-
Adakite最早是由美国学者Defant和Drumoond(1990)提出,中国涉及Adakite的报道最早于2000年发表(王强等,2000;王焰等,2000);有学者将其音译为埃达克岩。杨建超等(2007)认为其不符合中文岩石名称译名习惯,即,岩石名称一般不用音译,如奥长环斑花岗岩(rapakivite)、钾玄岩(shoshonite),建议依一著名岩石学家的意见,称其为高锶低钇中酸性岩。Adakite是一种独特的岩石类型,主要根据地球化学标志定义(张旗等,2020),因其具有不同的特征,来自不同的源岩,产于不同的环境,具有不同的成因(张旗等,2004),且与Cu-Au等金属矿床也存在密切的时空与成因联系(张旗等,2002,2004;王强等,2003;刘红涛等,2004),因而备受学者的关注。邓晋福等(2015a726~727)特别强调,Adakite不是一种具体岩石名称,而是岩石组合的概念。
-
东昆仑造山带是青藏高原北部重要的早古生代—早中生代构造带,具有多旋回碰撞造山作用的特征(殷鸿福等,1997;姜春发,2004;Wu Chen et al.,2016);该造山带形成的动力学机制主要与原特提斯和古特提斯洋的发展演化密切相关(吴福元等,2019;Wu Chen et al.,2019)。随着研究的深入,学者们在东昆仑陆续发现和报道了高锶低钇中酸性岩,形成时代大多数以晚三叠世为主(230~213 Ma),分布于昆中断裂两侧的卡而却卡、小圆山、五龙沟、哈日扎、巴隆、益克郭勒、洪水川、小南川、日龙沟等地(图1;詹发余等,2007;陈国超等,2013,2019;Ding Qingfeng et al.,2014;高永宝等,2014;吴中楠等,2015;孔会磊等,2015;王小龙等,2017;黄啸坤等,2021;郑振华等,2022),主体在东昆南结合带和北昆仑岩浆弧东段,在北昆仑岩浆弧西段和祁漫塔格构造带的报道则相对较少。
-
图1 东昆仑地质简图(据王秉璋等,2021修改)
-
Fig.1 Geological sketch map of the Eastern Kunlun area (modifed from Wang Binzhang et al., 2021&)
-
笔者等在东昆仑拉陵高里河沟脑发现了斑岩型铜钼矿,研究发现,该区域发育的花岗闪长斑岩与铜钼矿关系密切。笔者等对拉陵高里河沟脑花岗闪长斑岩开展了系统的研究工作,发现这套花岗闪长斑岩是形成于晚三叠世早期的高锶低钇中酸性岩;并报道了花岗闪长斑岩的岩石地球化学特征、锆石U-Pb年龄和Lu-Hf同位素资料,通过分析其源区特征,探讨其岩石成因及成岩构造背景,为古特提斯洋俯冲碰撞造山过程提供重要依据,也为该地区下一步找矿工作提供进一步的基础资料支撑。
-
1 地质背景及岩石学特征
-
1.1 地质背景
-
北昆仑岩浆弧是东昆仑造山带的重要组成单元,以东昆北断裂和东昆中断裂为界,北部与祁漫塔格构造带相邻,南部与南昆仑结合带相接(潘桂棠等,2009);是一个多旋回的复合岩浆弧,其中三叠纪的花岗岩最为发育(姜春发,2004;莫宣学等,2006)(图1)。北昆仑岩浆弧内加里东期岩浆活动成因类型复杂,包括中—晚奥陶世俯冲期岩浆杂岩,早志留世同碰撞岩浆杂岩及早泥盆世后碰撞岩浆杂岩(Wu Chen et al.,2022);华力西期的花岗岩,除早石炭世和晚泥盆世后造山花岗岩表示加里东期挤压造山结束,进入一个新的岩浆构造旋回外,其余大部分是与古特提斯向北俯冲相关的弧花岗岩(Yin An et al.,2016);印支期由于古特提斯洋持续向北俯冲,仍以弧花岗岩为主,燕山期后造山花岗岩的出现,表明北昆仑岩浆弧结束发展(祁生胜,2013),进入以伸展垮塌为主要特征的构造岩浆旋回(吴福元等,2019;Wu Chen et al.,2016)。
-
研究区位于北昆仑岩浆弧乌图美仁乡南部的拉陵高里河沟脑。区内出露地层主要为古元古界白沙河岩组,呈断块状(残留体)在研究区南部以北西—南东走向展布,岩石类型有含红柱矽线堇青黑云斜长片麻岩、黑云角闪片麻岩、黑云二长片麻岩、斜长角闪岩及镁橄榄石大理岩等,为角闪岩相变质地层,该地层构成了昆北岩浆弧的变质基底。区内侵入岩极为发育,成岩时代以中泥盆世和中—晚三叠世为主;泥盆纪岩体主要在研究区西部出露,为一套辉石岩、辉长岩组成的基性岩体,被晚三叠世花岗闪长岩、正长花岗岩超动侵入。中三叠世以二长花岗闪长岩为主体,呈岩基状产出,学者称其为开木棋岩基(王秉璋等,2021),晚三叠世则发育大量岩株状产出的花岗闪长岩、正长花岗岩(图2);本次研究的花岗闪长斑岩呈脉状侵位于中泥盆世辉长岩和晚三叠世花岗闪长岩、正长花岗岩中(图3a、b)。
-
研究区主要的矿化类型包括辉钼矿、黄铜矿、黄铁矿,矿体主要赋存于花岗闪长岩、石英脉和花岗闪长斑岩中(图3d、e),区内见有强烈的钾化、孔雀石化(图3c)、青磐岩化等一系列斑岩型矿床的特征。在钻孔中花岗闪长斑岩出露的地方,含矿石英脉密度成倍于花岗闪长岩围岩,表明了石英脉与矿床金属分布之间的密切联系,进一步提供斑岩型矿床的证据。
-
1.2 岩脉地质及岩相学特征
-
区内共发育花岗闪长斑岩脉9条,脉长70~100 m,宽约30~50 m,岩石黄铁绢英岩化较发育,伴生孔雀石化及黄铜矿化(图3c、d、e),局部青磐岩化发育。花岗闪长斑岩呈浅灰色,具明显的斑状结构(图3d),块状构造。斑晶矿物以斜长石和石英为主,含少量普通角闪石、黑云母(图3g、h),大小多数在(0.20×0.32)~(1.76×2.80)mm2间。斜长石斑晶呈半自形板状,具环带结构,受轻微的绢云母化、黏土化蚀变,为中长石,含量约32%;石英斑晶呈他形粒状,具有熔蚀现象,边缘呈港湾状,含量约8%;普通角闪石呈半自形柱状、他形粒状,受较强的绿泥石化、绿帘石化和黑云母化蚀变,含量约5%;黑云母片多呈集合体不均匀地分布,受轻微的绿泥石化蚀变,含量约3%。花岗闪长斑岩的基质具显微隐晶—微粒状结构,矿物成分以斜长石、石英和钾长石占绝大多数,含少量角闪石、黑云母和副矿物。局部可见钾长石和石英交生的似文象结构或隐球粒结构。副矿物为黄铜矿(图3f)、磁铁矿、磷灰石和榍石等,含量约1%~3%。
-
图2 东昆仑拉陵高里河沟脑地区地质略图
-
Fig.2 Geological sketch map of the Gounao area of Lalinggaoli River, Eastern Kunlun Mountains
-
图3 东昆仑拉陵高里河沟脑地区花岗闪长斑岩野外照片和显微结构特征
-
Fig.3 Field pictures and microstructures of the granodiorite porphyry in Gounao area of Lalinggaoli River, Eastern Kunlun Mountains
-
(a)、(b)野外产出特征;(c)孔雀石化蚀变;(d)、(e)岩芯中的黄铜矿特征;(f)黄铜矿镜下特征(光片);(g)、(h)显微镜下特征(薄片)γδ—花岗闪长岩; γδπ—花岗闪长斑岩; Cp—黄铜矿; Sp—榍石; Qz—石英; Pl—斜长石; Hb—角闪石; Bi—黑云母
-
(a) , (b) field output characteristics; (c) malachite alteration; (d) , (e) chalcopyrite characteristics in the core; (f) microscopic characteristics of chalcopyrite (reflected light sheet) ; (g) , (h) microscopic features (thin sheet) ; γδ—granodiorite; γδπ—granodiorite porphyry; Cp—chalcopyrite; Sp—sphene; Qz—quartz; Pl—plagioclase; Hb—amphibolite; Bi—biotite
-
2 样品采集及分析方法
-
用于样品测试分析的花岗闪长斑岩采于青海省东昆仑拉陵高里河沟脑地区,样品采自地表露头,岩石新鲜,无变形、无或弱蚀变且没有其他岩性混染,样品质量大于5 kg,可保证挑选出足够的锆石;地理坐标为E93°10.710′,N36°25.772′。用于各类测试分析的花岗闪长斑岩样品编号为GN16。
-
