-
青铜器是人类历史上的一项伟大发明,同时也是世界冶金铸造史上最早的合金技术制品。一般认为,中国的青铜文明肇始于夏代的二里头时期(约公元前2000年),鼎盛于商周时期。由于青铜器主要是由Cu、Sn和Pb三种金属矿料按一定比例炼制的合金,对不同遗址/地区出土青铜器开展金属矿料来源的示踪分析,有助于探索不同地域文明之间金属矿料的流通,进而为深入理解不同地域之间的政治、经济和文化交流活动提供重要的证据(闻广,1980a,b;金正耀,2008;Lawler.,2009; 黎海超.2016;郁永彬等,2016;Pollard et al.,2017; 刘瑞良等,2017;马克·波拉德,2017;张吉和陈建立.2017;Chen Kunlong et al.,2019;Liu Ruiliang et al.,2019)。因此,确定青铜器的金属矿料来源,一直以来都是考古学界关注的热点问题之一。
-
生产青铜器的Cu、Sn和Pb矿料源自于矿床中开采的矿石,而在冶铸工艺过程中,一些元素与同位素组成具有基本保持不变的特性,因此,可以通过对比青铜器与不同矿床矿石/矿物的地球化学特征(如:微量元素、铅同位素、铜同位素、锡同位素等),来示踪青铜器可能的矿料来源(金正耀.2008;Liu Ruiliang.,2016; Brügmann et al.,2016; Pollard et al.,2017; Jin Zhengyao et al.,2017;Powell et al.,2017; Melheim et al.,2018; Chen Kunlong et al.,2019; Gale and Stos.,2000; Wang Xiaoting et al.,2020; Wang Yanjie et al.,2021)。
-
在众多地球化学示踪方法中,铅同位素是目前应用最广的青铜器矿料来源的示踪方法。自然界中,铅有四种同位素,分别是稳定且丰度最低的204Pb,以及由238U、235U和232Th放射性衰变产生的206Pb、207Pb和208Pb,随着时间的演化,n(206Pb)/n(204Pb)、n(207Pb)/n(204Pb)和n(206Pb)/n(204Pb)比值逐步增长,使得不同地质储库显示出不同的铅同位素组成,因此,在地质学研究领域,铅同位素具有较好的示踪意义,广泛用于示踪成岩—成矿物质来源(张宏飞和高山,2013)。在考古学领域,Brill和Wampler(1967)首次报道了用铅同位素研究古文物矿料来源的论文;我国学者金正耀先生于1984年发表了第一篇关于铅同位素考古的研究论文,开启了我国铅同位素考古的序幕(金正耀,2008)。
-
近40年的铅同位素考古数据显示,在商代早期至商代晚期(殷墟第三期),无论黄河流域(如:河南偃师商城遗址、河南郑州商城遗址、河南安阳殷墟遗址、陕北地区等)还是长江流域(如:湖北盘龙城遗址、江西新干大洋洲遗址、四川三星堆遗址、陕西汉中地区等)出土的青铜器,普遍含高放射性成因铅,而商代早期之前的夏代(如:河南二里头)和殷墟第三期之后,含高放射性铅的青铜器数量则很少(金正耀,2008)。这里的高放射性成因铅又称“异常铅”,是指铅同位素组成中放射性成因组分特别高,通常具n(206Pb)/n(204Pb)>20、n(208Pb)/n(204Pb)>40及n(207Pb)/n(206Pb)<0.84的特点(朱炳泉和常向阳,2002;常向阳等,2003;金正耀,2008;Chen Kunlong et al.,2019;Liu Ruiliang et al.,2018)。关于商代含高放射性成因铅的青铜器矿料来源,前人做了大量的探索工作,但一直存在很大的争议,提出了来自中国西南地区、秦岭、中条山、长江中下游甚至是非洲等不同的认识(彭子成等,1997,1999;金正耀,2008;Sun Weidong et al.,2016;Jin Zhengyao et al.,2017;Liu Ruiliang et al.,2018;Ying Qin et al.,2020;Chen Kunlong et al.,2019),目前已成为商代青铜器考古的重点和难点问题(Jin Zhengyao et al.,2017;Liu Ruiliang et al.,2018;Chen Kunlong et al.,2019)。为此,笔者等全面收集了黄河流域、长江流域商代青铜器铅同位素测试数据,并与国内已报道的主要Cu、Pb、Sn及多金属矿床进行了铅同位素对比分析,以期进一步约束商代含高放射性成因铅的青铜器可能的矿料来源,探索该类青铜器的兴盛与消亡之谜。
-
1 商代青铜器的铅同位素特征
-
为约束商代青铜器矿料来源,探索商代含高放射性成因铅的青铜器兴盛与消亡之谜,笔者等系统收集了黄河流域(包括:河南郑州商城遗址、山西垣曲商城遗址、河南安阳殷墟遗址、陕北地区)和长江流域(包括:湖北盘龙城遗址、江西新干大洋洲遗址、四川三星堆遗址和陕西汉中地区)的8个商代遗址/地区700件出土青铜器样品的铅同位素数据。各遗址青铜器的相对时代(文化分期)见图1。整体上,出土青铜器的n(206Pb)/n(204Pb)和n(208Pb)/n(204Pb)分别介于15.977~25.044和36.341~46.563之间,明显含高放射性成因的异常铅,且不同地域、不同合金类型、不同时期的青铜器,其铅同位素组成存在一定差异。
-
图1 黄河和长江流域8个商代遗址/地区出土青铜器的相对年代 (据Chen Kunlong et al.,2019修改)
-
Fig.1 The relative age of bronze artifacts unearthed from 8 Shang Dynasty sites in the Yellow River and the Yangtze River Basins (modified from Chen Kunlong et al., 2019)
-
各遗址相对时代(文化分期)据:江西省文物考古研究所(1997),四川省文物考古研究所(1999),湖北省文物考古研究所(2001),赵丛苍(2006),Cao Dazhi(2007),崔剑锋等(2012),田建花(2013),卫阳丽(2015),刘建宇(2015),曹玮(2021),冯智超(2021)
-
Relative ages of sites (cultural periodization) are from Jiangxi Provincial Institute of Cultural Relics and Archaeology et al. (1997#) , Institute of Archaeology of Sichuan Province (1999#) , Hubei Institute of Cultural Relics and Archaeology (2001#) , Zhao Congchang (2006#) , Cao Dazhi (2007) , Cui Jianfeng et al. (2012#) , Tian Jianhua (2013&) , Wei Yangli (2015&) , Liu Jianyu (2015&) , Cao Wei (2021&) , Feng Zhichao (2021&)
-
图2 黄河流域(a)和(c)和长江流域(b)和(d)8个商代遗址/地区出土青铜器的铅同位素组成
-
Fig.2 Pb isotopic compositions of bronze artifacts unearthed from 8 Shang Dynasty sites in the Yellow River and the Yangtze River Basins
-
数据来源:Bagley(1990),金正耀等(1995,1994),江西省文物考古研究所(1997),彭子成等(1997,1999),湖北省文物考古研究所(2001),赵丛苍(2006),Cao Dazhi(2007),金正耀(2008),马江波等(2012),崔剑锋等(2012),田建花等(2012),田建花(2013),刘建宇(2015),Chen Kunlong et al.(2019),Zhangsun et al.(2021)
-
Datafrom Bagley (1990) , Jin Zhengyao et al. (1995#, 1994#) , Jiangxi Provincial Institute of Cultural Relics and Archaeology et al. (1997#) , Peng Zicheng et al. (1997#, 1999#) , Hubei Institute of Cultural Relics and Archaeology (2001#) , Zhao Cangcong (2006#) , Jin Zhengyao (2008#) , Cao Dazhi (2007) , Ma Jiangbo et al. (2012#) , Cui Jianfeng et al. (2012#) , Tian Jianhua et al. (2012&) , Tian Jianhua (2013&) , Liu Jianyu (2015&) , Chen Kunlong et al. (2019) , Zhangsun et al. (2021)
-
1.1 商代不同地域青铜器的铅同位素特征
-
黄河流域:河南郑州商城遗址31件青铜器中9件样品出现异常铅(n(206Pb)/n(204Pb)和n(208Pb)/n(204Pb)最大值分别为22.754和43.337),异常铅占比为27.3%;山西垣曲商城遗址13件青铜器以正常铅为主,仅1件样品出现异常铅(n(206Pb)/n(204Pb)= 21.991,n(208Pb)/n(204Pb)= 42.641),异常铅占比为7.7%;河南安阳殷墟遗址180件青铜器中,103件样品出现异常铅(n(206Pb)/n(204Pb)和n(208Pb)/n(204Pb)最大值分别为24.637和46.563),异常铅占比为57.2%;陕北地区200件青铜器中112件出现异常铅(n(206Pb)/n(204Pb)和n(208Pb)/n(204Pb)最大值分别为24.285和45.420),异常铅占比为56%。
-
