en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

沈莽庭,男,1971年生,正高级工程师,主要从事基础地质、矿产资源调查和研究;E-mail: smtq6483@sina.com。

通讯作者:

叶海敏,女,1973年生,正高级工程师,主要从事基础地质调查和研究;E-mail: 469907148@qq.com。

参考文献
韩振哲, 赵海玲, 王盘喜, 杨霄, 牛延宏, 赵寒冬. 2009. 黑龙江伊春地区晚三叠世—早侏罗世铝质A型正长碱长花岗岩地球化学特征及其构造意义. 岩石矿物学杂志, 28(3): 97~108.
参考文献
刘平辉, 王勇, 黄国夫, 管天阳, 余达淦. 2001. 浙江天姆尖盆地中生代流纹岩的地球化学特征及成因探讨. 华东地质学院学报, 24(2): 135~139.
参考文献
卢成忠, 董伟万, 顾明光, 邢光福, 周宇章. 2006. 浙江道林山新元古代A型花岗岩的发现及其构造意义. 中国地质, 33(5): 1044~1051.
参考文献
邱军强, 彭智, 陈芳, 董婷婷, 柳丙全. 2016. 北淮阳东段杨家湾岩体地球化学特征、锆石U-Pb定年及地质意义. 华东地质, 37(2): 89~96.
参考文献
沈莽庭, 徐鸣, 高天山, 姚仲友, 周延. 2020. 巴西圣弗朗西斯科克拉通Ibitiara岩体锆石U-Pb年代学、地球化学特征及其地质意义. 世界地质, 39(1): 1~15.
参考文献
沈莽庭, 郭维民, 王天刚, 孙建东, 徐鸣, 隰弯弯, 赵宇浩. 2024. 巴西圣弗朗西斯科克拉通地质演化与重要成矿作用. 华北地质, 47(1): 26~47.
参考文献
闫峻. 2022. 长江中下游—大别造山带中生代火山岩特征及成因. 华东地质, 43(4): 375~390.
参考文献
袁峰, 周涛发, 岳书仓. 2001. 阿尔泰诺尔特地区火山岩岩石地球化学特征及构造背景. 地质地球化学, 29(2): 31~35.
参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1~2): 59~79.
参考文献
Barbosa J S F, Sabate P. 2004. Archean and Paleoproterozoic crust of the Sao Francisco Craton, Bahia, Brazil: Geodynamic features. Precambrian Research, 133: 1~27.
参考文献
Belousova E A, Griffin W L, O’Reilly Suzanne Y, Fisher N I. 2002. Igneous zircon: Trace element composition as an indicator of source rock type.Contributions to Mineralogy and Petrology, 143(5): 602~622.
参考文献
Bourne J H. 1986. Geochemistry of the felsic metavolcanic rocks of the Wakeham Group: A metamorphosed peralkaline suite from the eastern Grenville Province, Quebec, Canada. Can. J. Earth Sci. , 23: 978~984.
参考文献
Borg G, Shackleton R M. 1997. The Tanzania and NE-Zaire Cratons. In: de Wit M J, Ashwal L D. eds. Greenstone Belts. Oxford: Oxford University Press: 608~619.
参考文献
Cahen I, Snelling N J, Dehal J, Vail J R. 1984. The Geochronology and Evolution of Africa. Oxford: Clarendon Press: 512.
参考文献
Calvin F M, Susanne M M, Russell W M. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology. 31(6): 529~532.
参考文献
Colloins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral Petrol. , 80: 189~200.
参考文献
Dall’ Agnol R, Oliveira D C. 2007. Oxidized, magnetite series, rapakivi type granites of Carajas, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos, 93: 215~233.
参考文献
Eby G N. 1990. The type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26: 115~134.
参考文献
Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20: 641~644.
参考文献
Floyd P A, Winchester J A. 1975. Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sci. Lett. , 27: 211~218.
参考文献
Geist D, Howard K A, Larson P. 1995. The generation of oceanic rhyolites by crystal fractionation: The basalt—rhyolite association at Volcan Alcedo, Galapagos Archipelago. Journal of Petrology, 36(4): 965~982.
参考文献
Han Zhenzhe, Zhao Hailing, Wang Panxi, Yang Xiao, Niu Yanhong, Zhao Handong. 2009&. Geochemistry of Late Triassic-Early Jurassic aluminous A-type syenogranite-alkali feldspar granite in Yichun area, Heilongjiang Province and its tectonic implications. Acta Petrologica et Mineralogica, 28(2): 97~108.
参考文献
Irivin T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rock.Canadian Journal of Earth Sciences, 8: 523~548.
参考文献
Le Maitre R W. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell: 193
参考文献
Lippard S J. 1973. The petrology of phonolites from the Kenya Rift. Lithos, 6: 217~34.
参考文献
Liu Pinghui, Wang Yong, Huang Guofu, Guan Taiyang, Yu Dagan. 2001&. Geochemical Characteristics and Genesis of Mesozoic Rhyolites in the Tianmujian Basin, ZJ Province, 24(2): 135-139.
参考文献
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong, Wang Dongbing. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34~43.
参考文献
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51: 537~571.
参考文献
Liu Yongsheng, Hu Zhaochu, Zong Keqing , Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010b. Reap appraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 15: 1535~1546.
参考文献
Lu Chengzhong, Dong Chuanwan, Gu Mingguang, Xing Guangfu, Zhou Yuzhang. 2006&. Discovery of the Neoproterozoic Daolinshan A-type granite in Zhejiang and its tectonic implications. Geology in China, 33(5): 1044~1051.
参考文献
Ludwig K R. 2003. Isoplot 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, California.
参考文献
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3~4): 215~224.
参考文献
Macdonald R, Davies G R, Bliss C M, Leat P T, Bailey D K, Smith R L. 1987. Geochemistry of high silica peralkaline rhyolites, Naiv Asha, Kenya Rift Valley. Journal of Petrology, 28(6): 979~1008.
参考文献
Pearce J A, Cann J R. 1973. The tectonic setting of basic volcanic rocks was investigated using trace element analysis. Earth Planet. Sci. Lett. , 19: 290~300.
参考文献
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. , 25: 956~983.
参考文献
Sabaté P, Moacyr M M, Philippe V, Michelle C V. 1990. The 2Ga peraluminous magmatism of the Jacobina-Contendas Mirante belts (Bahia, Brazil): Geologic and isotopic constraints on the sources. Chemical Geology, 83: 325~338.
参考文献
Qiu Junqiang, Peng Zhi, Chen Fang, Dong Tingting, Liu Bingquan. 2016&. Geochemical Characteristics and Zircon U-Pb dating of the Yangjiawan pluton in the eastern part of North Huaiyang and their geological significances. East China Geology, 37(2): 89~96.
参考文献
Riley T R, Leat P T, Pankhurst R J, Harris C. 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. Journal of Petrology, 42(6): 1052~1065.
参考文献
Shen Mangting, Xu Ming, Gao Tianshan, Yao Zhongyou, Zhou Yan. 2020&. Zircon U-Pb geochronology, geochemical characteristics and geological implication of Ibitiara pluton from San Francisco Craton in Brazil. Global Geology, 39(1): 1~15.
参考文献
Shen Mangting, Guo Weimin, Wang Tiangang, Sun Jiandong, Xu Ming, Xi Wanwan, Zhao Yuhao. 2024&. Geological evolution and important mineralization of São Francisco Craton in Brazil. North China Geology, 47(1): 26~42.
参考文献
Tayor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford: Blackwell Scientific Publication: 1~312.
参考文献
Teixeira W, Figueiredo M C H. 1991. An outline of Early Proterozoic crustal evolution in the Sao Francisco region, Brazil: A review. Precambrian Research, 53(1~2): 1~22.
参考文献
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology. 95(4): 407~419.
参考文献
Wilson M. 1989. Igneous Petrogenesis (Global Tectonic Approach). London: Oxford University Press: 1~466.
参考文献
Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413~433.
参考文献
Yuan Feng, Zhou Taofa, Yue Shucang. 2001&. Geochemical Characteristics and Tectonic Setting of the Volcanic Rocks in the Nurt area of Altay. Geology-Geochemistry, 29(2): 31~35.
参考文献
Yan Jun. 2022&. Characteristics and petrogenesis of the Mesozoic volcanic rocks from the Middle-Lower Yangtze River Belt and the Dabie Orogen. East China Geology, 43(4): 375~390.
参考文献
Babinski M, Neves B B B, Noce C M. 1994. Problemas da Metodologia U/Pb com Zircoes de Vulcanicas Continentais: Caso do Grupo Rio dos Remedios Supergrupo Espinhaco, no Estado da Bahia. In: Congresso Brasileiro De Geologia 38, 1994, Balneario de Camboriu. Anais. Camboriu: SBG. V. 2: 409~410.
参考文献
Barbosa J F S, Cruz S P, Souza J S. 2012. Terrenos metamorficos do embasamento. In: Barbosa J F S. ed. Geologia da Bahia: Pesquisa e Atualizacao. CBPM 1: 101~201.
参考文献
Cruz S C P. 2004. A interacao tectonica entre o Aulacogeno Paramirim e o Orogeno Aracuai-Congo. f. Tese (Doutorado) - Escola de Minas. Ouro Preto: Universidade Federal de Ouro Preto: 465.
参考文献
Cruz S C P, Alkmim F F A. 2005. Interacao Tectonica entre o Aulacogeno do Paramirim e o Orogeno Aracuai-oeste Congo. In: Simposio Sobre O Craton Do Sao Francisco. Salvador. Anais. Salvador: CBPM: 215~218.
参考文献
Dias V M. 2005. Aspectos geologicos preliminares do complexo magmatico Rio dos Remedios, na area do Projeto Ibitiara — Rio de Contas: Uma abordagem dos dados geologicos de campo voltada para a metalogenese. Relatorio de viagem. Salvador: CPRM, Nao paginado. Relatorio interno.
参考文献
Ernst R E, Pereira E, Hamilton M A, Pisarevski A S, Rodrigues J, Tassinari C C G, Teixeira W. 2013. Mesoproterozoic intraplate magmatic “barcode” record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1500 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precam. Res. , 230: 103~118.
参考文献
Gomes R, Motta A C. 1980. Projeto Levantamento Gravimetrico no Estado da Bahia: relatorio final. Textos e Mapas. Salvador: CPRM, 5 v. Convenio DNPM/CPRM.
参考文献
Gomes P J P, Gomes R A A D, Silveira F N. 1996. Novo Mapa Bouguer do Estado da Bahia. In: Congresso Brasil Eiro De Geologia, Salvador. Anais. . . Salvador, SBG 2: 423~424.
参考文献
Schobbenhaus C, Kaul P F T. 1971. Contribuicao a estratigrafia da Chapada Diamantina, Bahia Central. Mineracao e Metalurgia, 53(315): 116~120.
参考文献
Sa E F J, Bartels R L, Neves B B B. 1976. Geocronologia e modelo tectomagmatico da ChapadaDiamantina e Espinhaco Setentrional, Bahia. In: Congresso Brasileiro De Geologia, Ouro Preto. Anais Ouro Preto: SBG, 29(4): 205~227.
参考文献
Schobbenhaus C, Hoppe A, Baumann A. 1994. Idade U/Pb do vulcanismo Rio dos Remedios, Chapada Diamanatina, Bahia. In: Congresso Brasileiro De Geologia, 38, 1994, Balneario Camboriu. Boletim de Resumos Expandidos. Camboriu: SBG. V(2): 397~398.
参考文献
Teixeira L R. 2005. Projeto Ibitiara—Rio de Contas: Relatorio tematico de litogeoquimica. Salvador: CPRM, 33f. Programa Levantamentos Geologicos Basicos do Brasil - PLGB. Relatorio interno.
目录contents