样品主、微量元素测试由国土资源部武汉矿产资源监督检测中心完成。主元素分析测试采用X荧光光谱法(XRF)完成,分析仪器为菲利普PW2440 型波长色散X-射线荧光光谱仪,相对误差<0.9%,稀土元素采用阳离子交换分离—电感耦合等离子体原子发射光谱法(ICP-AES),相对误差<4.8%,微量元素采用电感耦合等离子质谱法(ICP-MS),测试仪器采用美国热电公司X7电感耦合等离子质谱仪,相对误差<7.8%。
-
LA-ICP-MS锆石U-Pb测年和锆石原位Lu-Hf同位素分析均由北京燕都中实测试技术有限公司完成,U-Pb同位素定年中激光剥蚀系统为New Wave UP213,ICP-MS为布鲁克M90,锆石标准采用91500和Plesovice作为外标进行同位素分馏校正,剥蚀光斑直径25 μm;普通铅计算按Andersen(2002)的3D坐标法进行校正,样品的同位素比值和元素含量计算采用Skits和ICPMSDataCal软件处理,锆石的谐和曲线和加权平均年龄的计算采用Isoplot3.2等程序完成。锆石原位Lu-Hf同位素分析由美国热电Nepture-plus MC-ICP-MS与NewWave UP213激光烧蚀进样系统完成测试的,锆石剥蚀使用频率为8 Hz,能量为16J/cm2的激光剥蚀31 s,剥蚀光斑直径30 μm。由于锆石中的n(176Lu)/ n(177Hf)值极其低(一般小于0.002),n(176Lu)对n(176Hf)的同位素干扰可以忽略不计。每个测试点的n(173Yb)/n(172Yb)平均值用于计算Yb的分馏系数,然后再扣除n(176Yb)对n(176Hf)的同质异位素干扰。n(173Yb)/n(172Yb)的同位素比值为1.35274。
-
3 分析结果
-
3.1 锆石U-Pb年龄
-
花岗闪长斑岩(GN16)锆石测试数据列于表1。锆石多为无色、浅黄色,透明—半透明,自形程度较好,多为短柱—长柱状晶体,部分为粒状。锆石粒径长60~170 μm,宽50~100 μm,锆石阴极发光图像显示具有清晰的内部结构和典型岩浆成因的振荡环带(图4),具有明暗相间的条带结构。测试结果显示锆石Th和U含量变化较大(Th=44×10-6~489×10-6和U=143×10-6~755×10-6),Th/U值介于0.3~0.64之间,平均0.48>0.4,表明其属于岩浆成因锆石(闫义等,2003;吴元保等,2004),锆石年龄可以代表花岗闪长斑岩的结晶年龄。
-
本次共完成30个有效测试点,获得的206Pb/238U表面年龄值在219~273 Ma之间,其中18号测试点273 Ma的年龄可能代表了古特提斯洋俯冲增生阶段的岩浆活动;29号测试点243 Ma,与本区前人获得的辉钼矿241 Ma的Re-Os等时线年龄(郭晶,2017)接近,可能代表了该区辉钼矿的成矿从此开始;7、8号测试点年龄分别为219、223 Ma,与岩体主体侵位时代接近,可能是测试时造成的误差,不排除碎样时混入的其他样品的锆石。除去上述4个点,其余26个点年龄数据均较为集中地分布在谐和线上,表明这些锆石在形成后其U-Pb体系一致保持在封闭状态,基本没有Pb的丢失(图5a),锆石U-Pb年龄值是可信的;206Pb/238U加权平均年龄为231.1±1.2 Ma(MSWD=0.073)(图5b);郭晶(2017)在研究区花岗闪长岩中获得了237~235 Ma的锆石U-Pb年龄,结合花岗闪长斑岩侵入至花岗闪长岩的地质特征,表明本次获得的231 Ma的是可信的,代表花岗闪长斑岩的侵位时代为晚三叠世。
-
图4 东昆仑拉陵高里河沟脑地区花岗闪长斑岩锆石U-Pb年龄和阴极发光图
-
Fig.4 Cathodoluminescence images and zircon U-Pb ages ofgranodiorite porphyry in Gounao area of Lalinggaoli River, Eastern Kunlun Mountains
-
图5 东昆仑拉陵高里河沟脑地区花岗闪长斑岩锆石U-Pb年龄谐和图(a)和206Pb/238U加权平均年龄图(b)
-
Fig.5 Concordia diagram of zircons U-Pb dating age (a) and 206Pb/238U weighted mean age diagram (b) of the granodiorite porphyry in Gounao area of Laling Gaoli River, Eastern Kunlun Mountains
-
3.2 锆石Hf同位素
-
对花岗闪长斑岩进行了锆石原位Lu—Hf同位素分析,分析点均选择在已完成U-Pb测试并参与年龄计算的锆石上进行,测试结果列于表2。花岗闪长斑岩12颗岩浆锆石的n(176Hf)/ n(177Hf)值为0.282435~0.282548,平均值为0.282497,其εHf(t)值均为负值,介于-6.93~-2.94,平均值为-4.77,Hf同位素一阶段模式年龄(TDM1)分布范围为0.99~1.15 Ga,平均值为1.06 Ga,地壳模式年龄(TDMC)分布范围为1.45~1.70 Ga,平均值为1.57 Ga。
-
图6 东昆仑拉陵高里河沟脑花岗闪长斑岩TAS图解(a)(据Middlemost,1994),K2O—SiO2图解(b)(据Peccerillo et al.,1976)和A/NK—A/CNK图解(c)(据Maniar et al.,1989)
-
Fig.6 TAS Diagram (a) (after Middlemost, 1994) , K2O—SiO2 (b) (after Peccerillo et al., 1976) and A/NK—A/CNK (c) (after Maniar et al., 1989) for granodiorite porphyry in Gounao area of Lalinggaoli River, eastern Kunlun Mountains
-
1 —橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗闪长岩;6—花岗岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩;13—副长石辉长岩;14—副长石二长闪长岩;15—副长石二长正长岩;16—副长正长岩;17—副长深成岩;18—霓方钠岩/磷霞岩/粗白榴岩;Ir—Irvine分界线,上方为碱性,下方为亚碱性
-
1 —Olivine Gabbro; 2a—alkaline Gabbro; 2b—subalkaline Gabbro; 3—gabbro Diorite; 4—Diorite; 5—Granodiorite; 6—Granite; 7—Silica quartzite; 8—Monzogabbro; 9—Monzodiorite; 10—Monzonite; 11—Quartz monzonite; 12—Syenite; 13—Foid Gabbro; 14—Foid Monzodiorite; 15—Foid monzosyenite; 16—Foid Syenite; 17—Foidolite; 18—Tawite/Urtite/Coarse White Garnet; Ir—Irvine boundary, with alkaline above and subalkaline below
-
3.3 全岩地球化学特征
-
3.3.1 主量元素
-
拉陵高里河沟脑花岗闪长斑岩主量元素分析结果见表3;4件样品的SiO2含量为66.14%~66.94%,K2O为2.80%~2.90%,全碱(Na2O+K2O)为6.78%~7.10%,K2O/Na2O值为0.69~0.71;Al2O3含量为16.08%~16.38%;MgO为1.13%~1.19%,Mg#值为40.5~41.6。在TAS图解中(图6a)样品落入花岗闪长岩区和亚碱性系列中,里特曼指数σ为1.90~2.09,为钙碱性岩;在K2O—SiO2图解中(图6b;邓晋福等,2015b),样品落在钙碱性—高钾碱性系列过渡区域;样品的铝饱和指数A/NK和A/CNK值分别为1.64~1.68和1.01~1.03,在A/NK—A/CNK图解中(图6c),样品均落入过铝质范围内,属弱过铝质岩石。综上所述,拉陵高里河沟脑花岗闪长斑岩属于弱过铝质中—高钾钙碱性系列岩石。
-
3.3.2 稀土元素和微量元素
-