长江流域:湖北盘龙城遗址41件样品中21件样品出现异常铅(n(206Pb)/n(204Pb)和n(208Pb)/n(204Pb)最大值分别为22.787和43.561),异常铅占比为51.2%;陕西汉中地区165件青铜器中128件样品出现异常铅(n(206Pb)/n(204Pb)和n(208Pb)/n(204Pb)最大值分别为25.044和45.303),异常铅占比为77.6%;四川三星堆遗址54件青铜器中51件样品出现异常铅(n(206Pb)/n(204Pb)和n(208Pb)/n(204Pb)最大值分别为25.044和45.303),异常铅占比为94.4%;江西新干大洋洲遗址17件样品均为异常铅(n(206Pb)/n(204Pb)和n(208Pb)/n(204Pb)最大值分别为22.901和43.703)。
-
整体上,黄河流域商代青铜器的正常铅与异常铅呈显著的双峰式分布特征(图2a),而长江流域商代青铜器则以异常铅为主(图2b)。
-
1.2 商代不同合金类型青铜器的铅同位素特征
-
商代不同合金类型青铜器在铅同位素组成上,亦存在一定的差异:无论是黄河流域还是长江流域,CuPb合金(包括Pb含量介于1%~2%的Cu(Pb)合金)和CuSnPb合金(包括Pb含量介于1%~2%的CuSn(Pb)合金,Sn含量介于1%~2%的Cu(Sn)Pb合金以及Pb、Sn含量均介于1%~2%Cu(Sn)(Pb)合金)的n(206Pb)/n(204Pb)和n(208Pb)/n(204Pb)有着较大的变化范围,且正常铅与异常铅具有较为显著的双峰式分布特征;而纯Cu及CuSn合金(包括Sn含量介于1%~2%的Cu(Sn)合金)虽然n(206Pb)/n(204Pb)和n(208Pb)/n(204Pb)也存在较大变化范围,但正常铅与异常铅未显示出双峰式分布的特点(图2c、d)。
-
1.3 商代不同时期青铜器的铅同位素特征
-
从时代分布来看,具异常铅的青铜器主要集中在商代,西周显著减少,而东周、秦、汉的青铜器几乎不含这种异常铅(图3)。进一步的对比分析显示,能够确定的文化分期属二里冈下层期的青铜器只出现在郑州和垣曲两个遗址中,20组分析数据仅2组出现高放射性Pb,暗示含放射性成因Pb的青铜器大量兴起是在二里冈上层期及以后。
-
图3 商代不同遗址/地区与西周、东周、秦、汉青铜器206Pb/204Pb和208Pb/204Pb值
-
Fig.3 The 206Pb/204Pb and 208Pb/204Pb ratios of bronze artifacts unearthed from different sites in Shang, Western Zhou, Eastern Zhou, Qin and Han Dynasties
-
数据来源:Bagley(1990),金正耀等(1994,1995,2004),江西省文物考古研究所(1997),万辅彬等(1998),彭子成等(1997,1999),北京大学考古学系商周组(2000),Jin Zhengyao et al.(2001),湖北省文物考古研究所(2001),赵丛苍(2006),崔剑锋和吴小红(2008),金正耀(2008),Cao Dazhi(2007),韩炳华(2010),马江波等(2012),崔剑锋等(2012),田建花等(2012),文娟等(2013),田建花(2013),Mu Di et al.(2014),杨菊(2014),邵安定等(2015),李延祥等(2015),刘建宇(2015),郁永彬(2015),Fan Xiaopan et al.(2016),Zhangsun et al.(2017,2021),Chen Kunlong et al.(2019)
-
Data from Bagley (1990) , Jin Zhengyao et al. (1994#, 1995#, 2001, 2004#) , Jiangxi Provincial Institute of Cultural Relics and Archaeology et al. (1997#) , Peng Zicheng et al. (1997#, 1999#) , Wan Fubin et al. (1998#) , Shangzhou Formation, Department of Archaeology, Peking University (2000#) , Hubei Institute of Cultural Relics and Archaeology (2001#) , Zhao Cangcong (2006#) , Cui Jianfeng and Wu Xiaohong (2008#) , Jin Zhengyao (2008#) , Cao Dazhi (2007) , Han Binghua (2010#) , Ma Jiangbo et al. (2012#) , Cui Jianfeng et al. (2012#) , Tian Jianhua et al. (2012&) , Wen Juan et al. (2013&) , Tian Jianhua (2013&) , Mu Di et al. (2014) , Yang Jv (2014&) , Shao Anding et al. (2015&) , Li Yanxiang et al. (2015&) , Yu Yongbin (2015&) , Liu Jianyu (2015&) , Fan Xiaopan et al. (2016) , Zhangsun et al. (2017, 2021) , Chen Kunlong et al. (2019)
-
2 中国主要Cu、Pb —Zn、Sn及多金属矿床的铅同位素特征
-
以Killick等(2020)和Hsu等(2019)所建立的数据库为基础,在补充部分数据的基础上,对全国606个Cu、Pb—Zn、Sn及多金属矿床的4025组矿石铅同位素数据进行了系统整理,结果表明n(206Pb)/n(204Pb)和n(208Pb)/n(204Pb)变化范围较大,分别介于13.590~356.74和33.849~79.490之间,且不同矿种的铅同位素组成存在差异(图4):
-
图4 中国主要Pb—Zn、Cu、Sn及多金属矿床的铅同位素特征
-
Fig.4 Pb isotopic compositions of typical Pb—Zn, Cu, Sn and polymetallic deposits in China
-
数据来源:Killick et al.(2020)和Hsu et al.(2019)数据库;王奖臻等(2004),徐文忻等(2005),孙燕等(2006),周清等(2013),侯林(2013),王赕(2013),朱利岗(2019),黄从俊(2019),Liu Xuan et al.(2019),Zhu Ligang et al.(2020)
-
Datafrom Wang Jiangzhen et al. (2004&) , Xu Wenxin et al. (2005&) , Sun Yan et al. (2006&) , Zhou Qing (2013&) , Hou Lin (2013&) , Wang Dan (2013&) , Zhu Ligang (2019&) , Huang Congjun (2019&) , Zhu Ligang et al. (2020) , Hsu et al. (2019) , Killick et al. (2020)
-
Pb—Zn矿床:347个Pb—Zn矿床2459件矿石样品,n(206Pb)/n(204Pb)介于13.590~36.162之间、n(208Pb)/n(204Pb)介于34.251~57.31之间,整体以正常铅为主(图4a),其中,n(206Pb)/n(204Pb)> 20的样品有41件,n(208Pb)/n(204Pb)> 40的样品有83件。同时满足n(206Pb)/n(204Pb)> 20和n(208Pb)/n(204Pb)> 40的样品仅33件,集中分布于四川—云南一带的MVT型Pb—Zn矿床(包括:四川松林Pb—Zn矿床1件、四川团宝山Pb—Zn矿床3件、四川乌衣Pb—Zn矿床3件、云南金沙厂铅锌矿床19件、四川会东大梁子Pb—Zn矿床1件和四川天宝山Pb—Zn矿床2件),以及辽宁本溪霍家沟—正沟Pb—Zn矿床(4件)。
-
Cu矿床:102个Cu矿床的670件矿石样品,n(206Pb)/n(204Pb)介于14.78~356.74之间、n(208Pb)/n(204Pb)介于33.849~79.490之间,同样以正常铅为主(图4b),其中,n(206Pb)/n(204Pb)> 20的样品有76件,n(208Pb)/n(204Pb)> 40的样品有72件。同时满足n(206Pb)/n(204Pb)> 20和n(208Pb)/n(204Pb)> 40的样品仅70件,分布于四川—云南一带的IOCG型Cu矿床(包括:四川拉拉Cu矿床(28件)、云南东川Cu矿床(1件)、云南额头厂Cu矿床(2件)、云南邵家坡Cu矿床(6件)、云南迤纳厂Cu矿床(14件)),以及中条山铜矿峪Cu矿床(19件)。
-
Sn及多金属矿床:157个矿床的896件矿石样品,n(206Pb)/n(204Pb)介于16.093~27.860之间、208Pb/204Pb介于36.192~43.346之间,几乎全为正常铅为主(图4c),n(206Pb)/n(204Pb)> 20的样品仅有4件,n(208Pb)/n(204Pb)> 40的样品有12件。同时满足n(206Pb)/n(204Pb)> 20和n(208Pb)/n(204Pb)> 40的样品仅2件,分布于湖北黄梅马鞍山Fe多金属矿床和广西大厂Sn多数金属矿床中。
-
3 讨论
-
Pb是典型重元素,且各稳定同位素间的相对质量差别很小,因此,在风化和古代冶金过程中的分馏可以忽略不计(Gale and Stos-Gale,1982)。大量模拟实验亦证实了上述观点(如:Bargeman et al.,1999; McGill,1999; Gale et al.,2000; 魏国锋等,2006;Cui Jianfeng and Wu Xiaohong,2011),这是Pb同位素示踪的理论基础。
-
3.1 商代含高放射性成因铅的青铜器可能的矿料来源
-
3.1.1 高放射性成因铅来自铅料还是铜或锡料?
-
含高放射性成因铅是商代青铜器的重要特征。由于商代青铜铸造使用的矿料主要是Cu料、Sn料和Pb料,根据化学成分分析结果,可分为纯Cu器物、CuSn合金(锡青铜)、CuPb合金(铅青铜)和CuSnPb合金(铅锡青铜)四大类。因此,铅同位素示踪青铜器矿料的来源,其关键在于:(1)区分青铜器中的Sn、Pb是否为有意加入?以及(2)在Sn、Pb为有意加入的情况下,青铜器的铅同位素组成则为Cu、Sn、Pb三种金属矿料的混合铅,而这种混合铅主要反映了何种矿料的特征?
