-
东南亚大陆是古生代以来冈瓦纳北缘不同大陆碎片俯冲增生拼贴形成的(Hall,2012,2017; Metcalfe,2013,2021)。从印支地块和中缅马苏地块延伸到婆罗洲的巽他古陆被认为是它的核部组成部分(Hall,2012; Shellnutt et al.,2013; Hennig et al.,2017)。近年来,印支和中缅马苏地区的研究陆续取得了一些重要成果(Searle et al.,2012; Ghani et al.,2013; Li Shan et al.,2020)。然而,巽他古陆东南缘婆罗洲地区的研究资料尚少,这制约了完整认识巽他古陆的构造演化历史。
-
婆罗洲地区的岩浆岩十分发育,从南东至北西,可划为梅拉图斯(Meratus)、施瓦纳—辛加旺(Schwaner-Singkawang)和古晋—隆帕杭盖(Kuching-Long Pahanggai)3个岩浆岩带(图1;Amiruddin,2009; Breitfeld et al.,2017,2020; Hennig et al.,2017; 徐长海等,2020;Wang Yuejun et al.,2022a,2022b; Batara and Xu Changhai,2022)。梅拉图斯岩浆岩带位于婆罗洲东南部,呈NE—SW向分布,包括基性、中性以及长英质岩浆岩。其中,长英质岩石主要为准铝质、钙质到钙碱性的I型花岗岩,它的形成可能与新特提斯洋俯冲相关(Wang Yuejun et al.,2022a)。古晋—隆帕杭盖岩浆岩带位于婆罗洲中部,近东西向展布,主要为一些零散分布的花岗岩和花岗闪长岩岩体(许长海等,2020),岩浆活动从三叠纪持续到新生代时期,可能与古太平洋俯冲相关(Breitfeld et al.,2017; Hennig et al.,2017)。婆罗洲西南部的施瓦纳—辛加旺岩浆岩带发育大量的白垩纪岩浆岩,部分学者认为该带可能主要与白垩纪期间古太平洋沿华南、印支以及西婆罗洲向西俯冲相关(Wang Yuejun et al.,2022b),而部分学者认为该带可能与新特提斯俯冲作用相关(Batara and Xu Changhai,2022)。可见,该带可能受特提斯和古太平洋的叠合造山作用有关,该造山带的构造—岩浆叠合过程研究,对发展和创新造山带理论具有十分重要的意义。
-
图1 婆罗洲的地理位置图(a)及婆罗洲构造简图(b)(据Breitfeld et al.,2020; Batara and Xu Changhai,2022修改)
-
Fig.1 Geographic map of Borneo (a) and tectonic sketch of Borneo (b) (modified from Breitfeld et al., 2020; Batara and Xu Changhai, 2022)
-
笔者等选取施瓦纳—辛加旺岩浆岩带西北部的西婆罗洲Mensibau岩基花岗岩类,通过全岩地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素分析,并结合区域地质资料,探讨岩浆源区、成因及其构造背景,为认识西婆罗洲地区多重构造体制下的大洋俯冲与地壳增生的叠合过程提供重要证据。
-
1 地质背景
-
西婆罗洲主要包括西南婆罗洲地块西北部和古晋带的西部。其中,西婆罗洲北部以古晋带北缘Lupar构造带为界,南部以施瓦纳北缘的Pinoh变质杂岩带为界(图1;Haile,1974; Tan,1978; Hutchison,2005; Breitfeld et al.,2020; Wang Yuejun et al.,2021b)。西沙捞越(Sarawak)古晋带主要包括变质岩、中新生代沉积岩和岩浆岩,以及Lupar和Serabang蛇绿混杂带(Haile,1974; Tan,1978; Williams and Harahap,1987; Hutchison,2005; Mohamad et al.,2020)。在婆罗洲西北部,中生代至新生代层序类似于西沙捞越古晋带的层序(Williams et al.,1988; Tate and Hon,1991; Wang Yuejun et al.,2021b)。研究区位于婆罗洲西北部地区。该区前三叠纪的Pinoh变质岩和Balaisebut杂岩历来被认为是整个婆罗洲地区最古老的基底岩石(Metcalfe,1985,2017; Tate,1991)。它们由千枚岩、片岩、泥岩、石英岩、变质砂岩、变质火山岩、片麻岩和混合岩组成(Pieters and Supriatna,1990; Tate,1991; Tate and Hon,1991; Hutchison,2005; Breitfeld et al.,2017)。然而,最近的研究表明,Pinoh杂岩中的变质火成岩部分形成于约130 Ma,变质时间为80~120 Ma(Breitfeld et al.,2020)。可见,Pinoh变质杂岩的形成时代还有待进一步研究。中生代地层主要以Sadong、Kedadom、Pedawan组和Plateau组及其相当的地层为代表。其中,Sadong组及其对应地层(Banan/Bengkayang群)为河口相至浅海相的泥岩、粉砂岩、砂岩、页岩、砾岩和薄层灰岩等,含亲华夏的三叠纪植物化石(Wilford and Kho,1965; Hutchison,2005)。上侏罗统—白垩系Kedadom组及其对应地层(Brandung组)不整合覆盖于Sadong组之上,它由浅海相砂岩、泥岩、粉砂岩和灰岩等组成(Wilford and Kho,1965; Ishibashi,1982; Beauvais and Fontaine,1990; Schairer and Zeiss,1992)。Pedawan组及其相当地层(Selangkai组)以砂泥岩与凝灰岩和英安岩互层为特征,最年轻的碎屑锆石U-Pb年龄峰期为102~86 Ma,火山碎屑岩的喷发时代年龄为88.5 ± 1.5 Ma(Abdullah and Abang,1987; Supriatna et al.,1993; Breitfeld et al.,2017)。白垩系—渐新统Kayan组及其对应地层(Ritan/Malinau组)的最上层不整合覆盖于加里曼丹西北部的Pedawan组之上,主要为块状和交错层状砂岩、凝灰质砂岩、薄层泥岩、粉砂岩、砾岩和相关的火山岩(Tan,1978,1982)。古晋地区的许多火成岩之前被认为是三叠纪—新生代(Wilford and Kho,1965; Supriatna et al.,1993; Jasin and Madun,1996; Breitfeld et al.,2017; Hennig et al.,2017; Wang Yuejun et al.,2021b)。三叠纪火山岩被划分为Serian火山岩和Sekadau火山岩,由玄武岩、安山岩、英安岩、流纹岩、凝灰岩和集块岩组成(Wilford and Kho,1965)。最近,获得了沙捞越—古晋地区Serian火山岩中玄武质安山岩的晚白垩世(77~89 Ma)锆石U-Pb年龄(Wang Yuejun et al.,2021b)。在加里曼丹—古晋地区,火山序列以Raya火山岩为代表。它们主要由蚀变安山岩、英安岩、玄武岩、流纹岩和少量夹层碎屑岩构成,其K-Ar年龄为106 Ma(Harahap,1987)。最近,对其玄武岩和安山岩进行了锆石U-Pb年代测定,发现其形成年龄(138~130 Ma)与Mensibau花岗岩类一致(Wang Yuejun et al.,2022b)。此外,在北施瓦纳山脉的东北部,代表性的火山序列以变质的Menunuk火山岩为标志,之前被认为属于Pinoh杂岩(Breitfeld et al.,2020)。
-
图2 婆罗洲西北部地质简图(a)和婆罗洲西北部和马来西亚沙捞越古晋地区的地层柱状图(b)(据Wang Yuejun et al.,2022b修改)
-
Fig.2 Geological sketch map of northwest Borneo (a) and (b) stratigraphic framework of the Kuching zone in NW Kalimantan and Sarawak Malaysia (b; modified from Wang Yuejun et al., 2022b)
-