岩石稀土元素和微量元素分析结果见表3。样品的ΣREE为111.02×10-6~134.90×10-6,平均为124.97×10-6。轻重稀土元素有明显分馏(ΣLREE/ΣHREE=13.22~16.09),(La/Yb)N值为19.54~25.52。从球粒陨石标准化稀土配分曲线(图7a)来看,所有样品均表现为明显富集LREE的右倾型曲线,LREE内部分馏明显,HREE内部分馏较不明显;δEu为0.96~0.97,具弱负Eu异常。微量元素Sr含量为606.0×10-6~647.9×10-6,Y含量为9.62×10-6~10.66×10-6,Yb含量为0.86-6~0.92×10-6,Sr/Y为60.38~62.99,地球化学特征符合典型高锶低钇中酸性岩的地球化学特征(Defant et al.,1990;Zhang Qi et al.,2003;张旗等,2020)。在原始地幔标准化的微量元素蛛网图(图7b)上,表现出富集大离子亲石元素(LILE)K、Rb、Ba、Th,亏损高场强元素(HFSE)Nb、Ta、Ti等。
-
注:计算公式如下:
-
;
-
其中:
-
图7 东昆仑拉陵高里河沟脑地区花岗闪长斑岩球粒陨石标准化稀土元素配分图解(a)(据Boynton.1984)及微量元素原始地幔标准化素蛛网图解(b)(据Sun et al.,1989)
-
Fig.7 Chondrite-normalized REE distribution patterns (a) (after Boynton, 1984) and Primitive mantle-normalized trace element spider diagram (b) (after Sun et al., 1989) of granodiorite porphyry in Gounao area of Lalinggaoli River, eastern Kunlun Mountains
-
4 讨论
-
4.1 岩石类型
-
花岗岩成因类型目前分为I型、S型、M型及A型4种(Chappell et al.,2001),成因类型的判定需要矿物组成及岩石地球化学特征来综合考虑。矿物学研究认为角闪石和碱性暗色矿物可作为判断I型、S型和A型花岗岩的直接标志(邓晋福等,2015b;国显正等,2019)。
-
S型花岗岩中发育白云母、堇青石、石榴子石等特征矿物,且显示强过铝质特征,岩石铝饱和指数A/CNK>1.1,刚玉标准分子大于1%(Sylvester,2001)。M型花岗岩多呈偏铝质的斜长花岗岩小型侵入体与玄武岩伴生,属拉斑岩浆系列。A型花岗岩具有高硅、高钾、贫镁、全碱含量高、相对富钾、微量元素具有强烈的负Eu异常,Sr、P、Ti出现明显亏损等特征(张旗等,2012;吴福元等,2015)。本区花岗闪长斑岩中不含白云母、堇青石和石榴子石等矿物,A/NCK=1.01~1.03,属弱过铝质岩石,且CIPW计算结果刚玉标准分子小于1%(表3),不具有S型花岗岩类的特征。花岗闪长斑岩里特曼指数σ为1.90~2.09(<3.3),显示钙碱性花岗岩特征,且不与玄武岩伴生,不具有M型花岗岩类特征。花岗闪长斑岩SiO2含量为不高(66.14%~66.94%),全碱(Na2O+K2O)含量中等,K2O/Na2O值为0.69~0.71,显示相对富钠特征,δEu为0.96~0.97,在稀土蛛网图中(图7a)显示弱负Eu异常,且具有高Sr(606.0×10-6~647.9×10-6)特征;综合特征表明,排除A型花岗岩特征。而斑岩镜下出现角闪石(图3g),从矿物学角度显示了I型花岗岩的特征,在Na2O—K2O图解中,所有样品点均落在I型花岗岩区。由此判断,拉陵高里河沟脑花岗闪长斑岩应当为I型花岗岩。
-
Adakite(高锶低钇中酸性岩),它是一种独特的岩石类型,主要根据地球化学标志定义(张旗等,2020),在其原始定义中,特征如下:岩石类型为中酸性钙碱性岩石,缺失基性端员,主要矿物组合为斜长石+角闪石+黑云母+辉石+不透明矿物;SiO2≥56%,Al2O3≥15%,MgO<3%(很少>6%),具有低的重稀土元素和Y(Y≤18×10-6,Yb≤1.9×10-6),高Sr(>400×10-6),高场强元素与正常岛弧含量相似(王强等,2001)。本文花岗闪长斑岩整体具有高含量的SiO2(66.14%~66.94%)、Sr(606.0×10-6~647.9×10-6),较高的Sr/Y值(60.38~62.99)和La/Yb值(19.54~25.52),低含量的MgO(1.13%~1.19%)、Y(9.62×10-6~10.66×10-6)和Yb(0.86×10-6~0.92×10-6),以及较强的轻重稀土元素分异和不明显的Eu异常稀土元素特征,与高锶低钇中酸性岩(Adakite)地球化学特征相似。在(La/Yb)N—YbN图解(图8a)和Sr/Y—Y(图8b)中,所有样品点都落入Adakite区域;综上,研究区发育的花岗闪长斑岩属于高钾钙碱性高锶低钇中酸性岩。
-
4.2 岩石成因
-
前人通过研究提出了5种高锶低钇中酸性岩的成因类型:①俯冲洋壳的部分熔融(Defant et al.,1990;范玉须等,2019);②加厚下地壳部分熔融(张旗等,2001,2020);③拆沉下地壳部分熔融(Xu Jifeng et al.,2002);④基性岩浆的分离结晶(Castillo et al.,1999;徐通等,2016);⑤岩浆混合作用(Streck Martin et al.,2007)。
-
图8 东昆仑拉陵高里河沟脑花岗闪长斑岩YbN—(La/Yb)N图解(a)和Y—Sr/Y图解(b)(底图据Martin,1999)
-
Fig.8 Diagrams of YbN— (La/Yb) N (a) and Y—Sr/Y (b) (after Martin, 1999) for granodiorite porphyry in Gounao area of Lalinggaoli River, eastern Kunlun Mountains
-
俯冲洋壳部分熔融的高锶低钇中酸性岩通常具有低Si高Cr、Ni的特征,多为钙碱性或低钾拉斑岩石系列,且表现明显的贫钾富钠(K2O/Na2O<0.4)特征(张旗等,2001,2008)。本区花岗闪长斑岩为中—高钾钙碱性岩石系列,具有较高的SiO2含量(66.14%~66.94%)、K2O/Na2O值为0.69~0.71,故可排除其为俯冲洋壳部分熔融而来的可能。拆沉地壳部分熔融产生的熔体通常会与地幔楔发生反应导致MgO含量显著提高,具有较高的MgO含量和Mg#值,本区花岗闪长斑岩具有较低的MgO(1.13%~1.19%)和Mg#值(45.3~46.02),可以排除由拆沉地壳部分熔融而来的可能。
-
基性岩浆一般具有较高的MgO含量和低的Sr/Y值(2.8~53.5,平均22.8),基性岩浆分离结晶形成Adakite岩浆,Sr/Y值会随着Mg#值的降低而升高。角闪石的分离结晶会导致稀土元素中的Dy降低,从而导致Dy/Yb降低;斜长石的分离结晶会导致Sr和Eu出现明显的负异常,斜长石富集Sr而不富集Y,所以斜长石的分离结晶会导致Sr/Y值降低。本文花岗闪长斑岩MgO含量低(1.13%~1.19%),而Sr/Y值高(60.38~62.99);具弱的Eu(δEu=0.96~0.97)负异常和正Sr异常,数据显示(Dy/Yb)N和(La/Yb)N之间存在正相关关系,Sr/Y和Dy/Yb也不具有随着SiO2的增加而降低的趋势(张旗等,2021)。因此不具备基性岩浆分离结晶的成因特征。
-
岩浆混合作用会造成微量元素比值La/Yb、Rb/Sr和U/Th随SiO2含量增加和MgO含量的减少而增加(Zhang Hongfu et al.,2008)。拉陵高里河沟脑花岗闪长斑岩La/Yb、Rb/Sr和U/Th值没有呈现出随SiO2含量增加和MgO含量的减少而增加的现象。因此,拉陵高里河沟脑花岗闪长斑岩不是由岩浆混合作用而形成的。
-
研究区花岗闪长斑岩的Nb/Ta值在9.14~12.36之间,平均为10.75,与地幔值(17.39~17.78)相差较大,更接近地壳值(10.91)(Rudnick,1995),表明其主要起源于地壳物质的熔融,没有明显的幔源物质加入。另外,高Sm/Yb、Dy/Yb值(Sm/Yb>4、Dy/Yb>2)通常指示源区残留相中存在相当数量的石榴子石(Mamain et al.,2010),反映岩浆起源较深,存在加厚地壳(曾闰灵等,2021);拉陵高里河花岗斑岩中具有较高的Sm/Yb和Dy/Yb值(Sm/Yb=3.84~4.28,平均4.14;Dy/Yb=2.28~2.60,平均2.37),表明其起源于加厚地壳的部分熔融。在SiO2—Mg#图解中(图9b),研究区花岗闪长斑岩均落入增厚下地壳熔融的Adakite区域内。此外花岗斑岩的εHf(t)值均为负值,介于-6.93~-2.94,与区域上中三叠世侵入岩的特征一致,均落入东昆仑造山带基底(下地壳)区域内(图9a),Hf同位素地壳模式年龄(TDM2)为1.45~1.70 Ga,表明古元古代—中元古代地壳物质是主要源区。