    摘要

    笔者等首次报道了巴西中东部圣弗朗西斯科克拉通巴伊亚州内伊比蒂亚拉—里奥德孔塔地区古元古代(变)流纹质熔结凝灰岩 LA-ICP-MS 锆石 U-Pb 年龄为 1723 ~ 1736 Ma。该类岩石地球化学特征上具有高硅、富碱和低钙镁、过铝质特点;富集大离子亲石元素(如 K、Th、U、Rb、Ba、Sr)和相对亏损高场强元素(如 Nb、P、Zr、Hf)以及 Ti 明显亏损。稀土元素含量较高(∑REE 为 325× 10-6 ~ 830×10-6 ),轻稀土元素相对富集[(La / Yb) N 为 3. 26 ~ 6. 57],稀土配分曲线呈现略微右倾,强烈 Eu 负异常(δEu = 0. 0460~ 0. 416)的海鸥型;火山岩锆石 Ti 温度计得出岩浆温度为 706~ 943℃ ,锆石饱和温度 836~ 992℃ 。这些特征表明该区火山岩岩浆具有高温、浅成就位特征,为钙碱性铝质 A 型花岗岩类岩浆,形成于非造山型陆内板块裂谷带环境。该火山岩岩浆经历了壳幔部分熔融、结晶分异过程,并有西部火山岩向东部富硅演化的趋势。

    Abstract

    Objectives: The aim is to analyze and organize volcanic rocks’ timeline and chemical composition in the Ibitiara—Rio de Contas area of the São Francisco Craton, Brazil. This analysis will enhance understanding the origin and tectonic setting in which these rocks evolved. It will offer geochronological and geochemical evidence to gain deeper insights into the geodynamic context of the formation of Paleoproterozoic volcanic rocks in the São Francisco Craton.

    Methods: The macro and micro characteristics of metamorphic rhyolite ignimbrite in Ibitiara—Rio de Contas were identified using thin sections. The content of major elements was analyzed using X-ray fluorescence spectrometry (XRF), with typical samples collected and analyzed using the laminate method. The content of trace elements was measured using inductively coupled plasma mass spectrometry ( LA-ICP-MS). Additionally, zircon LA-ICP-MS U-Pb dating was performed using the LA-ICP-MS and laser ablation system.

    Result: The paper presents LA-ICP-MS zircon analysis of a Paleoproterozoic ( metamorphic ) rhyolite ignimbrite in the Ibitiara—Rio de Contas area of the São Francisco Craton in Bahia State, Central and eastern Brazil. The analysis revealed U-Pb ages of 1723 ~ 1736 Ma, the first time these ages have been reported for this area. The rocks show high levels of silicon, aluminum, and alkali components, and low levels of calcium and magnesium. They also contain enriched large ion lithophile elements (like K, Th, U, Rb, Ba, Sr) and relatively deficient high field strength elements (such as Nb, P, Zr, Hf) and Ti. The rare earth element abundance value is high (∑REE is 325×10-6-830×10-6 ), and light rare earth elements are relatively enriched (La / Yb) N is 3. 26~ 6. 57. The rare earth partition curve shows a slight right-leaning and a strong negative Eu anomaly (δEu = 0. 0460 ~0. 416). The volcanic zircon Ti thermometer indicates a magma temperature range of 706~943℃ , with a zircon saturation temperature of 836~992℃ . Based on these characteristics, it's suggested that the volcanic magma in this area has a high temperature and shallow origin. This implies it is a calc-alkaline aluminum A-type granite formed in a non-orogenic intracontinental plate rift zone environment. The volcanic magma has undergone crust and mantle partial melting and crystallization differentiation and indicates a trend of silica-rich evolution from west to east.

  • 南美地台区圣弗朗西斯科克拉通( São Francisco Craton,简称“ SFC”)内古元古代火山岩精确的同位素年代、岩石的成因和动力学背景尚不清晰。大多数学者(Cruz and Dias,2004)认为,这主要是南美地台区克拉通闭合稳定后,受后期不同构造(如大陆张性构造环境或造山后环境)控制的结果。但部分学者(Cruz and Alkmim et al.,2005; 沈莽庭等,2024)更强调,克拉通内微陆块汇聚或陆内挤压—伸展模式的构造体系的影响,是诱发本区火山岩上侵喷发的主要原因。 SFC 内不同时代的火山岩形成背景的动力学问题,仍是该区岩浆构造演化研究中尚未得到很好解决的科学问题之一。笔者等基于中国地质调查局与巴西地质调查局项目合作协议框架,在中巴地质学家合作开展野外地质调查工作的基础上,结合伊比蒂亚拉—里奥德孔塔(Ibitiara— Rio de Contas)地区的流纹质熔结凝灰岩石的宏、微观特征研究,锆石 U-Pb 年龄分析及主、微量元素测试,提供了 SFC 内古元古代火山岩年代学和地球化学方面的证据,进一步揭示了其形成的动力学背景。

  • 1 地质概况

  • 1.1 区域地质背景

  • 研究区位于巴西 SFC 内伊比蒂亚拉—里奥德孔塔斯地区。区内地层构造、岩浆演化历史古老且复杂(图1)。西部主要由一套古太古代(3.6~3.2 Ga)花岗质片麻岩、二长花岗岩、混合岩等古老岩浆岩群,并在中太古代(3.2~2.8 Ga)固结形成稳定的帕拉米林( Paramirim)结晶基底( Sa et al.,1976; Gomes and Motta,1980; Gomes et al.,1996)。该类岩石为高钾、过铝钙碱性 TTG( Trondhjemite— Tonalite—Granodiorite; 奥长花岗岩—英云闪长岩— 花岗闪长岩)岩石组合部分熔融的产物,具有壳幔混合的岩浆组分特征(Teixeira,2000)。古元古代中晚期 SFC 又经历多次造山运动,并引发伊比蒂亚拉—里奥德孔塔斯地区大量的闪长—花岗质岩浆侵入和喷发。如区内伊比蒂亚拉(Ibitiara)花岗闪长岩是其代表性侵入岩体之一,其形成年代大约为 2103± 8 Ma,为古元古代层侵纪晚期—造山纪早期岩浆活动的产物(沈莽庭,2020)。之后该克拉通基底处于较长时期的相对稳定状态。受区域陆内拉张—伸展构造运动的影响,后期本区主要形成 NNW—SSE 陆内埃斯皮尼亚索(Espinhaco)盆地裂陷构造体系(Cruz,2004; 沈莽庭,2024; Cruz and Alkmim,2005),大约在 1750~1700 Ma 期间伴随中酸性—碱性火山岩和少量的花岗斑岩、辉长(绿)岩、玄武岩浆等侵入与喷发及火山碎屑岩沉积,相应在中晚元古代沉积了海—陆相帕拉瓜苏群和里约雷梅迪奥斯群陆相—火山岩相沉积盖层。出露的埃斯皮尼亚索裂谷构造盆地的系列火山岩,主要赋存于中晚古元古界里约雷梅迪奥斯群(Rio dos Remédios)中的诺沃奥里松特(Novo Horizonte)组内,岩性有安山岩,流纹(斑)岩,凝灰质熔岩,流纹质熔结凝灰岩等火山碎屑岩组合及石英斑岩等脉岩。其上覆晚古元古代帕拉瓜苏群(Paraguacu)群,主要岩性有弱变质(粉)砂岩、杂砂岩夹中薄层钙质碎屑灰岩、泥质粉砂岩、泥岩等组合。层内常发育大型交错层理,局部偶见穿插基性岩墙; 下伏塞拉达加梅莱拉组( Serra da Gameleira),为一套石英岩、砾岩等岩层,且穿插基性岩墙群。

  • 图1 巴西圣弗朗西斯科克拉通伊比蒂亚拉—里奥德孔塔斯地区地质简图

  • Fig.1 Simplified geological map of Ibitiara—Rio de Contas area, Sao Francisco Craton, Brazil

  • 图2 伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩露头及显微镜下鉴定照片:(a)、(b)流纹质熔结凝灰岩天然露头照片;(c)、(d)流纹质熔结凝灰岩局部放大照片;(e)、(f)流纹质熔结凝灰岩显微照片(正交偏光);(g)变流纹质熔结凝灰岩人工露头照片;(h)、(i)、(j)变流纹质熔结凝灰岩局部放大照片;(k)、(l)变流纹质熔结凝灰岩显微照片(正交偏光)

  • Fig.2 Outcrop photos and photomicrographs of ( metamorphic) rhyolitic ignimbrite in Ibitiara—Rio de Contas area: ( a) , ( b) Photographs of natural landform and outcrop of rhyolite ignimbrite; (c) , ( d) partial magnification of rhyolite ignimbrite; ( e) , ( f) mircographs of rhyolitic ignimbrite ( orthogonal polarization) ; ( g) photographs of artificial outcrop of metamorphic rhyolitic ignimbrite; (h) , (i) , ( j) partial magnification of metamorphic rhyolitic ignimbrite; ( k) , ( l) Mircographs of metamorphic rhyolitic ignimbrite (orthogonal polarization)

