en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王开,男,1989年生,博士,助理研究员,前寒武纪地质与构造地质学专业;E-mail:towangkai@126.com;wangkgeo2020@126.com。

参考文献
李江海, 牛向龙, 钱祥麟, 田永清. 2006. 五台山区太古宙/元古宙界线划分及其地球演化意义. 大地构造与成矿学, 30(4): 409~418.
参考文献
涂城, 张少兵, 苏克, 梁婷. 2021. 肥东杂岩锆石 U-Pb 年龄和 Lu-Hf 同位素: 对扬子克拉通统一结晶基底的限制. 地球科学, 46(5): 1630~1643.
参考文献
王洪亮, 徐学义, 陈隽璐, 闫臻, 李婷, 朱涛. 2011. 南秦岭略阳鱼洞子岩群磁铁石英岩形成时代的锆石 U-Pb 年代学约束. 地质学报, 85(8): 1284~1290.
参考文献
王翔, 马昌前, 邓佳良, 吴衡. 2020. 扬子陆块中东部宿松县柳坪镇发现~ 2. 5 Ga 斜长角闪岩. 中国地质, 47(4): 1262~1263.
参考文献
魏君奇, 王建雄. 2012. 崆岭杂岩中斜长角闪岩包体的锆石年龄和 Hf 同位素组成. 高校地质学报, 18(4): 589~600.
参考文献
翟明国, 赵磊, 祝禧艳, 焦淑娟, 周艳艳, 周李岗. 2020. 早期大陆与板块构造启动——前沿热点介绍与展望. 岩石学报, 36(8): 2249~2275.
参考文献
张欣, 徐学义, 宋公社, 王洪亮, 陈隽璐, 李婷. 2010. 西秦岭略阳地区鱼洞子杂岩变形花岗岩锆石 LA-ICP-MS U-Pb 测年及地质意义. 地质通报, (4): 510~517.
参考文献
张宗清, 张国伟, 唐索寒, 王进辉. 2001. 鱼洞子群变质岩年龄及秦岭造山带太古宙基底. 地质学报, 75(2): 198~204.
参考文献
Bryant D L, Ayers J C, Gao Shan, Zhang Hongfei. 2004. Geochemical, age, and isotopic constraints on the location of the Sino—Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China. Geological Society of American Bulletin, 116: 698~717.
参考文献
Cawood P A, Wang Wei, Zhao Tianyu, Xu Yajun, Mulder J A, Pisarevsky S A, Zhang Limin, Gan Chengshi, He Huiying, Liu Huichuan, Qi Liang, Wang Yuejun, Yao Jinlong, Zhao Guochun, Zhou Mei-Fu, Zi Jianwei. 2020. Deconstructing South China and consequences for reconstructing Nuna and Rodinia. Earth-Science Reviews, 204: 103169.
参考文献
Chen Kang, Gao Shan, WuYuanbao, Guo Jingliang, Hu Zhaochu, Liu Yongsheng, Zong Keqing, Liang Zhengwei, Geng Xianlei. 2013. 2. 6~2. 7 Ga crustal growth in Yangtze craton, South China. Precambrian Research, 224: 472~490.
参考文献
Chen Qiong, Sun Min, Zhao Guochun, Zhao Junhong, Zhu Weilin, Long Xiaoping, Wang Jun. 2019. Episodic crustal growth and reworking of the Yudongzi terrane, South China: Constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites. Lithos, 326~327: 1~18.
参考文献
Condie K C, Bickford M E, Aster R C, Belousova E, Scholl D W. 2011. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geological Society of American Bulletin, 123(5~6): 951~957.
参考文献
Condie K C, Davaille A, Aster R C, Arndt N. 2015. Upstairs—downstairs: supercontinents and large igneous provinces, are they related? International Geology Review, 57(11~12): 1341~1348.
参考文献
Condie K C. 1989. Geochemical changes inbaslts and andesites across the Archean—Proterozoic boundary: Identification and significance. Lithos, 23(1~2): 1~18.
参考文献
Condie K C. 1992. Evolutionary changes at the Archean—Proterozoic boundary. The Archaean: Terrains, processes and metallogeny. University of Western Australia, Geology Department (Key Centre) and University Extension Publication, 22: 177~189.
参考文献
Condie K C, O’Neill C. 2010. The Archean—Proterozoic boundary: 500My of tectonic transition in Earth history. American Journal of Science, 310(9), 775~790.
参考文献
Cui Xiaozhuang, Wang Jian, Wang Xuance, Wilde S A, Ren Guangming, Li Shaojie, Deng Qi, Ren Fei, Liu Junping. 2021. Early crustal evolution of the Yangtze Block: Constraints from zircon U—Pb—Hf isotope systematics of 3. 1~1. 9 Ga granitoids in the Cuoke Complex, SW China. Precambrian Research, 357: 106155.
参考文献
Dong Shuwen, Zhang Yueqiao, Gao Rui, Su Jinbao, Liu Mian, Li Jianhua. 2015. A possible buried Paleoproterozoic collisional orogen beneath central South China: Evidence from seismic-reflection profiling. Precambrian Research, 264: 1~10.
参考文献
Dong Yunpeng, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1~40.
参考文献
Faure M, Lin Wei, Shu Liangshu, Sun Yan, Schrer U. 1999. Tectonics of the Dabieshan (eastern China) and possible exhumation mechanism of ultra high-pressure rocks. Terra Nova, 11: 251~258.
参考文献
Gao Shan, Yang Jie, Zhou Lian, Li Ming, Hu Zhaochu, Guo Jingliang, Yuan Honglin, Gong Hujun, Xiao Gaoqiang. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3. 3 Ga granitoid gneisses. America Journal of Science, 311: 153~182.
参考文献
Guo Jingliang, Gao Shan, Wu Yuanbao, Li Ming, Chen Kang, Hu Zhaochu, Liang Zhengwei, Liu Yongsheng, Zhou Lian, Zong Keqing, Zhang Wen, Chen Haihong. 2014. 3. 45 Ga granitic gneisses from the Yangtze Craton, South China: Implications for Early Archean crustal growth. Precambrian Research, 242: 82~95.
参考文献
Guo Jingliang, Wu Yuanbao, Gao Shan, Jin Zhenmin, Zong Keqing, Hu Zhaochu, Chen Kang, Chen Haihong, Liu Yongsheng. 2015. Episodic Paleoarchean—Paleoproterozoic (3. 3~2. 0 Ga) granitoid magmatism in Yangtze craton, South China: Implications for late Archean tectonics. Precambrian Research, 270: 246~266.
参考文献
Hacker B R, Ratschbacher L, Liou Juhn-Guang. 2004. Subduction, collision and exhumation in the ultrahigh-pressure Qinling—Dabie orogen. Geological Society, London, Special Publications, 226: 157~75.
参考文献
Hacker B R, Ratschbacher L, Webb L, Ireland T, Walker D, Dong Shuwen. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling—Dabie Orogen, China. Earth and Planetary Science Letters, 161(1~4): 215~230.
参考文献
Hacker B R, Ratschbacher L, Webb L, McWilliams M O, Ireland T, Calvert A, Dong Shuwen, Wenk H R, Chateigner D. 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic—Early Jurassic tectonic unroofing. Journal of Geophysical Research: Solid Earth, 105(B6): 13339~13364.
参考文献
Han Qingsen, Peng Songbai, Kusky T, Polat A, Jiang Xingfu, Cen Yang, Liu Songfeng, Deng Hao. 2017. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Research, 293: 13~38.
参考文献
Hu Juan, Liu Xiaochun, Chen Longyao, Qu Wei, Li Huaikun, Geng Jianzhen. 2013. A 2. 5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin, 58: 3564~3579.
参考文献
Hui Bo, Dong Yunpeng, Cheng Chao, Long Xiaoping, Liu Xiaoming, Yang Zhao, Sun Shengsi, Zhang Feifei, Varga J. 2017. Zircon U-Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean—Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze craton, China. Precambrian Research, 301: 65~85.
参考文献
Jiao Wenfang, Wu Yuanbao, Yang Saihong, Peng Min, Wang Jing. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Science China——Earth Sciences, 52: 1393~1399.
参考文献
Lan Ching-Ying, Chung Sun-Lin, Lo Ching-Hua, Lee Tung-Yi. , Wang Pei-Ling, Li Hui-Min, Van Toan D. 2001. First evidence for Archean continental crust in northern Vietnam and its implications for crustal and tectonic evolution in Southeast Asia. Geology, 29: 219~222.
参考文献
Li Jianghai, Niu Xianglong, Qian Xianglin, Tian Yongqing. 2006&. Division of Archean/Proterozoic boundary and its implication for geological; evolution in Wutai Mountain area, North China. Geotectonica et Metallogena, 30(4): 419~412.
参考文献
Li Longming, Lin Shoufa, Davis D W, Xiao Wenjiao, Xing Guangfu, Yin Changqing. 2014. Geochronology and geochemistry of igneous rocks from the Kongling terrane: Implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block. Precambrian Research, 255: 30~47.
参考文献
Li Xiyao, Zheng Jianping, Xiong Qing, Zhou Xiang, Xiang Lu. 2018. Triassic rejuvenation of unexposed Archean—Paleoproterozoic deep crust beneath the western Cathaysia block, South China. Tectonophysics, 724: 65~79.
参考文献
Li Yuan, Liu Yican, Yang Yang, Rolfo F, Groppo C. 2020. Petrogenesis and tectonic significance of Neoproterozoic meta-basites and meta-granitoids within the central Dabie UHP zone, China: Geochronological and geochemical constraints. Gondwana Research, 78: 1~19.
参考文献
Liu Xiaoming, Gao Shan, Diwu Chunrong, Ling Wenli. 2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. American Journal of science, 308(4): 421~468.
参考文献
Liu Yican, Li Shuguang, Xu Shutong. 2007. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China: Implications for decoupling within subducted continental crust. Lithos, 96(1~2): 170~185.
参考文献
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt—peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51: 537~571.
参考文献
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34~43.
参考文献
Ludwig K R. 2003. User’s Manual for Isoplot 3. 00: A Geochronological Toolkit for Microsoft Excel, 4. Berkeley Geochronological Center Special Publication: 1~71.
参考文献
Nam T N, Toriumi M, Sano Y, Terada K, Thang T T. 2003. 2. 9, 2. 36, and 1. 96 Ga zircons in orthogneiss south of the Red River shear zone in Viet Nam: Evidence from SHRIMP U-Pb dating and tectonothermal implications. Journal of Asian Earth Sciences, 21: 743~753.
参考文献
Nie Hu, Yao Jin, Wan Xin, Zhu Xiyan, Siebel W, Chen Fukun. 2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: Evidence from zircon ages and Hf—Nd isotopic compositions of basement rocks. Precambrian Research, 286: 167~179.
参考文献
Pehrsson S J, Eglington B M, Evans D A D, Huston D, Reddy S M. 2016. Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. In: Li Zheng-Xiang et al. eds. Supercontinent Cycles Through Earth History. Geological Society, London, Special Publications, 424(1): 83~94.
参考文献
Qiu Xiaofei, Tong Xirun, Jiang Tuo, Khattak N U. 2021. Reworking of Hadean continental crust in the Dabie orogen: Evidence from the Muzidian granitic gneisses. Gondwana Research, 89: 119~30.
参考文献