-
拉陵高里河沟脑花岗闪长斑岩具有较低的HREE、Y和Yb,较高的Sr,暗示在地壳部分熔融过程中有角闪石和石榴子石的残留,而重稀土元素分馏程度较低、显示为相对平坦的HREE配分特征,说明在Adakite岩浆形成过程中角闪石较石榴子石占据主导作用(Moyen,2009;曾闰灵等,2021)。在Zr/Sm—Nb/Ta图解(图9c),样品点均落在角闪岩熔融的Adakite区;在Y—Sr/Y图解(图8b)中,样品点均落在含10%石榴子石角闪岩区域中,表明拉陵高里河沟脑花岗闪长斑岩源于含石榴子石角闪岩的部分熔融。
-
图9 东昆仑拉陵高里河沟脑花岗闪长斑岩t(Ma)—εHf(t)(a)(据Xiong Fuhao et al.,2016),SiO2—Mg#(b)(据Hou Zengqian et al.,2004)和Zr/Sm—Nb/Ta(c)(据Foley et al.,2002)图解
-
Fig.9 Diagrams of t (Ma) —εHf (t) (a) (after Xiong Fuhao et al., 2016) , SiO2—Mg# (b) (after Hou Zengqian et al., 2004) and Zr/Sm—Nb/Ta (c) (after Foley et al., 2002) for granodiorite porphyry in Gounao area of Lalinggaoli River, eastern Kunlun Mountains
-
综上所述,拉陵高里河沟脑花岗闪长斑岩起源于增厚的古老下地壳含石榴子石角闪岩的部分熔融。
-
4.3 地质意义
-
东昆仑地区晚古生代—早中生代古特提斯洋构造演化最强烈且最完整的一次造山旋回活动(莫宣学等,2007;马昌前等,2015)。该地区受古特提斯洋演化与俯冲相关的岩浆岩形成于270~240 Ma(熊富浩,2014;陈国超等,2019;李瑞保等,2018)之间,例如东昆仑中段俯冲环境下壳幔混合作用形成的诺木洪岩体及其中镁铁质包体形成年龄为263~261 Ma(Xiong Fuhao et al.,2012)。随后在240 Ma左右进入俯冲末期并开始局部的碰撞造山,形成了俯冲环境、碰撞环境和转换过渡环境下的花岗岩,前人报道了形成于俯冲环境的大灶火地区花岗岩(243 Ma)(菅坤坤等,2017)和朝火鹿陶勒盖花岗闪长岩(242 Ma)(陈功等,2016);形成于同碰撞环境下的哈森钾长花岗岩(239 Ma)(熊富浩,2014)、香日德钾长花岗岩(236 Ma)(何成等,2018);产出于俯冲向同碰撞转换过渡环境的五龙沟英云闪长岩(242 Ma)和东段的扎玛休玛正长花岗岩(240.3 Ma)(国显正等,2018,2019)。晚三叠世早期(约230 Ma)该地区开始进入后碰撞伸展阶段,形成了后碰撞环境花岗岩、高锶低钇中酸性岩及A型花岗岩等(Wu Chen et al.,2016;曾闰灵等,2021)。例如,后碰撞伸展环境下的东昆仑西段莫河下拉地区花岗斑岩成岩年龄为222 Ma(许庆林等,2014)、香日德斑状花岗闪长岩形成时代为 223 Ma(熊富浩,2014)。综合区域岩浆岩特征,东昆仑于二叠世开始古特提斯洋开始俯冲,中三叠世中—晚期,开始局部的陆(弧)陆碰撞,而自晚三叠世早期开始,进入陆—陆后碰撞及板内伸展阶段。
-
拉陵高里河沟脑花岗闪长斑岩锆石U-Pb年龄为(231.1±1.2),形成于晚三叠世早期。处于古特提斯洋俯冲转换为同碰撞构造背景。岩石相对富集大离子亲石元素、亏损高场强元素,具有俯冲环境下弧岩浆岩的特征,而岩石具有较低的MgO(1.13%~1.19%)和Mg#值(40.5~41.6)的特征,锆石Hf同位素指示岩浆主要源于地壳物质部分熔融、没有明显幔源物质的加入,与同碰撞花岗岩来源特征较为相似,表现出俯冲与同碰撞双重特性,与其俯冲向同碰撞转换的构造背景较吻合。在Nb—Y图解中(图10),拉陵高里河花岗斑岩投在火山弧与同碰撞花岗岩区域内。
-
综上所述,在晚三叠世早期东昆仑西段古特提斯洋闭合,该区域处于俯冲末期至局部碰撞的转换阶段,在高压条件下,由加厚下地壳部分熔融形成了拉陵高里河沟脑花岗闪长斑岩。
-
4.4 找矿意义
-
研究区花岗闪长斑岩来自于加厚下地壳的部分熔融,中三叠纪时期,东昆仑地区发生了强烈的造山作用,造山作用伴随着强烈的花岗质岩浆活动,昆北岩浆弧发生了同岩浆造山抬升剥蚀,岩浆侵位深度越来越浅。在这种条件下,侵位岩浆的周围环境温度越来越低,陆续侵位的岩基岩浆形成了多侵入体堆叠而成的大型复式岩基;当最后一批岩基岩浆尚未完全固结时,发生了致矿斑岩岩浆及其相关含矿流体的侵位。区域上前人的成岩成矿年龄研究成果,证实了区域上大规模成矿作用形成于开木棋岩基之后(郭晶,2017)。
-
Thieblemont等(1997)对世界上著名斑岩铜矿床和浅成热液金矿床的有关岩浆岩进行研究,认为在全球尺度上,Adakite岩浆发育区,也是斑岩铜矿或浅成热液金银的矿化集中区;在地区尺度上,许多重要的斑岩型和浅成热液性矿床与高锶低钇中酸性岩具有共生关系,而且高锶低钇中酸性岩常常就是容矿岩。矿床尺度上,如果既有Adakite又有(同期)非Adakite时,矿化则更倾向发育在Adakite中(刘红涛等,2004)。从2002年之后,中国科学家提出了Adakite与斑岩Cu-Mo-Au矿床的成因联系,并强调它们是斑岩Cu-Mo-Au矿床的成矿母岩(张旗等,2002,2004;侯增谦等,2003;王强等,2003)。通过不断的研究,有学者认为斑岩Cu-Mo-Au矿床的确可以产出在一个非俯冲的陆内或造山带环境,非俯冲的斑岩Cu-Mo-Au矿床,如冈底斯中新世斑岩成矿带,其成矿母岩浆都应该具有Adakite组成特征,这种母岩浆很可能是此类斑岩Cu-Mo-Au矿床形成的必要条件,暗示这些成矿岩浆应起源于下地壳Adakite深处(许继峰等,2014)。东昆仑造山带发现起源于下地壳深处的高锶低钇中酸性岩,且已经有成矿事实存在,是东昆仑寻找Cu-Mo-Au矿床的重要找矿方向,随着矿产勘查工作的进一步开展,有望成为东昆仑斑岩型Cu-Mo-Au矿产资源新基地。
-
图10 拉陵高里河沟脑地区花岗闪长斑岩 Y—Nb图解(据Pearce et al.,1984)
-
Fig.10 Diagrams of Y—Nb for granodiorite porphyry in Gounao area of Lalinggaoli River(after Pearce et al., 1984)
-
5 结论
-
(1)青海省东昆仑拉陵高里河沟脑地区花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄为231.1±1.2 Ma,属晚三叠世岩浆活动产物。
-
(2)岩石地球化学特征显示,岩石为弱过铝质中—高钾钙碱性岩石系列;相对富集大离子亲石元素K、Rb、Ba、Th,亏损Nb、Ta、Ti等元素;明显富集轻稀土元素,轻重稀土元素分馏较强,具有弱负Eu异常;具有强烈高Sr、低Y和Yb特征,Sr/Y为60.38~62.99,为高钾钙碱性高锶低钇中酸性岩。
-
(3)花岗闪长斑岩锆石εHf(t)值介于-6.93~-2.94,同位素二阶段模式年龄变化范围为 1703~1451 Ma,该岩石可能起源于增厚的古老下地壳含石榴子石角闪岩的部分熔融。
-
(4)晚三叠世中—早期,东昆仑处于洋壳俯冲末期至局部碰撞的转换阶段,拉陵高里河沟脑花岗闪长斑岩形成于在高压条件下的加厚下地壳部分熔融。
-
致谢:感谢审稿专家菅坤坤工程师对本文提出的宝贵修改意见!野外工作期间,得到青海省地质调查院“拉陵高里河沟脑铜钼矿普查”项目组成员和青藏高原第二次科学考察项目组所有技术人员的大力支持;薄片鉴定和岩相学研究得到了青海省地质矿产研究院岩矿鉴定中心金婷婷工程师、陈健工程师的指导与帮助,在此一并表示衷心感谢。
-
参考文献
-
陈功, 裴先治, 李佐臣, 李瑞保, 陈有炘, 刘成军, 陈国超, 王旭斌, 桑继镇, 杨森, 邓文兵. 2016. 东昆仑东段巴隆地区朝火鹿陶勒盖花岗闪长岩体锆石U-Pb年龄、地球化学及其地质意义. 地质通报, 35(12): 1990~2005.
