋盆地的区间内; 说明本区的硅质岩系的沉积环境可能是在较深的深海环境下形成。

  • 图9 麻江羊跳牛蹄塘组(La / Yb)N—ΣREE(a)及(La / Yb)N—(Ce / La)N(b)图解(据朱笑青等,1994

  • Fig.9 Diagram of (La / Yb) N—ΣREE (a) and (La / Yb) N— (Ce / La) N (b) of the Niutitang Formation in Yangtiao, Majiang (after Zhu Xiaoqing et al., 1994&)

  • 1—球粒陨石; 2—大洋拉斑玄武岩; 3—大陆拉斑玄武岩; 4—碱性玄武岩; 5—花岗岩; 6—金伯利岩; 7—碳酸盐岩; 8—沉积岩; Ⅰ—深海沉积物; Ⅱ—铁锰结核及铁镁岩; Ⅲ—海底玄武岩

  • 1—chondrite; 2—oceanic tholeiite; 3—continental tholeiite; 4—alkalic basalt; 5—granite; 6—kimberlite; 7—carbonatite; 8—sedimentary rock; Ⅰ—deep-sea sediment; Ⅱ—iron—manganese nodules and mafic rock; Ⅲ—submarine basalt

  • 为了进一步判断羊跳牛蹄塘组底部烃源岩的沉积环境,将研究区样品投在(La / Yb)N 与 REE 关系图中(图9a),可以看到样品主要落在沉积岩区域和沉积岩与玄武岩交汇区,以及玄武岩区,在( La / Yb)N—(Ce / La)N 关系图上(图9b),研究区硅质岩和硅质页岩样品均落在其他岩石和海底玄武岩类交汇区,表明研究区成岩过程中有玄武质岩的参与,从侧面证明了研究区沉积成岩过程中部分存在深部来源的热水。综合稀土元素特征,贵州凯里麻江羊跳剖面牛蹄塘组底部烃源岩沉积受海底热液的影响,硅质岩受热液影响程度更大,硅质页岩受热液影响小。

  • 4.2 不同来源 SiO2 的定量分析

  • 4.2.1 定量分析计算

  • 地质样品中 SiO2 来源往往是复杂的,包括生物来源(生物硅)、热液来源(热液硅)及碎屑来源(石英)。同一个样品中,混杂了多种来源组分。将烃源岩中不同来源 SiO2 含量的混入比例进行定量测试和计算,不但有助于理解烃源岩 SiO2 成因,同时可以更好地限定其沉积环境。

  • (1)碎屑硅的计算:因碎屑岩中 Si 含量与 Al 的相关性,碎屑硅( Si terri genous)可以通过常量元素 Al sample 含量来计算,其计算公式为(Holdaway et al.,1982):

  • Siterigenous = (Si/Al) background ×Alsample

  • 其中(Si / Al)backgroun 采用平均页岩比值 3.11。

  • (2)过剩硅的计算:过剩硅(Si excess)是指非碎屑来源的硅质总和,其包括了热液硅与生物硅。过剩硅可通过样品中总的硅含量( Si sample)扣除碎屑硅来进行计算,其计算公式为

  • Siexcess =Sisample -Siterrigenous

  • (3)热液硅和生物硅的计算:按照 Fe / Ti 值降序对样品进行排列,找到两组端元组分中的平均 Fe / Ti 和 Si excess 的值,设定为 A 端元(高值,主体为热液影响过剩硅)和 B 端元(低值,主体为生物来源的过剩硅),也可以是多个样品平均值组成端元值。需要计算样品的 Fe / Ti 和 Si excess 的值设定为 C; 设定样品中含有 x 含量的 A 组分,和 y 含量的 B 组分。通过方程 Ax+By =C 进行 Matlab 模拟计算,得出 xy 值。 [x÷(x+y)] ×Si excess 的值代表样品中热液硅含量; [y÷(x+y)]×Si excess 的含量代表样品中生物硅的含量。

  • 图10 麻江羊跳牛蹄塘组底部烃源岩中不同来源 SiO2 相对含量特征图(a),燧石、硅质页岩和泥岩样品的 Fe / Ti 与 Al /(Al+Fe+Mn)图(b)(据 Xie Xiaomin et al.,2021 修改)

  • Fig.10 Characteristics of relative content of different sourced SiO2 in hydrocarbon source rocks (a) and Fe / Ti vs. Al / (Al+Fe+ Mn) diagram of chert, siliceous shale and mudstone samples (b) from the bottom of the Niutitang Formation in Yangtiao, Majiang (revised from ie Xiaomin et al., 2021)

  • Xie Xiaomin 等(2021) 在对同生热液硅流体对下寒武统牛蹄塘组有机质保存的影响研究中系统地分析了下寒武统牛提塘组燧石、硅质页岩和泥岩中的生物和元素组成。参照 Barrett(1981)图版对下寒武统牛提塘组燧石、硅质页岩和泥岩样品做 Fe / Ti 与 Al /(Al+Fe+Mn)图(图10b),图中显示了具有不同程度热液影响的研究样品的比较( Sylvestre Ganno et al.,2017)。结果显示牛提塘组大多数燧石样品有 30%~80%的热液影响,考虑到研究区过剩硅受热液影响的最大值为 80%,因此,本研究将主体为热液影响的过剩硅端元值(A 端元)整体除以 0.8,获得该地区热液硅的端元组分,带入公式计算出热液硅和生物硅含量。结果显示(图10a),羊跳寒武系底部牛蹄塘组烃源岩中碎屑硅含量为 2.85%~65.63%,平均值为 30.52%; 热液硅含量为 7.80%~68.80%,平均值为 34.67%; 生物硅含量为 16. 09%~68. 04%,平均值为 34.81%。表明研究区硅质岩中 SiO2 来源主要为热液沉积和生物沉积,且沉积过程受热液影响较大。

  • 图11 麻江羊跳牛蹄塘组 TOC 与 Si碎屑、Si热液和 Si生物之间的相关性特征

  • Fig.11 Correlation between TOC and Si debris, Si hydrothermal and Si organisms of the Niutitang Formation in Yangtiao, Majiang