古晋地区普遍存在侵入岩。它们以花岗岩为主,包括第三纪和白垩纪辉长岩、闪长岩、花岗闪长岩和花岗岩,以及三叠纪花岗岩(Haile et al.,1977; Carlile and Mitchell,1994; Setiawan et al.,2013)。二叠纪—三叠纪花岗岩类以Jagoi花岗岩和Schwaner变质英云闪长岩为代表(Setiawan et al.,2013; Wang Yuejun et al.,2021a)。白垩纪花岗岩类主要为Mensibau岩基。Mensibau岩基出露在坤甸(Pontianak)北部地区(图2),岩性主要为花岗闪长岩、英云闪长岩、花岗岩、石英闪长岩和闪长岩。其中,花岗闪长岩K-Ar年龄为125~95 Ma(Tate,1996)。最近,Wang Yuejun等(2022b)报告了Mensibau花岗岩类的锆石U-Pb为144~130 Ma。它们大多为准铝、钙碱性和I型(Wang Yuejun et al.,2022b)。几个辉长岩深成岩体(如Setinjam)侵入了加里曼丹西北部的Mensibau岩基或Raya火山岩,可能相当于婆罗洲西南部的Biwa辉长岩。
-
2 样品描述和分析方法
-
2.1 样品特征
-
笔者等研究的样品来自于西婆罗洲地区的Mensibau岩基。其中,细粒石英二长岩(样品WK-1)具似斑状结构,块状构造,由石英(30%~35%)、斜长石(30%~35%)、钾长石(25%~30%)、黑云母(<5%)和角闪石(<1%)组成,副矿物有榍石、磷灰石、磁铁矿和锆石等(图3a和3c)。镜下可见斜长石卡尔斯巴双晶(图3c)。中粒钾长花岗岩(样品WK-22.1)由石英(30%~35%)、斜长石(20%~30%)、钾长石(30%~40%)和黑云母(<3%)组成,副矿物有榍石、磷灰石、磁铁矿和锆石等(图3b和3d)。钾长石为自形板状,具有条纹结构(图3d)。石英粒度较小,呈他形充填于长石之间,粒径0.5~1 mm。
-
2.2 分析方法
-
2.2.1 锆石U-Pb定年
-
锆石颗粒先采用重液法和磁法进行初步分选,然后在双目显微镜下通过手工进一步挑选。选出的锆石固定在环氧树脂靶上,抛光至去除一半左右厚度。锆石制靶完成后,使用扫描电子显微镜拍摄其阴极发光图像,用于内部结构分析,确保选择适宜的分析测点位置。锆石制靶和阴极发光照相在南京宏创地质勘探技术服务有限公司完成。LA-ICP-MS锆石U-Pb同位素分析在合肥工业大学完成。测试过程采用仪器为Agilent7500aa ICPMS,激光剥蚀系统为Geo Las 2005,激光剥蚀束斑直径为32 μm,激光脉冲重复频率为5 Hz,测定过程中,使用He气作为剥蚀物质载气。锆石91500作为外标,锆石标样Plesovice作为同位素监控样,用于数据质量监控。普通铅校正采用Andersen(2002)的方法,样品U-Pb同位素数据使用ISOPLOT软件计算和绘制(Ludwig,2012),分析数据的误差为1σ。
-
图3 Mensibau花岗岩类手标本及显微照片(正交偏光)
-
Fig.3 Hand specimens of Mensibau granitoids and photomicrographs (orthogonal polarization)
-
Qtz—石英; Kfs—钾长石; Pl—斜长石; Hb—角闪石; Bt—黑云母
-
Qtz—quartz; Kfs—K-feldspar; Pl—plagioclase; Hb—hornblende; Bt—biotite
-
2.2.2 锆石Hf同位素分析
-
锆石Hf同位素测试是在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室采用Neptune多接收等离子质谱和Newwave UP213紫外激光剥蚀系统(LA-MC-ICP-MS)上进行的。实验过程中采用He作为剥蚀物质载气,剥蚀直径采用55 μm,测定时使用锆石国际标样GJ-1和Plesovice作为参考物质,分析点与U-Pb定年分析点为同一位置。相关仪器运行条件及详细分析流程见(侯可军等,2007)。分析过程中锆石标准GJ-1的n(176Hf)/n(177Hf)测试加权平均值为0.282030±0.000021(2σ,n=25),与文献报道值(侯可军等,2007;Morel et al.,2008)在误差范围内完全一致。
-
2.2.3 主量、微量元素分析
-
将去除表面风化物后的新鲜样品粉碎至小块,然后用玛瑙研钵将小岩屑磨成粒度小于200目的粉末用于进一步全岩地球化学测试。相关实验在贵州同微测试科技有限公司完成。其中,主量元素使用X射线荧光光谱仪测定,使用仪器为AxiosmAX X射线荧光光谱仪,详细方法过程见于Norrish和Hutton(1969)。微量元素以及稀土元素采用ELEMENT XR等离子体质谱仪测定,具体方法参照Liang和Grégoire(2000)。测定过程中,主量元素分析的不确定度一般在1%以内,大多数微量元素的分析精度优于5%。
-
2.2.4 全岩Sr-Nd同位素分析
-
样品全岩Sr-Nd同位素测定在核工业北京地质研究所成,测定方法为热电离质谱仪(TIMS)法,使用Phoenix热表面电离质谱仪进行Rb-Sr同位素组成测定,ISOPROBE-T热表面电离质谱仪用于Sm-Nd同位素组成测定。化学分离和同位素测量步骤详见Wu Fuyuan et al.,2005。样品测试过程中采用W-2a和BHVO-2作为Sr-Nd标准溶液,测得其W-2a和BHVO-2的[n(87Sr)/n(86Sr)]i值分别为0.706932±0.000011(2σ)和0.703450 ±0.000011(2σ),测得其W-2a和BHVO-2的n(143Nd)/n(144Nd)值分别为0.512515±0.000013(2σ)和0.512972±0.000010(2σ)。n(147Sm)/n(144Nd)和n(87Rb)/n(86Sr)值的分析不确定度小于0.5%。
-
图4 Mensibau花岗岩类代表性锆石CL图像
-
Fig.4 Cathodoluminescence (CL) images of representative zircons from the Mensibau granitoids
-
内圈(实线)和外圈(虚线)分别代表锆石U-Pb 和Hf同位素的测试点位
-
The inner circle (solid line) and outer circle (dashed line) represent the testing points of zircon U-Pb and Hf isotopes respectively
-
3 锆石U-Pb年龄和地球化学结果
-
锆石U-Pb年龄、全岩主微量、全岩Sr-Nd同位素和锆石Hf同位素结果分别见表1、表2、表3和表4。
-
图5 Mensibau花岗岩类的锆石U-Pb年龄谐和图
-
Fig.5 Zircon U-Pb age concordia diagrams from the Mensibau granitoids
-
3.1 锆石U-Pb年龄
-
两件样品中的锆石多为无色、自形长柱状(长轴一般为50~150 μm)(图4),长宽比为1∶1~3∶1。锆石Th/U值为0.11~1.31(表1),均可见振荡环带,指示其岩浆成因(图4)。其中,石英二长岩(样品WK-1)获得的23个数据较为集中,且均位于U-Pb谐和线上或其附近,n(206Pb)/n(238U)加权平均年龄为126.9±2.1 Ma(MSWD = 1.7)(图5a和5b)。钾长花岗岩(样品WK-22.1)所测的19个年龄数据同样位于U-Pb谐和线上或其附近,n(206Pb)/n(238U)加权平均年龄为141.8 ± 2.6 Ma(MSWD = 2.2)(图5c和5d)。
-
3.2 主微量元素地球化学
-
Mensibau岩基花岗岩类SiO2含量为67.52%~73.29%,Na2O含量为2.84%~3.19%,K2O含量为4.27%~5.36%,CaO含量为1.52%~2.72%,显示钙碱性特征(图6a和6b)。Fe2O3含量为2.34%~3.51%,MgO含量为0.94%~1.22%,表现为镁质花岗岩(图6c)。此外,铝饱和指数(A/CNK)为0.92~1.06,属于准铝质到弱过铝质花岗岩(图6d)。
-
微量元素方面,Mensibau花岗岩类均富集Rb、Th、U、K、La、Zr和Hf元素,亏损Ba、Nb、Ta、Ti和P元素(图7a)。稀土元素方面,石英二长岩的稀土元素总量高于钾长花岗岩。两者均显示轻稀土富集,重稀土亏损的配分曲线样式((La/Yb)N = 4.15~8.32)(图7b)。此外,石英二长岩具有Eu的负异常(δEu = 0.63)(图7b)。
-
3.3 全岩Sr-Nd同位素
-
Mensibau花岗岩类具有低的初始Sr同位素比值(0.70420~0.70 424)和高的εNd(t)值(+3.14~+4.09)(表3)。两阶段Nd模式年龄分别为0.59~0.68 Ga(表3)。
-
注:同位素公式: m = 测量值;
-
注:计算公式如下:
-
;
-
其中:
-
图6 西婆罗洲Mensibau花岗岩类主量元素特征(西沙捞越数据来自Henning et al.,2017; 施瓦纳山数据来自Henning et al.,2017; Breitfeld et al.,2020;a:Na2O+K2O—SiO2图解;b:Na2O+K2O-CaO—SiO2图解;c:TFeO/(TFeO+MgO)—SiO2图解;d:A/NK—A/CNK图解)