-
青铜器中Pb、Sn是否有意加入,学术界最初以3%为界进行区分,2000年以后,又改为以2%为界,但无论是3%还是2%,都无人给出其理论上的依据(金正耀,2004)。如果考虑三种矿料的混合,那么青铜器的铅同位素组成则取决于:
-
① 青铜器中Pb、Cu、Sn的含量;② Cu、Pb、Sn矿石的初始铅同位素组成;③ Cu矿石中的Pb/Cu比值和Sn矿石中的Pb/Sn比值。朱炳泉和常向阳(2002)、金正耀(2008)认为,由于Cu矿石和Sn矿石中Pb含量很低,CuSnPb合金和CuPb合金的铅同位素组成反映了铅料的来源信息,而红铜(纯铜)和CuSn合金的铅同位素组成,则反映了铜料和/或锡料的来源信息。
-
为进一步分析矿料混合所引起的铅同位素混合效应,笔者等采用四川拉拉Cu矿的铜矿石与云南金沙厂Pb—Zn的Pb矿石做了铅同位素混合计算(假设Sn矿石不含铅),计算简述如下:
-
(1)根据朱志敏(2011):拉拉铜矿的平均品位Cu:9.1%,含Pb为202.4×10-6,计算来自该矿石的Pb/Cu比值为0.002。
-
(2)设青铜器中Cu含量为90%、80%、70%和60%且全部由拉拉铜矿石提供,分别计算由Cu矿石所带来的Pb含量(记:PbCu),作为加权因子;设青铜器中Pb含量为0.2%~30%,由PbCu和金沙厂Pb—Zn矿PbPb—Zn共同提供(即Pb=PbCu+PbPb—Zn),计算PbPb—Zn作为加权因子。
-
(3)分别将拉拉Cu矿与金沙厂Pb—Zn矿的n(206Pb)/n(204Pb)、n(208Pb)/n(204Pb)的边界范围(分别为18.103、91.652,37.798、56.662和18.197、21.363,38.207、43.98)乘以根据不同Cu、Pb含量计算出的加权因子,并加和,作出1/w(Pb)—n(206Pb)/n(204Pb)图解(图5)。通过该图解,可有效分析由矿料混合所引起的Pb含量与n(206Pb)/n(204Pb)、n(208Pb)/n(204Pb)比值之间的变化趋势以及混合Pb的变化范围(Pollard and Bray,2014; Pollard,et al.,2017; Liu Ruiliang et al.,2019)。
-
从图5中可以看到,当青铜器中Pb含量≥5%(1/w(Pb)≤0.2)时,青铜器的铅同位素组成大致与Pb—Zn矿石的铅同位素组成相当;Pb含量≤0.25 %(1/w(Pb)≥4)时,青铜器的铅同位素组成大致与Cu矿石的铅同位素组成相当;Pb含量介于0.25%~5%之间,则反映了Pb—Zn矿石和Cu矿石的铅同位素混合。由于Sn矿石中同样含Pb很低,Pb—Sn混合计算结果应与Pb—Cu一致。因此,笔者等以Pb含量≤0.25%和≥5%为界,分析青铜器使用了含高放射性成因铅的铜和/或锡料,还是含高放射性成因铅的铅料。
-
图5 四川拉拉Cu矿床与云南金沙厂Pb—Zn矿床的铅同位素混合计算的1/w(Pb)—n(206Pb)/n(204Pb)图解
-
Fig.5 1/w (Pb) —n (206Pb) /n (204Pb) diagram for Pb isotope mixing calculation of Lala Cu deposit in Sichuan province and Jinshachang Pb—Zn deposit in Yunnan province
-
笔者等收集的Pb含量≥5%(1/w(Pb)<0.2)的青铜器数据显示(图6),河南郑州商城、湖北盘龙城、陕西汉中、山西垣曲商城、河南安阳殷墟和陕北6个遗址/地区很可能采用了含异常铅和正常铅的两类铅料;而四川三星堆与江西新干大洋洲则主要采用了含异常铅的铅料。Pb含量<0.25%(1/w(Pb)>4)的青铜器数据显示,四川三星堆、陕西汉中和陕北3个遗址/地区很可能采用了含高放射性成因铅和正常铅两类铜料;河南郑州商城、湖北盘龙城、山西垣曲商城、河南安阳殷墟与江西新干大洋洲5个遗址/地区青铜器的Pb含量<0.25%(1/w(Pb)>4)的数据较少,从已有数据来看,采用的Cu料很可能以含正常铅为主,但考虑到矿料的混合,不排除采用含高放射性成因铅的铜料的可能性(图6)。
-
图6 商代8个遗址/地区出土青铜器的1/w(Pb)—n(206Pb)/n(204Pb)图解
-
Fig.6 1/w (Pb) —206Pb/204Pb diagram of bronze artifacts unearthed from 8 sites/regions in Shang Dynasty
-
3.1.2 含高放射性成因铅的铅料和铜料来源
-
关于含高放射性成因铅的矿料来源,一直以来众说纷纭、莫衷一是。金正耀(1984)首次于河南安阳(殷墟)青铜器中发现了高放射性成因铅,并将其与云南永善金沙厂矿山数据进行了对比分析,提出了含高放射性成因铅的矿料来自云南的认识(转引自金正耀,1990,2008)。之后,随着河南郑州、四川三星堆、江西新干大洋洲等遗址/地区青铜器中高放射性成因铅的发现,金正耀及其研究团队将这种含高放射性成因铅矿料的来源扩展到了中国西南,形成了“西南来源假说”(金正耀等,1994,1995;金正耀,2008;田建花等,2012;田建花,2013;Jin et al.,2017)。但亦有不同学者针对不同的遗址/地区,提出了不同的认识,彭子成等(1997,1999)认为赣鄂豫地区含高放射性成因铅的商代青铜器矿料有可能来自江西、湖南地区的浅成含铀多金属矿床;崔剑锋等(2012)通过对山西垣曲遗址的青铜器铅同位素研究,认为该遗址含高放射性成因铅的矿料很可能来自辽宁、河北、山东等省;Chen Kunlong et al.(2019)基于对陕西汉中地区商代青铜器的铅同位素分析,综合地理因素以及考古学证据,将秦岭地区列为商代含高放射性成因铅的青铜器的矿料潜在源区。Ying Qin等(2020)通过商代含放射性成因铅的青铜器与山西中条山铜矿峪Cu矿床,辽宁青城子一带的Pb—Zn矿的矿石铅同位素对比,认为商代含高放射性成因铅的青铜器的铜料很可能主要来自中条山铜矿峪Cu矿床,铅料很可能主要来自华北克拉通北缘。Sun Weidong(2016,2018)通过对比我国与非洲青铜器的铅同位素组成,甚至提出了含高放射性成因的矿料来自非洲的设想。但需要注意的是,除“西南来源假说”外,上述其他认识大多为基于地理位置的推论,缺乏确切的证据(Zhangsun et al.,2021),尤其是矿床铅同位素数据的支持。
-
事实上,从地质背景的角度,含高放射性成因铅的矿床并不普遍,其形成主要有3个地质背景条件:①在铅同位素省高背景区,由地球化学急变带所确定的地球化学边界上,且边界有一侧陆块存在太古宙基底(朱炳泉和常向阳,2002);②克拉通边缘前陆盆地中的MVT型Pb—Zn矿床(Leach et al.,2005; Wilkinson,2014);③太古宙地盾边缘与U矿共生的矿床(朱炳泉和常向阳,2002)。川滇交界的金沙江一带、秦岭地区、辽东半岛青城子地区和长江中下游地区都是这种含高放射性成因的Pb矿床的潜在地区(常向阳等,2003)。
-
笔者等统计的全国606个Cu、Pb—Zn、Sn及多金属矿床的矿石铅同位素数据显示,全国范围内矿石的n(206Pb)/n(204Pb)> 20或n(208Pb)/n(204Pb)> 40的矿床仅46个,同时满足n(206Pb)/n(204Pb)> 20且n(208Pb)/n(204Pb)> 40矿床仅15个,包括Pb—Zn矿床7个(四川松林、团宝山、乌衣、天宝山和大梁子;云南金沙厂;辽宁本溪霍家沟—正沟);Cu矿床6个(四川拉拉;云南东川、迤纳厂、邵家坡和额头厂;山西中条山铜矿峪);锡及多金属矿床2个(广西大厂;湖北马鞍山)。如果考虑各遗址多数含异常铅的青铜器样品n(208Pb)/n(204Pb)> 21,符合这一要求的矿床只有四川云南交界处的MVT型Pb—Zn矿床(天宝山、团宝山、乌衣、大梁子和金沙厂)、IOCG型Cu矿床(拉拉、迤纳厂、邵家坡、额头厂和东川)、辽宁本溪霍家沟—正沟Pb—Zn矿床和山西中条山地区铜矿峪Cu矿床。
-
进一步青将铜器与矿石硫化物铅同位素对比分析显示,黄河流域和长江流域含异常铅且Pb含量≥5%的青铜器样品(铅同位素组成大致与Pb—Zn矿石相当),其Pb同位素组成与四川云南交界处的MVT型Pb—Zn矿床存在一定的重叠,具一定的相似性(图7a);但相对于辽宁本溪霍家沟—正沟Pb—Zn矿床,其208Pb/204Pb比值整体偏高,两者无任何重叠。结合霍家沟—正沟Pb—Zn矿床是个小矿点,难以形成规模生产(金正耀,2004),推测含异常铅的铅料最可能源自四川云南交界处的MVT型Pb—Zn矿床。含异常铅且Pb含量≤0.25%的青铜器样品(铅同位素组成大致与Cu矿石相当),其Pb同位素组成与四川云南交界处的IOCG型Cu矿床和山西中条山地区铜矿峪Cu矿床均有较好的一致性(图7b、c、d、e),指示含异常铅的铜料最可能源自上述两个地区。