  • 4.2.2 不同来源 SiO2 对有机质富集影响

  • 华南早寒武世与全球伸展期是同时期的,热液活动通常与伸展构造环境有关(Craig et al.,2009; Liu Zhanhong et al.,2015)。来自地壳深处的热液溶解了物质,并将这些元素释放到海水中。这一过程不仅使烃源岩中的金属含量高,而且使海水中的营养物质丰富,促进了藻类的繁殖,从而形成了良好的烃源岩。通过定量分析计算,羊跳寒武系底部牛蹄塘组烃源岩 SiO2 来源有 3 种,不同来源的 SiO2 对有机质富集有所影响。将定量结果与有机质含量做相关性分析并讨论,结果表明:

  • TOC 与 Si碎屑呈弱的正相关性(图11a),随着陆源物质输入的持续增加,TOC 逐渐升高,说明陆源碎屑会裹挟陆源有机质进入海底,增加沉积物中有机质的丰度(蔡全升等,2020)。

  • TOC 与 Si热液呈负相关性(图11b),热液环境通常有利于生物的繁殖和生长,热液能提供大量营养物质,从而有利于烃源岩形成。然而,Cheng Meng et al(2020)研究了 Mo 和 U 的同位素组成,分析扬子地台下寒武统页岩 Cu、Zn、Ni、Cd 等营养元素特征。他们提出,在牛蹄塘组烃源岩沉积过程中,高生产率受到间歇性上升流的限制,同生热液中富含二氧化硅的硅流体稀释了沉积环境中的有机质和营养物质,导致燧石中有机质含量较低。没有高热液硅输入的硅质页岩中有机质含量和营养元素含量要高得多,因为热液注入海水中的营养物质仍然很高,但硅质页岩中没有太多的硅沉积被稀释。结合羊跳寒武系底部牛蹄塘组烃源岩 TOC 数据(图3),受热液活动影响大的硅质岩 TOC 含量较低,而受热液影响较小的硅质页岩 TOC 含量较高。说明热液作为稀释剂,破坏了氧化还原条件,使有机碳的含量降低(Bock et al.,2000; 夏鹏等,2020; Xie Xiaomin et al.,2021)。而硅质页岩具有相对较高的 P 含量(表1)且常见磷结核(图2),磷结核无序分布且大小不一,说明海底热液活动之后的岩层,由于营养物质依然存在,藻类勃发,容易富集有机质,使有机质含量增高。海底热液的参与为该套烃源岩提供了有利的条件,但海底热液活动的强烈时期并不是优质烃源岩发育的最佳时期。

  • TOC 与 Si生物呈正相关性(图11c),研究区剖面硅质岩样品中发现大量保存完好的海绵骨针,海绵骨针为海绵动物骨骼的主要组成,硅质生物体会通过外骨骼或壳体将自身有机质包裹在体内从而实现对自身有机质的物理保护,如图5d 海绵骨针圆形切面扫描电镜图,海绵动物壳体包裹自身有机质,使得 C 的相对含量较高,同时热液流体将硅质生物迅速硅化,为保护生物形态和化学成分提供了良好的环境,利于有机质的富集( Schultz-Lam et al.,1995; Renaut et al.,1998)。然而,这种保存完好的硅质生物周围没有固体沥青,这表明这些生物可能提供有机碳含量,但在岩石中很少或没有生烃潜力(Xie Xiaomin et al.,2021)。因此,需要更多的实验来量化烃源岩中这种保存完好的硅质生物的生烃潜力。

  • 5 结论

  • (1)贵州凯里麻江羊跳剖面下寒武统牛蹄塘组底部烃源岩样品中发现热液活动的岩石学证据,即玉髓和热液生物(海绵骨针和须腕动物),表明牛蹄塘组底部烃源岩沉积过程受热液影响。

  • (2)Al /(Al+Fe)和 Fe / Ti 以及稀土元素特征指示研究区烃源岩形成于较深的深海环境。硅质岩主要为热液成因,受热液影响程度更深,硅质页岩受热液影响程度小。

  • (3)对羊跳剖面寒武系底部牛蹄塘组烃源岩中不同来源 SiO2 含量进行定量分析计算,结果显示研究区烃源岩中 SiO2 主要来源于热液成因与生物成因,相对较高的热液硅含量指示其沉积过程与热液影响较大。不同来源 SiO2 对研究区有机质富集具有重要影响,陆源碎屑会裹挟陆源有机质进入海底沉积,利于页岩中有机质的富集。硅质生物体会通过外骨骼或壳体将自身有机质包裹在体内从而实现对自身有机质的物理保护,对有机质富集起正向的贡献。热液活动提供的无机矿物对有机质除了能够起到保护作用外,其稀释作用也是影响海相页岩有机质富集的一项重要因素。

  • 参考文献

    • 蔡全升, 陈孝红, 张保民, 刘安, 韩京, 张国涛, 李炎桂. 2020. 鄂西宜昌地区五峰组——龙马溪组黑色岩系硅质来源及其油气地质意义. 地质学报, 94(3): 931~946.

    • 邓大飞, 梅廉夫, 沈传波, 刘昭茜, 汤济广, 凡元芳. 2014. 江南—雪峰隆起北缘海相油气富集主控因素和破坏机制. 吉林大学学报(地球科学版), 44(5): 1466~1477.

    • 丁振举, 刘丛强, 姚书振, 周宗桂. 2000. 海底热液沉积物稀土元素组成及其意义. 地质科技情报, 19(1): 27~30+34.

    • 范德廉, 杨秀珍, 王连芳, 陈南生. 1973. 某地下寒武统含镍钼多元素黑色岩系的岩石学及地球化学特点. 地球化学, 1973(3): 143~164.

    • 戢兴忠, 李楠, 张闯, 邱昆峰, 华北, 余金元, 吴春俊, 韩日. 2014. 勉略构造带硅质岩元素地球化学特征及其形成环境. 岩石学报, 30(9): 2619~2630.

    • 梁狄刚, 郭彤楼, 边立曾, 陈建平, 赵喆. 2009. 中国南方海相生烃成藏研究的若干新进展(三)南方四套区域性海相烃源岩的沉积相及发育的控制因素. 海相油气地质, 14(2): 1~19.

    • 林良彪, 陈洪德. 朱利东. 2010. 川东茅口组硅质岩地球化学特征及成因. 地质学报, 84(4): 500~507.

    • 刘浩, 徐大良, 牛志军, 韩练红, 魏运许, 赵小明. 2015. 湖北竹山杨家堡组硅质岩成因及沉积环境分析. 沉积学报, 33(6): 1087~1096.