  • Qtz—石英; Pl—斜长石; Ser—绢云母; Kfs—钾长石

  • Qtz—quartz; Pl—plagioclase; Ser—sericite; Kfs—potassium feldspar

  • 1.2 火山岩野外与显微岩石学特征

  • 伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩位于中晚古元古界固结系里约雷梅迪奥斯群的诺沃奥里松特组中。该组由下向上主要分为 4 个岩性段:下段为流纹斑岩、潜火山熔岩、流纹岩。二段为具热液蚀变和弱矽卡岩化蚀变石英斑岩,原岩可能为变质流纹岩、变质流纹质熔结凝灰岩等。三段为富石英变流纹岩,流纹质火山熔岩和火山碎屑岩。上段为具热液蚀变和糜棱岩化酸性火山碎屑岩、流纹质熔结凝灰岩等。研究区的火山岩可分为东、西两个部分,西部分布多而东部少。东部的火山岩地表出露总体走向约 170°,宽度大于 120 m,呈北北西—南南东向近直立不连续线状展布,并具有裂隙式火山喷发相特征。岩性以流纹质熔结凝灰岩为主,浅紫色夹杂有粉红和白色斑块,局部可见微气孔结构以及条带状和斑杂状熔结构造(即假流纹构造),偶见石英透镜状细脉(最大脉宽达 2 cm)穿插(图2d),脉体内局部见晶洞结构,无暗色残留体。西部的火山岩总体呈现北西—南东向裂隙式火山喷发分布特征,岩性由变流纹质熔结凝灰岩组成,溢流相为其主要表现形式,而火山碎屑岩相对较少见。野外一处人工露天采石场内还可见变流纹质熔结凝灰岩下部有花岗斑岩脉穿插其中,两者接触处常形成宽度为 5~10 cm 的弱绿泥石化等接触蚀变晕边(图2h)。

  • (1)流纹质熔结凝灰岩(图2a、b):假流纹构造,晶屑熔结凝灰结构。主要由晶屑、浆屑和凝灰质矿物组成。晶屑粒径 1~2 mm,总体含量约 30%,主要为石英、钾长石和少量斜长石等晶体矿物。石英呈近他形粒状,一般 1~2 mm,少部分 2~3 mm 星散状,常见港湾、穿孔状熔蚀现象。钾长石,肉红色— 灰白色,以微斜长石和条纹长石为主,具卡尔斯巴双晶,一般 1~2 mm,少量 0.2~0.5 mm。斜长石偏酸性,大小为 0.5~1 mm,呈星散状分布,可见聚片双晶。见少量角闪石、黑云母等暗色矿物,总体含量小于 5%,多已蚀变并原位析出磁铁矿,部分保留晶体假象; 浆屑为斜长石、钾长石、石英、变质矿物绢云母等,略显定向排列构成假流动构造; 凝灰质由石英、斜长石、钾长石等矿物构成,含量小于 5 %。

  • 表1 巴西圣弗朗西斯科克拉通伊比蒂亚拉一里奥德孔塔斯地区变流纹质熔结凝灰岩(D018-TW1 样品),流纹质熔结凝灰岩(D067-TW1 样品)LA-ICP-MS 错石 U-Pb 年龄测定结果

  • Table1 LA-ICP-MS U-Pb analytical results for the zircons from metamorphic rhyolite ignimbrite(D018-TW1 sample)and rhyolite ignimbrite(D067-TW1 sample)in Ibitiara-Rio de Contas area,the Sao Francisco Craton,Brazil

  • (2)变流纹质熔结凝灰岩( 图2g、 h): 条带斑杂构造,晶屑熔结凝灰结构。主要由晶屑、浆屑和凝灰质矿物组成。多数晶屑细小且破碎,多呈棱角状 — 次棱角,粒径在 1~2 mm,总体含量约 20 %,主要为石英、钾长石、斜长石等晶体矿物。石英大小一般 0.2~1 mm,少量 1~2 mm,近他形粒状星散分布,略显重结晶,可见港湾、穿孔状熔蚀现象。钾长石,肉红色 — 灰白色,具卡尔斯巴双晶,一般 1~2 mm,轻土化,定向分布。斜长石含量少偏酸性,量少呈星散状分布,可见聚片双晶,被绢云母交代变质,表面略脏。见少量角闪石、黑云母等暗色矿物,总体含量小于 2 %,且多已蚀变并原位析出磁铁矿,部分保留晶体假象。浆屑含量约占 10 %~20 %,主要为石英、钾长石、斜长石等矿物组成,多呈细长的条带状、拉长的透镜状,部分略显定向构成变余流动构造,显示近片理化变形。胶结物为更细粒的火山灰,主要由石英、斜长石、钾长石等矿物构成,含量 1 %~5 %,多呈棱角状星散分布,且多已脱玻化,并已发生绢云母化等变质矿物集合体,呈条纹状定向分布。岩石蚀变弱,蚀变矿物主要为石英及高岭土。

  • 2 样品采集及分析测试方法

  • 对巴西 SFC 内伊比蒂亚拉 — 里奥德孔塔斯地区 2 处呈岩脉状火山岩进行了野外观察和采样。年龄测试样品 2 件( 图1): 东部采集火山岩样品 1 件( 编号 D067),坐标 : 41 ° 55 ′ 09.23 ″ W; 12 ° 40 ′ 49.18 ″ S; 西部采样工作是在一处人工露天采石场内进行的,采集火山岩样品 1 件(编号 D018),坐标:42°09′42 ″W; 13° 29′56″S。该处变流纹质熔结凝灰岩呈穹丘状分布。全岩分析样品共 6 件,东西部火山岩各采集典型样品 3 件。

  • 包括制靶等在内的锆石单矿物挑选和样品初步加工均在河北省诚信地质服务有限公司完成。分选采用粉碎、重磁选等常规方法,然后在双目镜下选出锆石制靶。打磨抛光后进行透射光、反射光和阴极发光(CL)照像采集,再选取最理想的锆石颗粒或最佳位置进行分析测试。锆石的 U-Pb 定年在合肥工业大学使用 LA-ICP-MS 与激光剥蚀系统联合完成。在分析过程中,激光剥蚀斑束直径选为 32 μm,频率为 6 Hz,采样方式为单点剥蚀,以 He 作为剥蚀物质载气。采用由中国地质大学(武汉)刘勇胜教授编写的 ICPMSDataCal 软件( Liu Yongsheng et al.,20082010a)对分析数据进行离线处理。样品锆石 U-Pb 年龄谐和图绘制和年龄权重均值计算采用 Isoplot / Ex _ ver3( Ludwig,2003)完成。锆石 U— Th—Pb 同位素比值和年龄数据的单次测量标准偏差为 1σ,而计算加权平均年龄时采用的标准偏差为2 σ。使用嵌入 EXCEL 的 ComPbCorr # 3.18 程序(Andersen,2002)进行普通 Pb 校正。测试数据结果见表1。

  • 图3 伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩锆石 CL 图像及 LA-ICP-MS 测点位置

  • Fig.3 CL photo, measured points of zircons from (Metamorphic) rhyolite ignimbrite in Ibitiara—Rio de Contas area

  • 样品的主、微量元素测试在国土资源部华东矿产资源监督检测中心进行测试分析。主量元素采用 X-射线荧光光谱(XRF)压片法分析,而微量元素则采用电感耦合等离子质谱仪( LA-ICP-MS)进行测试。主量元素、微量元素的测试准确度和分析精度相对误差均小于 5% 和 10%。测试数据结果详见表2。

  • 3 结果分析

  • 3.1 锆石定年

  • 对伊比蒂亚拉—里奥德孔塔斯地区火山岩锆石阴极发光(CL)图像及及 LA-ICP-MS 锆石 n206 Pb)/ n238U)表面年龄测定点位置见图3。火山岩锆石阴极发光( CL)图像中,锆石多呈透明—半透明短柱状,少数为短圆形,自形—半自形晶,长 80~150 μm,长宽比多数为 2 ∶ 1。锆石晶体柱面平直,振荡环带清晰,为典型岩浆结晶锆石。相比较而言,D018 锆石较 D067 锆石略暗淡,这是由于 D018 锆石的 U、Th 含量高于 D067 锆石(表1)。 D018 锆石 U、Th 含量富集的原因可能是该类岩石中大多数锆石结晶时赋存的原始岩浆熔流体中本身相关 U、Th 元素丰度值较高所致。

  • D018、D067 样品锆石 LA-ICP-MS U-Pb 年龄测定数据见表1、2。 D018 样品锆石 18 个测点 U 含量为 97.22×10-6~496.1×10-6,平均值 233.7×10-6,Th 为 82.28 × 10-6~298.3 × 10-6,平均值 162. 0 × 10-6,Th / U 为 0.53~0.85,平均值 0.69(表1)。图4 中 LA-ICP-MS U-Pb 测试年龄 18 个数据点构成较完好的相关年龄组,在 n207Pb)/ n206Pb)一致曲线图上,18 个点有 12 个测点落在谐和线上,其中有约 6 个点稍偏离谐和线,可能与样品中207 Pb 元素含量较低或丢失,导致测量不准确。 n207Pb)/ n206Pb)年龄介于 1681~1798 Ma 之间,n207Pb)/ n206Pb)加权平均年龄为 1736±27 Ma(MSWD= 0.23,n = 18)。

  • D067 样品锆石 29 个测点 U 含量 68.67×10-6~491.1 × 10-6,平均值 186.3 × 10-6,Th 含量 33.20 × 10-6~369.9 × 10-6,平均值 115.7 × 10-6,Th / U 值为 0.45~0.75,平均值 0.60(表1)。图4 中除了 D067-TW1-6 测点外 28 个测点,其 LA-ICP-MS U-Pb 测试年龄构成较完好的相关年龄组。在 n207Pb)/ n206Pb)一致曲线图上,集中分布在谐和线上及附近,n207Pb)/ n206Pb)年龄介于 1625~1798 Ma 之间,n207Pb)/ n206Pb)加权平均年龄为 1723±19 Ma(MSWD= 0.77,n = 29)。

  • 火山岩样品锆石 Th / U 值平均值皆大于 0.4,表明它们属于岩浆成因的锆石( Belousova et al.,2002)。其定年结果 1723~1736 Ma 代表了伊比蒂亚拉—里奥德孔塔斯地区火山岩的成岩年龄。东西两部分的火山岩成岩年龄在误差范围内相差近 13 Ma,表明这些火山岩浆活动应该同属于古元古代晚期—固结纪早期岩浆侵位喷发活动的产物。