-
陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘战庆, 陈有炘, 刘成军, 高景民, 魏方辉. 2013. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义. 地质学报, 87(2): 178~196.
-
陈国超, 裴先治, 李瑞保, 李佐臣, 刘成军, 陈有炘, 裴磊, 张永明, 王盟, 李小兵, 张玉. 2017. 东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义. 大地构造与成矿学, 41(6): 1097~1115.
-
陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘成军, 陈有炘, 王盟, 高峰, 李小兵. 2019. 东昆仑古特提斯后碰撞阶段伸展作用: 来自晚三叠世岩浆岩的证据. 地学前缘, 26(4): 191~208.
-
邓晋福, 冯艳芳, 狄永军, 刘翠, 肖庆辉, 苏尚国, 赵国春, 孟斐, 马帅, 姚图. 2015a. 岩浆弧火成岩构造组合与洋陆转换. 地质论评, 61(3): 473~484.
-
邓晋福, 刘翠, 冯艳芳, 肖庆辉, 狄永军, 苏尚国, 赵国春, 段培新, 戴蒙. 2015b. 关于火成岩常用图解的正确使用: 讨论与建议. 地质论评, 61(3): 717~734.
-
范玉须, 李廷栋, 肖庆辉, 程杨, 李岩, 郭灵俊, 罗鹏跃. 2019. 内蒙古西乌珠穆沁旗晚二叠世花岗岩的锆石U-Pb年龄、地球化学特征及其构造意义. 地质论评, 65(1): 248~266.
-
高永宝, 李文渊, 钱兵, 李侃, 李东生, 何书跃, 张照伟, 张江伟. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征. 岩石学报, 30(6): 1647~1665.
-
郭晶. 2017. 东昆仑祁漫塔格地区家琪斑岩Cu-Mo矿床的成因及定量靶区预测. 导师: 罗照华. 北京: 中国地质大学博士学位论文: 1~111.
-
国显正, 栗亚芝, 贾群子, 李金超, 孔会磊, 南卡俄吾. 2018. 东昆仑五龙沟金多金属矿集区晚二叠世—三叠纪岩浆岩年代学、地球化学及其构造意义. 岩石学报, 34(8): 2359~2379.
-
国显正, 贾群子, 李金超, 孔会磊, 姚学纲, 栗亚芝, 马忠元. 2019. 东昆仑哈日扎花岗闪长岩形成时代、地球化学特征及其构造意义. 地质力学学报, 25(2): 286~300.
-
国显正, 贾群子, 李金超, 孔会磊, 姚学钢, 栗亚芝. 2019. 东昆仑扎玛休玛正长花岗岩年代学、地球化学特征及其构造意义. 地质学报, 93(4): 830~842.
-
何成, 王力圆, 田立明, 徐净. 2018. 东昆仑哈拉森地区花岗岩类岩石成因及地质意义. 地球科学, 43(4): 1207~1221.
-
侯增谦, 莫宣学, 高永丰, 曲晓明, 孟祥金. 2003. 埃达克岩: 斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例. 矿床地质, 22(1): 1~12.
-
黄啸坤, 魏俊浩, 李欢, 陈梦婷, 王艺龙, 李国猛, 闫茂强, 张新铭. 2021. 东昆仑巴隆地区晚三叠世石英闪长岩成因: U-Pb年代学、地球化学及Sr-Nd-Hf同位素制约. 地球科学, 46(6): 2037~2056.
-
李瑞保, 裴先治, 李佐臣, 裴磊, 陈国超, 陈有炘, 刘成军, 王生明. 2018. 东昆仑东段古特提斯洋俯冲作用——乌妥花岗岩体锆石U-Pb年代学和地球化学证据. 岩石学报, 34(11): 3399~3421.
-
姜春发. 2004. 手风琴式运动与开合构造. 地质论评, 50(3): 267~269.
-
菅坤坤, 朱云海, 王利伟, 高峰, 刘向东, 何元方, 袁璋, 陈继平, 高维强. 2017. 东昆仑中灶火地区中三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因及构造意义. 地质论评, 63(3): 659~676.
-
孔会磊, 李金超, 黄军, 贾群子, 栗亚枝, 南卡俄吾. 2015. 东昆仑小圆山铁多金属矿区斜长花岗斑岩锆石U-Pb测年、岩石地球化学及找矿意义. 中国地质, 42(3): 521~532.
-
刘红涛, 张旗, 刘建明, 叶杰, 曾庆栋, 于昌明. 2004. 埃达克岩与Cu-Au成矿作用: 有待深入研究的岩浆成矿关系. 岩石学报, 20(2): 205~218.
-
马昌前, 熊富浩, 尹烁, 王连训, 高珂. 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555~3568.
-
莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造岩浆事件的约束. 地学前缘, 13(6): 43~51.
-
莫宣学, 罗兆华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3)403~414.
-
潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 刑光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分. 中国地质, 36(1): 1~28.
-
祁生胜. 2013. 青海省大地构造单元划分与成矿作用特征. 青海国土经略, 5: 53~62.
-
王秉璋, 潘彤, 任海东, 王涛, 赵志毅, 封建平, 张金明. 2021. 东昆仑祁漫塔格寒武纪岛弧: 来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学和Hf同位素证据. 地学前缘, 28(1): 318~333.
-
王强, 许继锋, 王建新, 赵振华, 王人镜, 邱家骧, 熊小林, 桑隆康, 彭红. 2000. 北大别山 adakite 型灰色片麻岩的确定及其与超高压变质作用的关系. 科学通报, 45(10) : 1017~1024.
-
王强, 许继峰, 赵振华. 2001. 一种新的火成岩——埃达克岩的研究综述. 地球科学进展, 16(2): 201~208.
-
王强, 赵振华, 许继峰, 李献华, 熊小林, 刘义茂. 2003. 扬子地块东部燕山期埃达克质(adakite-like)岩与成矿. 中国科学, 309~314
-
王强, 许继峰, 赵振华. 2003. 强烈亏损重稀土元素的中酸性火成岩(或埃达克质岩)与Cu、Au成矿作用. 地学前缘, 10(4): 561~572.
-
王小龙, 袁万明, 冯星, 冯云磊, 程学芹. 2017. 东昆仑哈日扎多金属矿区花岗斑岩与闪长岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 36(7): 1158~1168.
-
王焰, 张旗, 钱青. 2000. 埃达克岩(adakite) 的地球化学特征及其构造意义. 地质科学, 35(2) : 251~256.
-
吴福元, 王建刚, 刘传周, 刘通, 刘畅, 纪伟强. 2019. 大洋岛弧的前世今生. 岩石学报, 35(1): 1~15.
-
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1~36.
-
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.
-
吴中楠, 计文化, 何世平, 陈守建, 于浦生, 时超, 陈奋宁, 张辉善, 彭岩. 2015. 青海省兴海县日龙沟花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征. 地质通报, 34(9): 1677~1688.
-
熊富浩. 2014. 东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义. 导师: 马昌前. 武汉: 中国地质大学博士学位论文: 1~191.
-
许继峰, 邬建斌, 王强, 陈建林, 曹康. 2014. 埃达克岩与埃达克质岩在中国的研究进展. 矿物岩石地球化学通报, 33(1): 6~13.
-
许庆林, 孙丰月, 李碧乐, 钱烨, 李良, 杨延乾. 2014. 东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景. 大地构造与成矿学, 38(2): 421~433.
-
徐通, 裴先治, 刘成军, 陈有炘, 李瑞保, 李佐臣, 裴磊. 2014. 南秦岭勉略构造带张儿沟新元古代变安山岩地球化学特征及锆石La-ICP-Ms U-Pb年龄——Rodinia超大陆聚合事件的记录. 地质论评, 62(2): 434~450.