    • 梅廉夫, 邓大飞, 沈传波, 刘昭茜. 2012. 江南—雪峰隆起构造动力学与海相油气成藏演化. 地质科技情报, 31(5): 85~93.

    • 邱振, 王清晨. 2011a. 广西来宾中上二叠统硅质岩海底热液成因的地球化学证据. 中国科学: 地球科学, 41(5): 725~737.

    • 邱振, 王清晨, 严德天. 2011b. 广西来宾蓬莱滩剖面中上二叠统硅质岩的地球化学特征及沉积背景. 岩石学报, 27(10): 3141~3155.

    • 王淑芳, 邹才能, 董大忠, 王玉满, 黄金亮, 郭召杰. 2014. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义. 北京大学学报(自然科学版), 50 (3): 476~486.

    • 王秀平, 牟传龙, 肖朝晖, 郑斌嵩, 陈尧, 王启宇, 刘惟庆. 2018. 湖北鹤峰地区二叠系大隆组黑色岩系成因——来自鹤地1井的元素地球化学证据. 石油学报, 39 (12): 1355~1369.

    • 王卓卓, 陈代钊, 汪建国. 2007. 广西南宁地区泥盆系硅质岩地球化学特征及沉积环境. 沉积学报, 25(2): 239~245.

    • 夏鹏, 付勇, 杨镇, 郭川, 黄金强, 黄明勇. 2020. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系. 地质学报, 94(3): 947~956.

    • 谢小敏, 腾格尔, 秦建中, 张庆珍, 边立曾, 尹磊明. 2015. 贵州凯里寒武系底部硅质岩系生物组成、沉积环境与烃源岩发育关系研究. 地质学报, 89(2): 425~439.

    • 谢小敏, 刘伟新, 张瀛, 赵迪斐, 唐友军, 申宝剑, 李志明. 2021. 四川盆地下古生界硅质页岩层系中硅质来源及其对有机质保存的影响初探. 地质论评, 67(2): 429~440.

    • 杨贵园, 高军波, 杨瑞东, 刘志臣, 徐海. 2022. 贵州纳雍营盘中二叠统茅口组硅质岩成因及其地质意义. 地质论评, 68(5): 1621~1633.

    • 杨兴莲, 朱茂炎, 赵元龙, 张俊明, 郭庆军, 皮道会. 2008. 黔东震旦系—下寒武统黑色岩系稀土元素地球化学特征. 地质论评, 54(1): 3~15.

    • 杨兴莲, 赵元龙, 朱茂炎, 崔滔, 扬凯迪. 2010. 贵州丹寨寒武系牛蹄塘组海绵动物化石及其环境背景. 古生物学报, 49(3): 348~359.

    • 张聪, 黄虎, 侯明才. 2017. 地球化学方法在硅质岩成因与构造背景研究中的进展及问题. 成都理工大学学报(自然科学版), 44(3): 293~304.

    • 张江江. 2011. 黔南坳陷构造演化研究. 导师: 王伟锋. 北京: 中国石油大学硕士学位论文. 1~111.

    • 张位华, 姜立君, 高慧, 扬瑞东. 2003. 贵州寒武系底部黑色硅质岩成因及沉积环境探讨. 矿物岩石地球化学通报, 22(2): 174~178.

    • 张亚冠, 杜远生, 徐亚军, 余文超, 黄虎, 焦良轩. 2015. 湘中震旦纪—寒武纪之交硅质岩地球化学特征及成因环境研究. 地质论评, 61 (3): 499~510.

    • 朱笑青, 王中刚. 1994. 冲绳海槽热水区沉积物的地球化学特征. 北京: 地震出版社: 108~112.

    • Banerjee D M, Schidlowski M, Siebert F, Brasier M D. 1997. Geochemical changes across the Proterozoic-Cambrian transition in the Durmala phosphorite mine section, Mussoorie Hills, Garhwal Himalaya, India——Science Direct. Palaeogeography Palaeoclimatology Palaeoecology, 132: 183~194.

    • Barrett T J. 1981. Chemistry and mineralogy of Jurassic bedded chert overlying ophiolites in the North Appennines. Italy. Chem. Geol. , 34: 289~317.

    • Bierlein F P. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid—rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3~4): 219~230.

    • Bock M J, Mayer L M. 2000. Mesodensity organo—clay associations in a near-shore sediment. Marine geology, 163: 65~75.

    • Burd Brenda J, Thomson Richard E. 1994. Hydrothermal venting at Endeavor Ridge-effect on zooplankton biomass throughout the water column. Deep Sea Research Part I Oceanographic Research Papers, 41(9): 1407~1423.

    • Cai Quansheng, Chen Xiaohong, Zhang Baomin, Liu An, Han Jing, Zhang Guotao, Li Yangui. 2020&. Origin of siliceous minerals in the black shale of the Wufeng and Longmaxi Formations in the Yichang area, western Hubei Province: geological significance for shale gas. Acta Geologica Sinica, 94(3): 931~946.

    • Cheng Meng, Li Chao, Jin Chengsheng, Wang Haiyang, Algeo Thomas J, Lyons Timothy W, Zhang Feifei, Anbar Ariel. 2020. Evidence for high organic carbon export to the early Cambrian seafloor. Geochimica et Cosmochimica Acta, 287: 125~140.

    • Craig J, Thurow J, Thusu B, Whitham A, Abutarruma Y. 2009. Global neoproterozoic petroleum systems: The emerging potential in north Africa. Geological Society London Special Publications, 326(1): 1~25.

    • Deng Dafei, Mei Lianfu, Shen Chuanbo, Liu Zhaoqian, Tang Jiguang, Fan Yuanfang. 2014&. Major factor of accumulation and destruction mechanisms of marine strata-related hydrocarbon in the northern margin of the Jiangnan—Xuefeng uplift. Journal of Jilin University (Earth Science Edition), 44(5): 1466~1477.

    • Ding Zhenju, Liu Congqiang, Yao Shuzhen, Zhou Zonggui. 2000&. Ree composition and implication of hydrothermal sedimentation of sea-floor. Geological Science And Technology Information, 19(1): 27~30+34.

    • Edmond J M, Damm K L. 1985. Chemistry of ridge crest hot springs: Hydrothermalv ents of the Eastern Pacific: An overview.Bulletin of theBiological Societyof Washington, 6: 43~47.

