-
定量研究侵入岩体的结晶压力并推算其侵位深度,对研究岩体的侵位深度对恢复相关矿床的剥蚀深度、探讨造山带构造热演化史等具有重要意义(Zen,1989; Anderson,1996; Anderson et al.,2008; 龚松林,2004; 汪洋,2014)。钙碱性长英质侵入岩分布非常广泛(Bonin et al.,2020)。前人根据野外观察和实验研究提出了若干适用于估算钙碱性长英质侵入岩的地质压力计,主要有角闪石全铝压力计(Anderson,1996; 汪洋,2013,2014)、黑云母压力计(Uchida et al.,2007; Li Xiaoyan and Zhang Chao,2022)、榍石压力计(Erdmann et al.,2019)和“石英”压力计(Yang Xueming,2017; Yang Lei et al.,2022)。这些地质压力计的适用条件和范围不尽相同,同时对压力计的实验标定和经验性标定相对有限。笔者等采用经验性方法对上述地质压力计的适用条件和可靠性进行检验,为选择合理的地质压力计估算钙碱性长英质侵入体的结晶压力及其侵位深度提供可靠依据。
-
1 角闪石铝压力计
-
钙质角闪石的全铝含量与其结晶压力之间有良好的相关性,被广泛应用于估计钙碱性长英质侵入岩的结晶压力(Hammarstrom and Zen,1986; Hollister et al.,1987; Anderson and Smith,1995; Anderson et al.,2008)。该压力计最早由Hammarstrom和Zen(1986)、Hollister等(1987)根据钙碱性长英质侵入岩围岩的地层厚度、接触变质带的变质矿物组合及其压力估计等地质观测资料、结合岩体所含钙质角闪石成分测试数据而提出的经验性压力计,经过Johnson和Rutherford(1989)、Thomas和Ernst(1990)、Schmidt(1992)等学者的实验标定逐步完善,并得到广泛应用(Anderson,1996)。近四十年的大量实践表明,角闪石全铝压力计在其适用范围内可以合理地估计钙碱性长英质侵入岩的结晶压力(Ague and Brandon,1996; Ague,1997; Anderson et al.,2008; Molina et al.,2021)。有关角闪石全铝压力计在钙碱性侵入岩结晶压力估算中的应用条件、适用范围等内容,请参考前人的综述(汪洋,2014),笔者等不再赘述。
-
Mutch等(2016)根据近固相线温度(725 ± 75℃)和0.08~1.0 GPa压力范围条件的实验岩石学数据和低压下(~0.1 GPa)的经验数据,标定了新的角闪石全铝压力计:
-
注:压力值单位:MPa;n(Altot)为角闪石分子式中所有Al的物质的量分数。
-
式中,n(Altot)为单位角闪石分子中Al的原子数(a.p.f.u.)。该压力计将前人(Hammarstrom and Zen,1986; Hollister et al.,1987; Johnson and Rutherford,1989; Thomas and Ernst,1990; Schmidt,1992)基于实验数据的角闪石全铝压力计的标定范围扩展到约 0.1 GPa的低压区。Mutch等(2016)压力计与汪洋(2013,2014)公式:
-
相比,在全铝含量n(Altot)为0.5~2.5范围内结果在压力计误差(± 60 MPa)内一致(表1)。
-
Mutch等(2016)的角闪石全铝压力计公式是基于新的实验标定并综合前人的地质观测、实验研究的结果,提高了精度并扩大了压力标定范围。由于角闪石全铝压力计是相当成熟并得到广泛应用的岩浆岩压力计,Mutch等(2016)压力计的估算结果可以视为钙碱性长英质侵入岩结晶压力的可信参考值。
-
Medard和Le Pennec(2022)基于实验数据认为,岩浆中角闪石的六次配位Al含量(AlⅥ)与其结晶压力成正相关,得到的压力计公式为:
-
Medard和Le Pennec(2022)认为该压力计不受温度影响,并且可以适用于缺少石英和透长石相的中性岩浆成分体系。我们注意到,该中性岩浆体系实验的角闪石Mg# > 0.57(Rondet et al.,2019),处于相对氧化的条件。因此,Anderson和Smith(1995)提出的角闪石Mg# > 0.385的压力估算前提条件仍然成立。
-
笔者等以Mutch等(2016)角闪石全铝压力计得到的压力估算值作为参考值,对Medard和Le Pennec(2022)角闪石六次配位Al压力计进行检验。检验数据来自美国西部Tuolumne、大兴安岭南段阿鲁包格山、北京房山、广西姑婆山—花山、胶东半岛和秦岭东江口、柞水等钙碱性长英质侵入岩的汇编(数据来源表2,下同)。
-
图1b显示,部分岩体(如: Tuolumne岩基,秦岭东江口、柞水、蟒岭岩体)角闪石6次配位Al压力计的估算值[PHbl(Ⅵ)]相对全铝压力计结果[PHbl(tot)]系统偏高,两种压力估计值的线性相关性好且近平行于1∶1参考线;另一些则相对偏低(图1a),但各岩体的两组估算值之间仍然存在正相关关系。Sierra de Guasayan岩基的数据点分布在1∶1参考线附近(图1a)。这表明角闪石6次配位Al压力计与全Al含量压力计之间差异主要是系统偏差。因此,Medard和Le Pennec(2022)的角闪石6次配位Al压力计应该与全铝压力计配合使用。同时我们注意到,角闪石Al压力计的适用范围可以扩展到石英不饱和的中性岩浆体系(Medard and Le Pennec,2022),可以相对合理地估计钙碱性二长—正长质侵入岩的结晶压力。
-
注:①—角闪石全铝压力计;②—黑云母压力计;③—榍石压力计;④—“石英”压力计。
-
图1 角闪石全铝压力计(Mutch et al.,2016)与岩体角闪石6次配位Al压力计(Medard and Le Pennec,2022)估算结果对比
-