Qiu Yumin, Gao Shan, McNaughton N J, Groves D I, Ling Wenli. 2000. First evidence of >3. 2 Ga continental crust in the Yangtze Craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28: 11~14.
参考文献
Rubatto D, Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps. In: Cathodoluminescence in Geosciences. Berlin: Springer: 373~400.
参考文献
Tu Cheng, Zhang Shaobing, Su Ke, Liang Ting. 2021&. Zircon U-Pb dating and Lu-Hf isotope results for the Feidong Complex: Implications for the coherent basement of the Yangtze Craton. Earth Science, 46: 1630~43.
参考文献
Wang Hongliang, Xu Xueyi, Chen Junlu, Yan Zhen, Li Ting, Zhu Tao. 2011&. Constraint from zircon U-Pb chronology of Yudongzi Group magnetite-quartzite in Lueyang area, southern Qinling, China. Acta Geologica Sinica, 85(8): 1284~1290.
参考文献
Wang Kai, DongShuwen, Li Zheng-Xiang, Han Baofu. 2018a. Age and chemical composition of Archean metapelites in the Zhongxiang Complex and implications for early crustal evolution of the Yangtze Craton. Lithos, 320~321: 280~301.
参考文献
Wang Kai, Dong Shuwen, Yao Weihua, Zhang Yueqiao, Li Jianhua, Cui Jianjun, Han Baofu. 2020a. Xenocrystic/inherited Precambrian zircons entrained within igneous rocks from eastern South China: Tracking unexposed ancient crust and implications for late Paleoproterozoic orogenesis. Gondwana Research, 84: 194~210.
参考文献
Wang Kai, Dong Shuwen, Yao Weihua, Zhao Tianyu, 2020b. Nature and evolution of pre-Neoproterozoic continental crust in south China: A review and tectonic implications. Acta Geologica Sinica (English Edition), 94(6): 1731~1756.
参考文献
Wang Kai, Dong Shuwen. 2019. New insights into Paleoproterozoic tectonics of the Yangtze Block in the context of early Nuna assembly: Possible collisional granitic magmatism in the Zhongxiang Complex. Precambrian Research, 334: 105452.
参考文献
Wang Kai, Li Zheng-Xiang, Dong Shuwen, Cui Jianjun, Han Baofu, Zheng Tao, Xu Yilong. 2018b. Early crustal evolution of the Yangtze Craton, south China: New constraints from zircon U—Pb—Hf isotopes and geochemistry of ca. 2. 9~2. 6 Ga granitic rocks in the Zhongxiang Complex. Precambrian Research, 314: 325~352.
参考文献
Wang Kai, Zhao Tianyu, Zhang Shuanhong. 2022. Discovery of the oldest (~2. 87 Ga) granitic gneisses in the Qinling—Dabie orogenic belt: Direct evidence for Mesoarchean crust. China Geology, doi: 10. 31035/cg2022084
参考文献
Wang Xiang, Guo Jinwei, Tao Wei, Jiang Laili, Deng Jialiang, Ma Changqian. 2021. Paleoproterozoic tectonic evolution of the Yangtze Craton: Evidence from magmatism and sedimentation in the Susong area, South China. Precambrian Research, 365: 106390.
参考文献
Wang Xiang, Ma Changqian, Deng Jialiang, Wu Heng. 2020#. Discovery of ~2. 5 Ga amphibolite at Liuping Town of Susong County in the mid-eastern region of the Yangtze Block. Geology in China, 47: 1262~1263.
参考文献
Wang Zhengjiang, Wang Jian, Du Qiuding, Deng Qi, Yang Fei. 2013a. The evolution of the Central Yangtze Block during early Neoarchean time: Evidence from geochronology and geochemistry. Journal of Asian Earth Sciences, 77: 31~44.
参考文献
Wang Zhengjiang, Wang Jian, Du Qiuding, Deng Qi, Yang Fei. 2013b. Mature Archean continental crust in the Yangtze Craton: Evidence from petrology, geochronology and geochemistry. Chinese Science Bulletin, 58: 2360~2369.
参考文献
Wei Junqi, Wang Jianxiong. 2012&. Zircon age and Hf isotope compositions of amphibolite enclaves from the Kongling Complex. Geological Journal of China Universities, 18: 589~600.
参考文献
Wu Yuanbao, Gao Shan, Gong Hujun, Xiang Hua, Jiao Wenfang, Yang Saihong, Liu Yongsheng, Yuan Hongling. 2009. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: Refining the timing of Palaeoproterozoic high-grade metamorphism. Journal of Metamorphic Geology, 27: 461~477.
参考文献
Wu Yuanbao, Zheng Yongfei, Gao Shan, Jiao Wenfang, Liu Yongsheng. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 101: 308~322.
参考文献
Wu Yuanbao, Zheng Yongfei, Zhang Shaobing, Zhao Zifu, Wu Fuyuan, Liu Xiaoming. 2007. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: Constraints on partial melting. Journal of Metamorphic Geology, 25(9): 991~1009.
参考文献
Wu Yuanbao, Zheng Yongfei. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling—Tongbai—Hong’an—Dabie—Sulu Orogenic belt in central China. Gondwana Research, 23: 1402~1428.
参考文献
Wu Yuanbao, Zhou Guangyan, Gao Shan, Liu Xiaochun, Qin Zhengwei, Wang Hao, Yang Jianzhou, Yang Saihong. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs. Precambrian Research, 254: 73~86.
参考文献
Xiang Hua, Zhang Zeming, Lei Hengcong, Qi Min, Dong Xin, Wang Wei, Lin Yanhao. 2014. Paleoproterozoic ultrahigh-temperature pelitic granulites in the Northern Sulu Orogen: Constraints from petrology and geochronology. Precambrian Research, 254: 273~289.
参考文献
Xu Yang, Polat A, Deng X, Liu Hao, Yang Kunguang. 2020. The ~1. 97 Ga dioritic block in the Hong’an Terrane, central China: Syn-collisional alkaline magmatism at the northern margin of the Yangtze Block. Precambrian Research, 342: 105713.
参考文献
Yang Zhenning, Yang Kunguang, Polat A, Xu Yang. 2018. Early crustal evolution of the eastern Yangtze Block: Evidence from detrital zircon U-Pb ages and Hf isotopic composition of the Neoproterozoic Huashan Group in the Dahongshan area. Precambrian Research, 309: 248~270.
参考文献
Ye Hui, Wu Changzhi, Yang Tao, Santosh M, Yao Xizhu, Gao Bingfei, Wang Xiaolei, Li Weiqiang. 2017. Updating the geologic barcodes for South China: Discovery of Late Archean banded iron formations in the Yangtze Craton. Scientific Reports, 7: 15082.
参考文献
Yin Changqing, Lin Shoufa, Davis D W, Zhao Guochun, Xiao Wenjiao, Li Longming, He Yanhong. 2013. 2. 1~1. 85 Ga tectonic events in the Yangtze Block, South China: Petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia. Lithos, 182: 200~210.
参考文献
Zhai Mingguo, Zhao Lei, Zhu Xiyan, Jiao Shujuan, Zhou Yanyan, Zhou Ligang. 2020&. Review and overview for the frontier hotspot: Early continents and start of plate tectonics. Acta Petrologica Sinica, 36(8): 2249~2275.
参考文献
Zhai Mingguo, Zhao Lei, Zhu Xiyan, Zhou Yanyan, Peng Peng, Guo Jinghui, Li Qiuli, Zhao Taiping, Lu Junsheng, Li Xianhua. 2021. Late Neoarchean magmatic—metamorphic event and crustal stabilization in the North China Craton. American Journal of Science, 321(1~2): 206~234.
参考文献
Zhang Shaobing, Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Gao Shan, Wu Fuyuan. 2006. Zircon isotope evidence for ≥3. 5 Ga continental crust in the Yangtze Craton of China. Precambrian Research, 146: 16~34.
参考文献
Zhang Xin, Xu Xueyi, Song Gongshe, Wang Hongliang, Chen Junlu, Li Ting. 2010&. Zircon LA-ICP-MS U-Pb dating and significance of Yudongzi Group deformation granite from Leyang area, western Qinling, China. Geological Bulletin of China, 29: 510~517.
参考文献
Zhang Zongqing, Zhang Guowei, Tang Suohan, Wang Jinhui. 2001&. On the age of metamorphic rocks of the Yudongzi Group and the Archean crystalline basement of the Qinling Orogen. Acta Geologica Sinica, 12(6): 739~773.
参考文献
Zhao Guochun, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222~223: 13~54.
参考文献
Zhao Junhong, Li Qiwei, Liu Hang, Wang Wei. 2018. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (south China) controlled by slab subduction and subduction-transform-edge-propagator. Earth-Science Reviews, 187: 1~18.
参考文献
Zhao Tian, Zhu Guang, Wu Qi, Hu Rongmei, Wu Yihao, Xu Zhengyan, Ye Jin. 2021. Evidence for discrete Archean microcontinents in the Yangtze Craton. Precambrian Research, 361: 106259.
参考文献
Zhao Tianyu, Cawood P A, Wang Kai, Zi Jianwei, Feng Qinglai, Nguyen Q M, Tran D M. 2019a. Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan Complex, north Vietnam: Constraints on the early crustal evolution of the Yangtze Block. Precambrian Research, 332: 105395.
参考文献
Zhao Tianyu, Cawood P A, Zi Jianwei, Wang Kai, Feng Qinglai, Nguyen Q M, Tran D M. 2019b. Early Paleoproterozoic magmatism in the Yangtze Block: Evidence from zircon U-Pb ages, Sr—Nd—Hf isotopes and geochemistry of ca. 2. 3 Ga and 2. 1 Ga granitic rocks in the Phan Si Pan Complex, north Vietnam. Precambrian Research, 324: 253~268.
参考文献
Zhao Tianyu, Li Jing, Liu Guichun, Cawood P A, Zi Jianwei, Wang Kai, Feng Qinglai, Hu Shaobin, Zeng Wentao, Zhang Hu. 2020. Petrogenesis of Archean TTGs and potassic granites in the southern Yangtze Block: Constraints on the early formation of the Yangtze Block. Precambrian Research, 347: 105848.
参考文献
Zheng Jianping, Griffin W L, O’Reilly S Y, Zhang Ming, Pearson N, Pan Yuanming. 2006. Widespread Archean basement beneath the Yangtze craton. Geology, 34(6): 417~420.
参考文献
Zhou Guangyan, Wu Yuanbao, Gao Shan, Yang Jianzhou, Zheng Jianping, Qin Zhengwei, Wang Hao, Yang Saihong. 2015. The 2. 65 Ga A-type granite in the northeastern Yangtze craton: Petrogenesis and geological implications. Precambrian Research, 258: 247~259.
参考文献
Zhou Guangyan, Wu Yuanbao, Li Long, Zhang Wenxiang, Zheng Jianping, Wang Hao, Yang Saihong. 2018. Identification of ca. 2. 65 Ga TTGs in the Yudongzi Complex and its implications for the early evolution of the Yangtze Block. Precambrian Research, 314: 240~263.
目录contents