  • 3.2 主量元素地球化学特征

  • 伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩主量元素分析数据见表2。该区(变)流纹质熔结凝灰岩以高硅、富碱、富铁组分及贫钙和镁(<0.85%)为特征。西部 D018 样品 SiO2 含量为 73.98%~74.75%,平均为 74.4%; 而东部 D067 样品 SiO2 含量为 76. 09%~79.78%,平均为 78.4%,较西部样品含量偏高。西部样品(K2O +Na2O)的含量为 7. 01%~7.51%之间; 而东部采样点样品(K2O +Na2O)含量为 2. 0%~3.5%,略低于前者。所有样品 K2O/ Na2O 值都>2。氧化铁含量总体较高,西部样品的 TFeO = 2.1%~2.5%; 东部样品的 TFeO = 2.1%~2.2%,两者平均值相差不大,但皆 >1% 含量。所有样品钙、镁含量较低,西部样品 MgO 含量为 0. 09%~0.15%,平均 0.1%,CaO 含量为 0.8%~1.7%; 而东部样品的 MgO 平均含量为 0. 03%,CaO 含量为 0. 04%~0. 05%,两者总体含量偏低,但西部样品的 CaO 含量明显高于东部点样品,与 SiO2 含量成反比,结合东部火山岩喷发成岩年龄相对较晚,所以东部火山岩 Mg、Ca 含量低可能是由于火山岩岩浆演化所致。而所有样品 Al2O3 含量 11.78%~12.71%之间,平均值为 12.3%,变化不大。

  • 伊比蒂亚拉—里奥德孔塔斯地区火山岩在硅— 碱 TAS 图(图5a)投点属于亚碱性系列,且 K2O/ Na2O >2,为偏钾质火山岩,火山岩的里特曼组合指数(σ)西部样品是 1.59~1.79,而东部样品为 0.11~0.37,均属于钙碱性流纹岩类(σ<4); A/ CNK 值为 1. 06~4.69,属于过铝质岩石(图5b)。然而,由于东部采集的样品岩石受地表风化淋滤作用等影响,具有较低的 CaO、Na2O 及 K2O 的含量,导致 A/ CNK 值相对较高,达到 4.39~4.69。西部 D018 样品的 P2O5 含量为 0. 017%~0. 02%,而东部 D067 样品 P2O5 含量为 0. 036%~0. 039%,略偏低,且远低于地壳中P2O5平均含量(约0.28%),这暗示了该地区的(变)流纹质熔结凝灰岩可能经历了较强的磷灰石分异作用(邱军强等,2016)。

  • 表2 巴西圣弗朗西斯科克拉通伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩主量元素(%)、微量元素(×10-6)和稀土元素(×10-6)岩石化学分析结果

  • Table2 Analyzed data of major elements (%) , trace elements (×10-6) and rear earth elements (×10-6) of (metamorphic) rhyolite ignimbrite in Ibitiara-Rio de Contas area, Sao Francisco Craton, Brazil

  • 注:A/CNK=nAl2O3nCaO+nNa2O+nK2O; 固结指数SI=100wMgOwMgO+wFeO+wFe2O3+wNa2O+wK2O; 里特曼组合指数σ=100wK2O+100wNa2O2100wSiO2-43。 Qz—石英; C—刚玉; Hy—紫苏辉石; Tl—钛铁矿; Mt—磁铁矿; Ap—磷灰石; Zr—锆石。

  • 图4 伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩锆石 LA-ICP-MS U-Pb 年龄谐和(a)、(c)及加权平均(b)、(d)图

  • Fig.4 Concordiadiagram and weighted average age of LA-ICP-MS U-Pb dating for Zircons from the ( metamorphic) rhyolitic ignimbrite in Ibitiara—Rio de Contas area

  • 据表2 数据分析结果显示,伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩样品中主要组分重量百分数 CIPW 标准矿物计算分别为:石英(Qz)= 39.34~79.88; 刚玉(C)= 2.33~12.7; 紫苏辉石(Hy)= 1.95~2.86; 钛铁矿(Tl)= 0.21~0.81; 磁铁矿(Mt)= 2.18~2.94; 磷灰石(Ap)= 0. 04~0. 09,这些数据暗示了该区火山岩岩浆区来源较深的特征。

  • 总之,伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩为 Fe /(Fe+Mg)值、K2O/ Na2O 值和 K2O 含量较高,而 CaO、Al2O3含量较低为特征的高硅、富碱,贫钙、镁,A/ CNK>1 的弱碱性火山岩类。

  • 3.3 微量元素地球化学特征

  • 伊比蒂亚拉—里奥德孔塔斯地区火山岩微量元素数据见表2。样品明显富集 Ce、Th、Ta、Hf、Ga、Y、 Zn 等元素含量,且 Rb、Zr、Pb 元素含量略偏高,具有 Sr、Ba、Cr、Co、Ni、V、Cu 等元素含量较低的特征,暗示该处火山岩可能受到一定的地壳物质熔融混染作用。西部样品微量元素含量总体高于东部样品,且西部火山岩相对富集 Nb 等元素。

  • 微量元素原始地幔标准化蛛网图(图6a)显示该区火山岩总体呈右倾型,富集大离子亲石元素 Rb、Th、K、U、Zr,高场强元素 Nb、Ta、P 和 Ba 相对亏损,形成的岩石样品对原始地幔标准化曲线中出现4 个显著的低谷。 Ti 明显亏损。 P 和 Ti 亏损可能暗示了在岩浆结晶过程中存在磷灰石、钛铁矿等结晶分离作用(邱军强等,2016); 过渡族元素 Cr、Ni 值则在 4.3×10-6~6.8×10-6 和 1.5×10-6~2.5×10-6 之间变化。据 Lippard 等(1973) 研究指出,结晶分异作用形成的火山岩石,La / Zr、Nb / Zr 等值是恒定的。对该区样品数据计算后发现,西部样品 D018 对应比值为 0.427~0.598、0.595~0.774,而东部样品 D067 为 0.110~0.121、0. 041~0. 053,区间变化较小相对恒定。另外本区 Rb / Sr 值最高达 18.5,但西部样品(D018 平均为 18.2)总体高于东部样品(D067 平均值为 1.16)。

  • 图5 伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩 TAS 分类图(a)(底图据 Middlemost,1994)及化学类型 A/ NK—A/ CNK 图解(b)(底图据 Middlemost,1994

  • Fig.5 Plots of SiO2 / (Na2O+K2O) (a) (after Middlemost, 1994) and A/ NK—A/ CNK diagram (b) (after Middlemost, 1994) of the ( metamorphic) rhyolitic ignimbrite in Ibitiara—Rio de Contas area

  • 图6 伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩微量元素原始地幔标准化蛛网图(a)(Sun and McDonough,1989)和稀土元素球粒陨石标准化分布型式图(b)(Taylor and Mclennan,1985)

  • Fig.6 Primitive mantle normalized trace element spidergrams (a) and Chondrite normalized REE patterns (b) of the ( metamorphic) rhyolitic ignimbrite in Ibitiara—Rio de Contas area (Trace elements for PM from Sun and McDonough et al., 1989; and REE for chondrite from Taylor and Mclennan, 1985)

  • 图6b 是伊比蒂亚拉—里奥德孔塔斯地区火山岩稀土元素球粒陨石标准化图。样品稀土总量均较高,轻重稀土分异程度略显不同,Eu 均显负异常,这表明轻稀土元素富集。其配分模式总体呈略微右倾海鸥型展布特征。西部火山岩样品稀土元素总量(∑REE)达 537×10-6~830×10-6,其轻稀土元素与重稀土元素(LREE/ HREE)比值为 4.20~5.22,轻稀土元素相对重稀土元素富集,轻重稀土分馏中等,Ce 元素(δCe = 0.934~0.943)略显负异常,Eu 元素(δEu = 0. 0485)呈现明显负异常,(La / Yb)N 为 3.26~4.34(标准化采用球粒陨石数据,Taylor and Mclennan,1985)。而东部火山岩样品稀土元素总量(∑REE)达 317 ×10-6~400 × 10-6,其轻稀土元素与重稀土元素(LREE/ HREE)比值为 5. 05~8.30,轻稀土元素相对更富集,轻重稀土分馏略高。另 Ce 元素(δCe = 1.31~1.38)呈正异常,Eu 显著负异常(δEu = 0.380~0.416),(La / Yb)N 为 4.74~6.57。

  • 以上分析表明,伊比蒂亚拉—里奥德孔塔斯地区火山岩样品的轻重稀土元素之间分异小,且其微量元素数据特征与多数 A 型花岗岩源的火山岩地球化学特征及稀土曲线相吻合(Macdonald et al.,1989; Wilson,1989)。

  • 4 岩石成因及其产出构造环境再探讨

  • 4.1 形成时代

  • 伊比蒂亚拉—里奥德孔塔斯地区火山岩研究程度较低,区域上火山岩目前尚缺准确详细的地球化学和高精度年代学研究资料。近年来,随着对伊比蒂亚拉—里奥德孔塔斯地区火山岩研究程度不断深入,该区的火山岩主要发育于圣弗朗西斯科克拉通裂谷形成阶段,赋存于埃斯皮尼亚索(Espinhaco)超群中,主要构成拉戈阿迪登特鲁和欧里库里( Lagoa de Dentro / Ouricuri do Ouro)/ 诺沃 2 个岩性构造组( Teixeira,2005; Dias,2005; Schobbenhaus and Kaul,1971)。该区最早发现的火山岩出露在帕拉米林—埃里科( Paramirim — Erico)公路边变质岩中,分析得到的锆石 U-Pb 年龄分别为 1752±4 Ma 和 1748±4 Ma(Schobbenhaus et al.,1994; Babinski et al.,1994),相当于埃斯皮尼亚索裂谷形成的初始阶段。笔者等选取了诺沃奥里松特组中(变)流纹质熔结凝灰岩段进行锆石 U-Pb 定年,分别是 1736±27 Ma 和 1723 ±19 Ma,代表了该区火山岩喷发形成的精确时代,可能是埃斯皮尼亚索裂谷形成的峰值时期,是该组火山岩地层年龄的首次报道。上述这些火山岩的上侵—喷发代表了古元古代晚期—新元古代早期 SFC 进入拉张伸展构造为主的克拉通演化过程中岩浆喷发活动,并是埃斯皮尼亚索裂谷(陷)型或陆内非造山型岩浆构造活动的产物(沈莽庭,2024)。