-
上述可能的矿产地分析,亦可得到历史和考古文献的支持:如:中条山地区铜矿开采年代可追溯至先秦(李延祥,1993);而四川云南交界处的天宝山Pb—Zn矿床有文字记录开采年代亦可追溯至西汉(四川省地方志编纂委员会,1998;四川会理铅锌股份有限公司简介),表明上述矿产地开采历史悠久,很可能在缺乏文字记载的商代,就已经有着采矿活动。由此推测,商代遗址/地区出土青铜器中含高放射性成因铅的铅料,最有可能来自四川云南交界处的MVT型Pb—Zn矿床;含高放射性成因铅的铜料则最可能来自四川云南交界处的IOCG型Cu矿床以及山西中条山铜矿峪Cu矿床。如果考虑地理因素和交通运输条件,四川三星堆与陕西汉中遗址出土青铜器中含高放射性成因铅的铜料应主要来自四川云南交界处的IOCG型Cu矿床,而黄河流域以河南安阳为代表的遗址出土青铜器中含高放射性成因铅的铜料可能主要来自山西中条山铜矿峪Cu矿床。
-
图7 青铜器与矿石硫化物铅同位素比值对比图
-
Fig.7 The plots of lead isotope ratios of the bronze artifacts from different sites and the ores from typical Pb—Zn and Cu deposits
-
3.2 古蜀三星堆在矿业贸易中的地位
-
从笔者等收集的商代青铜器以及现代矿床的铅同位素数据的统计分析来看,虽然含高放射性成因铅的青铜器的铜料来源存在多解性,但含高放射性成因铅的铅料最可能来自四川云南交界处的MVT型Pb—Zn矿床(图8)。综合三星堆遗址得天独厚的地理位置,三星堆青铜文明的兴衰时间及其与其他文化交流与贸易往来的路径,推测古蜀三星堆很可能是破解商代含高放射性成因铅的青铜器兴盛与消亡之谜的关键。
-
图8 商代主要遗址/地区与中国主要含高放射性成因铅的Pb—Zn、Cu、Sn及多金属矿床耦合关系及文化交流路径图
-
Fig.8 Coupling relationship between major sites/areas in Shang Dynasty and major Pb—Zn, Cu, Sn and polymetallic deposits containing high-radioactive lead in China and path map of cultural exchange
-
1 —乌衣Pb—Zn矿床;2—天宝山Pb—Zn矿床;3—大梁子Pb—Zn矿床;4—拉拉Cu矿床;5—迤纳厂Cu矿床;6—邵家坡Cu矿床;7—额头厂Cu矿床;8—中条山铜矿峪Cu矿床;9—团宝山Pb—Zn矿床;10—金沙厂Pb—Zn矿床;11—松林Pb—Zn矿床;12—霍家沟—正沟Pb—Zn矿床;13—东川Cu矿床;14—大厂Sn多金属矿床;15—马鞍山铁多金属矿床
-
1 —Wuyi Pb—Zn deposit; 2—Tianbaoshan Pb—Zn deposit; 3—Daliangzi Pb—Zn deposit; 4—Lala Cu deposit; 5—Yinachang Cu deposit; 6—Shaojiapo Cu deposit; 7—Etouchang Cu deposit; 8—Zhongtiao Mountain Tongkuangyu Cu deposit; 9—Tuanbaoshan Pb—Zn deposit; 10—Jinshachang Pb—Zn deposit; 11—Songlin Pb—Zn deposit; 12—Huojiagou—Zhenggou Pb—Zn deposit; 13—Dongchuan Cu deposit; 14—Dachang Sn—Polymetallic deposit; 15—Maanshan Fe—Polymetallic deposit
-
从文化交流与贸易往来的路径来看,在古蜀三星堆文明的发展进程中,长期与其他文明存在着文化交流与贸易往来,这种文化交流与贸易往来的路径主要包括“北线”、“南线”和“南方丝绸之路”(图8),北线:古蜀三星堆遗址—大巴山—汉中—二里头—郑州—安阳,和/或古蜀三星堆遗址—大巴山—汉中—盘龙城(与南线汇合)—大洋洲;南线:古蜀三星堆—长江—盘龙城—大洋洲,盘龙城—郑州—安阳;南方丝绸之路:古蜀三星堆遗址—汉源—西昌—会理—大理,和/或古蜀三星堆—乐山—宜宾—昭通—昆明—大理,再从大理—境外(Liu Ruiliang et al.,2021;曹玮,2021金正耀,2008;段渝,2007)。其中“北线”和“南线”维系着古蜀三星堆文明与黄河流域中原文明以及长江流域其他文明的文化交流与贸易往来,是中原青铜器冶炼与锻造技术入蜀的主要路径(金正耀,2008);而南方丝绸之路联系着与境外文明的文化交流与贸易往来,古蜀三星堆居民很可能以丝绸换来自己所需的海贝、象牙等物资(段渝,2007,2009;邱登成,2013)。值得注意的是,“南方丝绸之路”正好与上述含高放射性成因铅料和铜料的MVT型Pb—Zn矿床和IOCG型Cu矿床的分布相吻合,因此,从贸易路径来看,古蜀三星堆可能是链接矿产地与黄河流域、长江流域各文明的重要节点。
-
从时代来看,三星堆青铜文明最早可追溯到二里冈上层期(四川省文物考古研究所,1999;施劲松,2020),消亡时代大致可以以遗址埋藏时代来约束,为殷墟三期至四期之间(距今3148~2966年)(四川省文物考古研究所,1999;四川省文物考古研究院等,2021)。前者与商代各文明含高放射性成因铅的青铜器大量出现的时代非常吻合,后者与商代各文明含高放射性成因铅青铜器出现断崖式减少的时代(殷墟四期)近乎一致。结合古蜀三星堆与其他文明的文化交流与贸易往来路径综合分析,推测在二里冈上层期至殷墟三期,三星堆遗址很可能是高放射性成因铅料及部分铜料贸易的大型中转地。四川布拖—会理—会东一带丰富的含高放射性成因铅的铅料和四川云南交界处含高放射性成因铅的部分铜料通过“南方丝绸之路”进入古蜀三星堆,再通过“南线”和“北线”流通至黄河流域和长江流域的其他文明(图8)。殷墟四期及以后,由于三星堆文明的突然消亡,链接“南方丝绸之路”与“北线”和“南线”的重要节点中断,古蜀文明与其他文明之间的矿料贸易亦出现中断,迫使黄河流域、长江流域各文明开始探寻、使用其他矿产地的铅料和铜料,最终导致殷墟四期以后各文明出土的含高放射性成因铅的青铜器出现断崖式减少。
-
商末周初,尽管古蜀人在距三星堆约50 km处建立了继承三星堆文明的金沙文明(青铜器中亦含大量放射性成因铅,金正耀等,2004),“南方丝绸之路”与“北线”和“南线”的文化交流与贸易往来的路径可能重新开启,但由于黄河流域、长江流域其他Pb、Cu矿产地的不断发现,古蜀与黄河流域、长江中下游地区的矿料贸易难以回到殷墟四期之前的水平,西周之后各文明出土的青铜器亦基本不含高放射性成因铅。
-
4 结论
-
(1)商代8个遗址/地区出土青铜器的铅同位素数据显示,河南郑州商城、湖北盘龙城、陕西汉中、山西垣曲商城、河南安阳殷墟和陕北6个遗址/地区很可能使用了含异常铅和正常铅的两类铅料;而四川三星堆与江西新干大洋洲遗址/地区则主要使用了含异常铅的铅料。四川三星堆、陕西汉中和陕北3个遗址/地区很可能使用了含异常铅和正常铅两类铜料;河南郑州、湖北盘龙城、山西垣曲、河南安阳与江西新干大洋洲遗址/地区使用的Cu料很可能以含正常铅为主,但不排除使用了含异常铅的铜料的可能性。
-
(2)商代8个遗址/地区出土青铜器与全国606个Cu、Pb—Zn、Sn及多金属矿床之间的铅同位素数据对比表明,商代遗址出土青铜器中的含高放射性成因铅的铅料,最有可能来自四川云南交界处的MVT型Pb—Zn矿床,含高放射性成因铅的铜料则最可能来自四川云南交界处的IOCG型Cu矿以及山西中条山铜矿峪Cu矿床。如果考虑地理因素和交通运输条件,四川三星堆与陕西汉中遗址出土青铜器的含高放射性成因铅的铜料应主要来自四川云南交界处的IOCG型Cu矿,而黄河流域以河南安阳为代表的遗址出土青铜器的含高放射性成因铅的铜料可能主要来自山西中条山铜矿峪Cu矿床。
-
(3)综合三星堆遗址得天独厚的地理位置、三星堆青铜文明兴衰的时间及其与其他文化交流与贸易往来的路径,推测古蜀三星堆很可能是商代含高放射性成因铅的铅料及部分铜料贸易的大型中转地,商代含高放射性成因铅的青铜器兴盛与消亡很可能与三星堆青铜文明的开启与消亡有关。
-
致谢:审稿专家审阅文稿,并提出了许多修改意见与建议,对本文的改进和提高起到了很大的作用,在此表示衷心的感谢。
-
参考文献
-
北京大学考古学系商周组. 2000. 天马—曲村(1980~1989). 北京: 科学出版社.