    摘要

    华南由扬子和华夏地块组成,是构建东亚大陆的主要前寒武纪块体之一。扬子地块包含了华南所有已知的太古宙岩石单元,它们规模相对局限且零散分布于地块的不同部位,但碎屑和捕获/继承锆石指示了区域上太古宙地壳的广泛存在。现有的碎屑和捕获/继承锆石数据均指示扬子地块以约2.7 Ga和约2.5 Ga为主的太古宙地壳物质组成,对应全球大陆地壳快速生长与初始克拉通化的最重要阶段。然而,目前扬子地块仅有约2.7 Ga岩石的报道,约2.5 Ga岩石则相对缺乏,导致其基底地壳成分及克拉通化过程认识的不足。大别造山带是中生代扬子地块向北与华北板块俯冲、碰撞的产物,卷入并保留了大量扬子地块的前寒武纪基底,并以变质杂岩或地体的形式出露于大别山的不同部位。笔者等从大别山地区前寒武纪变质杂岩中识别出具不同岩性特征的约2.5 Ga花岗岩质岩石,报道了它们的LA-ICP-MS锆石U-Pb测年结果。孝昌地区两个糜棱岩化黑云母花岗岩的测年结果分别为2479±17 Ma和2497±20 Ma,宿松杂岩地区两个花岗质片麻岩偏钾质,年龄分别为2491±15 Ma和2516±26 Ma。结合区域地质证据,认为大别山地区可能存在较为广泛的约2.5 Ga地壳。这提供了约2.5 Ga扬子基底地壳的直接证据,太古宙—元古宙(Ar—Pt)之交应是扬子地块原始克拉通形成与演化的重要时期。

    Abstract

    Objectives:The ~2.5 Ga granitic rocks reported in this article are newly discovered from the Xiaochang and Susong areas in the Dabie Mountains (Dabieshan), which provide a very rare but direct record of the continental crust at the turn of Archean—Proterozoic in the Yangtze Block basement. Petrological and zircon chronological studies of these granitic rocks were conducted to constrain the nature of ~2.5 Ga crust in the Dabie orogen, which gains our new insights into the composition, architecture, and cratonization processes of the Neoarchean Yangtze Block.

    Methods:Based on the field investigation and microscope observation of the granitic samples, we conducted zircon CL imaging and LA-ICP-MS zircon U-Pb dating.

    Results:Zircons from the two mylonitic biotite-granite samples in the Xiaochang area are generally euhedral and long prismatic with clear oscillatory zoning, which is typical of magmatic zircon. Analyzed zircons from the two samples have Th/U ratios ranging from 0.21 to 0.55. The two samples yielded weighted mean zircon n(207Pb) /n(206Pb) ages of 2479±17 Ma (n=9, MSWD=0.45) and 2497±20 Ma (n=6, MSWD=1.11), respectively, representing their formation ages. Zircons from the two potassic granitic gneiss samples in the Susong Complex area are subhedral to euhedral with subrounded to long prismatic shapes. Most of the grains show oscillatory zoning but some blurred, chaotic internal structures under CL images. Th/U ratios of the dated zircons from both samples show a relatively large range between 0.09 and 0.81, indicating an igneous origin. The two samples were dated at 2491±15 Ma (n=9, MSWD=0.42) and 2516 ± 26 Ma (n=4, MSWD=0.50), respectively.

    Conclusions:Newly identified ~2.5 Ga granitic rocks from the Xiaochang and Susong areas suggest that crust of these ages should have been widespread in the Dabie Mountains. This indicates that some basement rocks of the Yangtze Block were extended beneath, and currently preserved in, the Qinling—Dabie orogenic belt, and Archean crust of the Yangtze Block was more widespread than previously recognized. The turn of Archean—Proterozoic could have been a critical period in the crustal generation and cratonization of the Yangze Block basement.