Fig.1 Comparison of the estimation results of aluminum-in-hornblende barometer by Mutch et al. (2016) and octahedral aluminum-in-amphibole barometer proposed by Medard and Le Pennec (2022)
-
数据来源:1—阿根廷Sierra de Guasayan岩基(Zandomeni et al.,2021);2—大兴安岭阿鲁包格山岩体(季根源等,2021);3—北京西山房山岩体(黄福生和姜常义,1985);4—广西姑婆山—花山岩基(康志强,2010);5—胶东半岛周官岩体(Chi Naijing et al.,2022);6—美国西部Tuolunme岩基(Gray et al.,2008);7—秦岭沙河湾岩体(刘春花等,2013a);8—秦岭东江口、柞水岩体(刘春花等,2013a);9、10、11、12、13—胶东半岛北截、丛家、曲家、南宿、艾山岩体(杨阳等,2017)
-
Data source: 1—Sierra de GuasayanBatholith, Argentina (Zandomeni et al., 2021) ; 2—Alubaogeshan Pluton, Da Hinggan Mountains (Ji Genyuan et al., 2021&) ; 3—Fangshan Pluton, Beijing (Huang Fusheng and Jiang Changyi, 1985#) ; 4—Guposhan—Huashan Batholith, Guangxi (Kang Zhiqiang et al., 2010&) ; 5—Zhouguan Pluton, Jiaodong Penisula (Chi Naijing et al., 2022) ; 6—Tuolunme Batholith, western USA (Gray et al., 2008) ; 7—Shahewan plutons in Qinling (Liu Chunhua et al., 2013a&) ; 8—Dongjiangkou and Zhashui plutons in Qinling (Liu Chunhua et al., 2013a&) ; 9, 10, 11, 12, 13—Beijie, Congjia, Qujia, Nansu and Aishan plutons, Jiaodong Penisula (Yang Yang et al., 2017&)
-
2 黑云母压力计
-
黑云母(包括狭义的黑云母和金云母)在岩浆岩中广泛存在(Saha et al.,2021; Samadi et al.,2021; Gion et al.,2022),其化学成分可以指示其形成的温度、压力、氧逸度、水活度等重要成岩参数(Saha et al.,2021; Samadi et al.,2021; Gion et al.,2022; Li Xiaoyan and Zhang Chao,2022)。许多长英质火成岩的主要镁铁矿物是黑云母而不含钙质角闪石,且黑云母多为长英质岩浆近固相线矿物组合的重要组份(Scaillet et al.,2016)。所以,如果黑云母成分能够作为可靠的地质压力计,对估计这些岩体的结晶压力具有重要意义。
-
Uchida等(2007)对低压(P < 0.2 GPa)下固结的钙碱性侵入岩黑云母全铝含量进行了经验标定,提出如下公式:
-
有许多研究者应用该压力计估算侵入体的结晶压力(蔡永丰等,2020; Gupta and Kumar,2023)。汪洋(2013,2014)针对该压力计的经验性检验表明,Uchida等(2007)黑云母全铝压力计的压力估算不准。Li Xiaoyan和Zhang Chao(2022)亦指出该压力计无法合理复现实验标定的结晶压力值(图1b)。
-
笔者等以Mutch等(2016)角闪石全铝压力计得到的压力估算值作为参考值,采用第一节所述的数据集对Uchida等(2007)黑云母压力计进行检验(图2)。结果表明该压力计的估算值显著偏低,甚至出现较大的负值(约-300 MPa)!黑云母压力计与角闪石压力计结果之间不存在相关性(如:Tuolumne岩基、丛家岩体)或者显示负相关的趋势(如:房山岩体)。所以,Uchida等(2007)黑云母全铝压力计不适用于估算钙碱性长英质侵入体的结晶压力。
-
图2 角闪石全铝压力计(Mutch et al.,2016)与黑云母压力计(Uchida et al.,2007)估算结果对比(数据来源同图1)
-
Fig.2 Comparison of the estimated pressures from the Al-in-hornblende barometer by Mutch et al. (2016) and the biotite-only thermobarometer proposed by Uchida et al. (2007) (data source are the same to Fig.1)
-
Li Xiaoyan和Zhang Chao(2022)基于高温高压实验数据采用机器学习方法构建了岩浆体系黑云母温压计,包括:黑云母成分温压计和黑云母—熔体温压计。由于侵入岩全岩成分与熔体成分存在偏差(Bachmann and Huber,2016; Weinberg et al.,2021),所以黑云母成分温压计的实用性更为广泛。笔者等以Mutch等(2016)角闪石全铝压力计得到的压力估算值作为参考值,对Li Xiaoyan和Zhang Chao(2022)黑云母温压计的结果进行检验(图3)。对该黑云母压力计得到的压力值取其最小值进行比较分析。
-