-
闫义, 林舸, 李自安. 2003. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究. 大地构造与成矿学, 27(2): 184~190.
-
杨建超, 章雨旭, 黄泽光. 2007. 地质学某些术语用词辨析. 中国科技术语, (3): 35~39.
-
殷鸿福, 张克信. 1997. 东昆仑造山带的一些特点. 地球科学: 中国地质大学学报, 22(4): 339~342.
-
曾闰灵, 魏俊浩, 李欢, 黄啸坤, 闫茂强, 张新铭. 2021. 东昆仑鑫拓斑状二长花岗岩成因及其地质意义. 大地构造与成矿学, 45(6): 1233~1251.
-
詹发余, 古凤宝, 李东生, 曹连强, 奎明娟. 2007. 青海东昆仑埃达克岩的构造环境及成矿意义. 地质学报, 81(10): 1352~1368.
-
张旗, 钱青, 王二七, 王焰, 赵太平, 郝杰, 郭光军. 2001. 燕山中晚期的中国东部高原: 埃达克岩的启示. 地质科学, 36 (2) : 248~255.
-
张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵太平, 郭光军. 2001. 中国东部燕山期埃达克岩的特征及其构造—成矿意义. 岩石学报, 17(2): 236~244.
-
张旗, 王元龙, 张福勤, 王强, 王焰. 2002. 埃达克岩与斑岩铜矿. 华南地质与矿产, (3): 85~90.
-
张旗, 王焰, 王元龙. 2003. 埃达克岩与构造环境. 大地构造与成矿学, 27(2): 101~108.
-
张旗, 许继峰, 王焰, 肖龙, 刘红涛, 王元龙. 2004. 埃达克岩的多样性. 地质通报, 23(9~10): 959~965.
-
张旗, 秦克章, 王元龙, 张福勤, 刘红涛, 王焰. 2004. 加强埃达克岩研究, 开创中国Cu、Au等找矿工作的新局面. 岩石学报, 20(2): 195~204.
-
张旗. 2008. 埃达克岩研究的回顾和前瞻. 中国地质, 35(1): 32~39.
-
张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621~626.
-
张旗, 焦守涛. 2020. 埃达克岩来自高压背景—— 一个科学的、可靠的、有预见性的科学发现. 岩石学报, 36(6) : 1675~1683
-
张旗, 焦守涛, 刘惠云. 2021. Sr和Yb两个元素对花岗岩理论的重要意义——花岗岩研究的哲学思考. 甘肃地质, 30(1): 1~15.
-
郑振华, 张勤山, 何利, 田滔, 李生虎. 2022. 东昆仑东段益克郭勒侵入岩LA-ICP-MS锆石U-Pb定年及其地质意义. 世界地质, 41(1): 56~71.
-
Andersen T. 2002. Correction ofcommon lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192: 59~79.
-
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1~2): 243~258.
-
Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteoric studies. Rare Earth Element Geochemistry, 2: 63~114.
-
Castillo P R, Janney P E and Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33~51.
-
Chappell B W and White A Jr. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489~499.
-
Chen Gong, Pei Xianzhi, Li Zuochen, Li Ruibao, Chen Youxin, Liu Chengjun, Chen Guochao, Wang Xubin, Sang Jizhen, Yang Sen, Deng Wenbing. 2016&. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, East Kunlun Mountains. Geological Bulletin of China, 35(12): 1990~2005.
-
Chen Guochao, Pei Xianzhi, Li Ruibao, Li Zuochen, Pei Le, Liu Zhanqing, Chen Youxin, Liu Chengjun, Gao Jingmin, Wei Fanghui. 2013&. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Cocoe ALong Quartz Diorites Body from the Hongshuichuan area in East Kunlun. Acta Geologica Sinica, 87(2): 178~196.
-
Chen Guochao, Pei Xianzhi, Li Ruibao, Li Zuochen, Liu Chengjun, Chen Youxin, Pei Lei, Zhang Yongming, Wang Meng, Li Xiaobing and Zhang Yu. 2017&. Age and petrogenesis of Jialuhe basic-intermediate pluton in Xiangjia’nanshan granite batholith in the eastern part of East Kunlun Orogenic Belt, and its geological significance. Geotectonica et Metallogenia, 41(6): 1097~1115.
-
Chen Guochao, Pei Xianzhi, Li Ruibao, Li Zuochen, Pei Le, Liu Chengjun, Chen Youxin, Wang Meng, Gao Feng, Li Xiaobing. 2019&. Lithospheric extension of the post-collision stage of the Paleo-Tethys oceanic svstem in the East Kunlun Orogenic Belt: Insights from Late Triassic plutons. Earth Science Frontiers, 26(4): 191~208.
-
Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294) : 662~665.
-
Deng Jinfu, Feng Yanfang, Di Yongjun, Liu Cui, Su Shangguo, Zhao Guochun, Meng Fei, Ma Shuai, Yao Tu. 2015a&. Magmatic arc and ocean-continent transition: Discussion. Geological Review, 61(3): 473~484.
-
Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Di Yongjun, Su Shangguo, Zhao Guochun, Duan Peixin, Dai Meng. 2015b&. On the correct application in the common igneous petrological diagrams: Discussion and suggestion. Geological Review, 61(4) : 717~734.
-
Ding Qingfeng, Jiang Shouyi, Sun Fengyue. 2014. Zircon U-Pb geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: Petrogenesis and tectonic implications. Lithos, 205: 266~283
-
Fan Yuxu, Li Tingdong, Xiao Qinghui, Cheng Yang, Li Yan, Guo Lingjun and Luo Pengyue. 2019&. Zircon U-Pb ages, geochemical characteristics of Late Permian granite in West Ujimgin Banner, Inner Mongolia, and tectonic significance. Geological Review. 65(1): 248~266.
-
Foley S, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 837~840.
-
Gao Yongbao, Li Wenyuan, Qian Bing, Li Kan, Li Dongsheng, He Shuyue, Zhang Zhaowei and Zhang Jiangwei. 2014&. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China. Acta Petrologica Sinica, 30(6) : 1647~1665.
-
Griffin W L, Pearson N J, Belousova E, Jackson S E, Achterbergh E V, O’ Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICP MS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133~147.
-
Guo Jing. 2017&. Ore Genesis and Quantitative Ore Prospecting of Jiaqi Porphyry Cu-Mo Deposits in Qimantage Area, East Kunlun Mountains, China. Tutor: Luo Zhaohua. Beijing: Ph. D. thesis of China University of Geosciences: 1~141.
-
Guo Xianzheng, Li Yazhi, Jia Qunzi, Li Jinchao, Kong Huilei and Namkha N. 2018&. Geochronology and geochemistry of the Wulonggou orefield related granites in Late Permian-Triassic East Kunlun: Implication for metallogenic tectonic. Acta Petrologica Sinica, 34(8) : 2359~2379.
-
Guo Xianzheng, Jia Qunzi, Li Jinchao, Kong Huilei, Yao Xuegang, Li Yazhi, Ma Zhongyuan. 2019&. The forming age and geochemistry characteristics of the granodiorites in Harizha, East Kunlun and its tectonic significance. Journal of Geomechanics, 25(2) : 286~300.
-
Guo Xianzheng, Jia Qunzi, Li Jinchao, Kong Huilei, Yao Xuegang, Li Yazhi. 2019. Geochronology and geochemical characteristics of syenogranite from the Zhamaxiuma area in East Kunlun and their tectonic sianificance. Acta Geologica Sinica, 93(4): 830~842.
-
He Cheng, Wang Liyuan, Tian Liming, Xu Jing. 2018&. Petrogenesis and geological implications of granitoids from Halasen, East Kunlun. Earth Science, 43(4): 1207~1221.
-
Hou Zengqian, Mo Xuanxue, Gao Yongfeng, Qu Xiaoming, Meng Xiangjin. 2003&. Adakite, a possible host rock for porphyry copper deposits: Case studies of porphyry copper belts in Tibetan Plateau and in northern Chile. Mineral Deposits, 22(1): 1~12.
-
Hou Z Q, Gao Y F, Qu X M, Rui Z Y and Mo X X. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1~2): 139~155.
-
Huang Xiaokun, Wei Junhao, Li Huan, Chen Mengting, Wang Yilong, Li Guomeng, Yan Maoqiang, Zhang Xinming. 2021&. Zircon U-Pb geochronological, elemental and Sr-Nd-Hf isotopic constraints on petrogenesis of Late Triassic quartz diorite in Balong Region, East Kunlun Orogen. Earth Science, 46(6): 2037~2056.