  • 太古宙—元古宙(Ar—Pt)之交(约2.5 Ga前)是岩石圈构造体制、热状态及大陆地壳成分发生剧烈变化的时期,伴随上地壳花岗质组分的显著增加,在全球范围内发生了广泛的克拉通化过程(Condie,1998,1992; 李江海等,2006Condie and O’Neill,2010; 翟明国等,2020Zhai Mingguo et al.,2021)。全球花岗岩和碎屑锆石的年龄统计结果表明,约2.7 Ga和约2.5 Ga是大陆地壳快速生长与保存的两个最重要阶段(Condie et al.,20112015)。这两个全球性的新太古代年龄峰值也往往典型地出现在华南不同区域、不同地层层位的碎屑锆石年龄谱中(Liu Xiaoming et al.,2008; Yang Zhenning et al.,2018)。早期研究中,由于华南缺少区域上约2.5 Ga岩石的发现,一般将该年龄范围的碎屑锆石视为华南深部现今埋藏或已完全剥蚀地壳的证据,或推测一个曾经相邻的未知大陆块体作为它们的碎屑物质源区。近年来的研究陆续从扬子地块的不同部位识别出多个太古宙岩石单元或地体,虽然分布规模有限,它们提供了华南太古宙地壳物质组成及演化的重要信息(图1;表1;Wang Kai et al.,2020b及其参考文献)。扬子地块西部和东部已发表的太古宙岩浆岩均显示了跨度较大的年龄分布,但主要集中于3.0~2.6 Ga(图1和图2)。这与两个地区区域性的捕获/继承锆石和碎屑锆石统计分别给出的最显著的约2.5 Ga年龄峰值形成对比(图2)。来自岩浆岩中的捕获/继承锆石一般被认为代表了深部埋藏地壳的物质成分,区域性的捕获/继承锆石年龄统计分布能最大程度地反映寄主岩浆岩所在部位或邻近区域地壳的主要生长和/或再造期次(Zheng Jianping et al.,2006; Wang Kai et al.,2020a)。因此,越来越多的研究认为,与全球主要克拉通类似,约2.5 Ga可能是扬子地块地壳演化的重要时期(Wang Kai et al.,2020a)。识别与研究约2.5 Ga岩石,对于重建扬子地块的前寒武纪基底形成与演化历史,探讨早期构造体制及其演变过程具有至关重要的作用。

  • 图1 华南及秦岭—大别造山带前寒武纪岩石分布简图,示太古宙岩石单元及年龄构成 (改自Zhao Guochun and Cawood,2012)

  • Fig.1 Distribution of Precambrian rocks in South China and the Qinling—Dabie orogenic belt highlighting major Archean rock units and their age character (modified from Zhao Guochun and Cawood, 2012)

  • 本研究对大别山孝昌和宿松两个不同地区最新识别出的约2.5 Ga花岗质岩石进行岩石学和锆石U-Pb年代学报道。大别造山带作为古—中生代秦岭—大别造山带的最东段,形成于三叠纪时期扬子地块向北俯冲于华北板块并最终碰撞拼贴的构造过程(Hacker et al.,2004; Wu Yuanbao and Zheng Yongfei,2013)。俯冲的扬子前寒武纪基底部分折返并最终保存于大别山地区,这些前寒武纪基底主要由新元古代岩石组成,并以变质杂岩或地体的形式广泛出露于大别山的不同部位(Bryant et al.,2004; Wu Yuanbao and Zheng Yongfei,2013)。大别山地区约2.5 Ga花岗质岩石的识别因而提供了该时期扬子基底地壳存在的直接证据,并可为探讨扬子地块Ar—Pt之交地壳形成及克拉通化过程提供有效的证据。

  • 1 地质背景及样品

  • 大别造山带位于扬子地块和华北板块之间,通常根据物质组成和变质特征的不同,将其自北向南划分为五个主要的构造—岩性单元:北淮阳绿片岩相带、北大别高温麻粒岩相带、中大别中温—超高压榴辉岩相带、南大别低温—高压榴辉岩相带和宿松杂岩带,它们之间均以断裂或中生代岩体为界(图3; Faure et al.,1999; Hacker et al.,2000; Liu Yican et al.,2007; Wu Yuanbao et al.,2007)。虽然经历了不同程度的变质或深熔作用改造,前寒武纪岩石单元在五个构造岩性单元内均有分布(图1)。早期地质填图研究从大别山地区划分出以新太古代—古元古代大别岩群和中元古代红安群为代表的大面积分布的前新元古代岩石单元,但后续的年代学研究将这些古老岩石单元逐渐解体,认为前人划分的大别岩群实际有着复杂的岩石组成,其中占比更高的侵入岩多为中生代或新元古代,而以红安群等为代表的变质表壳岩系多被证实为新元古界(Hacker et al.,1998; Wu Yuanbao et al.,2007; Li Yuan et al.,2020)。以这些新元古代侵入岩和表壳岩为主体的前寒武纪变质杂岩或地体具有显著的扬子地块亲缘性,被解释为850~700 Ma扬子西—北缘活动陆缘的一部分(Wu Yuanbao and Zheng Yongfei,2013; Zhao Junhong et al.,2018),而长期以来缺少确切的太古宙—中元古代岩石报道。大别山地区最早且可靠的太古宙年龄证据来自北大别黄土岭麻粒岩,虽然对其原岩性质(沉积或岩浆成因)存在争议,但约2.7 Ga的最年轻锆石记录的获得指示其原岩年龄应为新太古代(Sun Min et al.,2008; Wu Yuanbao et al.,2008)。近年来的研究陆续从这些前寒武纪变质杂岩中识别出多个的新太古代和/或古元古代岩石单元(图3; Xu Yang et al.,2020; Wang Xiang et al.,2021; 尹须伟等,2021; Zhao Tian et al.,2021),证实了大别山地区前新元古代地壳物质的存在。

  • 表1 扬子地块及秦岭—大别地区太古宙岩浆岩及变质作用的锆石U-Pb年龄及Hf同位素数据汇总

  • Table1 A compilation of age data of Archean magmatism and metamorphism in the Yangtze Block and the Qinling—Dabie orogens

  • 图2 扬子地块西部(a)和扬子地块东部(b)太古宙—古元古代岩浆岩、捕获/继承锆石、碎屑锆石的锆石U-Pb年龄谱及对比 (据Wang Kai et al.,2020b

  • Fig.2 Relative U-Pb age probability plots of the Archean—Paleoproterozoic magmatic rocks compared with those of the xenocrystic/inherited zircons and detrital zircons from (a) the western Yangtze Block, and (b) the eastern Yangtze Block (after Wang Kai et al., 2020b)

  • 本文年代学样品分别来自南大别孝昌地区和宿松杂岩地区(图3)。孝昌地区的两个样品(DB21-1和DB22-1)均为糜棱质黑云母花岗岩,采自1∶5万地质图小河镇幅原划分的古元古代金盆杂岩体。岩石变形强烈,片麻理发育,灰白—浅灰色,中—细粒结构(图4a、b),主要组成矿物为石英(30%~35%)、斜长石(30%~35%)、钾长石(10%~15%)和黑云母(10%~15%),并可见少量白云母和角闪石。其中石英普遍重结晶并拉长定向,斜长石相对自形,黑云母不同程度的定向排列(图5a、b)。宿松杂岩样品(DB40-1和DB48-1)采自1∶5万地质图停前街幅原划分的新太古代—古元古代大别山岩群。岩石为花岗质片麻岩(图4c、d),中粒结构,主要组成矿物为石英(30%~35%)、钾长石(35%~40%)、斜长石(10%~20%)和黑云母(~5%),矿物大多呈不同程度的定向排列(图5c、d)。

  • 图3 大别山地区地质简图,示主要岩性—构造单元及其边界 (据Wu Yuanbao and Zheng Yongfei,2013

  • Fig.3 Schematic geological map of the Dabie orogen showing the main litho—tectonic units and their tectonic boundaries (after Wu Yuanbao and Zheng Yongfei, 2013)

  • 2 实验方法

  • 新鲜的岩石样品5~10 kg/件被选用并在无污染的条件下粉碎至0.2~0.5 mm,然后经重砂淘洗和磁选分离出锆石颗粒。本着晶形相对完整、无明显包裹体或裂隙的原则,在双目镜下从分离出的锆石颗粒中随机挑选出100~150颗/件。将挑选出的锆石整齐地粘在双面胶上,再用混有固化剂的环氧树脂胶结,待充分固化后,用砂纸抛光至锆石的中心露出,制成样品靶。测试前对锆石进行阴极发光(cathodolumine-scence,CL)图像的拍摄,该工作完成于北京科荟测试技术有限公司(北京),采用仪器为安装有Mono CL3+型阴极荧光探头(Gatan,美国)的扫描电镜(JSM-6510,日本),工作电压为15 kV,电流为10 nA。