相较于角闪石全铝压力计的估算值,Li Xiaoyan和Zhang Chao(2022)黑云母温压计总体高估了结晶压力(图3),对于Tuolumne岩基、丛家岩体等,黑云母压力计结果与角闪石全铝压力计结果之间不具有相关性,而房山岩体则显示负相关的趋势。这表明Li Xiaoyan和Zhang Chao(2022)黑云母温压计难以合理地估算钙碱性长英质侵入岩的结晶压力。
-
图3 角闪石全铝压力计(Mutch et al.,2016)与黑云母压力计(Li Xiaoyan and Zhang Chao,2022)对比
-
Fig.3 Comparison of the estimated pressures from the Al-in-hornblende barometer by Mutch et al. (2016) and the biotite-only thermobarometer proposed by Li Xiaoyan and Zhang Chao (2022)
-
数据来源:1—大兴安岭阿鲁包格山岩体(季根源等,2021);2—秦岭东江口、柞水和沙河湾岩体(刘春花等,2013a);3—广西姑婆山—花山岩体(康志强等,2010);4—北京西山房山岩体(黄福生和姜常义,1985);5—美国西部Tuolunme岩基(Gray et al.,2008);6—胶东半岛周官岩体(Chi Naijing et al.,2022);7,8,9,10,11—胶东半岛北截、丛家、曲家、南宿、艾山岩体数据(杨阳等,2017)
-
Data source: 1—Alubaogeshan Pluton, Da Hinggan Mountains (Ji Genyuan et al., 2021&) ; 2—Dongjiangkou, Zhashui and Shahewan plutons, Qinling (Liu Chunhua et al., 2013a&) ; 3—Guposhan—Huashan Batholith (Kang Zhiqiang et al., 2010&) , Guangxi; 4—Fangshan Pluton, Beijing (Huang Fusheng and Jiang Changyi, 1985#) ; 5—Tuolunme Batholith (Gray et al., 2008) ; 6—Zhouguan Pluton, Jiaodong Penisula (Chi Naijing et al., 2022) ; 7, 8, 9, 10, 11—Beijie, Congjia, Qujia, Nansu and Aishan plutons, Jiaodong Penisula (Yang Yang et al., 2017&)
-
综合上述笔者等认为,Uchida等(2007)、Li Xiaoyan和Zhang Chao(2022)的黑云母压力计均不适用于估算钙碱性长英质岩体的侵位深度。
-
3 榍石压力计
-
Erdmann等(2019)基于含角闪石花岗质侵入岩中的岩浆成因榍石成分,经验性地标定了榍石Al2O3含量与结晶压力的线性关系:
-
式中w(Al2O3)为Al2O3在榍石中的质量分数。该压力计适用于估算石英+碱性长石+斜长石+角闪石+黑云母+磁铁矿±钛铁矿组合、近固相线温度条件下的花岗质岩浆结晶压力;在150~400 MPa范围内的误差为 ± 60~100 MPa。
-
笔者等收集了秦岭地区、阿尔卑斯、南美洲阿根廷Sierra de Guasayan等地5个钙碱性长英质侵入岩体14组样品的角闪石—榍石矿物对组合,以Mutch等(2016)角闪石全铝压力计得到的压力估算值作为参考值对榍石压力计进行检验。检验数据不包含Erdmann等(2019)构建榍石压力计所涉及的岩体。
-
如图4所示,榍石压力计与Mutch等(2016)角闪石全铝压力计所得结果线性相关性较好。岩浆成因榍石可以在准铝质到弱过铝质花岗岩中存在(Brooks,2019; Scibiorski and Cawood,2022),因此榍石压力计具有广泛的应用潜力。
-
图4 角闪石全铝压力计(Mutch et al.,2016)与榍石压力计(Erdmann et al.,2019)对比
-
Fig.4 Comparison of the estimated pressures from the Al-in-hornblende barometer by Mutch et al. (2016) and sphene (titanite) Al2O3 content barometer proposed by Erdmann et al. (2021)
-
数据来源:1—阿尔卑斯Biella岩体(Zanoni et al.,2021);2—阿根廷Sierra de Guasayan岩基(Zandomeni et al.,2021);3—秦岭东江口、柞水、沙河湾和蟒岭岩体(Hu Hao et al.,2017; 刘春花等,2013a,b; 杨阳等,2022)
-
Data source: 1—Biella Pluton in the Alps (Zanoni et al., 2021) ; 2—Sierra de Guasayan Batholith, Argentina (Zandomeni et al., 2021) ; 3—Dongjiangkou, Zhashui, Shahewan and Mangling plutons in Qinling (Hu Hao et al., 2017; Liu Chunhua et al., 2013a&, b&; Yang Yang et al., 2022&)
-
4 “石英”压力计
-
Yang Xueming(2017)基于简并花岗岩(haplogranite)石英(Qtz)—钠长石(Ab)—钾长石(Or)三元体系的实验结果,拟合了该体系熔体的CIPW标准矿物石英(Qtz)、钠长石(Ab)和钾长石(Or)相对含量与结晶压力之间的多项式关系:
-
式中n(Qtz)、n(Ab)、n(Or)为三者含量归一化后的相对物质的量分数。