    • Fan Delian, Yang Xiuzhen, Wang Lianfang, Chen Nansheng. 1973&. Petrological and geochemical characteristics of a nickel— molybdenum— multe- element - bearing Lower-cambrian black shale from a certain district in south china. Geochimica, 1973(3): 143~164.

    • Folk R L, Weaver C E. 1952. A study of the texture and composition of chert. American Journal of Science, 250(7): 498~510.

    • Folk R L, Stuart Pittman. 1957. Length-slow chalcedony; a new testament for vanished evaporites. Journal of Sedimentary Research, 41: 1045~1058.

    • Gao Ping, He Zhiliang, Li Shuangjian, Lash Gary G, Li Boyuan, Huang Boyu, Yan Detian. 2018. Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China. Palaeogeography, Palaeoclimatology, Palaeoecology: An International Journal for the Geo-Sciences, 505: 381~397.

    • Holdaway H K, Clayton C J. 1982. Preservation of shell microstructure in silicified brachiopods from the Upper Cretaceous Wilmington Sands of Devon. Geological Magazine, 119(4): 371~382.

    • Ji Xingzhong, Li Nan, Zhang Chuang, Qiu Kunfeng, Hua Bei, Yu Jinyuan, Wu Chunjun, Han Ri. 2014&. Elemental geochemistry characteristics and forming environment of cherts in the Mianlue tectonic zone. Acta Petrologica Sinica, 30(9): 2619~2630.

    • Kaufman Alan J, Jacobsen Stein B, Knoll Andrew H. 1993. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth & Planetary Science Letters, 120(3~4): 409~430.

    • Liang Digang, Guo Tonglou, Bian Lizeng, Chen Jianping, Zhao Zhe. 2009&. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 3): Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks. " Marine Origin Petroleum Geology, 14(2): 1~19.

    • Lin Liangbiao, Chen Hongde, Zhu Lidong. 2010&. The origin and geochemical characteristics of Maokou Formation silicalites in the eastern Sichuan basin. Acta Geologica Sinica, 84(4): 500~507.

    • Liu Hao, Xu Daliang, Niu Zhijun, Han Lianhong, Wei Yunxu, Zhao Xiaoming. 2015&. Petrogenesis and Sedimentary Environment of Siliceous Rocks of Yangjiabao Formation in Zhushan Area, Northwestern Hubei. Acta Sedimentologica Sinica, 33(6): 1087~1096.

    • Liu Zhanhong, Zhuang Xingguo, Tenger, Xie Xiaomin, Yin Leimiing, Bian Lizeng, Feng Qinglai, Algeo T J. 2015. The lower Cambian Niutitang Formation at Yangtiao (GuiZhou, SW China): organic matter enrichment, source rock potential, and hydrothermal influences. Journal of Petroleum Geology, 38(4): 411~432.

    • Mei Lianfu, Deng Dafei, Shen Chuanbo, Liu Zhaoqian. 2012&. Tectonic dynamics and marine hydrocarbon accumulation of Jiangnan—Xuefeng uplift. Geological Science and Technology Information, 31(5): 85~93.

    • Murray Richard W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90(3~4): 213~232.

    • Murray Richard W, Buchholtzt B M R, Jones David L, Gerlach David C, Lii Price Russ. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18(3): 268.

    • Murray Richard W, Brink Marilyn R Buchholtz Ten, Gerlach David C, Lii Price Russ, Jones David L. 1991. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochimica Et Cosmochimica Acta, 55(7): 1875~1895.

    • Niu Xing, Yan Detian, Zhuang Xinguo, Liu Zixuan, Li Baoqing, Wei Xiaosong, Xu Hanwen, Li Dawei. 2018. Origin of quartz in the Lower Cambrian Niutitang Formation in south Hubei Province, upper Yangtze platform. Marine and Petroleum Geology, 96: 271~287.

    • Qiu Zhen, Wang Qingchen. 2011a&. Geochemical characteristics and sedimentary background of the Middle and Upper Permian siliceous rocks in the Penglaitan section of Laibin, Guangxi. Science China: Earth Science, 41(5): 725~737.

    • Qiu Zhen, Wang Qingchen, Yan Detian. 2011b&. Geochemistry and sedimentary background of the Middle—Upper Permian cherts in the Penglaitan section, Laibin, Guangxi Province. Acta Petrologica Sinica, 27(10): 3141~3155

    • Ramseyer Karl, Amthor Joachim E, Matter Albert, Pettke Thomas, Wille Martin, Fallick Anthony E. 2013. Primary silica precipitate at the precambrian/cambrian boundary in the south Oman Salt basin, sultanate of Oman. Marine and Petroleum Geology, 39: 187~197.

    • Renaut R W, Jones B, Tiercelin J J. 2010. Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya Rift Valley. Sedimentology. 45(6): 1083~1103.

    • Rona Peter A, Boström Kurt, Laubier Lucien, Smith Kenneth L. 1983. Genesis of ferromanganese deposits—diagnostic criteria for recent and dld deposits (chapter 20). US: Springer: 473~489.

    • Schultz-Lam S, Ferris F G, Konhauser K O, Wiese R G. 1995. In situ silicification of an icelandic hot spring microbial mat: Implications for microfossil formation. Canadian Journal of Earth Sciences. 32: 2021~2026.

    • Straeten Charles A Ver, Brett Carlton E, Sageman Bradley B. 2011. Mudrock sequence stratigraphy: A multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeography Palaeoclimatology Palaeoecology, 304(1~2): 54~73.

    • Sylvestre Ganno, Laure Njiosseu Tanko Evine, Djibril Kouankap Nono Gus, Arlette Djibril Soh, Cyriel Moudioh, Timoleon Ngnotue, Paul Nzenti Jean. 2017. A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: Constraints from petrography and geochemistry. Ore Geology Reviews, 80: 860~875.

    • Turner R D, Lutz R A. 1984. Growth and distribution of Mollusks at deep—sea vents and seeps. Environmental Science (Biology Oceanus), 27: 55~62.

    • Wang Chao, Zhang Baiqiao, Lu Yongchao, Shu Zhiguo, Lu Yaqiu, Bao Hanyong, Meng Zhiyong, Chen Lei. 2018. Lithofacies distribution characteristics and its controlling factors of shale in Wufeng Formation—Member 1 of Longmaxi Formation in the Jiaoshiba area, 3(4): 306~319.