  • 锆石的U-Pb年代学测试均在中国地质科学院地质力学研究所古地磁与古构造重建重点实验室完成。实验采用Agilent 7900型ICP-MS和Geolas 193 nm准分子激光器和MicroLas光学系统。其中激光束斑直径为32 μm,剥蚀深度为20 μm,激光剥蚀物质通过He气传输,通过直径3 mm的PVC管传送至ICP-MS设备。质量分馏校正采用标样91500(1065 Ma),每轮测试开始和结束前,分别分析91500标样两次,中间分析8个目标锆石和NIST SRM 610一次,以确定分析结果的准确性。所有的ICP-MS元素含量、比值和年龄及误差的计算均通过ICPMSDataCal10.1完成。详细的分析精度及流程见Liu Yongsheng et al.(2008,2010)。加权平均年龄的计算和U-Pb年龄谐和图的绘制运用ISOPLOT程序(版本3.23,Ludwig,2003)完成。锆石的表观年龄误差均为lσ,加权平均及谐和线交点年龄的误差为2σ。

  • 3 实验结果

  • 四件U-Pb测年样品的代表性锆石CL图像,连同对应的年龄结果展示在图6中。LA-ICP-MS 锆石U-Pb分析数据在表2列出。

  • 分选自糜棱质黑云母花岗岩DB21-1和DB22-2中的锆石具有相对统一的形态和内部结构特征。锆石颗粒大多数自形,棱形长柱状,长150~300 μm,长宽比2~4,具有较为清晰的振荡环带(图6),为典型的岩浆成因锆石(Rubatto and Gebauer,2000)。样品DB21-1的14个锆石测点给出了较高的Th/U值,介于0.24和0.47。所有测点均落在一条不一致线上,上、下交点年龄分别为2487±17 Ma和269±280 Ma(n=14,MSWD=0.76)。9颗谐和年龄测点(谐和度≥95%,后同)计算获得的加权平均年龄为2479±17 Ma(n=9,MSWD=0.45)(采用 n207Pb)/ n206Pb),下同),与上交点年龄十分相近,近似代表样品的结晶年龄(图7a)。样品DB22-1的10个测点Th/U值为0.21~0.55,均落在一条不一致线上,上、下交点年龄分别为2512±21 Ma和401±150 Ma(n=10,MSWD=0.83)。6颗谐和年龄测点计算获得的加权平均年龄为2497±20 Ma(n=6,MSWD=1.11),与上交点年龄十分相近,近似代表该样品的结晶年龄(图7b)。虽然年龄误差较大,两个样品获得的锆石下交点年龄应反映了晚古生代至中生代早期放射性Pb丢失事件,可与秦岭—大别造山带近同期俯冲—碰撞作用过程相联系(Dong Yunpeng and Santosh,2016)。

  • 图4 大别山地区约2.5 Ga花岗质岩石的代表性野外照片:(a)和(b)孝昌地区糜棱岩化黑云母花岗岩; (c)和(d)宿松杂岩地区钾质花岗片麻岩

  • Fig.4 Representative field photos of the~2.5 Ga granitic rocks from the Dabie Mountains: (a) and (b) mylonitic biotite-granite from the Xiaochang area; (c) and (d) potassic granitic gneisses from the Susong Complex

  • 钾质花岗片麻岩DB40-1和DB48-1中的锆石为半自形—自形,次圆到棱柱状,长80~300 μm,长宽比变化较大,为1~4。CL图像中可见多数锆石内部具有清晰的震荡环带,但部分锆石内部环带较为紊乱,并且绝大多数锆石边部显示一个不规则、非常窄的CL亮边(图6),反映后期流体或变质作用对锆石不同的改造。这与多数锆石测点谐和度较低的年龄结果相一致(表2)。两个样品均给出变化大的Th/U值,介于0.09和0.81,符合岩浆锆石的特征。其中,样品DB40-1的18个锆石测点均落在一条不一致线上或附近,上、下交点年龄分别为2498±12 Ma和205±57 Ma(n=18,MSWD=0.79)。9颗谐和年龄测点给出加权平均年龄2491±15 Ma(n=9,MSWD=0.42),与上交点年龄在误差范围内一致,可近似代表了原岩结晶年龄(图7c)。样品DB48-1的18个锆石测点中仅有4个给出了谐和年龄结果,这4个锆石测点的加权平均年龄为2516±26 Ma(n=4,MSWD=0.50),它们与不谐和锆石年龄共同构成了一条较好的不一致线,上、下交点年龄分别为2527±15 Ma和241±43 Ma(n=18,MSWD=1.0)(图7d)。谐和年龄点的加权平均值被用以近似代表原岩结晶年龄。这两个样品的不一致线下交点年龄均指向了中生代早期放射性Pb丢失事件,可能与扬子地块和华北板块的最终俯冲—碰撞相关(Dong Yunpeng and Santosh,2016)。

  • 图5 大别山地区约2.5 Ga花岗质岩石的显微照片(正交偏光):(a)和(b)孝昌地区糜棱岩化黑云母花岗岩; (c)和(d)宿松杂岩地区钾质花岗片麻岩

  • Fig.5 Photomicrographs of the~2.5 Ga granitic rocks from the Dabie Mountains showing typical textures and mineral assemblages under cross-polarized light: (a) and (b) mylonitic biotite-granite from the Xiaochang area; (c) and (d) potassic granitic gneisses from the Susong Complex area

  • Bt—黑云母;Mus—白云母;Kfs—钾长石;Pl—斜长石;Qz—石英

  • Bt—biotite; Mus—muscovite; Kfs—potassium feldspar; Pl—plagioclase; and Qz—quartz

  • 4 讨论

  • 南大别孝昌和宿松杂岩地区的共四件花岗质岩石样品给出了近似的锆石U-Pb年龄,为约2.5 Ga,它们的发现提供了大别山地区Ar—Pt之交地壳存在的直接证据。约2.5 Ga岩石在南秦岭地区的陡岭杂岩也有报道,主要为TTG片麻岩,被解释为俯冲带加厚基性下地壳部分熔融的产物(Hu Juan et al.,2013; Wu Yuanbao et al.,2014; Nie Hu et al.,2016)。南秦岭西部的鱼洞子杂岩也有以2.52~2.45 Ga、2.7~2.6 Ga 和~2.8 Ga花岗质岩石为主的多期太古宙—古元古代岩浆岩报道(图1; 表1; Hui Bo et al.,2017; Zhou Guangyan et al.,2018; Chen Qiong et al.,2019)。其中,2.52~2.45 Ga花岗岩偏钾质,源于后碰撞伸展条件下早期TTG片麻岩的部分熔融(Chen Qiong et al.,2019)。近年来的研究也陆续从大别山地区多个不同的变质杂岩中识别出太古宙岩石,以木子店2.5~2.4 Ga TTG片麻岩(Qiu Xiaofei et al.,2021)和浠水2.51~2.47 Ga钾质花岗片麻岩(Zhao Tian et al.,2021)为代表(图3; 表1)。此外,宿松杂岩地区也有已报道的约2.5 Ga斜长角闪岩脉(王翔等,2020)及近期识别出的~2.9 Ga花岗质片麻岩(2873±11 Ma;Wang Kai et al.,2022)。这些研究表明,南秦岭—大别地区很有可能存在较为广泛的约2.5 Ga地壳,类似年龄的地壳可能存在于扬子地块的其它部位,它们提供了后期地层或岩浆岩中碎屑或捕获/继承锆石的重要物质来源(图2)。扬子地块中部道县中生代玄武岩中~2.52 Ga基性麻粒岩捕掳体的发现支持了这一结论(图1;Li Xiyao et al.,2018)。因此,与华北、印度及北美Superior等大型太古宙克拉通类似,Ar—Pt之交应是扬子基底地壳形成与演化的重要时期。本研究进一步认为,扬子地块太古宙基底可向北延伸至秦岭—大别地区,其太古宙基底地壳物质的组成和分布范围比以往认识的更丰富和广泛。

  • 图6 大别山地区约2.5 Ga花岗质岩石中代表性锆石的CL图像,示其形态、内部结构、分析位置及年龄

  • Fig.6 CL images of representative zircons from the~2.5 Ga granitic rocks in the Dabie Mountains showing their morphologies, internal structures, analytical locations, and ages

  • 表2 大别山地区花岗质岩石的锆石 LA-ICP-MS U-Pb 定年结果

  • Table2 LA-ICP-MS zircon U-Pb dating results of granitic rocks from the Dabie Mountains

  • 图7 大别山地区约2.5 Ga 花岗质岩石的LA-ICP-MS锆石U-Pb谐和图及加权平均年龄。实线和虚线圈分别为谐和(谐和度≥95%)和不谐和测点,后者不参与加权平均年龄计算,“n”为谐和锆石点数