-
公式(6)形式的“石英”压力计,其原理是:Qtz—Ab—Or三元体系中,低压(< 500 MPa)下石英与一种长石(钠长石或钾长石)共结,在约500 MPa以上压力下石英与两种长石(钠长石和钾长石)共结,石英在上述三元系中的稳定域随压力增加而增大(Tuttle and Bowen,1958; Luth et al.,1964; Johannes and Holtz,1996; Blundy and Cashman,2001; Bachmann et al.,2002; Blundy et al.,2006),其实质是Qtz—Ab—Or三元系估计花岗质岩浆结晶压力图解的定量表述。所以,这里的“石英”不是指样品中的石英矿物,而是指全岩化学成分换算为CIPW标准矿物之后的“石英”标准分子(Qtz)。
-
应用Yang Xueming(2017)“石英”压力计的前提条件是:① Qtz + Ab + Or不低于85%,即:样品成分尽可能接近简并花岗岩;② 避免富含斑晶、暗色组分过多以及富含钙质斜长石的样品,减少钙长石组分对Qtz—Ab—Or共结点位置的影响。在此我们提出的经验性准则用以筛选进行“石英”压力计估算的样品: ① 无水化后 SiO2含量大于等于68%; ② 钙长石CIPW标准分子An含量小于11%; ③ A/CNK值小于1.2。据此选择美国加州出露的中生代岩体(含Tuolumne岩基)(Ague and Brimhall,1988; Gray et al.,2008)、广西姑婆山—花山岩基里松单元(康志强等,2010)、胶东半岛周官岩体(Chi Naijing et al.,2022)和印度新太古宙Bundelkhand岩基(Sensarma et al.,2021)中含角闪石的狭义花岗岩样品,采用Mutch等(2016)角闪石全铝压力计对“石英”压力计的适用性进行检验,“石英”压力计计算采用Yang Xueming等(2021)的Excel表格,结果见图5。
-
图5 角闪石全铝压力计(Mutch et al.,2016)与“石英” 压力计(Yang Xueming,2017)估算结果对比
-
Fig.5 Comparison of the estimated pressures from the Al-in-hornblende barometer by Mutch et al. (2016) and the “quartz” barometer proposed by Yang Xueing (2017)
-
图5表明,在100~500 MPa范围内狭义花岗岩“石英”压力计与角闪石全铝压力计的估算结果相关性较好,且拟合直线接近1: 1斜线。因此,我们认为“石英”压力计可以适用于估计准铝质—弱过铝质钙碱性(狭义)花岗岩的结晶压力。
-
花岗闪长岩、英云闪长岩以及奥长花岗岩钙质斜长石含量高,其全岩成分明显偏离简并花岗岩(haplogranite),所以“石英”压力计不适用于估算其结晶压力。对于强过铝质花岗岩(A/CNK > 1.2),过量的Al使得Qtz—Ab—Or共结点远离Qtz端元(Holtz et al.,1992; Yang Lei et al.,2022)。Yang Lei等(2022)提出了矫正过量铝的经验性“石英”压力计,用于估计过铝质花岗岩的结晶压力。但是Yang Lei等(2022)的压力计公式对强过铝质花岗岩的实际应用效果欠佳(见该文图9)。
-
有相当数量的钙碱性花岗岩其主要的镁铁质矿物为黑云母而不含角闪石,本文第三节的检验表明黑云母压力计不适于估算钙碱性长英质侵入岩的结晶压力。在此情况下,我们认为可以采用“石英”压力计估算钙碱性(狭义)花岗岩的结晶压力。
-
5 讨论
-
采用经验性方法检验温压计的准确度既符合科学原理(如:Erdmann et al.,2014; Molina et al.,2021)也符合日常经验。市场称重的衡器需要根据相关管理部门的“公平秤”进行校准,保证其(在一定精度下的)计量准确性。如果某待验衡器的一系列称量值与“公平秤”的参考值之间不存在较好的相关性,人们很难相信该待验衡器称重的准确性。角闪石全铝压力计作为一种相当成熟的估计钙碱性长英质岩体结晶压力的方法,用其检验其他压力计能否相对准确地估计钙碱性长英质岩体结晶压力的做法既合理亦可行。
-
笔者等在对压力计的校验中,并非仅凭待验压力计估算结果与参考值之间的相关系数来下论断。好的温压计在准度(accuracy)和精度(precision)都表现良好。本文涉及的压力计中,待验压力计的压力估算数值与参考值相近时,若两组数据的相关系数较好,大概率表明待验压力计的准度和精度都相对较好;若待验压力计的压力估算数值明显偏离参考值,则至少表明其准度欠佳。在此意义上,我们认为黑云母压力计对于估算钙碱性长英质侵入岩结晶压力而言准确性差。
-
需要强调的是,笔者等的研究目的是鉴别不同压力计能否相对准确地估计钙碱性长英质侵入岩体的结晶压力,而非判别具体的造岩矿物自身的结晶压力估算值是否可靠。角闪石全铝压力计、榍石压力计、“石英”压力计乃至Uchida等(2007)的经验性黑云母压力计都是针对近固相线条件下钙碱性长英质岩浆结晶压力的估计,明显偏离固相线条件结晶的造岩矿物其压力估算值不在笔者等探讨范围之内。所以,这些压力计适用于钙碱性长英质岩浆的固相线温度范围,这在相应压力计提出者和研究者的论文中均有明确阐述。压力大于~100 MPa时钙碱性长英质岩浆的饱和水固相线温度为700°C ±50℃(Tuttle and Bowen,1958; Luth et al.,1964; Johannes and Holtz,1996)。所以,应用这些压力计估算钙碱性长英质岩浆结晶压力时,温度对压力估算的影响相对次要(请见汪洋,2014的相关讨论)。A型花岗岩不属于钙碱性岩浆岩系列(汪洋等,2013;仝立华和汪洋,2013),不在笔者等讨论范围之内。A型花岗岩的角闪石富铁,形成于还原环境,角闪石全铝压力计对其不适用(Anderson and Smith,1995;汪洋,2014)。