  • 4.2 岩浆源区和岩石成因

  • 由表2 可知,研究区(变)流纹质熔结凝灰岩 SiO2 含量皆>72%。当 SiO2 >72% 的铝质 A 型花岗岩与高度分异的 I 型花岗岩之间有许多相似之处(韩振哲等,2009)。为了区分它们之间区别,笔者等首先利用 Collins 等人(1982)提出的火山岩图解判别图方法,对该地区(变)流纹质熔结凝灰岩进行分析(图7),所有采集的样品投点皆落入 A 型花岗岩区域,表明该区火山岩源具有 A 型岩浆岩的特征。

  • 据 Edy(1990)、卢成忠(2006)研究,高分异 I 型花岗岩的 TFeO 含量较低( <1%),而区内(变)流纹质熔结凝灰岩样品分析结果 TFeO 含量为 1.72%~6.49%,均>1%。另外,他们研究还指出:高温岩浆浅成就位是 A 型花岗岩的主要特征之一,是高硅 A 型花岗岩与高分异 I 型花岗岩主要区别之一。

  • 笔者等利用 LA-ICP-MS 四级杆质谱 U-Pb 同位素同时接收的锆石微量元素数据,运用锆石 Ti 温度计(Waston et al.,2006)估算形成区内两处火山岩锆石结晶时岩浆温度。 Ti 温度计公式为:

  • 图7 伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩 SiO2—Zr 图解(Collins etal.,1982)

  • Fig.7 SiO2—Zr diagram of of the ( metamorphic) rhyolitic ignimbrite in Ibitiara—Rio de Contas area ( Collins etal., 1982)

  • tZr=50806.01-lgw石中 Ti10-6-273

  • 计算得出:西部火山岩锆石结晶时岩浆温度为 706~943℃,而东部火山岩锆石结晶时岩浆的温度为 745~810℃,总体东部略高于西部火山岩的锆石结晶岩浆的温度。

  • 同时,笔者等还利用火山岩成岩锆石饱和温度,计算公式为:

  • tZr/C=129002.95+0.85M+ln496000wZrmelt /10-6-273

  • MnNa+nK+2nCanAlnSi,其中元素的数值为火山岩全岩 Si、Al、Fe、Mg、Ca、Na、K、P 元素阳离子数归一化后阳离子数,Zrmelt 为岩浆熔体 Zr 含量,一般用全岩含量计算。

  • 计算得到西部火山岩成岩锆石饱和温度为 836~856℃,而东部的火山岩成岩锆石饱和温度为 978~992℃,同样,显示东部火山岩成岩的锆石饱和温度略高。

  • 据前文分析可知,区内火山岩采集的样品贫钙、镁,但 Fe2O3 含量总体偏高(2.89%~4.72%),反映了形成(变)流纹质熔结凝灰岩的岩浆形成于相对氧化的介质环境。因此得出可能与其原始岩浆深源,但相对较浅侵位、喷发有关。综上分析,形成区内(变)流纹质熔结凝灰岩的岩浆源具有高温岩浆浅部就位的 A 型花岗岩特征。

  • 为了进一步确定伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩的岩浆源区,笔者等还利用 Ga / AI 值与主元素 K2O/ MgO、TFeO/ MgO 值图解来区分 A 型花岗岩与 M 型、I 型和 S 型花岗岩的类型(Whalen et al,1987),进一步验证了前述得出的 A 型花岗岩的结论。据表2 数据计算并在图8a、b 中 A 型花岗岩判别图解中投点显示,1000×Ga / Al 值对 K2O/ MgO 和 TFeO/ MgO 值均呈现较高的值,且相关投点均落入 A 型花岗岩区域内,同样证明了该区(变)流纹质熔结凝灰岩具有 A 型花岗岩的特征。

  • 另外,利用微量元素 1000 × Ga / Al 值对 Zr、Ce 等元素的变化影响相对较小,且对低到中等程度岩石蚀变相对不敏感这一性质,这类图解还适用于新鲜或蚀变 A 型花岗岩岩石判别((Pearce and Cann,1973; Floyd and Winchester,1975; Bourne,1986)。图8c、d 中显示,所有样品点均投落入 A 型花岗岩类区内,也表明该区(变)流纹质熔结凝灰岩具有 A 型花岗岩类型的特征。

  • 同样,利用微量元素 Zr+Nb+ Ce+Y 值与 TFeO/ MgO 值以及 Zr +Ce+Y 值与 Rb / Ba 值相关性在识别 A 型花岗岩同样有效。图9a、9b 对伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩的岩浆岩 A 型火山岩浆与未分异的 M 型、I 型、S 型花岗岩以及分异花岗岩之间进行了区别,进一步排除了该区(变)流纹质熔结凝灰岩为分异长英质花岗岩或未分异的 M 型、I 型和 S 型花岗岩型的可能性。

  • 图8 伊比蒂亚拉—里奥德孔塔斯地区火山岩 1000×Ga / Al-K2O/ MgO(a)、1000×Ga / Al-TFeO/ MgO(b)、1000×Ga / Al-Zr( c)和 1000×Ga / Al-Ce( d)图解(Whalen et al,1987)

  • Fig.8 1000 ×Ga / Al—K2O/ MgO ( a) , 1000 ×Ga / Al—TFeO/ MgO, 1000 ×Ga / Al—Zr ( c) and 1000×Ga / Al—Ce (d) plots of the ( metamorphic) rhyolitic ignimbrite in Ibitiara—Rio de Contas area (Whalen et al., 1987)

  • 图9 伊比蒂亚拉—里奥德孔塔斯地区火山岩(Zr+Nb+Ce+Y)-TFeO/ MgO(a)及(Zr+Ce+Y)-Rb / Ba(b)图解

  • Fig.9 Plots of (Zr+Nb+Ce+Y) -TFeO/ MgO (a) and (Zr+Ce+Y) -Rb / Ba (b) of the (metamorphic) rhyolitic ignimbrite in Ibitiara—Rio de Contas area

  • Eby( 1992) 据微量元素 Y/ Nb—Rb / Nb 及 Y/ Nb—Sc / Nb 值将 A 型花岗岩进一步分成 A1 和 A2 型两个亚类。(图10)中伊比蒂亚拉—里奥德孔塔斯地区的西部样品落入 A1 区域,说明该类火山岩石可能与洋岛玄武岩(OIB)具有相似的岩浆特性,并与大陆裂谷或板内热点岩浆作用过程中分异产物有关; 而东部样品则落入 A2 区域,表明该火山岩石与地壳平均值或岛弧玄武岩具有相似性,其成因可能经历陆陆碰撞旋回或大陆板内下地壳派生的岩浆作用分异过程。因此,该区东西两类喷发的火山岩的岩浆源区显示出一种演化趋势,即从大陆裂谷或板内热点分异的岩浆向陆壳改造型岩浆转变。进一步推测,该区火山岩最初母岩来源可能经历了从 SFC 板内热点岩浆向板内下地壳派生岩浆作用的循环低分异演化过程。

  • 图11 是 Eby(1992)推荐的 A 型花岗岩 Yb / Ta —Y/ Nb 和 Ce / Nb—Y/ Nb 判别图解。伊比蒂亚拉—里奥德孔塔斯地区的西部火山岩样品落入洋岛玄武岩(OIB)区域内,这表明其母岩可能与深源的洋岛玄武岩相似; 而东部火山岩样品标绘分布则显示岩浆源可能从岛弧玄武岩向板下大陆地壳派生形成的岩浆(IAB)演化。这个结论与图10 基本一致: 西部早期岩浆源偏向中性并直接发生了喷发,而东部岩浆在侵位过程中晚期可能受到多种因素的影响,主要受深部下地壳部分熔融作用影响,使岩浆演化成更偏酸性岩浆。

  • 袁峰等(2001)研究认为,如果结晶分异或同化混染作用在火山岩在成岩过程中起主要作用,通常会使 LREE / HREE-SiO2 及(La / Yb)N-SiO2 呈现正相关性关系,即随着岩石酸度的增加,轻、重稀土分异程度会变得更加强烈; 若表现得不相关则可能表明岩浆主要源自大陆裂谷或板内热点深源岩浆分异产物且受到地壳物质的影响较小。因此,为了进一步研究该区的火山岩成因演化关系,笔者等利用 LREE/ HREE 及(La / Yb)N 与 SiO2 相关性图解来分析研究该区(变)流纹质熔结凝灰岩成岩演化信息(图12)。东部样品火山岩在 LREE / HREE—SiO2 图解中表现出负相关性,但在(La / Yb)N-SiO2 图解中却呈现正相关性。相比之下西部样品火山岩在两个图解中均未显示出明显的相关性。因此推测伊比蒂亚拉—里奥德孔塔斯地区西部火山岩在成岩过程中主要源自大陆裂谷或板内热点深源且较少受到地壳物质部分熔融的影响,未显示出与 LREE / HREE 和(La / Yb)N 与 SiO2 的相关性。而东部样品火山岩则可能经历了地壳物质深部的部分熔融作用以及岩浆结晶分异作用或地壳同化混染作用,随着岩浆演化,SiO2 增大,出现富硅残留。因此,研究区的火山岩总体是向富硅方向呈现出演化的趋势。

  • 图10 伊比蒂亚拉—里奥德孔塔斯地区火山岩 A1 型和 A2 型亚类判别图

  • Fig.10 A1 and A2 Subgroup discrimination diagram of the (metamorphic) rhyolitic ignimbrite in Ibitiara—Rio de Contas area

  • A1 类:与洋岛玄武岩(OIB)相似,岩浆侵位于大陆裂谷或板内热点岩浆作用中的分异产物; A2 类:与地壳平均值或岛弧玄武岩相似,成因模式经历陆陆碰撞旋回或岛弧岩浆作用陆壳或板下地壳派生形成的岩浆。虚线为 A1—A2 过渡区域

  • Class A1: Magma intrusion similar to oceanic island basalts (OIB) is found in continental rifts or at intra-plate hot spot locations; Class A2: Magma derived from continental crust or subplate crust, similar to crustal mean or island arc basalts, is associated with continental collision cycles or island arc magmatism. The dotted line marks the transition area from A1 to A2