  • Fig.7 LA-ICP-MS zircon U-Pb concordia diagrams and weighted mean ages of the~2.5 Ga granitic rocks in the Dabie Mountains. Solid and dashed circles are concordant (≥95%) and discordant analyses, respectively, of which only the concordant ones are considered in age calculations, “n” = number of concordant analyses

  • 扬子地块已知的太古宙岩石单元主要分布于其北缘,以崆岭杂岩和钟祥杂岩为代表(图1和图8)。措科杂岩是扬子西南缘新近识别出的太古宙—古元古代岩石单元(Zhao Tianyu et al.,2020; Cui Xiaozhuang et al.,2021),越南北部的太古宙—古元古代Phan si Pan杂岩一直以来也被认为是扬子地块基底的一部分(Lan et al.,2001)。已有研究表明,这些岩石单元各自经历了多期复杂的太古宙变质—岩浆演化历史(图8),但除扬子北缘肥东杂岩保留了~2.46 Ga变质火山岩(Ye Hui et al.,2017)和2.48~2.44 Ga长英质片麻岩(涂城等,2021)记录,其它岩石单元均尚无约2.5 Ga岩石的报道(图1和图8)。Wang Kai 等(2018b) 在钟祥杂岩多期中—新太古代(2.9~2.7 Ga)岩浆事件的研究中,通过系统比对钟祥杂岩与崆岭杂岩、鱼洞子杂岩和陡岭杂岩的太古宙地壳年龄、Hf同位素和岩浆演化(例如富钠TTG向钾质花岗岩转变时间的差异)过程,首次指出它们具有不同的太古宙地壳成分和演化历史,并由此推测扬子地块可能包含了多个早期(太古宙至古元古代早期?)地体。后续的研究也普遍认同并调用这一扬子地块早期构造格局(Zhao Tianyu et al.,2019a2019b2020; Cawood et al.,2020; Wang Kai et al.,2020a; Cui Xiaozhuang et al.,2021; Wang Xiang et al.,2021; Zhao Tian et al.,2021)。我们对大别山地区已有的太古宙—古元古代变质和岩浆作用年龄进行了统计,可以发现该区以显著的约2.5 Ga岩浆作用与崆岭杂岩和钟祥杂岩相区别,指示了差异性的太古宙地体生长过程(图8)。崆岭杂岩~2.71 Ga和钟祥杂岩~2.67 Ga钾质花岗岩的分别出现记录了花岗质地壳成分从富钠向富钾的重要转变,被认为是这两个太古宙地体各自初始克拉通化的标志(Chen Kang et al.,2013; Wang Zhengjiang et al.,2013a2013b; Zhou Guangyan et al.,2015; Wang Kai et al.,2018b)。这一成分转变在大别山和秦岭地区约2.5 Ga花岗质岩石记录中似乎并非一致。南秦岭陡岭杂岩和大别山木子店约2.5 Ga岩石为典型的TTG质岩石(Wu Yuanbao et al.,2014; Qiu Xiaofei et al.,2021),而浠水地区花岗质片麻岩为偏钾质(Zhao Tian et al.,2021)。本文孝昌和宿松约2.5 Ga花岗质岩石分别显示了富钠和富钾的矿物组成特征,虽然这些岩石的地球化学特征和成因有待进一步的研究,但现有的这些证据均指向秦岭—大别地区太古宙地体初始克拉通化的时空差异性(图8)。

  • 图8 扬子地块及秦岭-大别-苏鲁地区太古宙-古元古代时空相关图,示主要的岩浆和变质事件。右侧为大别山地区太古宙一古元古代岩浆和变质作用年龄模式及其与崆岭杂岩和钟祥杂岩的对比

  • Fig.8 Time-space correlation chart for the Yangtze Block and the Qinling-Dabie-Sulu region illustrating the age ranges of the principal Archean-Paleoproterozoic magmatic and metamorphic records. Right is a comparison of the age patterns among those of the Archean-Paleoproterozoic magmatism and metamorphism in the Dabie Mountains, the Kongling Complex, and the Zhongxiang Complex

  • 考虑秦岭—大别地区及扬子地块多个早期地体存在的可能,有必要探讨这些早期地体何时、如何汇聚并形成统一的扬子基底。Wang Kai and Dong Shuwen(2019) 最早注意到,扬子地块已知的太古宙岩石单元普遍经历了古元古代(约2.0~1.8 Ga)的变质和岩浆作用的改造,并将其与扬子内部可能的地体碰撞/增生造山作用相关联。秦岭—大别—苏鲁地区同样保留了大量近同期造山相关变质和岩浆作用的岩石记录(图8),但详细的对比可以发现,扬子地块(包括秦岭—大别—苏鲁地区)已知的古元古代造山作用记录存在一定的时空差异。从大别山地区~2.05 Ga麻粒岩相变质作用(Sun Min et al.,2008)、崆岭地区~2.0 Ga高压麻粒岩相变质作用(Yin Changqing et al.,2013)、钟祥杂岩~1.95 Ga角闪岩相变质作用(Wang Kai et al.,2018a)到苏鲁地区~1.85 Ga超高温麻粒岩相变质作用(Xiang Hua et al.,2014),一个相对长期的古元古代造山作用过程很有可能卷入了扬子早期基底的大部分区域。广泛分布的古元古代捕获/继承锆石及其多峰的年龄分布模式(2.05~1.75 Ga)支持扬子地块古元古代时期大规模的、复杂的造山作用过程(图2; Wang Kai et al.,2020a)。结合扬子地块中部深反射地震剖面揭示的埋藏的近南北向古元古代碰撞造山带结构样式(Dong Shuwen et al.,2015),及崆岭杂岩近南北向~2.15 Ga蛇绿混杂岩带(Han Qingsen et al.,2017)证据,2.05~1.75 Ga造山作用最有可能与近东西向的多地体穿时汇聚有关(图8)。这一多地体汇聚过程出现在努纳(又称哥伦比亚)超大陆——地质历史时期第一个真正意义上的超大陆的早期汇聚背景下(Evans et al.,2016),与发生在该超大陆的主要组成块体,如北美、西伯利亚、澳大利亚等的内部块体汇聚与原始克拉通形成同期(Pehrsson et al.,2016)。因此,古元古代时期多地体穿时汇聚及造山作用被认为是统一扬子基底(原始克拉通)形成的关键。

  • 5 结论

  • 大别山孝昌和宿松两个不同地区新发现的花岗质岩石具有近似的原岩年龄,为约2.5 Ga,表明大别山地区可能存在较为广泛的新太古代地壳。这提供了扬子地块Ar—Pt之交地壳存在的直接证据,太古宙—元古宙(Ar—Pt)之交应是扬子地块原始克拉通形成与演化的重要时期。

  • 致谢:研究工作得到了南京大学董树文教授和中国地质科学院地质力学研究所张拴宏研究员的指导和帮助,实验测试过程得到了中国地质科学院地质力学研究所王森博士的帮助,在此一并致以衷心的感谢!

  • 注释 / Notes

  • ❶ 湖北省地质局、北京地质学院、大别山专题队.1961.1∶500000湖北省大别山地区前寒武纪地质报告书.

  • ❷ 湖北省地质调查院.2018. H50E004001小河镇幅1∶50000地质图.

  • ❸ 湖北省地球物理勘察技术研究院.2015. H50E011008 停前街幅1∶50000地质图.

  • 参考文献

    • 李江海, 牛向龙, 钱祥麟, 田永清. 2006. 五台山区太古宙/元古宙界线划分及其地球演化意义. 大地构造与成矿学, 30(4): 409~418.

    • 涂城, 张少兵, 苏克, 梁婷. 2021. 肥东杂岩锆石 U-Pb 年龄和 Lu-Hf 同位素: 对扬子克拉通统一结晶基底的限制. 地球科学, 46(5): 1630~1643.

    • 王洪亮, 徐学义, 陈隽璐, 闫臻, 李婷, 朱涛. 2011. 南秦岭略阳鱼洞子岩群磁铁石英岩形成时代的锆石 U-Pb 年代学约束. 地质学报, 85(8): 1284~1290.

    • 王翔, 马昌前, 邓佳良, 吴衡. 2020. 扬子陆块中东部宿松县柳坪镇发现~ 2. 5 Ga 斜长角闪岩. 中国地质, 47(4): 1262~1263.

    • 魏君奇, 王建雄. 2012. 崆岭杂岩中斜长角闪岩包体的锆石年龄和 Hf 同位素组成. 高校地质学报, 18(4): 589~600.

    • 翟明国, 赵磊, 祝禧艳, 焦淑娟, 周艳艳, 周李岗. 2020. 早期大陆与板块构造启动——前沿热点介绍与展望. 岩石学报, 36(8): 2249~2275.

    • 张欣, 徐学义, 宋公社, 王洪亮, 陈隽璐, 李婷. 2010. 西秦岭略阳地区鱼洞子杂岩变形花岗岩锆石 LA-ICP-MS U-Pb 测年及地质意义. 地质通报, (4): 510~517.