-
限于篇幅,详细论述角闪石全铝压力计的热力学解释超出了笔者等的范围,有兴趣的读者可以参考Hollister等(1987)、Ague(1997)的论述。由于角闪石族矿物晶体化学结构的复杂性,角闪石全铝压力计可以说是基于地质观察和实验标定的半经验性压力计。提出不久的榍石压力计是基于地质观察和实验标定的经验性压力计。Uchida等(2007)的黑云母全铝压力计是纯粹的经验性压力计。Li Xiaoyan和Zhang Chao(2022)黑云母压力计则是在统计黑云母所有主要氧化物组分与实验标定温压值的基础上得出的多元回归结果,没有基于热力学的详细解释。根据观察和数据统计得出经验性的规律和/或公式,以此作为进一步研究的工具或手段,这在科学研究中屡见不鲜。受制于主客观条件,在科学研究中总是存在尚未揭示某些经验性规律或公式背后的因果规律或对其认识程度不足的发展阶段,但这不是否定经验性规律或公式实用性的理由。以现代的眼光来看,现代天文学出现之前的漫长历史时期内人类对于天体运动的内在规律的认识很原始,但这未妨碍古代学者根据对天体运动轨迹的观测确立天文历法,进而指导农业生产和纪年。因此,虽然目前学术界对角闪石全铝压力计、榍石压力计乃至黑云母压力计的原理了解得不够深入,但这并不构成否认这些经验性/半经验性压力计实用性的理由。
-
值得指出的是,在一些研究中对于角闪石全铝压力计、黑云母压力计的使用存在不顾其适用条件、标定范围的“拿来主义”做法。例如:将Schmidt(1992)角闪石全铝压力计用于估算含橄榄石高镁闪长岩的角闪石结晶压力(王艳玲,2011);对属于A型花岗岩的密云环斑花岗岩,用角闪石全铝压力计估算其富铁质角闪石的结晶压力(张拴宏等,2007);将Uchida等(2007)的黑云母压力计用于结晶压力大于200 MPa的侵入体(Azadbakht et al.,2020; Gupta and Kumar,2023)。基于这些做法所得的压力数值的地质意义值得商榷。
-
最后再次强调,Hammarstrom和Zen(1986)、Hollister等(1987)、Johnson和Rutherford(1989)、Schmidt(1992)、Mutch等(2016)、Medard和Le Pennec(2022)的角闪石全铝压力计仅适用于相对氧化条件下近固相线的9相(角闪石+黑云母+斜长石+碱性长石+石英+Fe-Ti氧化物+熔体+流体相)、10组分(SiO2—TiO2—Al2O3—Fe2O3—FeO—MgO—CaO—Na2O—K2O—H2O)体系,不适用于估算远离固相线温度范围或者不满足相组合的情况。榍石压力计的适用条件与之类似。角闪石全铝压力计不能用于变质作用成因角闪石的压力估计,也不适用于A型花岗岩。“石英”压力计的基础是简并花岗岩体系的固相线矿物结晶关系,不能用于明显偏离简并花岗岩成分的岩石,也不适用于远离固相线的温度条件。笔者等的检验结果显示,Li Xiaoyan和Zhang Chao(2022)黑云母压力计所得压力值通常不能代表钙碱性长英质侵入岩的结晶压力。以上所述各种压力计的估计上限限定在500 MPa左右为宜。
-
6 结论
-
(1)角闪石铝压力计是估算钙碱性长英质侵入岩结晶压力(侵位深度)的相对可靠的地质压力计。Mutch等(2016)角闪石铝压力计可适用于低至50~100 MPa的压力条件。Medard和Le Pennec(2022)六次配位铝压力计可能适用于硅质欠饱和的中性岩浆体系结晶压力的估计。相对氧化条件下结晶的钙质角闪石才适用于估算钙碱性长英质的结晶压力。
-
(2)榍石压力计和“石英”压力计可以作为角闪石压力计的补充。建议选择估算钙碱性长英质侵入岩结晶压力时的优先顺序为:角闪石铝压力计 ≈ 榍石压力计 > “石英”压力计,其中“石英”压力计(Yang Xueming,2017)的适用对象应限于准铝质—弱过铝质的狭义花岗岩。
-
(3)经验性的黑云母压力计(Uchida et al.,2007)和基于实验数据的黑云母压力计(Li Xiaoyan and Zhang Chao,2022)均不适合用于估算钙碱性长英质侵入岩的结晶压力。
-
致谢:张硕、马艺博同学帮助整理了部分相关资料,审稿专家对本文提出了宝贵的修改建议,在此一并表示感谢。
-
参考文献
-
蔡永丰, 刘风雷, 冯佐海, 周云, 曾长育. 2020. 桂东北姑婆山岩体矿物学和年代学特征及其成岩成矿意义. 吉林大学学报(地球科学版), 50(3): 842~856.
-
龚松林. 2004. 角闪石全铝压力计对黄陵岩体古隆升速率的研究. 东华理工学院学报, 27(1): 52~58.
-
黄福生, 姜常义. 1985. 房山岩体的地质—地球化学特征及其成因探讨. 西安地质学院学报, 7(3): 9~29+57. doi: 10. 19814/j. jese. 1985. 03. 003
-
季根源, 江思宏, 张龙升, 李高峰, 刘翼飞, 易锦俊, 张苏江. 2021. 大兴安岭南段毛登矿区阿鲁包格山岩体成岩成矿意义——锆石、角闪石和黑云母矿物学证据. 矿床地质, 40(3): 449~474.
-
康志强, 冯佐海, 王睿. 2010. 角闪石黑云母全铝压力计的可靠性对比——以广西姑婆山—花山花岗岩为例. 桂林理工大学学报, 30(4): 474~479.
-
刘春花, 吴才来, 雷敏, 秦海鹏, 李名则. 2013a. 秦岭东江口和柞水花岗岩的矿物成分特征及其形成的温压条件. 岩石矿物学杂志, 32(3): 341~354.
-
刘春花, 吴才来, 雷敏, 秦海鹏, 李名则. 2013b. 秦岭沙河湾I型花岗岩岩石学、矿物学特征及岩浆形成的温压条件. 地质与勘探, 49(4): 595~608.
-
仝立华, 汪洋. 2013. 铁质花岗岩: 定义、分类及成因. 矿物岩石地球化学通报, 32(3): 370~378.
-
汪洋. 2013. 改进的钙碱性侵入岩角闪石全铝压力计. 高校地质学报, 19(增刊): 545~546.