-
Fig.6 Major element characteristics of the Mensibau granitoids in the West Borneo (West Sarawak data from Henning et al., 2017; Schwaner Mountain data from Henning et al., 2017; Breitfeld et al., 2020; a: Na2O+K2O vs. SiO2 diagram; b: Na2O+K2O—CaO vs. SiO2 diagram; c: TFeO/ (TFeO+MgO) vs. SiO2 diagram; d: A/NK vs. A/CNK diagram)
-
3.4 锆石Hf同位素
-
样品WK-1的εHf(t)和n(177Hf)和n(176Yb)/n(177Hf)变化范围分别为0.282959~0.283040和0.032230~0.145627,样品WK-22.1的n(176Hf)/n(177Hf)和n(176Yb)/n(177Hf)变化范围分别为0.282973~0.283078和0.022922~0.053563(表4)。两件样品(WK-1和WK-22.1)的εHf(t)值分别为+9.30~+12.06和+10.12~+13.87(图8b)。此外,两件样品(WK-1和WK-22.1)的两阶段Hf模式年龄分别(TDM2)为0.41~0.59 Ga和0.31~0.55 Ga,与两阶段Nd模式年龄相当(表3和表4)。
-
4 讨论
-
4.1 Mensibau花岗岩类的成因及源区性质
-
Mensibau花岗岩类含角闪石,铝饱和指数(A/CNK)为0.92~1.06,属于准铝质—弱过铝质花岗岩。P2O5含量与SiO2呈现出负相关性(图9和表2)。这些特征指示Mensibau花岗岩类属于I型花岗岩(Chappell and White,2001)。Mensibau花岗岩类富集大离子亲石元素(Rb、Th、U和K)和亏损高场强元素(Nb、Ta和Ti),具有弱的轻重稀土分馏((La/Yb)N = 4.15~8.32)和弱的Eu负异常(0.63~1.00)特征,类似于典型的弧岩浆特征(图7和表2;Briqueu et al.,1984)。此外,石英二长岩(127 ± 1 Ma)的Eu和Sr的负异常可能与斜长石的分离结晶有关(图7)。Mensibau花岗岩类具有低的[n(87Sr)/n(86Sr)]i值(0.70420~0.70424)、正的εNd(t)值(+3.14~+4.09)和εHf(t)值(+9.30~+13.87),指示岩浆来源于新生地壳(图8)。利用二端元混合模型可进一步评估其岩浆源区涉及的新生地壳的含量(图8a):假设一个端元(镁铁质岩浆)为研究区东南方向的梅拉图斯早白垩世(128 Ma)玄武岩(18JV-31A10,Sr=158×10-6,[n(87Sr)/n(86Sr)]i= 0.703947,Nd=11.50×10-6,εNd(t)=+7.7),因为它是婆罗洲地区最高的正εNd(t)值,表明它来自地幔源区(Wang Yuejun et al.,2022a);另一个端元(陆壳物质)为古晋带中早白垩世(89 Ma)安山岩(17MY-70A1,Sr = 324×10-6,[n(87Sr)/n(86Sr)]i = 0.71411,Nd = 12.89×10-6,εNd(t)=-11.1),它具有最负的εNd(t)值,表明它来自于古老陆壳(Wang Yuejun et al.,2021b)。
-
图7 Mensibau花岗岩类微量元素原始地幔标准化图(a)和稀土元素球粒陨石标准化图(b)球粒陨石和原始地幔标准值来自Sun and McDonough(1989)
-
Fig.7 Primary mantle standardization diagram of trace elements from the Mensibau granitoids (a) and rare earth element chondrite standardization diagram (b) . The standard values of chondrites and primitive mantle are from Sun and McDonough (1989)
-
图8 Mensibau花岗岩类εNd(t)—n(87Sr)/n(86Sr)i和锆石εHf(t)—年龄图解
-
Fig.8 εNd (t) vs. n (87Sr) /n (86Sr) i and zircon εHf (t) vs. age diagram from the Mensibau granitoids
-
图9 10000Ga/Al—(Zr+Nb+Ce+Y)图解(a)以及P2O5—SiO2图解(b)
-
Fig.9 10000Ga/Al vs. (Zr+Nb+Ce+Y) diagram (a) and P2O5 vs. SiO2 diagram (b)
-
同位素模拟表明,Mensibau花岗岩类岩浆可能主要来源于新生地壳(90%~95%)的部分熔融,混有少量的古老陆壳物质(5%~10%)。此外,Mensibau花岗岩类还具有亏损地幔的锆石O同位素特征(δ18O=5.06‰~5.61‰;Wang Yuejun et al.,2022b),也表明其主要来源于新生地壳。综上所述,结合Wang Yuejun等(2022b)发表的数据,Mensibau花岗岩类源于新生地壳的部分熔融,岩浆演化过程存在斜长石的分离结晶(图7和图8)。
-
4.2 Mensibau花岗岩类的形成时代及婆罗洲早白垩世岩浆时空分布和区域联系
-
Mensibau岩基由花岗闪长岩、花岗岩、闪长岩、二长岩和英云闪长岩组成。本研究的石英二长岩和钾长花岗岩均采自于Mensibau岩基,且这些花岗岩类具有相似的Sr-Nd-Hf同位素特征,指示它们的源于相类似的源区。石英二长岩(127 Ma)和钾长花岗岩(142 Ma)的年龄差值也表明该岩基的岩浆活动至少持续15 Ma,这与Wang Yuejun等(2022b)报到的该岩基5个花岗岩的年龄差距(130 Ma、133 Ma、135 Ma、136 Ma和144 Ma)一致,均表明早白垩世西婆罗洲Mensibau岩基的岩浆活动可能至少持续了15 Ma。值得注意的是,与Mensibau岩基相伴生的Raya火山岩的锆石U-Pb年龄为130~138 Ma,二者年龄基本一致(Wang Yuejun et al.,2022b)。并且,它们具有相似的主微量和同位素(Sr-Nd和Hf-O)特征,这表明Mensibau岩基和Raya火山岩可能来源同一母岩浆的产物。所有这些特征都表明西婆罗洲在早白垩时期(127~144 Ma)发育广泛的岩浆事件(Hennig et al.,2017; Breitfeld et al.,2020; Wang Yuejun et al.,2022b)。如前所述,婆罗洲存在古晋—隆帕杭盖、施瓦纳—辛加旺和梅拉图斯三个岩浆岩带(图1)。锆石U-Pb年龄显示这些岩浆岩年龄集中于晚中生代(187 Ma,150~154 Ma,72~144 Ma),峰期在白垩纪(Setiawan et al.,2013; Davies,2013; Davies et al.,2014; Soesilo et al.,2014; Hennig et al.,2017; Breitfeld et al.,2017; Breitfeld et al.,2020; Batara and Xu Changhai,2022; Wang Yuejun et al.,2022b)。白垩纪至古近纪沉积岩碎屑锆石研究显示,岩浆锆石年龄集中于78~200 Ma,峰期同样为白垩纪(78~130 Ma)(Davies et al.,2014; Breitfeld et al.,2017,2018; Batara and Xu Changhai,2022)。中部施瓦纳—辛加旺带以早白垩世岩浆岩为主,如Sepauk岩基、Laur花岗岩类、Mensibau花岗岩类和Raya火山岩。Sepauk岩基包括花岗闪长岩、英云闪长岩,石英闪长岩和二长花岗岩,其锆石U-Pb年龄为102~119 Ma(Davies,2013; Hennig et al.,2017; Breitfeld et al.,2020; Batara and Xu Changhai,2022)。Laur花岗岩体由二长花岗岩、正长花岗岩和花岗闪长岩组成,它的K-Ar年龄为98~105 Ma(Bladon et al.,1989)。此外,北部古晋—隆帕杭盖带中Menyukung花岗岩(黑云母K-Ar年龄为125 Ma)和Alan花岗岩(角闪石K-Ar年龄为131~123 Ma)也同样形成于早白垩世(Bladon et al.,1989; Breitfeld et al.,2020)。南部梅拉图斯带花岗岩锆石U-Pb年龄为123~107 Ma(Wang Yuejun et al.,2022a)。婆罗洲以北的越南南部地区的发育晚侏罗至晚白垩岩浆岩(K-Ar年龄为183~60 Ma;Areshev et al.,1992)。如大叻(Dalat)地区(越南东南部)的3组花岗岩套(Dinhquan、Deoca和Ankroet),它们的锆石U-Pb年龄分别为113~97 Ma、113~92 Ma和103~98 Ma(Hiep et al.,2021)。南海北部钻探获得的岩浆岩Rb-Sr和K-Ar年龄为150~71 Ma(李平鲁等,1998)SIMS锆石U-Pb年龄集中于198~195 Ma、162~148 Ma和137~102 Ma(Xu Changhai et al.,2016,2017)。如西科1钻井中的碱长花岗岩和二长花岗岩锆石U-Pb年龄分别为152~150 Ma和108 Ma(修淳等,2016;Zhu Weilin et al.,2017)、南沙石英闪长岩、花岗闪长岩和二长花岗岩拖网样品锆石U-Pb年龄为159~154 Ma和127 Ma(Yan Quanshu et al.,2010)。