-
曹玮. 2021. 汉中盆地商代早中期青铜器与盘龙城青铜器的对比研究. 江汉考古, . (3): 52~57.
-
常向阳, 朱炳泉, 金正耀. 2003. 殷商青铜器矿料来源与铅同位素示踪应用. 广州大学学报(自然科学版), 2(4): 323~326.
-
崔剑锋, 佟伟华, 吴小红. 2012. 垣曲商城出土部分铜炼渣及铜器的铅同位素比值分析研究. 文物, (7): 80~84.
-
崔剑锋和吴小红. 2008. 铅同位素考古研究——以中国云南和越南出土青铜器为例. 北京: 文物出版社.
-
段渝. 2007. 三星堆文明与南方丝绸之路. 三星堆研究第二辑. 北京: 文物出版社.
-
段渝. 2009. 中国西南地区海贝和象牙的来源. 中国与周边国家关系研究. 见: 中国中外关系史学会会议论文集: 50~65.
-
韩炳华. 2010. 长治分水岭东周墓地. 北京: 文物出版社.
-
侯林. 2013. 滇中“东川群”Fe—Cu—Au—REE成矿系统研究——以武定迤纳厂矿床为例. 导师: 邓军. 北京: 中国地质大学(北京)博士学位论文.
-
湖北省文物考古研究所. 2001. 盘龙城: 1963~1994年考古发掘报告. 北京: 文物出版社.
-
黄从俊. 2019. 扬子地块西南缘拉拉IOCG矿床地质地球化学研究. 导师: 李泽琴. 成都: 成都理工大学博士学位论文.
-
江西省文物考古研究所, 江西省博物馆, 新干县博物馆. 1997. 新干商代大墓. 北京: 文物出版社.
-
金正耀, Chase, W. T. , 平尾良光, 彭适凡, 马渊久夫, 三轮嘉六, 詹开逊. 1994. 江西新干大洋洲商墓青铜器的铅同位素比值研究. 考古, 8(8): 744~747+735.
-
金正耀, 常向阳, 张擎, 唐飞. 2004. 成都金沙遗址铜器研究. 文物, (7): 76~88.
-
金正耀, 马源久夫, 三轮嘉六, 平尾良光, 赵殿增. 1995. 广汉三星堆遗物坑青铜器的铅同位素比值研究. 文物, (2): 80~85.
-
金正耀. 1990. 晚商中原青铜的矿料来源.见: 杜石然, 第三届中国科学史国际讨论会论文集, 北京: 科学出版社.
-
金正耀. 2004. 论商代青铜器中的高放射成因铅. 考古学集刊, (2): 269~278.
-
金正耀. 2008. 中国铅同位素考古. 合肥: 中国科学技术大学出版社.
-
黎海超. 2016. 长江中下游地区商周时期采矿遗址研究. 考古, (10), 81~91.
-
李延祥, 李丽辉, 董利军. 2015. 内蒙古林西县井沟子西区出土青铜器的铅同位素分析. 有色金属工程, 5(4): 94~96.
-
李延祥. 1993. 中条山古铜矿冶遗址初步考察研究. 文物季刊, (2): 64~67.
-
刘建宇. 2015. 陕北地区出土商周时期青铜器的科学分析研究——兼论商代晚期晋陕高原与安阳殷墟的文化联系. 导师: 梅建军. 北京: 北京科技大学博士学位论文.
-
刘睿良, 马克·波拉德, 杰西卡·罗森, 唐小佳, 张昌平. 2017. 共性、差异与解读: 运用牛津研究体系探究早商郑州与盘龙城之间的金属流通. 江汉考古, (3): 119~129.
-
马江波, 金正耀, 田建花, 陈德安. 2012. 三星堆铜器的合金成分和金相研究. 四川文物, (2): 90~96.
-
马克·波拉德, 彼得·布睿, 彼得·荷马, 徐幼刚, 刘睿良, 杰西卡·罗森. 2017. 牛津研究体系在中国古代青铜器研究中的应用. 考古, (1): 95~106.
-
彭子成, 刘永刚, 刘诗中, 华觉明. 1999. 赣鄂豫地区商代青铜器和部分铜铅矿料来源的初探. 自然科学史研究, 18(3): 241~249.
-
彭子成, 孙卫东, 黄允兰, 张龚, 刘诗中, 卢本珊. 1997. 赣鄂皖诸地古代矿料去向的初步研究. 考古, (7): 53~67.
-
邱登成. 2013. 从三星堆遗址考古发现看南方丝绸之路的开通古蜀三星堆文明. 中华文化论坛, (4): 37~44.
-
邵安定, 梅建军, 杨军昌, 陈坤龙, 孙伟刚. 2015. 秦始皇帝陵园出土青铜水禽的补缀工艺及相关问题初探考古, (S1), 96~104.
-
施劲松. 2020. 论三星堆—金沙文化. 考古与文物, (5): 65~72.
-
四川省地方志编纂委员会. 1998. 四川省志•地质志. 成都: 四川科学技术出版社.
-
四川省文物考古研究所. 1999. 三星堆祭祀坑. 北京: 文物出版社.
-
四川省文物考古研究院, 国家文物局考古研究中心, 北京大学考古文博学院考古年代学联合实验室. 2021. 四川广汉三星堆遗址四号祭祀坑的碳十四年代研究. 四川文物, (2): 116~120.
-
孙燕, 舒晓兰, 肖渊甫. 2006. 四川省拉拉铜矿床同位素地球化学特征及成矿意义. 地球化学, 35(5): 553~559.
-
田建花, 金正耀, 李瑞亮, 闫立峰, 崔建勇. 2012. 殷墟1004号王墓出土青铜胄研究. 汉江考古, 122(1): 92~99.
-
田建花. 2013. 郑州地区出土二里岗期铜器研究. 导师: 金正耀. 合肥: 中国科学技术大学博士学位论文.
-
万辅彬, 郭立新, 李晓岑, 张玉忠. 1998. 古夜郎国铜釜的铅同位素考证. 广西民族学院学报(自然科学版), 4(2): 53~56.
-
王奖臻, 李泽琴, 刘家军, 李朝阳. 2004. 拉拉铁氧化物—铜—金—钼—钴—稀土矿床辉钼矿的多型及标型特征. 地质找矿论丛, 19(2): 96~99.
-
王赕. 2013. 四川会理拉拉铁氧化物—铜—金—铀(IOCG)矿床稳定同位素地球化学研究. 导师: 李泽琴. 成都: 成都理工大学硕士学位论文.
-
卫阳丽. 2015. 新干大洋洲出土青器研究. 导师: 陈小三. 太原: 山西大学硕士学位论文.
-
魏国锋. 秦颍, 王昌燧, 李清临, 张爱兵, 宫希成. 2006. 古代青铜器基体与其锈蚀产物铅同位素对比研究. 中国科学技术大学学报, 36(7): 771~7774.
-
文娟, 凌雪, 赵丛苍, 张钟云, 姚政权, 宗春蕾, 袁洪林, 吴忠. 2013. 安徽六安地区东周楚国青铜器铅同位素特征的初步研究, 西北大学学报(自然科学版), 43(6), 1016~1020.
-
闻广. 1980a. 中国古代青铜与锡矿. 地质论评, 26(4): 331~340
-
闻广. 1980b. 中国古代青铜与锡矿(续). 地质论评, 26(5): 420~429.
-
徐文忻, 汪礼明, 李祷, 郭新生. 2005. 中条山铜矿床同位素地球化学研究. 地球学报, 26(增刊): 130~133.
-
杨菊. 2014. 赤峰地区青铜器时代晚期铜器的科学分析研究. 导师: 李延祥. 北京: 北京科技大学博士学位论文.
-
郁永彬, 陈建立, 梅建军, 陈坤龙, 常怀颖, 黄凤春. 2016. 关于叶家山青铜器铅同位素比值研究的几个问题. 南方文物, (1), 94~102.
-
郁永彬. 2015. 湖北随州叶家山墓地出土西周青铜器的科学分析研究. 导师: 梅建军. 北京: 北京科技大学博士学位论文.
-
张宏飞和高山. 2013. 地球化学. 北京: 地质出版社.
-
张吉和陈建立. 2017. 东周青铜器铅同位素比值的初步研究. 南方文物, (2), 94~102.
-
赵丛苍. 2006. 城洋青铜器. 北京: 科学出版社.
-
周清, 姜耀辉, 廖世勇, 赵鹏, 靳国栋, 刘铮, 贾儒雅, 徐深谋. 2013. Pb同位素对德兴铜矿成矿物源的制约, 地质学报, 87(8): 1124~1135.