-
汪洋. 2014. 钙碱性火成岩的角闪石全铝压力计——回顾、评价和应用实例. 地质论评, 60(4): 839~850.
-
汪洋, 焦永玲, 仝立华, 姚瑶. 2013. 再论A型花岗岩的实质——与张旗先生等商榷. 岩石矿物学杂志, 32(2): 260~266.
-
王艳玲. 2011. 鲁西铁铜沟中生代高镁闪长岩的成因. 导师: 钱青. 中国科学院地质与地球物理研究所硕士学位论文: 1~90.
-
杨阳, 王晓霞, 于晓卫, 柯昌辉, 王立功, 郭瑞朋, 王顺安, 李小霞. 2017. 胶西北中生代花岗岩中黑云母和角闪石成分特征及成岩成矿意义. 岩石学报, 33(10): 3123~3136.
-
杨阳, 柯昌辉, 王晓霞, 李金宝, 吕星球, 聂政融. 2022. 北秦岭蟒岭花岗岩体岩浆演化及源区: 来自矿物学和Sr—Nd—Hf同位素证据. 地球科学与环境学报, 44(4): 658~674.
-
张拴宏, 赵越, 刘健, 胡健民, 陈正乐, 李淼, 裴军令, 陈振宇, 周剑雄. 2007. 华北地块北缘晚古生代—中生代花岗岩体侵位深度及其构造意义. 岩石学报, 23(3): 625~638.
-
Ague J J. 1997. Thermodynamic calculation of emplacement pressures for batholithic rocks, California: implications for the aluminum-in-hornblende barometer. Geology, 25(6): 563~566.
-
Ague J J, Brandon M T. 1996. Regional tilt of the Mount Stuart batholith, Washington, determined using aluminum-in-hornblende barometry: Implications for northward translation of Baja British Columbia. Geological Society of American Bulletin, 108: 471~488.
-
Ague J J, Brimhall G H. 1988. Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory minerals in the batholiths of California. GSA Bulletin, 100(6): 891~911.
-
Anderson J L. 1996. Status of thermobarometry in granitic batholiths Geological Society of America Special Papers, 315: 125~138.
-
Anderson J L, Barth A P, Wooden J L, Mazdab F. 2008. Thermometers and thermobarometers in granitic systems. Reviews in Mineralogy and Geochemistry, 69: 121~142.
-
Anderson J L, Smith D R 1995. The effect of temperature and oxygen fugacity on Al-in-hornblende barometry. American Mineralogist, 80: 549~559.
-
Azadbakht Z, Lentz D R, McFarlane C R M, Whalen J B. 2020. Using magmatic biotite chemistry to differentiate barren and mineralized Silurian—Devonian granitoids of New Brunswick, Canada. Contributions to Mineralogy and Petrology, 175: 69.
-
Bachmann O, Huber C. 2016. Silicic magma reservoirs in the Earth’s crust. American Mineralogist, 101(11): 2377~2404.
-
Bachmann O, Dungan M A, Lipman P W. 2002. The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. Journal of Petrology, 43: 1469~1503.
-
Bonin B, Vojtěch J, Moyen J F. 2020. Chemical variation, modal composition and classification of granitoids. Geological Society, London, Special Publications, 491: 9~51.
-
Blundy J, Cashman K. 2001. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980~1986. Contributions to Mineralogy and Petrology, 140: 631~650.
-
Blundy J, Cashman K, Humphreys M. 2006. Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature, 443: 76~80.
-
Brooks K. 2019. Sphene (titanite). Geology Today, 35: 196~200.
-
Cai Yongfeng, Liu Fenglei, Feng Zuohai, Zhou Yun and Zeng Changyu. 2020&. Mineral compositional and chronological characteristics of the Guposhan pluton in Guangxi and its petrogenetic and metallogenic significance. Journal of Jilin University (Earth Science Edition), 50(3): 842~856.
-
Chi Naijing, Han Zuozhen, Tian Ruicong, Liu Chuan’e, Shan Wei, Xiong Yuqiang, Li Zengsheng, Xie Yufeng, Li Min, Wang Xiufeng. 2022. Petrogenesis of the Early Cretaceous Zhouguan granodiorite in Jiaodong Peninsula: Evidence from mineralogy, geochemistry, geochronology, and Sr—Nd isotopes. Minerals, 12, 962.
-
Erdmann S, Martel C, Pichavant M, Kushnir A. 2014. Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contributions to Mineralogy and Petrology, 167: 1016.
-
Erdmann S, Wang R, Huang F, Scaillet B, Zhao K, Liu H, Chen Y, Faure M. 2019. Titanite: A potential solidus barometer for granitic magma systems. Comptes Rendus——Geoscience, 351: 551~561.
-
Gion A M, Piccoli P M, Candela P A. 2022. Characterization of biotite and amphibole compositions in granites. Contributions to Mineralogy and Petrology, 177: 43.
-
Gong Songlin, 2004&. The ancient uplift rate study of Huangling Pluton based on Al-in-hornblende barometer. Journal of East China University of Technology, 27(1): 52~58.
-
Gray W, Glazner A F, Coleman D S, Bartley J M. 2008. Long-term geochemical variability of the Late Cretaceous Tuolumne Intrusive Suite, central Sierra Nevada, California. In: Annen C, Zellmer G F (eds). Dynamics of Crustal Magma Transfer, Storage and Differentiation. Geological Society, London, Special Publications, 304: 183~201.
-
Gupta S, Kumar S. 2023. Geochemistry, geochronology, and isotopic studies of Paleoproterozoic magmatic rocks from outer Kumaun Lesser Himalaya, India: Implication on petrogenesis and crustal evolution of northern Indian Block. Gondwana Research, 113: 31~52.