  • 图11 伊比蒂亚拉—里奥德孔塔斯地区火山岩 Yb / Ta-Y/ Nb(a)和 Ce / Nb-Y/ Nb(b)图解(Eby,1990

  • Fig.11 Diagramof Yb / Ta —Y/ Nb (a) and Ce / Nb—Y/ Nb (b) of the (metamorphic) rhyolitic ignimbrite in Ibitiara—Rio de Contas area

  • OIB 域内或附近表明这类花岗岩来源与洋岛玄武岩相似; IAB 域内表明这类花岗岩来源最初由陆壳或板下地壳派生形成的岩浆或陆—陆碰撞形成

  • Within or near the OIB domain, it indicates that such granites have a source similar to ocean island basalts; within the IAB domain, it indicates that such granites originate from magma initially derived from continental crust or sub-plate crust, or formed through continental-continental collision

  • 图12 伊比蒂亚拉—里奥德孔塔斯地区火山岩 LREE/ HREE-SiO2(a)及(La / Yb)N-SiO2(b)图解

  • Fig.12 Diagram of LREE/ HREE-SiO2 and (La / Yb) N-SiO2 of the (metamorphic) rhyolitic ignimbrite in Ibitiara—Rio de Contas area

  • 据表2 岩石样品分析还可知,所有伊比蒂亚拉—里奥德孔塔斯地区火山岩样品总体富硅偏碱,且具有 CaO、 MgO 含量低而 SiO2、 Fe /( Fe + Mg)、 K2O/ Na2O 值和 K2O 含量高的特征,且 K2O/ MgO>16,TFeO/ MgO>10,并具有低 TiO2 含量( 0.11%~0.42%)。按 Riley 等(2001)的划分标准,该区火山岩源区应归属于钛铁矿系列亚碱性偏铝质 A 型花岗岩类型。采集的样品微量元素数据具有显著的低 Sr 含量特征,表明该区火山岩并非来自加厚地壳,而是起源于斜长石稳定存在的正常地壳环境。稀土总量高且相对富集轻稀土,球粒陨石标准化稀土配分显轻微右倾,呈现出海鸥型分布模式,轻稀土曲线略显陡斜而重稀土曲线相对平直,显示负 Eu 异常,说明火山岩浆不是主要来自幔源(Macdonald et al.,1987),而是与典型板内酸性流纹质火山岩稀土元素地球化学特征相一致。原始地幔标准化微量元素蛛网图显示正 Rb、Th、U 异常,负 Ba、Sr、P、Ti 异常,及 Nb、Ta、Zr 和 Hf 略有亏损,具有与壳源花岗岩微量元素蛛网图相似的特征(Geist et al.,1995)。

  • 综上所述,伊比蒂亚拉—里奥德孔塔斯地区的(变)流纹质熔结凝灰岩的主量元素化学成分与前述分析的野外定名、镜下鉴定结果基本吻合。结合岩石样品年龄数据、地球化学和观察到的野外火山岩区域岩相特征,表明两处火山岩可能为深部 A 型花岗质岩浆源经历了地壳深部部分熔融和结晶分异过程,最终上侵喷发形成。两处喷发火山岩其主、微量元素虽呈现一定差异,但在岩石成因演化上具有同源继承性相关。因此作为深部探针,具有 A 型花岗质岩浆的幔源特征的(变)流纹质熔结凝灰岩无疑是探索该区岩浆构造成因模式过程的重要载体(闫峻,2022)。

  • 4.3 构造背景及环境探讨

  • 一般认为火山岩活动受区域地质构造背景环境控制,所以火山岩类地球化学特征通常能揭示其形成时构造环境。研究区火山岩大地构造环境是利用 Eby(1992)提出的 Nb—Y 微量元素判别法进行判别(图13a)。区内所有研究的分析样品均落在板内花岗岩源构造环境区内,这表明该区火山岩浆上侵喷发动力学环境为板内拉张性裂谷大地构造环境。

  • Pearce 等(1984)利用 Rb、Y、Nb 等元素含量判别提出了花岗岩的构造分类。伊比蒂亚拉—里奥德孔塔斯地区研究样品在 Rb—(Y+Nb)图中(图13b)同样属于板内 A 型花岗岩源区的张性环境。具体而言,早期西部火山岩形成于板内非造山型构造环境,而晚期东部火山岩则属于板内造山后形成。

  • 另外,表2 中伊比蒂亚拉—里奥德孔塔斯地区样品微量元素 Zr 含量较高,Zr+Ce+Nb+Y 的总量也很高,这同样暗示该区(变)火山岩形成于地壳岩石圈减薄、拉伸的陆内裂谷环境。

  • Whalen 等(1987)研究认为,A 型花岗岩(流纹岩)产出通常与伸展拉张的构造环境有关。伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩产于南美地台区 SFC 北部,其古老基底由多个年龄在 3.5~2.5 Ga 的盖维奥( Gaviao)、索布拉迪纽(Sobradinho)、塞里尼亚( Serrinha)和吉基耶(Jequié)等多个不同的微古陆核组成,且约在 2.1~2. 0 Ga 期间完全拼合在一起,形成了 SFC 北部古陆核区(Barbosa et al.,2004; 沈莽庭,2024),受古元古代泛亚马逊造山碰撞事件的区域性影响(Cahen et al.,1984; Teixeira and Figueiredo,1991; Borg and Shackleton,1997; Ernst et al.,2013),形成的康腾达斯—雅阁比纳—米兰特(Contendas—Jacobina— Mirante)线状构造带,将 SFC 北部区又划分为东西 2 个太古宙构造域,其西部的盖维奥地块在古—中元古代时期(约 2.5~1.3 Ga)多次活化发生了构造重组作用( Pierre et al.,1990; Barbosa et al.,20042012)。在此影响下,盖维奥地块陆内经历多次发生拉张—压缩变形以及区域性 NNW—SSE 构造作用,形成了伊比蒂亚拉—里奥德孔塔斯地区主要的陆内裂陷构造体系,同时伴随中酸性—碱性火山岩、火山碎屑岩及少量花岗斑岩等岩浆侵入和双峰式火山喷发事件。其中在 1.78~1.20 Ga,SFC 北部盖维奥地块进入拉张伸展构造强烈期,产生了陆内裂陷(谷)并相应伴随基性岩墙群和陆内非造山型岩浆活动(Cruz and Alkmim,2005)。因此,笔者等认为在 SFC 拉张伸展构造体系的总体构造环境背景下,伊比蒂亚拉—里奥德孔塔斯区的(变)流纹质熔结凝灰岩原始岩浆得以形成。进一步推测,这是由进入 SFC 陆内中下地壳高位玄武岩浆在高温软流圈物质上涌或地幔岩浆上升底劈作用下,使盖维奥地块上地壳参与融熔后形成的酸性原始 A 型岩浆,然后受控裂谷构造体系浅层侵位喷发,最终形成(变)流纹质熔结凝灰岩的产物。

  • 图13 伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩构造环境判别图(底图据 Eby,1992; Pearce et al.,1996)

  • Fig.13 Tectonic setting diagram of the ( metamorphic) rhyolitic ignimbrite in Ibitiara—Rio de Contas area (after Eby, 1992; Pearce et al., 1996)

  • 5 结论

  • 巴西圣弗朗西斯科克拉通伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩具有高硅、富铝、富碱、富铁组分,显著贫钙和镁( 均小于 0.85%),Fe /(Fe+Mg)值高,K2O/ Na2O 值和 K2O 含量高,低 TiO2 等特征。微量元素表现为富集大离子亲石元素 Rb、Th、K、U 和 Zr,而亏损 Ba、Sr、Eu 等元素,相对亏损高场强元素如 Nb、P、Zr、Hf,而 Ti 元素明显亏损。 La / Zr、Ce / Zr、Nb / Zr 值变化较小; Rb / Sr 值较高,且轻重稀土元素分异度小,配分模式总体呈略右倾海鸥型展布特征,具有裂谷带稳定大陆板块内部的火山岩类特征,成因归属于低 Ti 亚碱性钙碱系列铝质 A 型花岗岩类浅层侵位喷发的产物。

  • 首次报道了巴西伊比蒂亚拉—里奥德孔塔斯地区(变)流纹质熔结凝灰岩 LA-ICP-MS 锆石 U-Pb 成岩年龄为 1723~1736 Ma。该火山岩形成于古元古代泛亚马逊造山碰撞事件晚期,位于 SFC 内大陆板块内裂谷带内,可能与板块中—下地壳高位的拉斑玄武岩浆发生底劈作用有关,并与上地壳发生部分融熔、混染,向富硅方向演化,形成酸性岩浆,并沿着区域性裂谷构造体系上侵、喷发,最终形成(变)流纹质熔结凝灰岩。

  • 致谢: 自然资源部华东矿产资源检测中心的郑荣华教授级高工在本文样品主微量元素测试方面给予了大力支持; 合肥工业大学李龙明教授、李全忠博士在年龄数据测试与数据分析整理方面提供了帮助; 审稿专家和责任编辑对本文提出了许多宝贵的修改意见,使得文章质量得到很大提升; 在此一并表示感谢!

  • 参考文献

    • 韩振哲, 赵海玲, 王盘喜, 杨霄, 牛延宏, 赵寒冬. 2009. 黑龙江伊春地区晚三叠世—早侏罗世铝质A型正长碱长花岗岩地球化学特征及其构造意义. 岩石矿物学杂志, 28(3): 97~108.

    • 刘平辉, 王勇, 黄国夫, 管天阳, 余达淦. 2001. 浙江天姆尖盆地中生代流纹岩的地球化学特征及成因探讨. 华东地质学院学报, 24(2): 135~139.

    • 卢成忠, 董伟万, 顾明光, 邢光福, 周宇章. 2006. 浙江道林山新元古代A型花岗岩的发现及其构造意义. 中国地质, 33(5): 1044~1051.

    • 邱军强, 彭智, 陈芳, 董婷婷, 柳丙全. 2016. 北淮阳东段杨家湾岩体地球化学特征、锆石U-Pb定年及地质意义. 华东地质, 37(2): 89~96.

    • 沈莽庭, 徐鸣, 高天山, 姚仲友, 周延. 2020. 巴西圣弗朗西斯科克拉通Ibitiara岩体锆石U-Pb年代学、地球化学特征及其地质意义. 世界地质, 39(1): 1~15.