    • Wang Shufang, Zou Caineng, Dong Dazhong, Wang Yuman, Huang Jinliang, Guo Zhaojie. 2014&. Biogenic silica of organic-rich shale in sichuan basin and its significance for shale gas. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(3): 476~486.

    • Wang Shufang, Zou Caineng, Dong Dazhong, Wang Yuman, Li Xinjing, Huang Jinliang, Guan Quanzhong. 2015. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence. Marine & Petroleum Geology, 66: 660~672.

    • Wang Xiuping, Mou Chuanglong, Xiao Zhaohui, Zheng Binsong, Chen Yao, Wang Qiyu, Liu Weiqing. 2018&. Genesis of black rock series of Upper Permian Dalong Formation in Hefeng area, Hubei province: an evidence from the analysis of element geochemistry in Well HD1. Acta Petrolei Sinica, 39(12): 1355~1369.

    • Wang ZhuoZhuo, Chen Daizhao, Wang Jianguo. 2007&. Element Geochemistry and depositional setting of the Chert in Devonian, Nanning Area, Guangxi. Acta Sedimentologica Sinica, 25(2): 239~245.

    • Wen Hanjie, Fan Haifeng, Tian Shihong, Wang, Qilian, Hu Ruizhong. 2016. The formation conditions of the Early Ediacaran cherts, South China. Chemical Geology, 430: 45~69.

    • Xia Peng, Fu Yong, Yang Zhen, Guo Chuan, Huang Jinqiang, Huang Mingyong. 2020&. The relationship between sedimentary environment and organic matter accumulation in the Niutitang black shale in Zhenyuan, northern Guizhou. Acta Geologica Sinica, 94(3): 947~56.

    • Xie Xiaomin, Tenger, Qin Jianzhong, Zhang Qingzhen, Bian Lizeng, Yin Leiming. 2015&. Depositional environment, organisms components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation, Kaili, Guizhou. Acta Geologica Sinica, 89(2): 425~439.

    • Xie Xiaomin, Zhu Guangyou, Wang Ye. 2021. The influence of syngenetic hydrothermal silica fluid on organic matter preservation in lower cambrian niutitang formation, south china. Marine and Petroleum Geology, 129(1): 105098.

    • Xie Xiaomin, Liu Weixin, Zhang Yin, Zhao Dife, Tang Youjun, Shen Baojian, Li Zhiming, 2021&. Siliceous source and its influence on organic matter preservation of the two Lower Paleozoic siliceous shale reserviors in Sichuan Basin. Geological Review, 67(2): 429~440.

    • Yang Guiyuan, Gao Junbo, Yang Ruidong, Liu Zhichen, Xu Hai. 2022&. The genesis and geological significance of the siliciclastic rocks of the Middle Permian Maokou Formation at Yingpan, Nayong, Guizhou. Geological Review, 68(5): 1621~1633.

    • Yang Xinglian, Zhu Maoyan, Zhao Yuanlong, Zhang Junming, Guo Qingjun, Pi Daoyou. 2008&. REE Geochemical Characteristics of the Ediacaran—Lower Cambrian Black Rock Series in Eastern Guizhou. Geological Review, 54(1): 3~15.

    • Yang Xinglian, Zhao Yuanlong, Zhu Maoyan, Cui Tao, Yang Kaidi. 2010&. Sponges from the Early Cambrian Niutitang Formation at Danzhai, Guizhou and their environmental background. Acta Palaeontologica Sinica, 49(3): 348~359.

    • Zhang Cong, Huang Hu, Hou Mingcai. 2017&. Progress and problems in the geochemical study on chert genesis for interpretation of tectonic background. Journal of Chengdu University of Technology (Science and Technology Edition), 44(3): 293~304.

    • Zhang Jiangjiang. 2011&. The Research of Tectonic Evolution in Southern Guizhou Depression. Supervisor: Wang Weifeng. Beijing: Master thesis of China University of Petroleum (East China): 1~111.

    • Zhang Weihua, Jiang Lijun, Gao Hui, Yang Ruidong. 2003&. Study on sedimentary environment and origin of black siliceous rocks of the Lower Cambrian in Giuzhou Province. Bulletin of Mineralogy Petrology & Geochemistry, 22(2): 174~178.

    • Zhang Yaguan, Du Yuansheng, Xu Yajun, Yu Wenchao, Huang Hu, Jiao Liangxuan. 2015&. Geochemical characteristics of siliceous rocks during the transition from Sinian(Ediacaran) to Cambrian in central Hunan and its implication for genesis and sedimentary environment. Geological Review, 61(3): 499~510.

    • Zhao Jianhua, Jin Zhijun, Hu Qinhong, Liu Keyu, Jin Zhenkui, Hu Zonngquan, Nie Haikuan, Du Wei, Yan Caina, Wang Ruyue. 2018. Mineral composition and seal condition implicated in pore structure development of organic-rich Longmaxi shales, Sichuan Basin, China. Marine and Petroleum Geology, 98: 507~522.

    • Zhou Yongzhang, Chown E H, Guha Jayanta, Lu Huangzhang, Tu Guangzhi. 1994. Hydrothermal origin of Late Proterozoic bedded chert at Gusui, Guangdong, China: Petrological and geochemical evidence. Sedimentology, 41(3): 605~619.

    • Zhu Xiaoqing, Wang Zhonggang. 1994&. Geochemical Characterization of Sediments in the Hot Water Zone of the Okinawa Trough. Beijing: Earthquake Publishing House: 108~112.

  • 参考文献

    • 蔡全升, 陈孝红, 张保民, 刘安, 韩京, 张国涛, 李炎桂. 2020. 鄂西宜昌地区五峰组——龙马溪组黑色岩系硅质来源及其油气地质意义. 地质学报, 94(3): 931~946.

    • 邓大飞, 梅廉夫, 沈传波, 刘昭茜, 汤济广, 凡元芳. 2014. 江南—雪峰隆起北缘海相油气富集主控因素和破坏机制. 吉林大学学报(地球科学版), 44(5): 1466~1477.

    • 丁振举, 刘丛强, 姚书振, 周宗桂. 2000. 海底热液沉积物稀土元素组成及其意义. 地质科技情报, 19(1): 27~30+34.

    • 范德廉, 杨秀珍, 王连芳, 陈南生. 1973. 某地下寒武统含镍钼多元素黑色岩系的岩石学及地球化学特点. 地球化学, 1973(3): 143~164.