-
Hammarstrom J M, Zen E. Aluminum in hornblende, an empirical igneous geobarometer. American Mineralogist, 1986, 71(11): 1297~1313.
-
Hollister L S, Grissom G C, Peters E K, Stowell H H, Sisson V B. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72: 231~239.
-
Holtz F, Johannes W, Pichavant M. 1992. Effect of excess aluminium on phase relations in the system Qz—Ab—Or; experimental investigation at 2 kbar and reduced H2O activity. European Journal of Mineralogy, 4: 137~152.
-
Hu Hao, Li Jianwei, McFarlane C R M, Luo Yan, McCarron T. 2017. Textures, trace element compositions, and U-Pb ages of titanite from the Mangling granitoid pluton, East Qinling Orogen: Implications for magma mixing and destruction of the North China Craton. Lithos, 284~285: 50~68.
-
Huang Fusheng and Jiang Changyi. 1985#. Geological and geochemical characteristics of Fangshan intrusion and its origin. Journal of Xi’an College of Geology, 7(3): 9~29+57. doi: 10. 19814/j. jese. 1985. 03. 003
-
Ji Genyuan, Jiang Sihong, Zhang Longsheng, Li Gaofeng, Liu Yifei, Yi Jingjun, Zhang Sujiang. 2021&. Pelrogenic and metallogenic significance of Alubaogeshan granite in Maodeng deposit of southern Da Hinggan Mountains: Evidence from mineralogy of zircon, amphibole and biotite. Mineral Deposits, 40(3): 449~474.
-
Johannes W, Holtz F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin: Springer: 1~330.
-
Johnson M C, Rutherford M J. 1989. Experimental calibration of an aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17: 837~841.
-
Kang Zhiqiang, Feng Zuohai and Wang Rui. 2010&. Reliability comparison of Al-in-hornblende and biotite barometer: A case study of Guposhan—Huashan granite in North Guangxi. Journal of Guilin University of Technology, 30(4): 474~479.
-
Li Xiaoyan, Zhang Chao. 2022. Machine learning thermobarometry for biotite-bearing magmas. Journal of Geophysical Research: Solid Earth, 127: e2022JB024137.
-
Liu Chunhua, Wu Cailai, Lei Min, Qin Haipeng, Li Mingze. 2013a&. Mineral composition and temperature—pressure conditions of Dongjiangkou and Zhashui granites in the Qinling Mountains. Acta Petrologica et Mineralogica, 32(3): 341~354.
-
Liu Chunhua, Wu Cailai, Lei Min, Qin Haipeng, Li Mingze. 2013b&. Petrological, mineralogical characteristics and temperature—pressure conditions of magma formation of Shahewan I-type granite in Qinling Mountains. Geology and Exploration, 49(4): 595~608.
-
Luth W C, Jahns R H, Tuttle O F. 1964. The granite system at pressures of 4 to 10 kilobars. Journal of Geophysical Research, 69: 759~773.
-
Medard E, Le Pennec J L. 2022. Petrologic imaging of the magma reservoirs that feed large silicic eruptions. Lithos, 428~429: 106812.
-
Molina J, Cambeses A, Moreno J, Morales I, Lazaro C, Montero P, Bea F. 2021. A cautionary note on amphibole geobarometry. Environmental Sciences Proceedings, 6: 17.
-
Mutch E J F, Blundy J D, Tattitch B C, Cooper F J, Brooker R A. 2016. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171: No. 85.
-
Rondet M, Martel C, Bourdier J L. 2019. The intermediate step in fractionation trends of mildly alkaline volcanic suites: An experimental insight from the Pavin trachyandesite (Massif Central, France). Comptes Rendus——Geoscience, 351: 525~539.
-
Saha R, Upadhyay D, Mishra B. 2021. Discriminating tectonic setting of igneous rocks using biotite major element chemistry——A machine learning approach. Geochem Geophys Geosyst, 22(11): e2021GC010053.
-
Samadi R, Torabi G, Kawabata H, Miller N R. 2021. Biotite as a petrogenetic discriminator: Chemical insights from igneous, meta-igneous and meta-sedimentary rocks in Iran. Lithos, 386~387; 106016.
-
Scaillet B, Holtz F, Pichavant M. 2016. Experimental Constraints on the Formation of Silicic Magmas. Elements, 21: 109~114.
-
Schmidt M W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110: 304~310.
-
Scibiorski E A, Cawood P A. 2022. Titanite as a petrogenetic indicator. Terra Nova, 34: 177~183.
-
Sensarma S, Matin A, Paul D, Madhesiya A K, Sarkar G. 2021. Evolution of a crustal-scale silicic to intermediate tectono—magmatic system: The 2600~2300 Ma Bundelkhand granitoid, India. Precambrian Research, 352: 105951.
-
Thomas W, Ernst W G. 1990. The aluminum content of hornblende in calcalkaline granitic rocks; a mineralogic barometer calibrated experimentally to 12 kbars. In: Spencer R J, Chou I-M. eds. Fluid—mineral interactions: A tribute to H. P. Eugster. Geochemical Society Special Publication, 2: 59~63.
-
Tong Lihua, Wang Yang. 2013&. Ferroan granites: definition, classification and Origination. Bulletin of Mineralogy, Petrology and Geochemistry, 32(3): 370~378.
-
Tuttle O F, Bowen N L. 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8—KAlSi3O8—SiO2—H2O. Geological Society of America Memoir, 74: 1~153。
-
Uchida E, Endo S, Makino M. 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57: 47~56.
-
Wang Yang. 2013#. Improved calc-alkaline intrusive rock Al-in-hornblende barometry. Geological Journal of China Universities, 19(Supp. ): 545~546.