    • 沈莽庭, 郭维民, 王天刚, 孙建东, 徐鸣, 隰弯弯, 赵宇浩. 2024. 巴西圣弗朗西斯科克拉通地质演化与重要成矿作用. 华北地质, 47(1): 26~47.

    • 闫峻. 2022. 长江中下游—大别造山带中生代火山岩特征及成因. 华东地质, 43(4): 375~390.

    • 袁峰, 周涛发, 岳书仓. 2001. 阿尔泰诺尔特地区火山岩岩石地球化学特征及构造背景. 地质地球化学, 29(2): 31~35.

    • Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1~2): 59~79.

    • Barbosa J S F, Sabate P. 2004. Archean and Paleoproterozoic crust of the Sao Francisco Craton, Bahia, Brazil: Geodynamic features. Precambrian Research, 133: 1~27.

    • Belousova E A, Griffin W L, O’Reilly Suzanne Y, Fisher N I. 2002. Igneous zircon: Trace element composition as an indicator of source rock type.Contributions to Mineralogy and Petrology, 143(5): 602~622.

    • Bourne J H. 1986. Geochemistry of the felsic metavolcanic rocks of the Wakeham Group: A metamorphosed peralkaline suite from the eastern Grenville Province, Quebec, Canada. Can. J. Earth Sci. , 23: 978~984.

    • Borg G, Shackleton R M. 1997. The Tanzania and NE-Zaire Cratons. In: de Wit M J, Ashwal L D. eds. Greenstone Belts. Oxford: Oxford University Press: 608~619.

    • Cahen I, Snelling N J, Dehal J, Vail J R. 1984. The Geochronology and Evolution of Africa. Oxford: Clarendon Press: 512.

    • Calvin F M, Susanne M M, Russell W M. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology. 31(6): 529~532.

    • Colloins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral Petrol. , 80: 189~200.

    • Dall’ Agnol R, Oliveira D C. 2007. Oxidized, magnetite series, rapakivi type granites of Carajas, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos, 93: 215~233.

    • Eby G N. 1990. The type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26: 115~134.

    • Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20: 641~644.

    • Floyd P A, Winchester J A. 1975. Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sci. Lett. , 27: 211~218.

    • Geist D, Howard K A, Larson P. 1995. The generation of oceanic rhyolites by crystal fractionation: The basalt—rhyolite association at Volcan Alcedo, Galapagos Archipelago. Journal of Petrology, 36(4): 965~982.

    • Han Zhenzhe, Zhao Hailing, Wang Panxi, Yang Xiao, Niu Yanhong, Zhao Handong. 2009&. Geochemistry of Late Triassic-Early Jurassic aluminous A-type syenogranite-alkali feldspar granite in Yichun area, Heilongjiang Province and its tectonic implications. Acta Petrologica et Mineralogica, 28(2): 97~108.

    • Irivin T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rock.Canadian Journal of Earth Sciences, 8: 523~548.

    • Le Maitre R W. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell: 193

    • Lippard S J. 1973. The petrology of phonolites from the Kenya Rift. Lithos, 6: 217~34.

    • Liu Pinghui, Wang Yong, Huang Guofu, Guan Taiyang, Yu Dagan. 2001&. Geochemical Characteristics and Genesis of Mesozoic Rhyolites in the Tianmujian Basin, ZJ Province, 24(2): 135-139.

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong, Wang Dongbing. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34~43.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51: 537~571.

    • Liu Yongsheng, Hu Zhaochu, Zong Keqing , Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010b. Reap appraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 15: 1535~1546.

    • Lu Chengzhong, Dong Chuanwan, Gu Mingguang, Xing Guangfu, Zhou Yuzhang. 2006&. Discovery of the Neoproterozoic Daolinshan A-type granite in Zhejiang and its tectonic implications. Geology in China, 33(5): 1044~1051.

    • Ludwig K R. 2003. Isoplot 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, California.

    • Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3~4): 215~224.

    • Macdonald R, Davies G R, Bliss C M, Leat P T, Bailey D K, Smith R L. 1987. Geochemistry of high silica peralkaline rhyolites, Naiv Asha, Kenya Rift Valley. Journal of Petrology, 28(6): 979~1008.

    • Pearce J A, Cann J R. 1973. The tectonic setting of basic volcanic rocks was investigated using trace element analysis. Earth Planet. Sci. Lett. , 19: 290~300.

    • Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. , 25: 956~983.

    • Sabaté P, Moacyr M M, Philippe V, Michelle C V. 1990. The 2Ga peraluminous magmatism of the Jacobina-Contendas Mirante belts (Bahia, Brazil): Geologic and isotopic constraints on the sources. Chemical Geology, 83: 325~338.

    • Qiu Junqiang, Peng Zhi, Chen Fang, Dong Tingting, Liu Bingquan. 2016&. Geochemical Characteristics and Zircon U-Pb dating of the Yangjiawan pluton in the eastern part of North Huaiyang and their geological significances. East China Geology, 37(2): 89~96.

    • Riley T R, Leat P T, Pankhurst R J, Harris C. 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. Journal of Petrology, 42(6): 1052~1065.

    • Shen Mangting, Xu Ming, Gao Tianshan, Yao Zhongyou, Zhou Yan. 2020&. Zircon U-Pb geochronology, geochemical characteristics and geological implication of Ibitiara pluton from San Francisco Craton in Brazil. Global Geology, 39(1): 1~15.

    • Shen Mangting, Guo Weimin, Wang Tiangang, Sun Jiandong, Xu Ming, Xi Wanwan, Zhao Yuhao. 2024&. Geological evolution and important mineralization of São Francisco Craton in Brazil. North China Geology, 47(1): 26~42.

    • Tayor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford: Blackwell Scientific Publication: 1~312.

    • Teixeira W, Figueiredo M C H. 1991. An outline of Early Proterozoic crustal evolution in the Sao Francisco region, Brazil: A review. Precambrian Research, 53(1~2): 1~22.

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology. 95(4): 407~419.

    • Wilson M. 1989. Igneous Petrogenesis (Global Tectonic Approach). London: Oxford University Press: 1~466.

    • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413~433.

    • Yuan Feng, Zhou Taofa, Yue Shucang. 2001&. Geochemical Characteristics and Tectonic Setting of the Volcanic Rocks in the Nurt area of Altay. Geology-Geochemistry, 29(2): 31~35.

    • Yan Jun. 2022&. Characteristics and petrogenesis of the Mesozoic volcanic rocks from the Middle-Lower Yangtze River Belt and the Dabie Orogen. East China Geology, 43(4): 375~390.

    • Babinski M, Neves B B B, Noce C M. 1994. Problemas da Metodologia U/Pb com Zircoes de Vulcanicas Continentais: Caso do Grupo Rio dos Remedios Supergrupo Espinhaco, no Estado da Bahia. In: Congresso Brasileiro De Geologia 38, 1994, Balneario de Camboriu. Anais. Camboriu: SBG. V. 2: 409~410.

    • Barbosa J F S, Cruz S P, Souza J S. 2012. Terrenos metamorficos do embasamento. In: Barbosa J F S. ed. Geologia da Bahia: Pesquisa e Atualizacao. CBPM 1: 101~201.

    • Cruz S C P. 2004. A interacao tectonica entre o Aulacogeno Paramirim e o Orogeno Aracuai-Congo. f. Tese (Doutorado) - Escola de Minas. Ouro Preto: Universidade Federal de Ouro Preto: 465.

    • Cruz S C P, Alkmim F F A. 2005. Interacao Tectonica entre o Aulacogeno do Paramirim e o Orogeno Aracuai-oeste Congo. In: Simposio Sobre O Craton Do Sao Francisco. Salvador. Anais. Salvador: CBPM: 215~218.

    • Dias V M. 2005. Aspectos geologicos preliminares do complexo magmatico Rio dos Remedios, na area do Projeto Ibitiara — Rio de Contas: Uma abordagem dos dados geologicos de campo voltada para a metalogenese. Relatorio de viagem. Salvador: CPRM, Nao paginado. Relatorio interno.

    • Ernst R E, Pereira E, Hamilton M A, Pisarevski A S, Rodrigues J, Tassinari C C G, Teixeira W. 2013. Mesoproterozoic intraplate magmatic “barcode” record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1500 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precam. Res. , 230: 103~118.

    • Gomes R, Motta A C. 1980. Projeto Levantamento Gravimetrico no Estado da Bahia: relatorio final. Textos e Mapas. Salvador: CPRM, 5 v. Convenio DNPM/CPRM.

    • Gomes P J P, Gomes R A A D, Silveira F N. 1996. Novo Mapa Bouguer do Estado da Bahia. In: Congresso Brasil Eiro De Geologia, Salvador. Anais. . . Salvador, SBG 2: 423~424.

    • Schobbenhaus C, Kaul P F T. 1971. Contribuicao a estratigrafia da Chapada Diamantina, Bahia Central. Mineracao e Metalurgia, 53(315): 116~120.

    • Sa E F J, Bartels R L, Neves B B B. 1976. Geocronologia e modelo tectomagmatico da ChapadaDiamantina e Espinhaco Setentrional, Bahia. In: Congresso Brasileiro De Geologia, Ouro Preto. Anais Ouro Preto: SBG, 29(4): 205~227.

    • Schobbenhaus C, Hoppe A, Baumann A. 1994. Idade U/Pb do vulcanismo Rio dos Remedios, Chapada Diamanatina, Bahia. In: Congresso Brasileiro De Geologia, 38, 1994, Balneario Camboriu. Boletim de Resumos Expandidos. Camboriu: SBG. V(2): 397~398.

    • Teixeira L R. 2005. Projeto Ibitiara—Rio de Contas: Relatorio tematico de litogeoquimica. Salvador: CPRM, 33f. Programa Levantamentos Geologicos Basicos do Brasil - PLGB. Relatorio interno.

  • 参考文献

    • 韩振哲, 赵海玲, 王盘喜, 杨霄, 牛延宏, 赵寒冬. 2009. 黑龙江伊春地区晚三叠世—早侏罗世铝质A型正长碱长花岗岩地球化学特征及其构造意义. 岩石矿物学杂志, 28(3): 97~108.

    • 刘平辉, 王勇, 黄国夫, 管天阳, 余达淦. 2001. 浙江天姆尖盆地中生代流纹岩的地球化学特征及成因探讨. 华东地质学院学报, 24(2): 135~139.

    • 卢成忠, 董伟万, 顾明光, 邢光福, 周宇章. 2006. 浙江道林山新元古代A型花岗岩的发现及其构造意义. 中国地质, 33(5): 1044~1051.