-
图10 新特提斯构造域年龄比锆石εHf(t)图解(数据来源:Mensibau(Wang Yuejun et al.,2022b和本研究),西缅甸(Gardiner et al.,2017; Zhang Peng et al.,2017; Li Jinxiang et al.,2020; Yang Zongyong et al.,2022),西苏门答腊(Li Shan et al.,2020),西苏拉威西(Wu Sainan et al.,2022)和冈底斯弧(Chu Meifei et al.,2006,2011; Ji Weiqiang et al.,2009a,2009b))
-
Fig.10 Age (Ma) vs. εHf (t) diagram in the Neo-Tethys tectonic domain. Data of referenced granitoids: Mensibau (Wang Yuejun et al., 2022b and this study) , West Burma (Gardiner et al., 2017; Zhang Peng et al., 2017; Li Jinxiang et al., 2020; Yang Zongyong et al., 2022) , West Sumatra (Li Shan et al., 2020) , West Sulawesi (Wu Sainan et al., 2022) , and Gangdese arc (Chu Meifei et al., 2006, 2011; Ji Weiqiang et al., 2009a, 2009b) )
-
此外,婆罗洲以西的西藏冈底斯、西缅甸、西苏门答腊等地也同样发育早白垩世岩浆岩(Amiruddin,2009; 朱弟成等,2009;Soesilo et al.,2015; Lin Te-Hsien et al.,2019; Li Shan et al.,2020; Zhang Liyun et al.,2021)。如西藏冈底斯出露的早白垩世花岗岩(137~103 Ma)(朱弟成等,2009),西缅甸早白垩世岩浆岩(Wuntho-Popa弧;115~90 Ma)(Lin Te-Hsien et al.,2019; Zhang Liyun et al.,2021)和西苏门答腊的早白垩花岗岩类(102~98 Ma; Li Shan et al.,2020)。特提斯最东端印尼中部地区,在西爪哇钻孔遇到了早白垩花岗岩(K-Ar 125~100 Ma,Soesilo et al.,2015)。
-
婆罗洲以北的南海北部和越南南部以及婆罗洲北部的古晋—隆帕杭盖带中都发现存在早白垩花岗岩。这些花岗岩类大体都具有钙碱性、准铝质—弱过铝质和I型花岗岩的特征,显示出典型的岛弧花岗岩特征(Yan Quanshu et al.,2010; Xu Changhai et al.,2016,2017; Hiep et al.,2021; Batara and Xu Changhai,2022),并且具有变化的εHf(t)值(-15.5~+3.9; Qiu Zengwang et al.,2017)。它们可能构成与古太平洋俯冲相关的科迪勒拉型弧岩浆带(Amiruddin,2009; Hennig et al.,2017; Breitfeld et al.,2020; Batara and Xu Changhai,2022)。此外,在西藏冈底斯、西缅甸、西苏门答腊、中爪哇、西苏拉威西和东南婆罗洲(梅拉图斯)等地也发现早白垩花岗岩。这些花岗岩整体都具有高正的εHf(t)值(-11.4~+18.5)(图10;Chu Meifei et al.,2006,2011; Ji Weiqiang et al.,2009a,2009b; Gardiner et al.,2017; Zhang Peng et al.,2017; Li Jinxianget al.,2020; Li Shan et al.,2020b; Wang Yuejun et al.,2022b; Wu Sainan et al.,2022; Yang Zongyong et al.,2022),可能为与新特提斯洋俯冲—增生相关的洋内弧或增生弧岩浆岩带(Lin Te-Hsien et al.,2019; Li Shan et al.,2020; Zhang Liyun et al.,2021; Wang Yuejun et al.,2022a; Wu Sainan et al.,2022)。此外,Mensibau花岗岩类的εHf(t)值为+9.1~+16.3(表4;Wang Yuejun et al.,2022b),更接近新特提斯俯冲相关的花岗岩的εHf(t)值,表明具有相似的物源,这可能与受相似的俯冲—增生构造体制(如新特提斯俯冲—增生)作用诱导的新生地壳的部分熔融作用有关。然而,从岩浆的时空分布来看,西南婆罗洲发育早白垩岩浆事件可能受到了古太平洋俯冲和新特提斯洋俯冲的双重影响(图11)。
-
图11 东南亚构造简图(据Zhang Xiaoran et al.,2019修改)
-
Fig.11 Tectonic sketch in Southeast Asia (modified after Zhang Xiaoran et al., 2019)
-
4.3 两种构造体制叠合造山作用及其构造意义
-
婆罗洲西北部古晋—隆帕杭盖地区白垩纪花岗岩以小型孤立岩体分布在西沙捞越至中加里曼丹地带,主要由准铝质到过铝质,钙碱性到碱性花岗岩、花岗闪长岩和石英二长岩组成,大部分是I型花岗岩(图1;Amiruddin,2009)。这些岩体的侵位主要发生在白垩纪晚期(Kirk,1968; Bignell,1972; Williams et al.,1988; Hennig et al.,2017)。其中,还发育少量早白垩世岩体,如Menyukung花岗岩(K-Ar黑云母125 Ma)和Alan花岗岩(K-Ar角闪石131~123 Ma)(Bladon et al.,1989; Breitfeld et al.,2020)。这些白垩纪花岗岩现在大体被认为与古太平洋的俯冲有关(Batara and Xu Changhai,2022)。
-
婆罗洲南部卢克乌洛(Luk Ulo)—梅拉图斯带的白垩纪花岗岩与弧岩浆有关,成分为钙碱性至碱性,准铝质至过铝质,大部分属I型花岗岩(Amiruddin,2009; Soesilo et al.,2014)。如Rimuh岩体(Batang Alai花岗岩)和Kintap花岗岩体(Hajawa花岗岩)。在梅拉图斯山脉中部还发育部分晚白垩世火山岩和火山碎屑岩(Sikumbang,1986)。在中爪哇卢克乌洛杂岩发现了锆石U-Pb年龄为69~67 Ma的俯冲相关变质花岗岩(Khalif,2016)。在西爪哇,钻孔遇到的花岗岩K-Ar年龄范围为98~72 Ma和125~100 Ma(Soesilo et al.,2015)。此外,卢克乌洛—梅拉图斯带中高压/低温(HP/LT)变质岩的K-Ar年龄范围为87~70 Ma和135~100 Ma(Parkinson et al.,1998)。上述白垩纪岩浆岩和HP/LT变质岩的发育,可能与新特提斯洋的俯冲相关。
-
图12(a)婆罗洲构造位置图;(b)西南婆罗洲早白垩世多构造体制叠合造山作用下的构造—岩浆演化示意图(据Batara and Xu Changhai,2022修改)。SCS—南海;EJ—WS—东爪哇—西苏拉威西
-