    • 戢兴忠, 李楠, 张闯, 邱昆峰, 华北, 余金元, 吴春俊, 韩日. 2014. 勉略构造带硅质岩元素地球化学特征及其形成环境. 岩石学报, 30(9): 2619~2630.

    • 梁狄刚, 郭彤楼, 边立曾, 陈建平, 赵喆. 2009. 中国南方海相生烃成藏研究的若干新进展(三)南方四套区域性海相烃源岩的沉积相及发育的控制因素. 海相油气地质, 14(2): 1~19.

    • 林良彪, 陈洪德. 朱利东. 2010. 川东茅口组硅质岩地球化学特征及成因. 地质学报, 84(4): 500~507.

    • 刘浩, 徐大良, 牛志军, 韩练红, 魏运许, 赵小明. 2015. 湖北竹山杨家堡组硅质岩成因及沉积环境分析. 沉积学报, 33(6): 1087~1096.

    • 梅廉夫, 邓大飞, 沈传波, 刘昭茜. 2012. 江南—雪峰隆起构造动力学与海相油气成藏演化. 地质科技情报, 31(5): 85~93.

    • 邱振, 王清晨. 2011a. 广西来宾中上二叠统硅质岩海底热液成因的地球化学证据. 中国科学: 地球科学, 41(5): 725~737.

    • 邱振, 王清晨, 严德天. 2011b. 广西来宾蓬莱滩剖面中上二叠统硅质岩的地球化学特征及沉积背景. 岩石学报, 27(10): 3141~3155.

    • 王淑芳, 邹才能, 董大忠, 王玉满, 黄金亮, 郭召杰. 2014. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义. 北京大学学报(自然科学版), 50 (3): 476~486.

    • 王秀平, 牟传龙, 肖朝晖, 郑斌嵩, 陈尧, 王启宇, 刘惟庆. 2018. 湖北鹤峰地区二叠系大隆组黑色岩系成因——来自鹤地1井的元素地球化学证据. 石油学报, 39 (12): 1355~1369.

    • 王卓卓, 陈代钊, 汪建国. 2007. 广西南宁地区泥盆系硅质岩地球化学特征及沉积环境. 沉积学报, 25(2): 239~245.

    • 夏鹏, 付勇, 杨镇, 郭川, 黄金强, 黄明勇. 2020. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系. 地质学报, 94(3): 947~956.

    • 谢小敏, 腾格尔, 秦建中, 张庆珍, 边立曾, 尹磊明. 2015. 贵州凯里寒武系底部硅质岩系生物组成、沉积环境与烃源岩发育关系研究. 地质学报, 89(2): 425~439.

    • 谢小敏, 刘伟新, 张瀛, 赵迪斐, 唐友军, 申宝剑, 李志明. 2021. 四川盆地下古生界硅质页岩层系中硅质来源及其对有机质保存的影响初探. 地质论评, 67(2): 429~440.

    • 杨贵园, 高军波, 杨瑞东, 刘志臣, 徐海. 2022. 贵州纳雍营盘中二叠统茅口组硅质岩成因及其地质意义. 地质论评, 68(5): 1621~1633.

    • 杨兴莲, 朱茂炎, 赵元龙, 张俊明, 郭庆军, 皮道会. 2008. 黔东震旦系—下寒武统黑色岩系稀土元素地球化学特征. 地质论评, 54(1): 3~15.

    • 杨兴莲, 赵元龙, 朱茂炎, 崔滔, 扬凯迪. 2010. 贵州丹寨寒武系牛蹄塘组海绵动物化石及其环境背景. 古生物学报, 49(3): 348~359.

    • 张聪, 黄虎, 侯明才. 2017. 地球化学方法在硅质岩成因与构造背景研究中的进展及问题. 成都理工大学学报(自然科学版), 44(3): 293~304.

    • 张江江. 2011. 黔南坳陷构造演化研究. 导师: 王伟锋. 北京: 中国石油大学硕士学位论文. 1~111.

    • 张位华, 姜立君, 高慧, 扬瑞东. 2003. 贵州寒武系底部黑色硅质岩成因及沉积环境探讨. 矿物岩石地球化学通报, 22(2): 174~178.

    • 张亚冠, 杜远生, 徐亚军, 余文超, 黄虎, 焦良轩. 2015. 湘中震旦纪—寒武纪之交硅质岩地球化学特征及成因环境研究. 地质论评, 61 (3): 499~510.

    • 朱笑青, 王中刚. 1994. 冲绳海槽热水区沉积物的地球化学特征. 北京: 地震出版社: 108~112.

    • Banerjee D M, Schidlowski M, Siebert F, Brasier M D. 1997. Geochemical changes across the Proterozoic-Cambrian transition in the Durmala phosphorite mine section, Mussoorie Hills, Garhwal Himalaya, India——Science Direct. Palaeogeography Palaeoclimatology Palaeoecology, 132: 183~194.

    • Barrett T J. 1981. Chemistry and mineralogy of Jurassic bedded chert overlying ophiolites in the North Appennines. Italy. Chem. Geol. , 34: 289~317.

    • Bierlein F P. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid—rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3~4): 219~230.

    • Bock M J, Mayer L M. 2000. Mesodensity organo—clay associations in a near-shore sediment. Marine geology, 163: 65~75.

    • Burd Brenda J, Thomson Richard E. 1994. Hydrothermal venting at Endeavor Ridge-effect on zooplankton biomass throughout the water column. Deep Sea Research Part I Oceanographic Research Papers, 41(9): 1407~1423.

    • Cai Quansheng, Chen Xiaohong, Zhang Baomin, Liu An, Han Jing, Zhang Guotao, Li Yangui. 2020&. Origin of siliceous minerals in the black shale of the Wufeng and Longmaxi Formations in the Yichang area, western Hubei Province: geological significance for shale gas. Acta Geologica Sinica, 94(3): 931~946.

    • Cheng Meng, Li Chao, Jin Chengsheng, Wang Haiyang, Algeo Thomas J, Lyons Timothy W, Zhang Feifei, Anbar Ariel. 2020. Evidence for high organic carbon export to the early Cambrian seafloor. Geochimica et Cosmochimica Acta, 287: 125~140.

    • Craig J, Thurow J, Thusu B, Whitham A, Abutarruma Y. 2009. Global neoproterozoic petroleum systems: The emerging potential in north Africa. Geological Society London Special Publications, 326(1): 1~25.