-
朱炳泉和常向阳. 2002. 评“商代青铜器高放射性成因铅”的发现. 古代文明(辑刊), 1: 278~283.
-
朱利岗. 2019. 云南武定地区铁—铜—金—铀—稀土矿成矿作用与成矿动力学. 导师: 刘家军. 北京: 中国地质大学(北京)博士学位论文. .
-
朱志敏. 2001. 拉拉铁氧化物铜金矿: 成矿时代和金属来源. 导师: 郑荣才. 成都: 成都理工大学博士学位论文.
-
Bagley R. 1990, Shang ritual bronzes: casting technique and vessel design, Archives of Asian Art, 43: 6~20.
-
Begemann F, Kallas K, Schmitt-Strecker S. and Pernicka, E. 1999. Tracing ancient tin via isotope analyses. In: The Beginnings of Metallurgy. Der Anschnitt, Beiheft 9. Deutsches Bergbau-Museum. 277~284.
-
Brill R H. and Wampler J M. 1967. Isotope studies of ancient lead. American Journal of Archaeology, 71(1), 63~77.
-
Brügmann G, Berger D, Frank C, Marahrens J, Nessel B, Pernicka E. 2016. Tin isotope fingerprints of ore deposits and ancient bronze. In: The Tinworking Landscape of Dartmoor in a European Context. Papers presented at a conference in Trevistock, Devon, 6~11.
-
Cao Dazhi. 2007. The loess highland in a trading network (1300~1050BC). A Dissertation Submitted to Princeton University for Doctoral Degree.
-
Cao Wei. 2021&. The Early to Middle Shang Bronzes in Hanzhong Basin and the Panlongcheng Bronzes: A Comparative Study. Jianghan Archaeology, (3): 52~57.
-
Chang Xiangyang, Zhu Bingquan, Jin Zhengyao. 2003#. Source and application of lead isotope tracing in Yin and Shang bronzes. Journal of Guangzhou University (Natural Science Edition), 2(4): 323~326.
-
Chen Kunlong, Mei Jianjun, Rehren T, Liu Siran, Yang Wei, Martinón-Torres M, Zhao Congcang, Hirao Y, Chen Jianli, Liu Yu. 2019. Hanzhong bronzes and highly radiogenic lead in Shang period China, Journal of Archaeological Science, 101: 131~139.
-
Compilation Committee of Sichuan annals. 1998#. Annals of Sichuan Province: Geological record. Chengdu: Sichuan Science and Technology Press.
-
Cui Jianfeng and Wu Xiaohong. 2008#. Archaeological study of lead isotope: A case study of bronze wares unearthed in Yunnan and Vietnam. Beijing: Cultural Relics Press.
-
Cui Jianfeng, Tong Weihua, Wu Xiaohong. 2012#. Analysis of Pb isotope ratio of some excavated copper slag and copper ware from Yuanqu Mall. Cultural Relics, (7): 80~84.
-
Cui Jianfeng. and Wu Xiaohong. 2011. An experimental investigation on lead isotopic fractionation during metallurgical processes. Archaeometry, 53(1): 205~214.
-
Duan Yu. 2007#. Sanxingdui Civilization and the Southern Silk Road. Sanxingdui Research Series II. Beijing: Cultural Relics Press.
-
Duan Yu. 2009#. Source of sea shells and ivory in southwest China. Studies on relations between China and neighboring countries. In: Proceedings of the Conference of the Chinese Society for the History of Sino—Foreign Relations, 50~65.
-
Fan Xiaopan, Mu Di, Yi Jun, Wang Hongmin. and Luo Wugan. 2016. Sourcing copper ores for production of bronzes excavated at Shuangyantang, a Western Zhou (1046~771 bc) site in Chongqing (Southwest China): evidence from lead isotope analysis. Archaeological and Anthropological Sciences, 8(1), 197~204.
-
Gale N H. and Stos G Z. 2000. Lead isotope analyses applied to provenance studies. In: Ciliberto E. and Apot G. eds, Moderm analytical methods in art and archaeology, 525~528.
-
Gale N H. and Stos-Gale Z A. 1982. Bronze Age copper sources in the Mediterranean: a new approach. Science, 216(4541): 11~19.
-
Han Binghua. 2010#. East Zhou cemetery of Changzhi Watershed. Beijing: Cultural Relics Press.
-
Hou Lin. 2013&. Proterozoic Fe—Cu—Au—REE metallogenic system of “Dongchuan” Group in central Yunnan province——A case study on the Yinachang deposit. Supervisor: Deng Jun. Beijing: A Dissertation Submitted to China University of Geosciences for Doctoral Degree.
-
Hsu Y K. and Sabatini B J. 2019. A geochemical characterization of lead ores in China: An isotope database for provenancing archaeological materials. PLoS One, 14(4): e0215973. doi: 10. 1371/journal. pone. 0215973.
-
Huang Congjun. 2019&. Geology and Geochemistry Study on the Lala IOCG Deposit, Southwestern Margin of Yangtze Block. Supervisor: Li Zeqin. Chengdu: A Dissertation Submitted to Chengdu University of Technology for Doctoral Degree.
-
Hubei Institute of Cultural Relics and Archaeology. 2001#. Pan Lung Cheng: Report of archaeological excavations 1963~1994. Beijing: Cultural Relics Press.
-
Institute of Archaeology of Sichuan Province. 1999#. Excavation of the Sacrificial Pitsof Sanxingdui. Beijing: Cultural Relics Publishing House.
-
Jiangxi Provincial Institute of Cultural Relics and Archaeology, Jiangxi Provincial Museum, Xingan County Museum. 1997#. Xingan Shang Dynasty tomb. Cultural Relics Press.
-
Jin Zhengyao, Chang Xiangyang, Zhang Qin, Tang Fei. 2004#. A study on the bronze ware of Jinsha Site in Chengdu. Cultural Relics, (7): 76~88.
-
Jin Zhengyao, Chase, W. T. , Pingwei liangguang, Peng Shifan, Mayuan Jiufu, Sanlun Jialiu, Zhan Kaixun. 1994#. Study on Pb isotope ratio of bronzes of Xingan Oceanian Shang Tomb in Jiangxi Province. Archaeology, 8(8): 744~747+735.
-
Jin Zhengyao, Liu Ruiliang, Rawson J, Pollard A M. 2017. Revisiting lead isotope data in Shang and Western Zhou bronzes. Antiquity, 91(360): 1574~1587.
-
Jin Zhengyao, Mayuan Jiufu, Sanlun Jialiu, Pingwei Liangguang, Zhao Dianzeng. 1995#. Study on Pb isotope ratio of bronzes in Sanxingdui Relic Pit of Guanghan. Cultural Relics, (2): 80~85.
-
Jin Zhengyao, Zheng G, Hirao Y. and Hayakawa Y. 2001. 初期中國青銅器の鉛同位素比, In Hirao Y, Enomoto J. and Takahama H. eds. , 古代東アジア青銅の流通. 鶴山堂, Tyoko.
-
Jin Zhengyao. 1990#. Mineral sources of bronze in the Central Plains of Late Shang Dynasty.In: Du Shiran, Proceedings of the Third International Symposium on the History of Chinese Science, Science Press: Beijing.
-
Jin Zhengyao. 2004#. On the high radioactive lead in the bronze ware of Shang Dynasty. Archaeological collection, 2004, (2): 269~278.
-
Jin Zhengyao. 2008#. Archaeology of lead isotopes in China. Hefei: University of Science and Technology of China Press.
-
Killick D J, Stephens J A, Fenn T R. 2020. Geological constraints on the use of lead isotopes for provenance in archaeometallurgy. Archaeometry, 62: 86~105.
-
Leach D L, Sangster D F, Kelley K D, Large R R, Garven G, Allen C R, Gutzmer J, Walters S. 2005. Sediment-hosted lead—zinc deposits: A global perspective. Economic Geology 100th Anniversary Volume: 561–607.
-
Li Haichao. 2016&. Study on mining sites of Shang and Zhou Dynasties in the middle and lower reaches of Yangtze River. Archaeology, (10), 81~91.
-
Li Yanxiang, Li Lihui, Dong Lijun. 2015&. Lead Isotope Analysis of Bronze from West Cemetery of Jinggouzi Site of Linxi of Inner Mongolia. Nonferrous Metals Engineering, 5(4): 94~96.
-
Li Yanxiang. 1993#. Preliminary investigation and research on ancient copper mining and smelting sites in Zhongtiao Mountain. Journal of Chinese Antiquity, (2): 64~67.
-
Liu Jianyu. 2015&. Scientific Study on the Shang and Zhou Periods Bronzes unearthed from Northern Shaanxi: Cultural connections between loess highland and Anyang in the late Shang dynasty. Supervisor: Mei Jianjun. A Dissertation Submitted to University of Science and Technology Beijing for Doctoral Degree. .
-
Liu Ruiliang, Mark Pollard, Jessica Rosen, Tang Xiaojia, Zhang Changping. 2017&. Commonality, Difference and Interpretation: Using the Oxford research system to explore the metal circulation between the early trading Zhengzhou and Panlong City. Jianghan archaeology, (3): 119~129.