Fig.12 (a) Structural location map of Borneo; (b) Schematic diagram of tectonic-magmatic evolution under the superimposed orogeny of Early Cretaceous multi-tectonic systems in Southwest Borneo (modified after Batara and Xu Changhai, 2022) . SCS—South China Sea; EJ—WS—East Java-West Sulawesi
-
在婆罗洲中部的早白垩世(144~127 Ma)Mensibau花岗岩类、Sepauk英云闪长岩、Laur花岗岩、Raya火山岩和施瓦纳岩基,它们都具有类似的弧岩浆岩特征,并共同构成了早白垩世施瓦纳—辛加旺弧岩浆岩带。在该带北部的沙捞越古晋地区,是由Lubok Antu、Kapuas、Telen、Serabang和Natuna杂岩组成的早白垩世Lupar杂岩带以及以白垩系Pendawan组为代表的原Melawi盆地(图12;Haile,1970; Hutchison,2005; Suyono,2013; Zhao Qi et al.,2021)。上述早白垩世单元共同构成了典型的与大洋俯冲相关的沟弧盆体系,它的形成可能指示西婆罗洲地区在早白垩时期遭受了古太平洋板片的俯冲作用(图12)。
-
在东南婆罗洲地区,卢克乌洛—梅拉图斯杂岩带的形成时代同样为早白垩世(片岩K-Ar年龄120~110 Ma,Wakita et al.,1998;花岗岩锆石U-Pb年龄101~119 Ma;Soesilo et al.,2014)。位于加里曼丹东南部施瓦纳山脉和梅拉图斯山脉之间原Barito盆地。它被Batununggal组的白垩系碳酸盐沉积、Haruyan组的海底火山岩和Pitap组的海底扇沉积物填充(Heryanto,2000)。最近,在梅拉图斯杂岩中发现存在早白垩世弧岩浆作用,与新特提斯俯冲增生背景一致(Wang Yuejun et al.,2022a)。因此表明上述单元的形成可能与早白垩时期新特提斯洋的俯冲相关(图12)。
-
进入到晚白垩世,在西南婆罗洲发育古晋—隆帕杭盖岩浆弧(由Pueh、Tinteng Bedil、Sebuyau、Era、Topai和Natuna花岗岩组成;K-Ar年龄为100~76 Ma,Kirk,1968;Bignell,1972; Williams et al.,1988; Bladon et al.,1989;锆石U-Pb年龄为88~81 Ma,Hennig et al.,2017; Breitfeld et al.,2020; Batara and Xu Changhai,2022),Lupar杂岩带(晚白垩世;Zhao Qi et al.,2021)和弧后原Ketungau-Mandai盆地(Selangkai组)(图1和12a;Amiruddin,2009)。在西南婆罗洲北部晚白垩发育的这套沟—弧—弧后盆地体系,可能是古太平洋俯冲板片后退形成的。另外,在西南婆罗洲的东南方向也发现具有晚白垩的岩浆弧(卢克乌洛—梅拉图斯弧:Hajawa花岗岩,K-Ar年龄为87~71 Ma,Amiruddin,2009; 西爪哇钻探花岗岩,K-Ar年龄为98~72 Ma,Soesilo et al.,2015)。并且,在东南婆罗洲还发现存在被晚白垩沉积火山岩地层(如Pitap和Haruyan组)沉积填充的弧后原Barito盆地(Sikumbang,1986; Wakita et al.,1998)。这构成了东南亚另一个沟—弧—弧后盆地体系,可能是新特提斯洋俯冲板片后退形成的。另外,在施瓦纳—辛加旺地区,晚白垩世地壳伸展增加,岩浆表现为由弧型过渡到板内(Kerabai火山岩,K-Ar年龄为76~66 Ma,锆石U-Pb年龄为103 Ma;Bladon et al.,1989; De Keyser and Rustandi,1993; Biwa辉长岩,K-Ar年龄为88~82 Ma,锆石U-Pb年龄为87 Ma;Haile et al.,1977; Bladon et al.,1989)。这与古太平洋和新特提斯叠合造山作用有关(Batara and Xu Changhai,2022),但是古太平洋与新特提斯洋影响的时空范围有待进一步研究。
-
5 结论
-
(1)印尼西婆罗洲Mensibau花岗岩体形成于早白垩世(144~127 Ma),为钙碱性增生弧花岗岩,岩浆来源于新生镁铁质地壳的部分熔融,确定了西婆罗洲地区在早白垩世期间经历了重要的大陆增生。
-
(2)西婆罗洲早白垩世增生造山作用可能与古太平洋和新特提斯两大构造体制的叠合作用有关,对认识多重构造体制叠合造山作用具有重要意义,但其具体影响的时空范围有待进一步研究。
-
致谢:感谢审稿专家和责任编辑对本文的建设性意见,使本文得以完善。
-
参考文献
-
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 10: 2595~2604.
-
李平鲁, 梁慧娴, 戴一丁. 1998. 珠江口盆地基岩油气藏远景探讨. 中国海上油气地质, 6: 1~9.
-
修淳, 张道军, 翟世奎, 刘新宇, 毕东杰. 2016. 西沙岛礁基底花岗质岩石的锆石U-Pb年龄及其地质意义. 海洋地质与第四纪地质, 36(3): 115~126.
-
许长海, 朱伟林, 廖宗廷. 2020. 婆罗洲晚中生代岩浆弧及陆缘俯冲汇聚体制. 石油实验地质, 42(5): 711~719.
-
朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学(D辑: 地球科学), 39(7): 833~848.
-
Abdullah N T, Abang K H. 1987. Pedawan Formation of the Penrissen area, Sarawak: A revision of its upper age limit. Warta Geologi, 13: 43~50.
-
Amiruddin A. 2009. Cretaceous orogenic granite belts, Kalimantan, Indonesia. Jurnal Geologi dan Sumberdaya Mineral, 19: 167~176.
-
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192: 59~79.
-
Areshev E, Dong T L, San N T, Shnip O. 1992. Reservoirs in fractured basement on the continental shelf of southern Vietnam. Journal of Petroleum Geology, 15: 451~464.
-
Batara B, Xu Changhai. 2022. Evolved magmatic arcs of South Borneo: Insights into Cretaceous slab subduction. Gondwana Research, 111: 142~164.
-
Beauvais L, Fontaine H. 1990. Corals from the Bau limestone formation, Jurassic of Sarawak, Malaysia. In: Fontaine H. eds. Ten Years of CCOP Research on the Pre-Tertiary of East Asia, CCOP/TP 20: 209~239.
-
Bignell J. 1972. The geochronology of the Malayan granites. Unpubl: Ph. D. Thesis, Univ. Oxford.
-
Bladon G M, Pieters P E, Supriatna S. 1989. Catalogue of Isotopic Ages Commisioned by the Indonesia-Australia Geological Mapping Project for Igneous and Metamorphic Rocks in Kalimantan: Preliminary Geological Report, Indonesia-Australia Geological Mapping Project, Geological Research and Development Centre, Bandung, Indonesia.
-
Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1~2): 243~258.