    • Deng Dafei, Mei Lianfu, Shen Chuanbo, Liu Zhaoqian, Tang Jiguang, Fan Yuanfang. 2014&. Major factor of accumulation and destruction mechanisms of marine strata-related hydrocarbon in the northern margin of the Jiangnan—Xuefeng uplift. Journal of Jilin University (Earth Science Edition), 44(5): 1466~1477.

    • Ding Zhenju, Liu Congqiang, Yao Shuzhen, Zhou Zonggui. 2000&. Ree composition and implication of hydrothermal sedimentation of sea-floor. Geological Science And Technology Information, 19(1): 27~30+34.

    • Edmond J M, Damm K L. 1985. Chemistry of ridge crest hot springs: Hydrothermalv ents of the Eastern Pacific: An overview.Bulletin of theBiological Societyof Washington, 6: 43~47.

    • Fan Delian, Yang Xiuzhen, Wang Lianfang, Chen Nansheng. 1973&. Petrological and geochemical characteristics of a nickel— molybdenum— multe- element - bearing Lower-cambrian black shale from a certain district in south china. Geochimica, 1973(3): 143~164.

    • Folk R L, Weaver C E. 1952. A study of the texture and composition of chert. American Journal of Science, 250(7): 498~510.

    • Folk R L, Stuart Pittman. 1957. Length-slow chalcedony; a new testament for vanished evaporites. Journal of Sedimentary Research, 41: 1045~1058.

    • Gao Ping, He Zhiliang, Li Shuangjian, Lash Gary G, Li Boyuan, Huang Boyu, Yan Detian. 2018. Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China. Palaeogeography, Palaeoclimatology, Palaeoecology: An International Journal for the Geo-Sciences, 505: 381~397.

    • Holdaway H K, Clayton C J. 1982. Preservation of shell microstructure in silicified brachiopods from the Upper Cretaceous Wilmington Sands of Devon. Geological Magazine, 119(4): 371~382.

    • Ji Xingzhong, Li Nan, Zhang Chuang, Qiu Kunfeng, Hua Bei, Yu Jinyuan, Wu Chunjun, Han Ri. 2014&. Elemental geochemistry characteristics and forming environment of cherts in the Mianlue tectonic zone. Acta Petrologica Sinica, 30(9): 2619~2630.

    • Kaufman Alan J, Jacobsen Stein B, Knoll Andrew H. 1993. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth & Planetary Science Letters, 120(3~4): 409~430.

    • Liang Digang, Guo Tonglou, Bian Lizeng, Chen Jianping, Zhao Zhe. 2009&. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 3): Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks. " Marine Origin Petroleum Geology, 14(2): 1~19.

    • Lin Liangbiao, Chen Hongde, Zhu Lidong. 2010&. The origin and geochemical characteristics of Maokou Formation silicalites in the eastern Sichuan basin. Acta Geologica Sinica, 84(4): 500~507.

    • Liu Hao, Xu Daliang, Niu Zhijun, Han Lianhong, Wei Yunxu, Zhao Xiaoming. 2015&. Petrogenesis and Sedimentary Environment of Siliceous Rocks of Yangjiabao Formation in Zhushan Area, Northwestern Hubei. Acta Sedimentologica Sinica, 33(6): 1087~1096.

    • Liu Zhanhong, Zhuang Xingguo, Tenger, Xie Xiaomin, Yin Leimiing, Bian Lizeng, Feng Qinglai, Algeo T J. 2015. The lower Cambian Niutitang Formation at Yangtiao (GuiZhou, SW China): organic matter enrichment, source rock potential, and hydrothermal influences. Journal of Petroleum Geology, 38(4): 411~432.

    • Mei Lianfu, Deng Dafei, Shen Chuanbo, Liu Zhaoqian. 2012&. Tectonic dynamics and marine hydrocarbon accumulation of Jiangnan—Xuefeng uplift. Geological Science and Technology Information, 31(5): 85~93.

    • Murray Richard W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90(3~4): 213~232.

    • Murray Richard W, Buchholtzt B M R, Jones David L, Gerlach David C, Lii Price Russ. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18(3): 268.

    • Murray Richard W, Brink Marilyn R Buchholtz Ten, Gerlach David C, Lii Price Russ, Jones David L. 1991. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochimica Et Cosmochimica Acta, 55(7): 1875~1895.

    • Niu Xing, Yan Detian, Zhuang Xinguo, Liu Zixuan, Li Baoqing, Wei Xiaosong, Xu Hanwen, Li Dawei. 2018. Origin of quartz in the Lower Cambrian Niutitang Formation in south Hubei Province, upper Yangtze platform. Marine and Petroleum Geology, 96: 271~287.

    • Qiu Zhen, Wang Qingchen. 2011a&. Geochemical characteristics and sedimentary background of the Middle and Upper Permian siliceous rocks in the Penglaitan section of Laibin, Guangxi. Science China: Earth Science, 41(5): 725~737.

    • Qiu Zhen, Wang Qingchen, Yan Detian. 2011b&. Geochemistry and sedimentary background of the Middle—Upper Permian cherts in the Penglaitan section, Laibin, Guangxi Province. Acta Petrologica Sinica, 27(10): 3141~3155

    • Ramseyer Karl, Amthor Joachim E, Matter Albert, Pettke Thomas, Wille Martin, Fallick Anthony E. 2013. Primary silica precipitate at the precambrian/cambrian boundary in the south Oman Salt basin, sultanate of Oman. Marine and Petroleum Geology, 39: 187~197.

    • Renaut R W, Jones B, Tiercelin J J. 2010. Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya Rift Valley. Sedimentology. 45(6): 1083~1103.

    • Rona Peter A, Boström Kurt, Laubier Lucien, Smith Kenneth L. 1983. Genesis of ferromanganese deposits—diagnostic criteria for recent and dld deposits (chapter 20). US: Springer: 473~489.

    • Schultz-Lam S, Ferris F G, Konhauser K O, Wiese R G. 1995. In situ silicification of an icelandic hot spring microbial mat: Implications for microfossil formation. Canadian Journal of Earth Sciences. 32: 2021~2026.

    • Straeten Charles A Ver, Brett Carlton E, Sageman Bradley B. 2011. Mudrock sequence stratigraphy: A multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeography Palaeoclimatology Palaeoecology, 304(1~2): 54~73.