    • 邱军强, 彭智, 陈芳, 董婷婷, 柳丙全. 2016. 北淮阳东段杨家湾岩体地球化学特征、锆石U-Pb定年及地质意义. 华东地质, 37(2): 89~96.

    • 沈莽庭, 徐鸣, 高天山, 姚仲友, 周延. 2020. 巴西圣弗朗西斯科克拉通Ibitiara岩体锆石U-Pb年代学、地球化学特征及其地质意义. 世界地质, 39(1): 1~15.

    • 沈莽庭, 郭维民, 王天刚, 孙建东, 徐鸣, 隰弯弯, 赵宇浩. 2024. 巴西圣弗朗西斯科克拉通地质演化与重要成矿作用. 华北地质, 47(1): 26~47.

    • 闫峻. 2022. 长江中下游—大别造山带中生代火山岩特征及成因. 华东地质, 43(4): 375~390.

    • 袁峰, 周涛发, 岳书仓. 2001. 阿尔泰诺尔特地区火山岩岩石地球化学特征及构造背景. 地质地球化学, 29(2): 31~35.

    • Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1~2): 59~79.

    • Barbosa J S F, Sabate P. 2004. Archean and Paleoproterozoic crust of the Sao Francisco Craton, Bahia, Brazil: Geodynamic features. Precambrian Research, 133: 1~27.

    • Belousova E A, Griffin W L, O’Reilly Suzanne Y, Fisher N I. 2002. Igneous zircon: Trace element composition as an indicator of source rock type.Contributions to Mineralogy and Petrology, 143(5): 602~622.

    • Bourne J H. 1986. Geochemistry of the felsic metavolcanic rocks of the Wakeham Group: A metamorphosed peralkaline suite from the eastern Grenville Province, Quebec, Canada. Can. J. Earth Sci. , 23: 978~984.

    • Borg G, Shackleton R M. 1997. The Tanzania and NE-Zaire Cratons. In: de Wit M J, Ashwal L D. eds. Greenstone Belts. Oxford: Oxford University Press: 608~619.

    • Cahen I, Snelling N J, Dehal J, Vail J R. 1984. The Geochronology and Evolution of Africa. Oxford: Clarendon Press: 512.

    • Calvin F M, Susanne M M, Russell W M. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology. 31(6): 529~532.

    • Colloins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral Petrol. , 80: 189~200.

    • Dall’ Agnol R, Oliveira D C. 2007. Oxidized, magnetite series, rapakivi type granites of Carajas, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos, 93: 215~233.

    • Eby G N. 1990. The type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26: 115~134.

    • Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20: 641~644.

    • Floyd P A, Winchester J A. 1975. Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sci. Lett. , 27: 211~218.

    • Geist D, Howard K A, Larson P. 1995. The generation of oceanic rhyolites by crystal fractionation: The basalt—rhyolite association at Volcan Alcedo, Galapagos Archipelago. Journal of Petrology, 36(4): 965~982.

    • Han Zhenzhe, Zhao Hailing, Wang Panxi, Yang Xiao, Niu Yanhong, Zhao Handong. 2009&. Geochemistry of Late Triassic-Early Jurassic aluminous A-type syenogranite-alkali feldspar granite in Yichun area, Heilongjiang Province and its tectonic implications. Acta Petrologica et Mineralogica, 28(2): 97~108.

    • Irivin T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rock.Canadian Journal of Earth Sciences, 8: 523~548.

    • Le Maitre R W. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell: 193

    • Lippard S J. 1973. The petrology of phonolites from the Kenya Rift. Lithos, 6: 217~34.

    • Liu Pinghui, Wang Yong, Huang Guofu, Guan Taiyang, Yu Dagan. 2001&. Geochemical Characteristics and Genesis of Mesozoic Rhyolites in the Tianmujian Basin, ZJ Province, 24(2): 135-139.

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong, Wang Dongbing. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34~43.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51: 537~571.

    • Liu Yongsheng, Hu Zhaochu, Zong Keqing , Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010b. Reap appraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 15: 1535~1546.

    • Lu Chengzhong, Dong Chuanwan, Gu Mingguang, Xing Guangfu, Zhou Yuzhang. 2006&. Discovery of the Neoproterozoic Daolinshan A-type granite in Zhejiang and its tectonic implications. Geology in China, 33(5): 1044~1051.

    • Ludwig K R. 2003. Isoplot 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, California.

    • Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3~4): 215~224.

    • Macdonald R, Davies G R, Bliss C M, Leat P T, Bailey D K, Smith R L. 1987. Geochemistry of high silica peralkaline rhyolites, Naiv Asha, Kenya Rift Valley. Journal of Petrology, 28(6): 979~1008.

    • Pearce J A, Cann J R. 1973. The tectonic setting of basic volcanic rocks was investigated using trace element analysis. Earth Planet. Sci. Lett. , 19: 290~300.

    • Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. , 25: 956~983.

    • Sabaté P, Moacyr M M, Philippe V, Michelle C V. 1990. The 2Ga peraluminous magmatism of the Jacobina-Contendas Mirante belts (Bahia, Brazil): Geologic and isotopic constraints on the sources. Chemical Geology, 83: 325~338.

    • Qiu Junqiang, Peng Zhi, Chen Fang, Dong Tingting, Liu Bingquan. 2016&. Geochemical Characteristics and Zircon U-Pb dating of the Yangjiawan pluton in the eastern part of North Huaiyang and their geological significances. East China Geology, 37(2): 89~96.

    • Riley T R, Leat P T, Pankhurst R J, Harris C. 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. Journal of Petrology, 42(6): 1052~1065.

    • Shen Mangting, Xu Ming, Gao Tianshan, Yao Zhongyou, Zhou Yan. 2020&. Zircon U-Pb geochronology, geochemical characteristics and geological implication of Ibitiara pluton from San Francisco Craton in Brazil. Global Geology, 39(1): 1~15.

    • Shen Mangting, Guo Weimin, Wang Tiangang, Sun Jiandong, Xu Ming, Xi Wanwan, Zhao Yuhao. 2024&. Geological evolution and important mineralization of São Francisco Craton in Brazil. North China Geology, 47(1): 26~42.

    • Tayor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford: Blackwell Scientific Publication: 1~312.

    • Teixeira W, Figueiredo M C H. 1991. An outline of Early Proterozoic crustal evolution in the Sao Francisco region, Brazil: A review. Precambrian Research, 53(1~2): 1~22.

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology. 95(4): 407~419.

    • Wilson M. 1989. Igneous Petrogenesis (Global Tectonic Approach). London: Oxford University Press: 1~466.

    • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413~433.

    • Yuan Feng, Zhou Taofa, Yue Shucang. 2001&. Geochemical Characteristics and Tectonic Setting of the Volcanic Rocks in the Nurt area of Altay. Geology-Geochemistry, 29(2): 31~35.

    • Yan Jun. 2022&. Characteristics and petrogenesis of the Mesozoic volcanic rocks from the Middle-Lower Yangtze River Belt and the Dabie Orogen. East China Geology, 43(4): 375~390.

    • Babinski M, Neves B B B, Noce C M. 1994. Problemas da Metodologia U/Pb com Zircoes de Vulcanicas Continentais: Caso do Grupo Rio dos Remedios Supergrupo Espinhaco, no Estado da Bahia. In: Congresso Brasileiro De Geologia 38, 1994, Balneario de Camboriu. Anais. Camboriu: SBG. V. 2: 409~410.

    • Barbosa J F S, Cruz S P, Souza J S. 2012. Terrenos metamorficos do embasamento. In: Barbosa J F S. ed. Geologia da Bahia: Pesquisa e Atualizacao. CBPM 1: 101~201.

    • Cruz S C P. 2004. A interacao tectonica entre o Aulacogeno Paramirim e o Orogeno Aracuai-Congo. f. Tese (Doutorado) - Escola de Minas. Ouro Preto: Universidade Federal de Ouro Preto: 465.

    • Cruz S C P, Alkmim F F A. 2005. Interacao Tectonica entre o Aulacogeno do Paramirim e o Orogeno Aracuai-oeste Congo. In: Simposio Sobre O Craton Do Sao Francisco. Salvador. Anais. Salvador: CBPM: 215~218.

    • Dias V M. 2005. Aspectos geologicos preliminares do complexo magmatico Rio dos Remedios, na area do Projeto Ibitiara — Rio de Contas: Uma abordagem dos dados geologicos de campo voltada para a metalogenese. Relatorio de viagem. Salvador: CPRM, Nao paginado. Relatorio interno.

    • Ernst R E, Pereira E, Hamilton M A, Pisarevski A S, Rodrigues J, Tassinari C C G, Teixeira W. 2013. Mesoproterozoic intraplate magmatic “barcode” record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1500 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precam. Res. , 230: 103~118.

    • Gomes R, Motta A C. 1980. Projeto Levantamento Gravimetrico no Estado da Bahia: relatorio final. Textos e Mapas. Salvador: CPRM, 5 v. Convenio DNPM/CPRM.

    • Gomes P J P, Gomes R A A D, Silveira F N. 1996. Novo Mapa Bouguer do Estado da Bahia. In: Congresso Brasil Eiro De Geologia, Salvador. Anais. . . Salvador, SBG 2: 423~424.

    • Schobbenhaus C, Kaul P F T. 1971. Contribuicao a estratigrafia da Chapada Diamantina, Bahia Central. Mineracao e Metalurgia, 53(315): 116~120.

    • Sa E F J, Bartels R L, Neves B B B. 1976. Geocronologia e modelo tectomagmatico da ChapadaDiamantina e Espinhaco Setentrional, Bahia. In: Congresso Brasileiro De Geologia, Ouro Preto. Anais Ouro Preto: SBG, 29(4): 205~227.

    • Schobbenhaus C, Hoppe A, Baumann A. 1994. Idade U/Pb do vulcanismo Rio dos Remedios, Chapada Diamanatina, Bahia. In: Congresso Brasileiro De Geologia, 38, 1994, Balneario Camboriu. Boletim de Resumos Expandidos. Camboriu: SBG. V(2): 397~398.

    • Teixeira L R. 2005. Projeto Ibitiara—Rio de Contas: Relatorio tematico de litogeoquimica. Salvador: CPRM, 33f. Programa Levantamentos Geologicos Basicos do Brasil - PLGB. Relatorio interno.