-
Breitfeld H T, Davies L, Hall R, Armstrong R, Forster M, Lister G, Thirlwall M, Grassineau N, Hennig B J, van Hattum M W A. 2020. Mesozoic Paleo-Pacific subduction beneath SW Borneo: U-Pb geochronology of the Schwaner granitoids and the Pinoh Metamorphic Group. Frontiers in Earth Science, 8: 1~37.
-
Breitfeld H T, Hall R, Galin T, BouDagher-Fadel M K. 2018. Unravelling the stratigraphy and sedimentation history of the uppermost Cretaceous to Eocene sediments of the Kuching Zone in West Sarawak (Malaysia), Borneo. Journal of Asian Earth Sciences, 160: 200~223.
-
Breitfeld H T, Hall R, Galin T, Forster M A, BouDagher-Fadel M K. 2017. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo. Tectonophysics, 694: 35~56.
-
Briqueu L, Bougault H, Joron J L. 1984. Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: petrogenetic implications. Earth Planetary Science Letters, 68: 297~308.
-
Carlile J, Mitchell A. 1994. Magmatic arcs and associated gold and copper mineralization in Indonesia. Journal of Geochemical Exploration, 50: 91~142.
-
Chappell B W, White A J. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48: 489~499
-
Chu Meifei, Chung Sun-Lin, O’Reilly S Y, Pearson N J, Wu Fuyuan, Li Xianhua, Liu Dunyi, Ji Jianqing, Chu Chui-Hong, Lee Hao-Yang. 2011. India’s hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters, 307: 479~486.
-
Chu Meifei, Chung Sun-Lin, Song Biao, Liu Dunyi, O’Reilly S Y, Pearson N J, Ji Jianqing, Wen Da-Jen. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34: 745~748.
-
Davies L, Hall R, Armstrong R. 2014. Cretaceous crust in SW Borneo: petrological, geochemical and geochronological constraints from the Schwaner Mountains. In: Proceedings Indonesian Petroleum Association, 38th Annual Convention and Exhibition, Jakarta, Indonesia, IPA14-G-025.
-
Davies L B. 2013. SW Borneo Basement: Age, origin and character of igneous and metamorphic rocks from the Schwaner Mountains, Royal Holloway. University of London. Ph. D. thesis.
-
De Keyser F, Rustandi E. 1993. Geology of the Ketapang Sheet area, Kalimantan, 1∶250000. Geological Research Development Centre, Bandung, Indonesia.
-
Gardiner N J, Hawkesworth C J, Robb L J, Whitehouse M J, Roberts N M W, Kirkland C L, Evans N J. 2017. Contrasting granite metallogeny through the zircon record: A case study from Myanmar. Scientific Reports, 7: 748.
-
Ghani A A, Lo Ching-Hua, Chung Sun-Lin. 2013. Basaltic dykes of the eastern belt of Peninsular Malaysia: The effects of the difference in crustal thickness of Sibumasu and Indochina. Journal of Asian Earth Sciences, 77: 127~139.
-
Griffin W L, Pearson N J, Belousova E, Jackson S V, Van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133~147.
-
Haile N. 1970. Notes on the Geology of the Tambelan, Annambas and Bunguran (Natuna) Islands, Sunda Shelf, Indonesia: Including Radiometric age Ddeterminations. In: U. N. ECAFE, Comm. Coordination of Offshore Prospecting (CCOP) Tech. Bull. , 3: 55~89.
-
Haile N, McElhinny M, McDougall I. 1977. Palaeomagnetic data and radiometric ages from the Cretaceous of West Kalimantan (Borneo), and their significance in interpreting regional structure. Journal of the Geological Society, 133: 133~144.
-
Haile N S. 1974. Borneo. Geological Society, London, Special Publications, 4: 333~347.
-
Hall R. 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570~571: 1~41.
-
Hall R. 2017. Southeast Asia: New views of the geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences, 45: 331~358.
-
Harahap B H. 1987. The petrology of some young subvolcanic and volcanic rocks from West Kalimantan, Indonesia. Department of Geology. the University of Tasmania, Austrlia.
-
Hennig J, Breitfeld H T, Hall R, Nugraha A M S. 2017. The Mesozoic tectono-magmatic evolution at the Paleo-Pacific subduction zone in West Borneo. Gondwana Research, 48: 292~310.
-
Heryanto R. 2000. Pengendapan batuan sedimen Kelompok Pitap di bagian selatan Pegunungan Meratus. Journal Geologi dan Sumberdaya Mineral, 10(109): 2~19.
-
Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007&. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinca, 23(10): 2595~2604.
-
Hiep N H, Sang P N, Van Long H, Carter A, Hau B V, Bac B H, Trung T T, Anh N L. 2021. Cretaceous granitic magmatism in South-Central Vietnam: Constraints from Zircon U-Pb geochronology. Journal of the Polish Mineral Engineering Society, 1.
-
Hutchison C S. 2005. Geology of North-West Borneo: Sarawak, Brunei and Sabah. Elsevier: 444.
-
Ishibashi T. 1982. Upper Jurassic and Lower Cretaceous ammonites from Sarawak Borneo, East Malaysia. Geology Paleontology of SE Asia, 23: 65~69.
-
Jasin B, Madun A. 1996. Some Lower Cretaceous radiolaria from the Serabang Complex, Sarawak. Warta Geologi, 22(2): 61~65.
-
Ji Weiqiang, Wu Fuyuan, Chung Sun-Lin, Li Jinxiang, Liu Chuangzhou. 2009a. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, Southern Tibet. Chemical Geology, 262: 229~245.
-
Ji Weiqiang, Wu Fuyuan, Liu Chuangzhou, Chung Sun-Lin. 2009b. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China (Series D: Earth Sciences), 52: 1240~1261.
-
Khalif M I. 2016. Geochemistry and Geochronology of Metapsammite and Metagranite Rock in Luk Ulo Complex, Karangsambung, Central Java, Indonesia: Universitas Gadjah Mada. Master's thesis.
-
Kirk H. 1968. The igneous rocks of the Sarawak and Sabah. Geological Survey Borneo Region, Malaysia, Bull. , 5: 201.
-
Li Jinxiang, Fan Weiming, Zhang Liyun, Peng Touping, Sun Yali, Ding Lin, Cai Fulong, Sein K. 2020. Prolonged Neo-Tethyan magmatic arc in Myanmar: Evidence from geochemistry and Sr-Nd-Hf isotopes of Cretaceous mafic-felsic intrusions in the Banmauk-Kawlin area. International Journal of Earth Sciences, 109: 649~668.
-
Li Pinglu, Liang Huixian, Dai Yiding. 1998&. Exploration perspective of basement hydrocarbon accumulations in the pearl river mouth basin. China Offshore Oil and Gas (Geology), 6: 1~9.
-
Li Shan, Chung Sun-Lin, Lai Yu-Ming, Ghani A A, Lee Hao-Yang, Murtadha S. 2020. Mesozoic juvenile crustal formation in the easternmost Tethys: Zircon Hf isotopic evidence from Sumatran granitoids, Indonesia. Geology, 48: 1002~1005.
-
Liang Qi, Grégoire D C. 2000. Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry. Geostandards Newsletter, 24: 51~63.
-
Lin T H, Mitchell A H G, Chung Sun-Lin, Tan Xi-Bin, Tang Jui-Ting, Oo T, Wu Fuyuan. 2019. Two parallel magmatic belts with contrasting isotopic characteristics from southern Tibet to Myanmar: Zircon U-Pb and Hf isotopic constraints. Journal of the Geological Society, 176: 574~587.
-
Ludwig K. 2012. User’s Manual for Isoplot Version 3. 75-4. 15: A Geochronological Toolkit for Microsoft Excel. 5.
-
Metcalfe I. 1985. Lower Permian conodonts from the Terbat Formation, Sarawak. Warta Geologi, 11: 1~3.
-
Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1~33.
-
Metcalfe I. 2017. Tectonic evolution of Sundaland. Geol. Soc. Malaysia. Bull. , 63: 27~60.
-
Metcalfe I. 2021. Multiple Tethyan ocean basins and orogenic belts in Asia. Gondwana Research, 100: 87~130.