    • 张宗清, 张国伟, 唐索寒, 王进辉. 2001. 鱼洞子群变质岩年龄及秦岭造山带太古宙基底. 地质学报, 75(2): 198~204.

    • Bryant D L, Ayers J C, Gao Shan, Zhang Hongfei. 2004. Geochemical, age, and isotopic constraints on the location of the Sino—Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China. Geological Society of American Bulletin, 116: 698~717.

    • Cawood P A, Wang Wei, Zhao Tianyu, Xu Yajun, Mulder J A, Pisarevsky S A, Zhang Limin, Gan Chengshi, He Huiying, Liu Huichuan, Qi Liang, Wang Yuejun, Yao Jinlong, Zhao Guochun, Zhou Mei-Fu, Zi Jianwei. 2020. Deconstructing South China and consequences for reconstructing Nuna and Rodinia. Earth-Science Reviews, 204: 103169.

    • Chen Kang, Gao Shan, WuYuanbao, Guo Jingliang, Hu Zhaochu, Liu Yongsheng, Zong Keqing, Liang Zhengwei, Geng Xianlei. 2013. 2. 6~2. 7 Ga crustal growth in Yangtze craton, South China. Precambrian Research, 224: 472~490.

    • Chen Qiong, Sun Min, Zhao Guochun, Zhao Junhong, Zhu Weilin, Long Xiaoping, Wang Jun. 2019. Episodic crustal growth and reworking of the Yudongzi terrane, South China: Constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites. Lithos, 326~327: 1~18.

    • Condie K C, Bickford M E, Aster R C, Belousova E, Scholl D W. 2011. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geological Society of American Bulletin, 123(5~6): 951~957.

    • Condie K C, Davaille A, Aster R C, Arndt N. 2015. Upstairs—downstairs: supercontinents and large igneous provinces, are they related? International Geology Review, 57(11~12): 1341~1348.

    • Condie K C. 1989. Geochemical changes inbaslts and andesites across the Archean—Proterozoic boundary: Identification and significance. Lithos, 23(1~2): 1~18.

    • Condie K C. 1992. Evolutionary changes at the Archean—Proterozoic boundary. The Archaean: Terrains, processes and metallogeny. University of Western Australia, Geology Department (Key Centre) and University Extension Publication, 22: 177~189.

    • Condie K C, O’Neill C. 2010. The Archean—Proterozoic boundary: 500My of tectonic transition in Earth history. American Journal of Science, 310(9), 775~790.

    • Cui Xiaozhuang, Wang Jian, Wang Xuance, Wilde S A, Ren Guangming, Li Shaojie, Deng Qi, Ren Fei, Liu Junping. 2021. Early crustal evolution of the Yangtze Block: Constraints from zircon U—Pb—Hf isotope systematics of 3. 1~1. 9 Ga granitoids in the Cuoke Complex, SW China. Precambrian Research, 357: 106155.

    • Dong Shuwen, Zhang Yueqiao, Gao Rui, Su Jinbao, Liu Mian, Li Jianhua. 2015. A possible buried Paleoproterozoic collisional orogen beneath central South China: Evidence from seismic-reflection profiling. Precambrian Research, 264: 1~10.

    • Dong Yunpeng, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1~40.

    • Faure M, Lin Wei, Shu Liangshu, Sun Yan, Schrer U. 1999. Tectonics of the Dabieshan (eastern China) and possible exhumation mechanism of ultra high-pressure rocks. Terra Nova, 11: 251~258.

    • Gao Shan, Yang Jie, Zhou Lian, Li Ming, Hu Zhaochu, Guo Jingliang, Yuan Honglin, Gong Hujun, Xiao Gaoqiang. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3. 3 Ga granitoid gneisses. America Journal of Science, 311: 153~182.

    • Guo Jingliang, Gao Shan, Wu Yuanbao, Li Ming, Chen Kang, Hu Zhaochu, Liang Zhengwei, Liu Yongsheng, Zhou Lian, Zong Keqing, Zhang Wen, Chen Haihong. 2014. 3. 45 Ga granitic gneisses from the Yangtze Craton, South China: Implications for Early Archean crustal growth. Precambrian Research, 242: 82~95.

    • Guo Jingliang, Wu Yuanbao, Gao Shan, Jin Zhenmin, Zong Keqing, Hu Zhaochu, Chen Kang, Chen Haihong, Liu Yongsheng. 2015. Episodic Paleoarchean—Paleoproterozoic (3. 3~2. 0 Ga) granitoid magmatism in Yangtze craton, South China: Implications for late Archean tectonics. Precambrian Research, 270: 246~266.

    • Hacker B R, Ratschbacher L, Liou Juhn-Guang. 2004. Subduction, collision and exhumation in the ultrahigh-pressure Qinling—Dabie orogen. Geological Society, London, Special Publications, 226: 157~75.

    • Hacker B R, Ratschbacher L, Webb L, Ireland T, Walker D, Dong Shuwen. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling—Dabie Orogen, China. Earth and Planetary Science Letters, 161(1~4): 215~230.

    • Hacker B R, Ratschbacher L, Webb L, McWilliams M O, Ireland T, Calvert A, Dong Shuwen, Wenk H R, Chateigner D. 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic—Early Jurassic tectonic unroofing. Journal of Geophysical Research: Solid Earth, 105(B6): 13339~13364.

    • Han Qingsen, Peng Songbai, Kusky T, Polat A, Jiang Xingfu, Cen Yang, Liu Songfeng, Deng Hao. 2017. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Research, 293: 13~38.

    • Hu Juan, Liu Xiaochun, Chen Longyao, Qu Wei, Li Huaikun, Geng Jianzhen. 2013. A 2. 5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin, 58: 3564~3579.

    • Hui Bo, Dong Yunpeng, Cheng Chao, Long Xiaoping, Liu Xiaoming, Yang Zhao, Sun Shengsi, Zhang Feifei, Varga J. 2017. Zircon U-Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean—Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze craton, China. Precambrian Research, 301: 65~85.

    • Jiao Wenfang, Wu Yuanbao, Yang Saihong, Peng Min, Wang Jing. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Science China——Earth Sciences, 52: 1393~1399.

    • Lan Ching-Ying, Chung Sun-Lin, Lo Ching-Hua, Lee Tung-Yi. , Wang Pei-Ling, Li Hui-Min, Van Toan D. 2001. First evidence for Archean continental crust in northern Vietnam and its implications for crustal and tectonic evolution in Southeast Asia. Geology, 29: 219~222.

    • Li Jianghai, Niu Xianglong, Qian Xianglin, Tian Yongqing. 2006&. Division of Archean/Proterozoic boundary and its implication for geological; evolution in Wutai Mountain area, North China. Geotectonica et Metallogena, 30(4): 419~412.

    • Li Longming, Lin Shoufa, Davis D W, Xiao Wenjiao, Xing Guangfu, Yin Changqing. 2014. Geochronology and geochemistry of igneous rocks from the Kongling terrane: Implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block. Precambrian Research, 255: 30~47.

    • Li Xiyao, Zheng Jianping, Xiong Qing, Zhou Xiang, Xiang Lu. 2018. Triassic rejuvenation of unexposed Archean—Paleoproterozoic deep crust beneath the western Cathaysia block, South China. Tectonophysics, 724: 65~79.

    • Li Yuan, Liu Yican, Yang Yang, Rolfo F, Groppo C. 2020. Petrogenesis and tectonic significance of Neoproterozoic meta-basites and meta-granitoids within the central Dabie UHP zone, China: Geochronological and geochemical constraints. Gondwana Research, 78: 1~19.

    • Liu Xiaoming, Gao Shan, Diwu Chunrong, Ling Wenli. 2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. American Journal of science, 308(4): 421~468.

    • Liu Yican, Li Shuguang, Xu Shutong. 2007. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China: Implications for decoupling within subducted continental crust. Lithos, 96(1~2): 170~185.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt—peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51: 537~571.

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34~43.

    • Ludwig K R. 2003. User’s Manual for Isoplot 3. 00: A Geochronological Toolkit for Microsoft Excel, 4. Berkeley Geochronological Center Special Publication: 1~71.

    • Nam T N, Toriumi M, Sano Y, Terada K, Thang T T. 2003. 2. 9, 2. 36, and 1. 96 Ga zircons in orthogneiss south of the Red River shear zone in Viet Nam: Evidence from SHRIMP U-Pb dating and tectonothermal implications. Journal of Asian Earth Sciences, 21: 743~753.

    • Nie Hu, Yao Jin, Wan Xin, Zhu Xiyan, Siebel W, Chen Fukun. 2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: Evidence from zircon ages and Hf—Nd isotopic compositions of basement rocks. Precambrian Research, 286: 167~179.