-
Li Ruibao, Pei Xianzhi, Li Zuochen, Pei Lei, Chen Guochao, Chen Youxin, Liu Chengjun and Wang Shengming. 2018&. Paleo-Tethys ocean subduction in eastern section of East Kunlun Orogen: Evidence from the geochronology and geochemistry of the Wutuo pluton. Acta Petrologica Sinica, 34(11) : 3399~3421.
-
Jiang Chunfa. 2000#. Accordion movement and opening-closing tectonics. Geological Raview, 50(3): 267~269.
-
Jian Kunkun, Zhu Yunhai, Wang Liwei, Gao Feng, Liu Xiangdong, He Yuanfang, Yuan Zhang, Chen Jiping, Gao Weiqiang. 2017&. Zircon LA-ICP-MS age dating, petrogenesis and tectonic implications of the Middle Triassic granites from the Zhongzaohuo area, East Kunlun. Geological Raview, 63(3): 659~676.
-
Kong Huilei, Li Jinchao, Huang Jun, Jia Qunzi, Li Yazhi, Namkha Norbu. 2015&. Zircon U- Pb dating and geochemical characteristics of the plagiogranite porphyry from the Xiaoyuanshan iron- polymetallic ore district in East Kunlun Mountains. Geology in China, 42(3): 521~532.
-
Liu Hongtao, Zhang Qi, Liu Jianming, Ye Jie, Zeng Qingdong and Yu Changming. 2004&. Adakite versus porphyry copper and epithermal gold deposits: A possible metallogenetic specialization of magmatism required in-deep assessment. Acta Petrologica Sinica, 20(2): 205~218.
-
Ma Changqian, Xiong Fuhao, Yin Shuo, Wang Lianxun and Gao Ke. 2015&. Intensity and cyclicity of orogenic magmatism: An example from a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12) : 3555~3568
-
Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.
-
Martin H. 1999. The adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46: 411~429.
-
Mamani M, W O Rner G and Sempere T. 2010. Geochemical variations in igneous rocks of the Central Andean orocline(13 S to 18 S): Tracing crustal thickening and magma generation through time and space. GSA Bulletin, 122(1~2): 162~182.
-
Middlemost E A K. 1994. Naming materials in the magma / igneous rock system. Earth Science Reviews, 37: 215~224.
-
Mo Xuanxue, Pan Guitang. 2006&. From the Tethys to the formation of the Qinghai-Tibet Plateau: Constrained by tectono-magmatic events. Earth Science Fronti. , 13(6) : 43~51.
-
Mo Xuanxue, Luo Zhaohua, Deng Jinfu, Yu Xuehui, Liu Chengdong, Chen Hongwei, Yuan Wanming, Liu Yunhua. 2007&. Granitoids and crustal growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403~414.
-
Moyen J C C O. 2009. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos, 112(3~4): 556~574.
-
Pan Guitang, Xiao Qinghui, Lu Songnian, Deng Jinfu, Feng Yiming, Zhang Kexin, Zhang Zhiyong, Wang Fangguo, Xing Guangfu, Hao Guojie, Feng Yanfang. 2009. Subdivision of tectonic units in China. Geology in China, 36(1): 1~28.
-
Pearce J A, Harris N B and Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956~983.
-
Peccerillo R and Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy & Petrology, 58(1): 63~81.
-
Qi Shengsheng. 2013#. Division of geotectonic units and characteristics of mineralization in Qinghai Province. Qinghai Guotu Jinglüe, 5: 53~62.
-
Rudnick R L. 1995. Making continental crust. Nature, 378(6557): 571~578.
-
Söderlund U, Patchett J P, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic instrusions. Earth and Planetaty Science Letters, 219(3~4): 311~324.
-
Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1): 29~44.
-
Streck Martin J, Leeman William P and Chesley J. 2007. High magnesian andesite from Mount Shata: A product of magma mixing and contamination, not a primitive mant melt. Geology, 35: 351~354.
-
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for Mantle composition and processes. Geological Society London, Special Publications, 42(1): 313~345.
-
Thieblemont D, Stein G and Lescuyer J-L. 1997. Epithermal and porphyry deposits: The adakitic connection. Earth & Planetary Sciences, 325: 103~109.
-
Wang Bingzhang, Pan Tong, Ren Haidong, Wang Tao, Zhao Zhiyi, Feng Jianping, Zhang Jinming. 2021&. The Cambrian Qimantagh island arc in the East Kunlun Orogen: Evidence from zircon U-Pb ages, geochemistry and zircon Hf isotopes of high-Mg andesite/diorite from the Lalinggaolihe area. Earth Science Frontiers, 28(1): 318~333.
-
Wang Qiang, Xu Jifeng, Wang Jianxin, Zhao Zhenhua, Wang Renjing, Qiu Jiaxiang, Xiong Xiaolin, Sang Longkang, Pen Lianhong. 2000#. Determination of adakite type grey gneiss in the north Dabie Mountains and its relationship with ultrahigh pressure metamorphism. Chinese Scientific Bulletin, 45(10) : 1017~1024.
-
Wang Qiang, Xu Jifeng, Zhao Zhenhua. 2001&. The summary and comment on research on a new kind of igneous rock--Adakite. Advance in Earth Sciences, 16(2): 201~208.
-
Wang Qiang, Zhao Zhenhua, Xu Jifeng, Li Xianhua, Xiong Xiaolin, Liu Yimao. 2003&. Petrogenesis and metallogenesis of the Yanshanian adakite-like rocks in the eastern Yangtze Block. Science in China, 309~314
-
Wang Qiang, Xu Jifeng, Zhao Zhenhua. 2003&. Intermediate-acid igneous rocks strongly depleted in heavy rare Earth elements(or adakitic rocks) and copper-gold metallogenesis. Earth Science Frontiers, 10(4): 561~572.
-
Wang Xiaolong, Yuan Wanming, Feng Xing, Feng Yunlei, Cheng Xueqin. 2017&. LA-ICP-MS zircon U-Pb age and geological significance of granite porphyry and diorite in the Harizha polymetallic ore district, East Kunlun Mountains. Geological Bulletin of China, 36(7): 1158~1168.
-
Wang Yan, Zhang Qi, Qian Qing. 2000&. Adakite: Geochemical characteristics and tectonic significances. Scientia Geologica Sinica, 35(2) : 251~256.
-
Wu Chen, Yin An, ZuZa Andrew V, Zhang Jinyu, Liu Wencan and Ding Lin. 2016. Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere, 8(3): 254~292.
-
Wu Chen, ZuZa Andrew V, Chen Xuanhua, Ding Lin, Levy Drew A, Liu Changfeng, Liu Wencan, Jiang Tian and Stockli Daniel F. 2019. Tectonics of the Eastern Kunlun Range: Cenozoic reactivation of a Paleozoic-Early Mesozoic orogen. Tectonics, 38: 1609~1650.
-
Wu Chen, Li Jie, ZuZa Andrew V, Haproff Peter J, Chen Xuanhua and Ding Lin. 2022. Proterozoic-Phanerozoic tectonic evolution of the Qilian Shan and Eastern Kunlun Range, northern Tibet. Geological Society of America Bulletin, https: //doi. org/10. 1130/B36306. 1; 14 figures; 1 table; 1 supplemental file.
-
Wu Fuyuan, Wang Jiangang, Liu Chuanzhou, Liu Tong, Liu Chang and Ji Weiqiang. 2019&. Intra-oceanic arc: Its formation and evolution. Acta Petrologica Sinica, 35(1): 1~15.
-
Wu Fuyuan, Liu Zhichao, Liu Xiaochi and Ji Weiqiang. 2015&. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1) : 1~36
-
Wu Yuanbao and Zheng Yongfei. 2004#. Genetic mineralogy of zircons and its constraints on U-Pb age interpretation. Chinese Scientific Bulletin, 27(2): 184~190.
-
Wu Zhongnan, Ji Wenhua, He Shiping, Chen Shoujian, Yu Pusheng, Shi Chao, Chen Fenning, Zhang Huishan, Peng Yan. 2015&. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of granodiorite in Rilonggou area, Xinghai County, Qinghai Province. Geological Bulletin of China, 34(9): 1677~1688.
-
Xiong F H, Ma C Q, Zhang J and Liu B. 2012. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for magma mixing during subduction of Paleo-Tethyan lithosphere. Mineralogy and Petrology, 104: 211~224.
-
Xiong Fuhao. 2014&. Spaial-Temporal Pattern, Petrogenesis and Geological Implications of Paleo-Tethyan Granitoids in the East Kunlun Orogenic Belt(Eastern Segment). Tutor: Ma Changqian. Wuhan: Ph. D. thesis of China University of Geosciences: 1~191.
-
Xiong F H, Ma C Q, Jiang H A. 2016. Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun Orogen, west China: Juvenile lower crustal melting during post-collisional extension. Journal of Earth Science, 27(3): 474~490.