-
Liu Ruiliang, Pollard A M, Lv Feiya, Huan Limin, Zhang Shanjia, Ma Minmin. 2021. Two Sides of the Same Coin: A Combination of Archaeometallurgy and Environmental Archaeology to Re-Examine the Hypothesis of Yunnan as the Source of Highly Radiogenic Lead in Early Dynastic China. Frontiers in Earth Science, doi: 10. 3389/feart. 2021. 662172.
-
Liu Ruiliang, Rawson J, Pollard A M. 2018. Beyond ritual bronzes: identifying multiple sources of highly radiogenic lead across Chinese history. Scientific Reports, 8(1): 1~7.
-
Liu Ruiliang. 2016. Capturing changes: applying the Oxford system to further understand the movement of metal in Shang China. A Dissertation Submitted to University of Oxford for Doctoral Degree.
-
Liu Ruiliang. , Pollard A M, Rawson J, Tang Xiaojia, Bray P, Zhang, Changping. 2019. Panlongcheng, Zhengzhou and the movement of metal in early bronze age china. Journal of World Prehistory, 32(4): 393~428.
-
Liu S, Chen K L, Rehren T, Mei J J, Chen J L, Liu Y, Killick D. 2018. Did China import metals from Africa in the Bronze Age?. Archaeometry, 60(1): 105~117.
-
Liu Xuan, Yang Kuifeng, Rusk B, Qiu Zhengjie, Hu Fangfang, Pironon J. 2019. Copper Sulfide Remobilization and Mineralization during Paleoproterozoic Retrograde Metamorphism in the Tongkuangyu Copper Deposit, North China Craton. Minerals, 9(7): 443
-
Ma Jiangbo, Jin Zhengyao, Tian Jianhua, Chen Dean. 2012#. Study on alloy composition and metallography of Sanxingdui Copper Ware. Sichuan Cultural Relics, (2): 90~96.
-
Mark Pollard, Peter Bry, Peter Homer, Xu Yougang, Liu Ruiliang, Jessica Rosen. 2017&. The application of Oxford Research System in the study of ancient Chinese bronzes. Archaeology, (1): 95~106.
-
McGill R A R, Budd P, Scaife B, Lythgoe P, Pollard A M, Haggerty R. and Young S M M. 1999. The investigation and archaeological applications of anthropogenic heavy metal isotope fractionation. BAR INTERNATIONAL SERIES, 792: 258~261.
-
Melheim L, Grandin L, Persson P O, Billström K, Stos-Gale Z, Ling J, Williams A, Angelini I, Canovaro C, Hjärthner-Holdar C, Kristiansen K. 2018. Moving metals III: Possible origins for copper in Bronze Age Denmark based on lead isotopes and geochemistry. Journal of Archaeological Science, 96: 85~105.
-
Mu Di, Song Guoding, Cui Benxin, Wang Hongmin, Wang Wei, Luo Wugan. 2014. Provenance study on Chinese bronze artefacts of E in the Zhou Dynasty by lead isotope analysis. Journal of Archaeological Science, 52: 515~523.
-
Peng Zicheng, Liu Yonggang, Liu Taizhong, Hua Jueming. 1999#. A Preliminary study on the sources of Shang Bronzes and some copper and lead minerals in Jiangxi—Hubei—Henan area. Studies in the History of Natural Science, 18(3): 241~249.
-
Peng Zicheng, Sun Weidong, Huang Yunlan, Zhang Gong, Liu Shizhong, Lu Benshan. 1997#. A preliminary study on the ancient mineral whereabouts in Jiangxi—Hubei—Anhui areas. Archaeology, (7): 53~67.
-
Pollard A M, Bray P, Hommel P, Hsu Y K, Liu Ruiliang, Rawson J. 2017. Bronze Age metal circulation in China. Antiquity, 91(357): 674~687.
-
Pollard A M, Bray P, Hommel P, Hsu Y K, Liu Ruiliang, Rawson J. 2017. Bronze age metal circulation in china. Antiquity, 91(357): 674~687.
-
Pollard A M. and Bray P J. 2014. A New Method for Combining Lead Isotope and Lead Abundance Data to Characterize Archaeological Copper Alloys. Archaeometry, 57(6): 996~1008.
-
Powell W, Mathur R, Bankoff H A, Mason A, Bulatovic A, Filipovic V, Godfrey L. 2017. Digging deeper: insights into metallurgical transitions in European prehistory through copper isotopes. Journal of Archaeological Science, 88: 37~46.
-
Qiu Dengcheng. 2013#. The ancient Shu Sanxingdui Civilization: The opening of the Silk Road in the South from the archaeological discovery of Sanxingdui Site. Chinese Culture Forum, (4): 37~44.
-
Shangzhou Formation, Department of Archaeology, Peking University. 2000#. Tianma—Qu Village (1980~1989). Beijing: Science Press.
-
Shao Anding, Mei Jianjun, Yang Junchang, Chen Kunlong, Sun Weigang. 2015&. Preliminary study on the repairing technology and related problems of bronze waterfowl unearthed in the mausoleum of Qin Shi Emperor Archaeology, (S1), 96~104.
-
Shi Jinsong. 2020&. On Sanxingdui—Jinsha Culture. Archaeology and Antiquities, (5): 65~72.
-
Sichuan Institute of Cultural Relics and Archaeology, National Centre for Archaeology, Joint Joint Laboratory of Archaeochronology, School of Archaeology and Museology, Peking University. 2021&. 14C dating of the fourth sacrificial pit at Sanxingdui Site, Guanghan, Sichuan. Sichuan Cultural Relics, (2): 116~120.
-
Sun Weidong, Zhang Lipeng, Guo Jia, Li Congying, Jiang Yuhang, Zartman R E, Zhang Zhaofeng. 2016. Origin of the mysterious Yin—Shang bronzes in China indicated by lead isotopes. Scientific Reports, 6(1): 1~9.
-
Sun Weidong, Zhang Lipeng, Guo Jia, Li Congying, Jiang Yuhang, Zhang Zhaofeng. 2018. Comment on ‘Did China Import Metals from Africa in the Bronze Age?’. Archaeometry, 60(5): 1036~1039.
-
Sun Yan, Shu Xiaolan, Xiao Yuanfu. 2006&. Isotopic geochemistry of the Lala copper deposit, Sichuan Province, China and its metallogenetic significance. GEOCHIMICA, 35(5): 553~559.
-
Tian Jianhua, Jin Zhengyao, Li Ruiliang, Yan Lifeng, Cui Jianyong. 2012&. An Elemental and Lead-isotopic Study on Bronze Helmets from Royal Tomb No. 1004 in Yin Ruins. Jianghan Archaeology, (1): 92~99.
-
Tian Jianhua. 2013&. Study on Erligang Period bronze ware unearthed in Zhengzhou area. Supervisor: Jin Zhengyao. Hefei: A Dissertation Submitted to University of Science and Technology of China for Doctoral Degree.
-
Wan Fubin, Guo Lixin, Li Xiaocen, Zhang Yuzhong. 1998#. Investigation of lead isotope in Ancient Yelang copper Kettle. Journal of Guangxi University for Nationalities (Natural Science Edition), 4(2): 53~56.
-
Wang Dan. 2013&. Stable isotope geochemistry research of LaLa Iron Oxide—Cu—Au—U (IOCG)Deposit. Supervisor: Li Zeqin. Chengdu: A Dissertation Submitted to Chengdu University of Technology for Master's Degree.
-
Wang Jiangzhen, Li Zeqin, Liu Jiajun, Li Chaoyang. 2004&. Multitype and typomorphic characteristics of Molybdenite in Lala iron oxide—Cu—Au—Mo—Co—rare earth deposit. Collection of geological prospecting papers, 19(2): 96~99.
-
Wang Xiaoting, Luo Wugan, Yang Yingdong, Chen Dian, Du Jing, Tang Xiang. 2020. Preliminary Discussion on the Highly Radiogenic Lead in Unalloyed Copper Artifacts of the Eastern Zhou Dynasty: Starting from the Huili Copper Spearheads. Metals, 10(9): 1252.
-
Wang Yanjie, Wei Guofeng, Li Qiang, Zheng Xiaoping, Wang Duanchun. 2021. Provenance of Zhou Dynasty bronze vessels unearthed from Zongyang County, Anhui Province, China: determined by lead isotopes and trace elements. Heritage Science, 9(1): 1~12.
-
Wei Guofeng, Qin Yi, Wang Changsui, Li Qinglin, Zhang Aibing, Gong Xicheng. 2006&. Comparative studies on Pb isotope ratios of corrosion rinds and metal cores of bronze vessels. Journal of University of Science and Technology of China, 36(7): 771~774.
-
Wei Yangli. 2015&. The study on bronzes in Dayangzhou town, Xingan county. Supervisor: Chen Xiaosan. Taiyuan: A Dissertation Submitted to Shanxi University for Master's Degree.
-
Wen Guang. 1880b#. Ancient Chinese bronze and tin mines (continued). Geological Review, 26(5): 420~429.
-
Wen Guang. 1980a#. Ancient Chinese bronze and tin mines. Geological Review, 26(4): 331~340.
-
Wen Juan, ling Xue, Zhao Congcang, Zhang Zhongyun, Yao Zhengquan, Zong Chunlei, Yuan Honglin, Wu Zhong. 2013&. Primary analysis on lead isotope characteristics in Chu State bronzes in East-Zhou period unearthed from Liu'an District, Anhui Province, Journal of Northwest University (Natural Science Edition), 43(6), 1016~1020.