-
Mohamad N N, Abd Rahman A H, Ismail M S. 2020. The geology and stratigraphic framework of the Kuching Zone Sarawak: Current understanding and unresolved issues. Warta Geologi, 46: 52~58.
-
Morel M L A, Nebel O, Nebel-Jacobsen Y J, Miller J S, Vroon P Z. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology, 255: 231~235.
-
Norrish K, Hutton J T. 1969. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochimica et Cosmochimica Acta, 33: 431~453.
-
Parkinson C D, Miyazaki K, Wakita K, Barber A, Carswell D. 1998. An overview and tectonic synthesis of the pre-Tertiary very-high-pressure metamorphic and associated rocks of Java, Sulawesi and Kalimantan, Indonesia. The Island Arc, 7: 184~200.
-
Pieters P, Supriatna S. 1990. Late Cretaceous-Early Tertiary Continent-Continent Collision in Borneo. Earth Science Series, 13: 193~194.
-
Qiu Zengwang, Yan Qinghe, Li Shasha, Wang He, Tong Laixi, Zhang Rongqing, Wei Xiaopeng, Li Pei, Wang Liming, Bu An. 2017. Highly fractionated Early Cretaceous I-type granites and related Sn polymetallic mineralization in the Jinkeng deposit, eastern Guangdong, SE China: Constraints from geochronology, geochemistry, and Hf isotopes. Ore Geology Reviews, 88: 718~738.
-
Scherer E, Munker C, Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293(5530): 683~687.
-
Schairer G, Zeiss A. 1992. First record of Callovian ammonites from West Kalimantan (Middle Jurassic, Kalimantan Barat, Borneo, Indonesia). BMR Journal of Australian Geology Geophysics, 13: 229~236.
-
Searle M, Whitehouse M, Robb L, Ghani A, Hutchison C, Sone M, Ng S P, Roselee M, Chung Sun-Lin, Oliver G J H. 2012. Tectonic evolution of the Sibumasu-Indochina terrane collision zone in Thailand and Malaysia: Constraints from new U-Pb zircon chronology of SE Asian tin granitoids. Journal of the Geological Society, 169: 489~500.
-
Setiawan N I, Osanai Y, Nakano N, Adachi T, Setiadji L D, Wahyudiono J. 2013. Late Triassic metatonalite from the Schwaner Mountains in West Kalimantan and its contribution to sedimentary provenance in the Sundaland. Berita Sedimentologi, 28: 5~13.
-
Shellnutt J G, Lan Ching-Ying, Van Long T, Usuki T, Yang Huai-Jen, Mertzman S A, Iizuka Y, Chung Sun-Lin, Wang Kuo-Lung, Hsu Wen-Yu. 2013. Formation of Cretaceous Cordilleran and post-orogenic granites and their microgranular enclaves from the Dalat zone, southern Vietnam: Tectonic implications for the evolution of Southeast Asia. Lithos, 182: 229~241.
-
Sikumbang N. 1986. Geology and tectonics of pre-Tertiary rocks in the Meratus Mountains, southeast Kalimantan, Indonesia, University of London, Royal Holloway and Bedford New College (United Kingdom). Ph. D. thesis.
-
Soesilo J, Schenk V, Suparka E, Abdullah C I. 2015. The Mesozoic tectonic setting of SE Sundaland based on metamorphic evolution. In: Proceedings--Indonesian Petroleum Association, Thirty-Ninth Annual Convention, Jakarta.
-
Soesilo J, Schenk V, Suparka E, Abdullah C I, Amiruddin A. 2014. The K-Ar and U-Pb shrimp zircon age dating of the Batangalai pluton central Meratus Complex, Southeast Kalimantan. In: Prosiding Seminar Nasional Geologi Nuklir Dan Sumber Daya Tambang Tahun, Jakarta: 1~16.
-
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313~345.
-
Supriatna S, Margono U, De Keyser F, Langford R, Trail D. 1993. Geology of the Sanggau Sheet Area, Kalimantan, 1: 250000. Geological Survey of Indonesia. Directorate of Mineral Resources, Geological Research and Development Centre, Bandung.
-
Suyono S. 2013. Stratigraphy and tectonics of the East Ketungau Basin, West Kalimantan during Palaeogene. Indonesian Journal on Geoscience, 8: 205~214.
-
Tan D N K. 1978. Lower Cretaceous age for the chert in the Lupar valley, West Sarawak. Warta Geol. , 4: 173~176.
-
Tan D N K. 1982. The Lubok Antu melange, Lupar valley, west Sarawak: A Lower Tertiary subduction Melange. Geol. Soc. Malaysia Bull. , 15: 31~46.
-
Tate R B. 1991. Cross-border correlation of geological formations in Sarawak and Kalimantan. Geol. Soc. Malaysia, Bull. , 28: 63~95.
-
Tate R B. 1996. The Geological Evolution of Borneo Island. University of Malaya, Master's thesis.
-
Tate R B, Hon V. 1991. The oldest rocks in Borneo: A note on the Tuang Formation, west Sarawak and its importance in relation to the presence of a Basement in west Borneo. Warta geologi, 17: 221~224.
-
Wakita K, Miyazaki K, Zulkarnain I, Sopaheluwakan J, Sanyoto P. 1998. Tectonic implications of new age data for the Meratus Complex of south Kalimantan, Indonesia. The Island Arc, 7: 202~222.
-
Wang Yuejun, Qian Xin, Cawood P A, Ghani A, Gan Chengshi, Wu Sainan, Zhang Yuzhi, Wang Yang, Zhang Peifei. 2022a. Cretaceous Tethyan subduction in SE Borneo: Geochronological and geochemical constraints from the igneous rocks in the Meratus Complex. Journal of Asian Earth Sciences, 226: 105084.
-
Wang Yuejun, Qian Xin, Zhang Yuzhi, Gan Chengshi, Zhang Aimei, Zhang Feifei, Feng Qinglai, Cawood P A, Zhang Peizhen. 2021a. Southern extension of the Paleotethyan zone in SE Asia: Evidence from the Permo-Triassic granitoids in Malaysia and West Indonesia. Lithos, 398~399: 106336.
-
Wang Yuejun, Wu Sainan, Qian Xin, Cawood P A, Lu Xianghong, Gan Chengshi, Asis J B, Zhang Peizhen. 2022b. Early Cretaceous subduction in NW Kalimantan: Geochronological and geochemical constraints from the Raya and Mensibau igneous rocks. Gondwana Research, 101: 243~256.
-
Wang Yuejun, Zhang Aimei, Qian Xin, Asis J B, Feng Qinglai, Gan Chengshi, Zhang Yuzhi, Cawood P A, Wang Weitao, Zhang Peizhen. 2021b. Cretaceous Kuching accretionary orogenesis in Malaysia Sarawak: Geochronological and geochemical constraints from mafic and sedimentary rocks. Lithos, 400~401.
-
Wilford G, Kho C. 1965. Penrissen Area, West Sarawak, Malaysia. Explanation of sheets 0-110-2, 1-110-13, 1-110-14. Geological Survey Department, Borneo (British), 195.
-
Williams P, Harahap B. 1987. Preliminary geochemical and age data from postsubduction intrusive rocks, northwest Borneo. Australian Journal of Earth Sciences, 34: 405~415.
-
Williams P, Johnston C, Almond R, Simamora W. 1988. Late Cretaceous to Early Tertiary structural elements of West Kalimantan. Tectonophysics, 148: 279~297.
-
Wu Fuyuan, Yang Jinhui, Wilde S A, Zhang Xiaoou. 2005. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology, 221: 127~156.
-
Wu Sainan, Wang Yuejun, Qian Xin, Asis J B, Lu Xianghong, Zhang Yuzhi, Gan Chengshi. 2022. Discovery of the Late Cretaceous Barru adakite in SW Sulawesi and slab break-off beneath the Central Indonesian Accretionary Complex. Journal of Asian Earth Sciences, 232: 105214.