-
Wang Yang. 2014&. The Al-in-hornblende barometry for calc-alkaline igneous rocks: Retospect, evaluation and applications. Geological Review, 60(4): 839~850.
-
Wang Yang, Jiao Yonglin, Tong Lihua, Yao Yao. 2013&. The essence of A-type granitoids: A discussion on the opinions held by Prof Zhang Qi and some other researchers. Acta Petrologica et Mineralogica, 32(2): 260~266.
-
Wang Yanling. 2011. Petrogenesis of the Mesozoic High-Mg Diorite in Tietonggou, Western Shandong, China. Tutor: Qian Qing. Master’s thesis of Institute of Geology and Geophysics, Chinese Academy of Sciences: 1~90.
-
Weinberg R F, Vernon R H, Schmeling H. 2021. Processes in mushes and their role in the differentiation of granitic rocks. Earth-Science Reviews, 220: 103665.
-
Yang Lei, Miller C F, Wu Fuyuan. 2022. Estimating crystallization pressure of peraluminous melts: An experimentally based empirical approach. Contributions to Mineralogy and Petrology, 177: No. 78.
-
Yang Xueming. 2017. Estimation of crystallization pressure of granite intrusions. Lithos, 286~287: 324~329.
-
Yang Xueming, Lentz D R, Chi Guoxiang. 2021. Ferric—ferrous iron oxide ratios: Effect on crystallization pressure of granites estimated by Qtz-geobarometry. Lithos, 380~381: 105920.
-
Yang Yang, Wang Xiaoxia, Yu Xiaowei, Ke Changhui, Wang Ligong, Guo Ruipeng, Wang Shun’an, Li Xiaoxia. 2017&. Chemical composition of biotite and amphibole from Mesozoic granites in northwestern Jiaodong Peninsula, China, and their implications. Acta Petrologica Sinica, 33(10): 3123~3136.
-
Yang Yang, Ke Changhui, Wang Xiaoxia, Li Jinbao, Lv Xingqiu, Nie Zhengrong. 2022&. Magmatic evolution and origin of Mangling granite pluton in the North Qinling, China: Evidence from mineralogy and Sr—Nd—Hf isotopes. Journal of Earth Sciences and Environment, 44(4): 658~674.
-
Zandomeni P S, Moreno J A, Verdecchia S O, Baldo E G, Dahlquist J A, Morales Camera M M, Balbis C, Benitez M, Serra-Varela S, Lembo Wuest C I. 2021. Crystallization conditions and petrogenetic characterization of metaluminous to peraluminous calc-alkaline orogenic granitoids from mineralogical systematics: The case of the Cambrian magmatism from the Sierra de Guasayán (Argentina). Minerals, 11(2): No. 166. https: //doi. org/10. 3390/min11020166
-
Zanoni D, Corti L, Roda M. 2021. Cooling history of the Biella pluton and implication for Oligocene to Miocene tectonics of the Sesia—Lanzo Zone, Austroalpine, Western Alps. International Geology Review, 64: 203~232; doi: 10. 1080/00206814. 2020. 1845993
-
Zen E A. 1989. Plumbing the depths of batholiths. American Journal of Science. 289(10): 1137~1157.
-
Zhang Shuanhong, Zhao Yue, Liu Jian, Hu Jianmin, Chen Zhengle, Li Miao, Pei Junling, Chen Zhenyu, Zhou Jianxiong. 2007&. Emplacement depths of the Late Paleozoic—Mesozoic granitoid intrusions from the northern North China block and their tectonic implications. Acta Petrologica Sinica, 23(3): 625~638.
-
摘要
笔者等对4种常见的矿物压力计(角闪石全铝压力计、黑云母压力计、榍石压力计和“石英”压力计)的适用性进行了经验性检验。基于国内外典型钙碱性长英质岩体的矿物化学和全岩化学成分数据,采用不同压力计估算岩体侵位压力,并与角闪石全铝压力计结果对比。结果表明:角闪石六次配位Al压力计与广泛使用的角闪石全铝压力计的估算值存在系统相关性;榍石压力计计算的压力与角闪石全铝压力计的估计结果相关性较为显著;基于Qtz—Ab—Or简并花岗岩体系的“石英”压力计可以用于估计准铝质—弱过铝质钙碱性(狭义)花岗岩的结晶压力。但是,经验性的黑云母压力计和基于实验数据的黑云母压力压计均不能很好地复现角闪石全铝压力计的结果。黑云母压力计不适用于估算钙碱性侵入岩的结晶压力。
Abstract
In this review, four commonly used geobarometers, i.e., aluminum-in-amphibole, biotite, sphene (titanite), and “quartz” barometers, are testified for their suitability to estimate the crystallization pressure of calc-alkaline felsic intrusive rocks. Using a compilation of mineral chemistry and whole-rock composition data from some typical calc-alkaline felsic intrusions in home and abroad, we found that there are systematic correlations between the results from the new proposed octahedral aluminum-in-amphibole barometer and those from the typical aluminum-in-hornblende barometer. Meanwhile, the pressures calculated by the sphene (titanite) Al2O3 content barometer are finely correlated with the estimations from aluminum-in-hornblende barometer. The “quartz” barometer which is established on the Qtz—Ab—Or hapalogranitic system, can be only used to constraints the crystallization pressures of the metaluminous to weak peraluminous granites (s.s.). However, neither the empirical biotite barometer nor the experiment-derived biotite barometer replicate the aluminum-in-amphibole barometry for natural rocks. Accordingly, it is suggested that the barometry from biotite is not suitable for calculating the crystallization pressure of calc-alkaline felsic intrusive rocks.