    • Sylvestre Ganno, Laure Njiosseu Tanko Evine, Djibril Kouankap Nono Gus, Arlette Djibril Soh, Cyriel Moudioh, Timoleon Ngnotue, Paul Nzenti Jean. 2017. A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: Constraints from petrography and geochemistry. Ore Geology Reviews, 80: 860~875.

    • Turner R D, Lutz R A. 1984. Growth and distribution of Mollusks at deep—sea vents and seeps. Environmental Science (Biology Oceanus), 27: 55~62.

    • Wang Chao, Zhang Baiqiao, Lu Yongchao, Shu Zhiguo, Lu Yaqiu, Bao Hanyong, Meng Zhiyong, Chen Lei. 2018. Lithofacies distribution characteristics and its controlling factors of shale in Wufeng Formation—Member 1 of Longmaxi Formation in the Jiaoshiba area, 3(4): 306~319.

    • Wang Shufang, Zou Caineng, Dong Dazhong, Wang Yuman, Huang Jinliang, Guo Zhaojie. 2014&. Biogenic silica of organic-rich shale in sichuan basin and its significance for shale gas. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(3): 476~486.

    • Wang Shufang, Zou Caineng, Dong Dazhong, Wang Yuman, Li Xinjing, Huang Jinliang, Guan Quanzhong. 2015. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence. Marine & Petroleum Geology, 66: 660~672.

    • Wang Xiuping, Mou Chuanglong, Xiao Zhaohui, Zheng Binsong, Chen Yao, Wang Qiyu, Liu Weiqing. 2018&. Genesis of black rock series of Upper Permian Dalong Formation in Hefeng area, Hubei province: an evidence from the analysis of element geochemistry in Well HD1. Acta Petrolei Sinica, 39(12): 1355~1369.

    • Wang ZhuoZhuo, Chen Daizhao, Wang Jianguo. 2007&. Element Geochemistry and depositional setting of the Chert in Devonian, Nanning Area, Guangxi. Acta Sedimentologica Sinica, 25(2): 239~245.

    • Wen Hanjie, Fan Haifeng, Tian Shihong, Wang, Qilian, Hu Ruizhong. 2016. The formation conditions of the Early Ediacaran cherts, South China. Chemical Geology, 430: 45~69.

    • Xia Peng, Fu Yong, Yang Zhen, Guo Chuan, Huang Jinqiang, Huang Mingyong. 2020&. The relationship between sedimentary environment and organic matter accumulation in the Niutitang black shale in Zhenyuan, northern Guizhou. Acta Geologica Sinica, 94(3): 947~56.

    • Xie Xiaomin, Tenger, Qin Jianzhong, Zhang Qingzhen, Bian Lizeng, Yin Leiming. 2015&. Depositional environment, organisms components and source rock formation of siliceous rocks in the base of the Cambrian Niutitang Formation, Kaili, Guizhou. Acta Geologica Sinica, 89(2): 425~439.

    • Xie Xiaomin, Zhu Guangyou, Wang Ye. 2021. The influence of syngenetic hydrothermal silica fluid on organic matter preservation in lower cambrian niutitang formation, south china. Marine and Petroleum Geology, 129(1): 105098.

    • Xie Xiaomin, Liu Weixin, Zhang Yin, Zhao Dife, Tang Youjun, Shen Baojian, Li Zhiming, 2021&. Siliceous source and its influence on organic matter preservation of the two Lower Paleozoic siliceous shale reserviors in Sichuan Basin. Geological Review, 67(2): 429~440.

    • Yang Guiyuan, Gao Junbo, Yang Ruidong, Liu Zhichen, Xu Hai. 2022&. The genesis and geological significance of the siliciclastic rocks of the Middle Permian Maokou Formation at Yingpan, Nayong, Guizhou. Geological Review, 68(5): 1621~1633.

    • Yang Xinglian, Zhu Maoyan, Zhao Yuanlong, Zhang Junming, Guo Qingjun, Pi Daoyou. 2008&. REE Geochemical Characteristics of the Ediacaran—Lower Cambrian Black Rock Series in Eastern Guizhou. Geological Review, 54(1): 3~15.

    • Yang Xinglian, Zhao Yuanlong, Zhu Maoyan, Cui Tao, Yang Kaidi. 2010&. Sponges from the Early Cambrian Niutitang Formation at Danzhai, Guizhou and their environmental background. Acta Palaeontologica Sinica, 49(3): 348~359.

    • Zhang Cong, Huang Hu, Hou Mingcai. 2017&. Progress and problems in the geochemical study on chert genesis for interpretation of tectonic background. Journal of Chengdu University of Technology (Science and Technology Edition), 44(3): 293~304.

    • Zhang Jiangjiang. 2011&. The Research of Tectonic Evolution in Southern Guizhou Depression. Supervisor: Wang Weifeng. Beijing: Master thesis of China University of Petroleum (East China): 1~111.

    • Zhang Weihua, Jiang Lijun, Gao Hui, Yang Ruidong. 2003&. Study on sedimentary environment and origin of black siliceous rocks of the Lower Cambrian in Giuzhou Province. Bulletin of Mineralogy Petrology & Geochemistry, 22(2): 174~178.

    • Zhang Yaguan, Du Yuansheng, Xu Yajun, Yu Wenchao, Huang Hu, Jiao Liangxuan. 2015&. Geochemical characteristics of siliceous rocks during the transition from Sinian(Ediacaran) to Cambrian in central Hunan and its implication for genesis and sedimentary environment. Geological Review, 61(3): 499~510.

    • Zhao Jianhua, Jin Zhijun, Hu Qinhong, Liu Keyu, Jin Zhenkui, Hu Zonngquan, Nie Haikuan, Du Wei, Yan Caina, Wang Ruyue. 2018. Mineral composition and seal condition implicated in pore structure development of organic-rich Longmaxi shales, Sichuan Basin, China. Marine and Petroleum Geology, 98: 507~522.

    • Zhou Yongzhang, Chown E H, Guha Jayanta, Lu Huangzhang, Tu Guangzhi. 1994. Hydrothermal origin of Late Proterozoic bedded chert at Gusui, Guangdong, China: Petrological and geochemical evidence. Sedimentology, 41(3): 605~619.

    • Zhu Xiaoqing, Wang Zhonggang. 1994&. Geochemical Characterization of Sediments in the Hot Water Zone of the Okinawa Trough. Beijing: Earthquake Publishing House: 108~112.