-
Xiu Chun, Zhang Daojun, Zhai Shikui, Liu Xinyu, Bi Dongjie. 2016&. Zricon U-Pb age of granitic rocks from the basement beneath the Shi Island, Xisha Islands, and its geological significance. Marine Geology and Quaternary Geology, 36(3): 115~126.
-
Xu Changhai, Shi Hesheng, Barnes C G, Zhou Zuyi. 2016. Tracing a late Mesozoic magmatic arc along the Southeast Asian margin from the granitoids drilled from the northern South China Sea. International Geology Review, 58: 71~94.
-
Xu Changhai, Zhang Lu, Shi Hesheng, Brix M R, Huhma H, Chen Lihui, Zhang Minqiang, Zhou Zuyi. 2017. Tracing an Early Jurassic magmatic arc from South to East China Seas. Tectonics, 36: 466~492.
-
Xu Changhai, Zhu Weilin, Liao Zongting. 2020&. A review of the Late Mesozoic magmatic arc in Borneo with slab subduction models. Petroleum Geology and Experiment, 42(5): 711~719.
-
Yan Quanshu, Shi Xuefa, Liu Jihua, Wang Kunshan, Bu Wenrui. 2010. Petrology and geochemistry of Mesozoic granitic rocks from the Nansha micro-block, the South China Sea: Constraints on the basement nature. Journal of Asian Earth Sciences, 37: 130~139.
-
Yang Zongyong, Bi Xianwu, Zhu Jingjing, Hu Ruizhong, Zhong Hong, Sein K, Zaw T, Wang Dianzhong. 2022. Mid-Cretaceous intra-oceanic arc-continent collision recorded by the igneous complex in central Myanmar. Lithos, 414~415.
-
Zhang Liyun, Fan Weiming, Ding Lin, Pullen A, Ducea M N, Li Jinxiang, Wang Chao, Xu Xiaoyan, Sein K. 2021. Forced subduction initiation within the Neotethys: An example from the mid-Cretaceous Wuntho-Popa arc in Myanmar. GSA Bulletin, 134: 849~870.
-
Zhang Peng, Mei Lianfu, Hu Xiaolin, Li Renyuan, Wu Lulu, Zhou Zhichao, Qiu Huanning. 2017. Structures, uplift, and magmatism of the Western Myanmar Arc: Constraints to mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin. Gondwana Research, 52: 18~38.
-
Zhang Xiaoran, Chung S L, Lai Y M, Ghani A A, Murtadha S, Lee H Y, Hsu C C. 2019. A 6000-km-long Neo-Tethyan arc system with coherent magmatic flare-ups and lulls in South Asia. Geology, 47: 573~576.
-
Zhao Qi, Yan Yi, Zhu Zuofei, Carter A, Clift P D, Hassan M H A, Yao Deng, Aziz J H A. 2021. Provenance study of the Lubok Antu Mélange from the Lupar valley, West Sarawak, Borneo: Implications for the closure of eastern Meso-Tethys? Chemical Geology, 581: 120415.
-
Zhu Dicheng, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Niu Yaoling, Zhou Changyong, Yang Yueheng. 2009&. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Sci. China Ser. D--Earth Sci. , 39(7): 833~848.
-
Zhu Weilin, Xie Xinong, Wang Zhenfeng, Zhang Daojun, Zhang Chengli, Cao Licheng, Shao Lei. 2017. New insights on the origin of the basement of the Xisha Uplift, South China Sea. Science China Earth Sciences, 60: 2214~2222.
-
摘要
婆罗洲西部(印尼)在中生代期间处于特提斯构造域和古太平洋构造域交汇地带,是全球少有的多重板块动力学体制既有先后叠加又有同时复合的独特大地构造单元。因此,该区相关花岗岩类成因及构造背景的研究对揭示东南亚构造—岩浆演化历史及多重构造体制叠合造山作用下的岩浆演化机制至关重要。笔者等对西婆罗洲Mensibau岩基的花岗岩类进行了锆石U-Pb年代学、元素地球化学和Sr-Nd-Hf同位素分析。其中,石英二长岩和钾长花岗岩样品的LA-ICP-MS锆石U-Pb同位素年龄分别为126.9 ± 2.1 Ma和141.8 ± 2.6 Ma,表明岩体形成于早白垩世,岩浆活动至少持续了15 Ma。Mensibau花岗岩类具有高SiO2(67.5% ~ 73.3%)、高K2O (4.3% ~ 5.4%)和低P2O5 (0.07% ~ 0.14%)的元素含量特征,铝饱和指数(A/CNK)为0.92 ~ 1.06,并且含角闪石,属准铝质—弱过铝质I型花岗岩类。这些花岗岩类具有轻稀土元素(LREEs)富集和重稀土元素(HREEs)亏损,弱的负铕异常(δEu = 0.65 ~ 1.00),以及富集大离子亲石元素(Rb、Th、U和K)和亏损高场强元素(Nb、Ta和Ti)特征,显示出岛弧花岗岩的地球化学特征。此外,Mensibau花岗岩类具有正的εNd(t)值(+3.14 ~ +4.09)、低的[n(87Sr)/n(86Sr)]i值(0.70420 ~ 0.70424)和高的锆石εHf(t)值(+9.30 ~ +13.87),表明岩浆来源于新生镁铁质地壳的部分熔融。综合区域地质背景研究表明,发育在俯冲—增生杂岩上的Mensibau花岗岩类可能为受两种构造体制(古太平洋和新特提斯洋)叠合俯冲作用下的新生地壳来源的增生弧岩浆岩,证实了西婆罗洲地区在早白垩世期间经历了重要的增生造山过程。
Abstract
The western Borneo (Indonesia) was located at the intersection of the Tethys and Paleo-Pacific tectonic domains during the Mesozoic, and is a unique tectonic unit in the world where multiple plate dynamics systems were superimposed sequentially and simultaneously. Therefore, the study of the petrogenesis and tectonic setting of granitoids in this region is crucial to reveal the tectonic-magmatic evolutionary history of Southeast Asia and the magmatic evolutionary mechanism under the superposition of multiple tectonic systems of orogeny.
In this study, zircon U-Pb chronology, geochemistry, and Sr-Nd-Hf isotope analyses of granitoids from the Mensibau batholith in West Borneo were carried out. The LA-ICP-MS zircon U-Pb isotopic ages of 126.9 ± 2.1 Ma and 141.8 ± 2.6 Ma for quartz monzonite and K-feldspar granite sample, respectively, indicate that the rocks formed in the Early Cretaceous and magmatism lasted at least 15 Ma. The Mensibau granitoids has high SiO2 (67.5%~73.3%), high K2O (4.3%~5.4%) and low P2O5 (0.07%~0.14%) content, aluminum saturation index (A/CNK) of 0.92~1.06, and the presence of hornblende, belongs to the metaluminous-weakly peraluminous I type granites. These granitoids are characterized by enrichment of light rare earth elements (LREEs) and depleted of heavy rare earth elements (HREEs), weak negative europium anomalies (δEu = 0.65 ~ 1.00), and enrichment of large ion lithophile elements (Rb, Th, U, and K) and depleted of high field strength elements (Nb, Ta, and Ti), showing the typical geochemical characteristics of island arc granites. In addition, the Mensibau granitoids has positive εNd(t) values (+3.14~+4.09), low [n(87Sr)/n(86Sr)]i values (0.70420~0.70424), and high zircon εHf(t) values (+9.30~+13.87), indicating that the magma was derived from partial melting of the juvenile mafic crust.
A comprehensive regional geological background study indicates that the Mensibau granitoids developed on subduction-accretionary complexs may be accretionary arc magmatism of juvenile crustal origin under the superimposed subduction of two tectonic regimes (Paleo-Pacific and Neo-Tethys Ocean), confirming that the West Borneo region experienced significant accretionary orogeny during the Early Cretaceous.
关键词
东南亚 ; 婆罗洲 ; Mensibau岩基 ; 白垩纪花岗岩类 ; Sr-Nd-Hf同位素
Keywords
SE Asia ; Borneo ; Mensibau batholith ; Cretaceous granitoids ; Sr-Nd-Hf isotopes