-
Xu Jifeng, Shinjo R, Defant M J, Wang Qiang and Rapp R P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China: Partial melting of delaminated lower continental crust. Geology, 30(12) : 1111~1114.
-
Xu Jifeng, Wu Jianbin, Wang Qiang, Chen Jianlin, Cao Kang. 2014&. Research advances of adakites and adakites rocks in China. Bulletin of Mineralogy Petrology and Geochemistry, 33(1): 6~13.
-
Xu Qinglin, Sun Fengyue, Li Bile, Qian Ye, Li Liang and Yang Yanqian. 2014&. Geochronological dating, geochemical characteristics and tectonic setting of the granite-porphyry in the Mohexiala Silver Polymetallic Deposit, Eastern Kunlun Orogenic Belt. Geotectonica et Metallogenia, 38(2): 421~433.
-
Xu Tong, Pei Xianzhi, Liu Chengjun, Chen Youxin, Li Ruibao, Li Zuochen and Pei Lei. 2016&. Geochemical features and zircon LA-ICP-MS U-Pb ages of the Neoproterozoic Zhangergou metamorphic andesitic rocks in the Mianxian-Lüeyang area of South Qinling Orogen: Evidence for amalgamation of Rodinia Supercontinent. Geological Review. 61(3): 473~484.
-
Yan Yi, Lin Ge and Li Zian. 2003&. Provenance tracing of sediments by means of synthetic study of shape, composition and chronology of zircon. Geotectonica et Metallogenia, 27(2): 184~190.
-
Yang Jianchao, Zhang Yuxu, Huang Zeguang. 2007&. Discrimination of some geological terms. China Terminology, (3): 35~39.
-
Yin An and Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211~280.
-
Yin Hongfu, Zhang Kexin. 1997&. Characteristics of the Eastern Kunlun Orogenic Belt. Earth Science: Journal of China University of Geosciences, 22(4): 339~342.
-
Zeng Runling, Wei Junhao, Li Huan, Huang Xiaokun, Yan Maoqiang, Zhang Xinming. 2021&. Petrogenesis of the Xintuo porphyritic monzogranite from East Kunlun and its geological implications. Geotectonica et Metallogenia, 45(6): 1233~1251.
-
Zhan Fayu, Gu Fengbao, Li Dongsheng, Cao Lianqiang, Kui Mingjuan. 2007&. Tectonic environment of adakite in Eastern Kunlun area, Qinghai, and its Ore-forming significance. Acta Geologica Sinica, 81(10): 1352~1368.
-
Zhang Hongfu, Shao Ji’an. 2008&. Volcanic lavas of the Yixian Formation in westrn Liaoning Province, China: Products of lower crust delamination or magma mixing. Acta Petrologica Sinica, 24(1): 37~48.
-
Zhang Qi, Qian Qing, Wang Erqi, Wang Yan, Zhao Taiping, Hao Jie and Guo Guangjun. 2001&. An East China Plateau in mid-late Yanshanian Period: Implication from adakites. Chinese Journal of Geology, 36(2) : 248~255.
-
Zhang Qi, Wang Yan, Qian Qing, Yang Jinhui, Wang Yuanlong, Zhao Taiping, Guo Guangjun. 2001&. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China. Acta Petrologica Sinica, 17(2) : 236~244.
-
Zhang Qi, Wang Yuanlong, Zhang Fuqin, Wang Qiang and Wang Yan. 2002&. Adakite and porphyry copper deposit. Geology and Mineral Resources of South China, (3): 85~90.
-
Zhang Qi, Wang Yan, Wang Yuanlong. 2003&. On the relationship between adakite and it’s tectonic setting. Geotectonica et Metallogenia, 27(2): 101~108.
-
Zhang Qi, Xu Jifeng, Wang Yan, Xiao Long, Liu Hongtao, Wang Yuanlong. 2004&. Diversity of adakite. Geological Bulletin of China, 23(9~10): 959~965.
-
Zhang Qi, Qin Kezhang, Wang Yuanlong, Zhang Fuqin, Liu Hongtao and Wang Yan. 2004&. Study on adakite broadened to challenge the Cu and Au exploration in China. Acta Petrologica Sinica, 20(2): 195~204.
-
Zhang Qi. 2008&. Adakite research: Retrospect and prospect. Geology in China, 35(1): 32~39.
-
Zhang Qi, Ran Hao, Li Chengdong. 2012&. A-type granite: What is the essence? Acta Petrologlca et Mineraloglca, 31(4): 621~626.
-
Zhang Qi and Jiao Shoutao. 2020&. Adakite comes from a high-pressure background: A scientific, reliable, predictable scientific discovery. Acta Petrologica Sinica, 36(6) : 1675~1683.
-
Zhang Qi, Jiao Shoutao, Liu Huiyun. 2021&. Significance of Sr and Yb to granite theory: Philosophical thinking on granite research. Gansu Geology, 30(1): 1~15.
-
Zheng Zhenhua, Zhang Qinshan, He Li, Tian Tao, Li Shenghu. 2022&. LA-ICP-MS zircon U-Pb dating of Yikeguole intrusive rocks in eastern segment of East Kunlun and its geological significance. World Geology, 41(1): 56~71.
-
摘要
笔者等对东昆仑拉陵高里河沟脑花岗闪长斑岩开展详细的全岩地球化学、LA-ICP-MS锆石U-Pb年代学、锆石Hf同位素研究,确定其形成时代,并探讨其岩石成因及成岩构造背景。结果显示,花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄为231.1±1.2 Ma,指示其侵位于晚三叠世早期。全岩K2O/Na2O值为0.69~0.71,Mg#值为40.5~41.6,里特曼指数σ为1.90~2.09,A/CNK=1.01~1.03,属弱过铝质中—高钾钙碱性岩石系列。岩石的轻重稀土元素分异明显,(La/Yb)N值为19.54~25.52,具弱负Eu异常(δEu为0.96~0.97),富集大离子亲石元素K、Rb、Ba、Th,亏损高场强元素Nb、Ta、Ti等,具有高的Sr含量(606.0×10-6~647.9×10-6)和Sr/Y值(60.38~62.99),较低的Y(9.62×10-6~10.66×10-6)和Yb(0.86-6~0.92×10-6)含量,显示Adakite(高锶低钇中酸性岩)的地球化学特征。锆石Hf同位素εHf(t)值介于-6.93~-2.94,地壳模式年龄(TDM2)范围为1.45~1.70 Ga。综合分析表明,拉陵高里河沟脑花岗闪长斑岩形成于东昆仑洋壳俯冲末期至局部碰撞的转换阶段,岩浆源于高压条件下的加厚下地壳部分熔融。
Abstract
Objectives: Through the study of granodiorite porphyry in Lalinggaoli River, East Kunlun, it provides an important basis for the subduction collision orogenic process of the Paleotethys Ocean, and also provides further basic data support for the next prospecting work in this area.
Methods: Detailed petrogeochemistry, LA-ICP-MS zircon U-Pb geochronology and zircon Hf isotope studies of granodiorite porphyry in Gounao area of Lalinggaoli River, are carried out to determine its formation age, and discuss the petrogenesis and diagenetic tectonic setting.
Results: The zircon U-Pb age of granodiorite porphyry is (231.1±1.2) Ma, which indicated that the emplacement occurred in the early Late Triassic. The K2O/Na2O values of the whole-rock were 0.69~0.71, Mg# values were 45.3~46.02, σ values were 1.90~2.09, and A/CNK 1.01~1.03, which belong to weak peraluminous medium-high potassium calc-alkaline rock series. The samples have obvious differentiation of light and heavy REE elements (La/Yb)N values of 19.54~25.52, slight negative Eu anomaly (δEu 0.96~0.97), enriched in large ion lithophile elements K, Rb, Ba, Th, and depleted high field strength elements Nb, Ta, Ti. The samples have high Sr content (606.0×10-6~647.9×10-6) and Sr/Y value (60.38~62.99), low Y (9.62×10-6~10.66×10-6) and Yb (0.8610-6~0.92×10-6), showing an adakitic geochemical characteristics. Zircon Hf isotope εHf(t) values ranged from -6.93 to -2.94, corresponding to the distribution range of crustal model age (TDM2) from 1.70 to 1.45 Ga.
Conclusions: Comprehensive analyses show that granodiorite porphyry was formed in the transition setting from the subduction of Eastern Kunlun oceanic crust to local collision, and was sourced in the partial melting of thickened lower crust under high pressure.
Keywords
East Kunlun ; adakitic rock ; Late Triassic ; Hf isotope ; partial melting of thickened crust