-
Wilkinson J J. 2014. Sediment-Hosted Zinc–Lead Mineralization: Processes and Perspectives: Treatise on geochemistry, second edition. Oxford, Elsevier, 425~432.
-
Xu Wenxin, Wang Mingli, Li Heng, Guo Xinsheng. 2005&. Isotope Geochemistry of Copper Deposits in the Zhongtiao Mountain. Acta Geologica Sinica, 26(Supplement): 130~133.
-
Yang Jv. 2014&. Scientific Study on the Late Bronze Age Bronzes from Chifeng Region. Supervisor: Li Yanxiang. Beijing: A Dissertation Submitted to University of Science and Technology Beijing for Doctoral Degree.
-
Ying Qin, Wei Guofeng, Huang Qiao. 2020. The provenance of Yin—Shang bronzes with highly radiogenic lead isotopes. Archaeological and Anthropological Sciences, 12: 99.
-
Yu Yongbin, Chen Jianli, Mei Jianjun, Chen Kunlong, Chang Huaiying, Huang Fengchun. 2016&. Some problems on the study of Pb isotope ratio in Yejiashan Bronzes. Southern Cultural Relics, (1), 94~102.
-
Yu Yongbin. 2015&. Scientific Study on the Bronzes Unearthed from the Western Zhou Dynasty Cemetery of Yejiashan, Suizhou County, Hubei Province. Supervisor: Mei Jianjun. A Dissertation Submitted to University of Science and Technology Beijing for Doctoral Degree.
-
Zhang Hongfei. and Gao Shan. 2013#. Geochemistry. Geological Publishing House, Beijing.
-
Zhang Ji and Chen Jianli. 2017&. Preliminary study on Pb isotope ratio of bronzes in Eastern Zhou Dynasty. Southern Cultural Relics, (2), 94~102.
-
Zhangsun Y Z, Jin Z Y, Feng F Z, Tian J H, Wang H G, Zhao C C, Huang F, Wu X T. 2021. Revisiting the lead isotopic compositions of the Shang bronzes at Hanzhong and the new hypothesis of Qinling as the source of highly radiogenic lead. Archaeometry, 63: 122~141.
-
Zhangsun Y Z, Liu R, Jin Z Y, Pollard A M, Lu X, Bray P, Fan A C. and Huang F. 2017. Lead Isotope Analyses Revealed the Key Role of Chang'an in the Mirror Production and Distribution Network During the Han Dynasty. Archaeometry, 59(4): 685~713.
-
Zhao Congcang. 2006#. Chengyang Bronze Ware. Beijing: Science Press.
-
Zhou Qing, Jiang Yaohui, Liao Shiyong, Zhao Peng, Jin Guodong, Liu Zheng, Jia Ruya, Xu Shenmou. 2013&. Constraint of Pb Isotope on Ore-forming Source Origin of the Dexing Copper Deposit, Acta Geologica Sinica, 87(8): 1124~1135.
-
Zhu Bingquan and Chang Xiangyang. 2002&. Comment on the discovery of "Lead of high radioactive origin in Shang Bronzes". Ancient Civilizations (Catalogue), 1: 278~283.
-
Zhu Ligang, Liu Jiajun, Bagas L, Zhai Degao, Meng Guangzhi, Verrallg M. 2020. New insights into the genesis of IOCG deposits: From a case study of the Yinachang deposit in SW China. Ore Geology Reviews, 124: 103664.
-
Zhu Ligang. 2019&. The ore genesis and geodynamic setting of the Fe—Cu—Au—U—REE deposits in the Wuding region, Yunnan Province, SW China. Supervisor: Jiu Jiajun. Beijing: A Dissertation Submitted to China University of Geosciences for Doctoral Degree
-
Zhu Zhimin. 2001&. Lala Iron Oxide Copper Gold Deposit: Metallogenic Epoch and Metal Sources. Supervisor: Zheng Rongcai. Chengdu: A Dissertation Submitted to Chengdu University of Technology for Doctoral Degree.
-
摘要
含高放射性成因铅是商代青铜器的重要特征,但对其矿料来源的讨论众说纷纭,莫衷一是。笔者等收集了河南郑州商城、山西垣曲商城、湖北盘龙城、四川三星堆、陕西汉中(地区)、江西新干大洋洲、河南安阳殷墟和陕北(地区)覆盖整个商代的8个遗址/地区700件出土青铜器样品的铅同位素组成数据,并与全国606个Pb—Zn、Cu、Sn多金属矿床4025件矿石样品的铅同位素组成数据进行比对分析,探讨商代青铜器的矿料来源和古蜀国在矿业贸易中的地位。研究表明:① 河南郑州商城、湖北盘龙城、陕西汉中、山西垣曲商城、河南安阳殷墟和陕北6个遗址/地区的青铜器很可能采用了含异常铅和正常铅的两类铅料;而四川三星堆与江西新干大洋洲出土的青铜器则主要采用了含异常铅的铅料。四川三星堆、陕西汉中和陕北3个遗址/地区出土的青铜器很可能采用了含异常铅和正常铅的两类铜料;而河南郑州商城、湖北盘龙城、山西垣曲商城、河南安阳殷墟与江西新干大洋洲出土的青铜器采用的铜料很可能以含正常铅为主,但不排除采用含异常铅铜料的可能性。② 对比全国Cu、Pb—Zn、Sn及多金属矿床铅同位素资料,商代遗址出土的青铜器中的高放射性成因铅的铅料,最有可能来自四川云南交界处的MVT型Pb—Zn矿床;而含高放射性成因铅的铜料,则最可能来自四川云南交界处的IOCG型Cu矿和山西中条山铜矿峪Cu矿床。③ 综合三星堆遗址得天独厚的地理位置,三星堆青铜文明的兴衰时间及其与其他文化交流与贸易往来的路径,推测古蜀三星堆很可能是商代含高放射性成因铅的铅料及部分铜料贸易的大型中转地,商代含高放射性成因铅的青铜器的兴盛与衰落则很可能与三星堆青铜文明的开启与消亡有关。
Abstract
Objectives and Methods: The Shang Dynasty bronze is characterized by the occurrence of high radioactive lead. However, the source of mineral materials remains poorly understood (controversial). In this contribution, 700 Pb isotope data of unearthed bronze from 8 ruins covering the whole Shang Dynasty (e.g., Zhengzhou Shang City in Henan, Yuanqu Shang City in Shanxi, Panlongcheng in Hubei, Sanxingdui in Sichuan, Hanzhong in Shanxi, Xingandayangzhou in Jiangxi, Yinxu in Henan and Nothern Shaanxi area) were collected and compared with those of 4025 ores from 606 Pb—Zn, Cu, and Sn polymetallic deposits in China. By this contribution, we tried to constarin the mineral material source of Shang Dynasty bronze and the status of Ancient Shu Country in the mining trade.
Results and Conclusion:
(1) The bronze artifacts unearthed from 6 sites/regions are likely to use two kinds of lead materials containing both normal and abnormal lead isotope compositions, including Shangcheng in Zhengzhou city (Henan Province), Panlongcheng (Hubei Province), Hanzhong (Shanxi Province), Shangcheng in Yuanqu (Shanxi Province), Yinxu in Anyang (Henan Province) and Northern Shaanxi province. However, the bronze artifacts unearthed from the Sanxingdui site in Sichuan Province and Xingandayangzhou site in Jiangxi Province mainly used the lead materials containing abnormal lead isotopic compositions. By contrast, the bronze artifacts unearthed from Sanxingdui (Sichuan Province), Hanzhong (Shanxi Province), and Northern Shaanxi province may use two kinds of copper mineral materials consisting of both normal and abnormal lead isotope compositions. In contrast, the bronze artifacts unearthed from Shangcheng in Zhengzhou (Henan Province), Panlongcheng (Hubei Province), Shangcheng in Yuanqu (Shanxi Province), Yinxu in Anyang (Henan Province) and Xingandayangzhou (Jiangxi Province) probably use copper mineral materials mainly containing normal Pb isotopic compositions, whereas copper materials containing abnormal Pb cannot be excluded.
(2) Comparing the Pb isotopic compositions of ores from the Cu, Pb—Zn, Sn and polymetallic deposits in China, the lead materials containing high-radioactive Pb isotopes for unearthed bronze are most likely sourced from the Mississippi Valley Type (MVT) Pb—Zn deposits in the junction between Sichuan and Yunan Provinces. However, the copper materials containing high-radioactive Pb isotopic compositions are more likely sourced from Iron-oxide copper gold (IOCG) deposits in the junction between the Sichuan and Yunan Provinces and the Tongkuangyu Cu deposit in Zhongtiaoshan, Shanxi Province.
(3) Considering the unique geographical location of Sanxingdui site, the rise and fall time of Sanxingdui bronze civilization and its path of cultural exchange and trade between Sanxingdui and other civilizations, we proposed that the Ancient Sanxingdui Civilization may represent a large transit place are for the trade of lead and some copper materials containing high-radioactive Pb isotopic compositions in the Shang Dynasty. The prosperity and decline of bronze artifacts containing high-radioactive lead in Shang Dynasty may be closely related to the opening and extinction of Sanxingdui bronze civilization.