    • Pehrsson S J, Eglington B M, Evans D A D, Huston D, Reddy S M. 2016. Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. In: Li Zheng-Xiang et al. eds. Supercontinent Cycles Through Earth History. Geological Society, London, Special Publications, 424(1): 83~94.

    • Qiu Xiaofei, Tong Xirun, Jiang Tuo, Khattak N U. 2021. Reworking of Hadean continental crust in the Dabie orogen: Evidence from the Muzidian granitic gneisses. Gondwana Research, 89: 119~30.

    • Qiu Yumin, Gao Shan, McNaughton N J, Groves D I, Ling Wenli. 2000. First evidence of >3. 2 Ga continental crust in the Yangtze Craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28: 11~14.

    • Rubatto D, Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps. In: Cathodoluminescence in Geosciences. Berlin: Springer: 373~400.

    • Tu Cheng, Zhang Shaobing, Su Ke, Liang Ting. 2021&. Zircon U-Pb dating and Lu-Hf isotope results for the Feidong Complex: Implications for the coherent basement of the Yangtze Craton. Earth Science, 46: 1630~43.

    • Wang Hongliang, Xu Xueyi, Chen Junlu, Yan Zhen, Li Ting, Zhu Tao. 2011&. Constraint from zircon U-Pb chronology of Yudongzi Group magnetite-quartzite in Lueyang area, southern Qinling, China. Acta Geologica Sinica, 85(8): 1284~1290.

    • Wang Kai, DongShuwen, Li Zheng-Xiang, Han Baofu. 2018a. Age and chemical composition of Archean metapelites in the Zhongxiang Complex and implications for early crustal evolution of the Yangtze Craton. Lithos, 320~321: 280~301.

    • Wang Kai, Dong Shuwen, Yao Weihua, Zhang Yueqiao, Li Jianhua, Cui Jianjun, Han Baofu. 2020a. Xenocrystic/inherited Precambrian zircons entrained within igneous rocks from eastern South China: Tracking unexposed ancient crust and implications for late Paleoproterozoic orogenesis. Gondwana Research, 84: 194~210.

    • Wang Kai, Dong Shuwen, Yao Weihua, Zhao Tianyu, 2020b. Nature and evolution of pre-Neoproterozoic continental crust in south China: A review and tectonic implications. Acta Geologica Sinica (English Edition), 94(6): 1731~1756.

    • Wang Kai, Dong Shuwen. 2019. New insights into Paleoproterozoic tectonics of the Yangtze Block in the context of early Nuna assembly: Possible collisional granitic magmatism in the Zhongxiang Complex. Precambrian Research, 334: 105452.

    • Wang Kai, Li Zheng-Xiang, Dong Shuwen, Cui Jianjun, Han Baofu, Zheng Tao, Xu Yilong. 2018b. Early crustal evolution of the Yangtze Craton, south China: New constraints from zircon U—Pb—Hf isotopes and geochemistry of ca. 2. 9~2. 6 Ga granitic rocks in the Zhongxiang Complex. Precambrian Research, 314: 325~352.

    • Wang Kai, Zhao Tianyu, Zhang Shuanhong. 2022. Discovery of the oldest (~2. 87 Ga) granitic gneisses in the Qinling—Dabie orogenic belt: Direct evidence for Mesoarchean crust. China Geology, doi: 10. 31035/cg2022084

    • Wang Xiang, Guo Jinwei, Tao Wei, Jiang Laili, Deng Jialiang, Ma Changqian. 2021. Paleoproterozoic tectonic evolution of the Yangtze Craton: Evidence from magmatism and sedimentation in the Susong area, South China. Precambrian Research, 365: 106390.

    • Wang Xiang, Ma Changqian, Deng Jialiang, Wu Heng. 2020#. Discovery of ~2. 5 Ga amphibolite at Liuping Town of Susong County in the mid-eastern region of the Yangtze Block. Geology in China, 47: 1262~1263.

    • Wang Zhengjiang, Wang Jian, Du Qiuding, Deng Qi, Yang Fei. 2013a. The evolution of the Central Yangtze Block during early Neoarchean time: Evidence from geochronology and geochemistry. Journal of Asian Earth Sciences, 77: 31~44.

    • Wang Zhengjiang, Wang Jian, Du Qiuding, Deng Qi, Yang Fei. 2013b. Mature Archean continental crust in the Yangtze Craton: Evidence from petrology, geochronology and geochemistry. Chinese Science Bulletin, 58: 2360~2369.

    • Wei Junqi, Wang Jianxiong. 2012&. Zircon age and Hf isotope compositions of amphibolite enclaves from the Kongling Complex. Geological Journal of China Universities, 18: 589~600.

    • Wu Yuanbao, Gao Shan, Gong Hujun, Xiang Hua, Jiao Wenfang, Yang Saihong, Liu Yongsheng, Yuan Hongling. 2009. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: Refining the timing of Palaeoproterozoic high-grade metamorphism. Journal of Metamorphic Geology, 27: 461~477.

    • Wu Yuanbao, Zheng Yongfei, Gao Shan, Jiao Wenfang, Liu Yongsheng. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 101: 308~322.

    • Wu Yuanbao, Zheng Yongfei, Zhang Shaobing, Zhao Zifu, Wu Fuyuan, Liu Xiaoming. 2007. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: Constraints on partial melting. Journal of Metamorphic Geology, 25(9): 991~1009.

    • Wu Yuanbao, Zheng Yongfei. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling—Tongbai—Hong’an—Dabie—Sulu Orogenic belt in central China. Gondwana Research, 23: 1402~1428.

    • Wu Yuanbao, Zhou Guangyan, Gao Shan, Liu Xiaochun, Qin Zhengwei, Wang Hao, Yang Jianzhou, Yang Saihong. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs. Precambrian Research, 254: 73~86.

    • Xiang Hua, Zhang Zeming, Lei Hengcong, Qi Min, Dong Xin, Wang Wei, Lin Yanhao. 2014. Paleoproterozoic ultrahigh-temperature pelitic granulites in the Northern Sulu Orogen: Constraints from petrology and geochronology. Precambrian Research, 254: 273~289.

    • Xu Yang, Polat A, Deng X, Liu Hao, Yang Kunguang. 2020. The ~1. 97 Ga dioritic block in the Hong’an Terrane, central China: Syn-collisional alkaline magmatism at the northern margin of the Yangtze Block. Precambrian Research, 342: 105713.

    • Yang Zhenning, Yang Kunguang, Polat A, Xu Yang. 2018. Early crustal evolution of the eastern Yangtze Block: Evidence from detrital zircon U-Pb ages and Hf isotopic composition of the Neoproterozoic Huashan Group in the Dahongshan area. Precambrian Research, 309: 248~270.

    • Ye Hui, Wu Changzhi, Yang Tao, Santosh M, Yao Xizhu, Gao Bingfei, Wang Xiaolei, Li Weiqiang. 2017. Updating the geologic barcodes for South China: Discovery of Late Archean banded iron formations in the Yangtze Craton. Scientific Reports, 7: 15082.

    • Yin Changqing, Lin Shoufa, Davis D W, Zhao Guochun, Xiao Wenjiao, Li Longming, He Yanhong. 2013. 2. 1~1. 85 Ga tectonic events in the Yangtze Block, South China: Petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia. Lithos, 182: 200~210.

    • Zhai Mingguo, Zhao Lei, Zhu Xiyan, Jiao Shujuan, Zhou Yanyan, Zhou Ligang. 2020&. Review and overview for the frontier hotspot: Early continents and start of plate tectonics. Acta Petrologica Sinica, 36(8): 2249~2275.

    • Zhai Mingguo, Zhao Lei, Zhu Xiyan, Zhou Yanyan, Peng Peng, Guo Jinghui, Li Qiuli, Zhao Taiping, Lu Junsheng, Li Xianhua. 2021. Late Neoarchean magmatic—metamorphic event and crustal stabilization in the North China Craton. American Journal of Science, 321(1~2): 206~234.

    • Zhang Shaobing, Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Gao Shan, Wu Fuyuan. 2006. Zircon isotope evidence for ≥3. 5 Ga continental crust in the Yangtze Craton of China. Precambrian Research, 146: 16~34.

    • Zhang Xin, Xu Xueyi, Song Gongshe, Wang Hongliang, Chen Junlu, Li Ting. 2010&. Zircon LA-ICP-MS U-Pb dating and significance of Yudongzi Group deformation granite from Leyang area, western Qinling, China. Geological Bulletin of China, 29: 510~517.

    • Zhang Zongqing, Zhang Guowei, Tang Suohan, Wang Jinhui. 2001&. On the age of metamorphic rocks of the Yudongzi Group and the Archean crystalline basement of the Qinling Orogen. Acta Geologica Sinica, 12(6): 739~773.

    • Zhao Guochun, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222~223: 13~54.

    • Zhao Junhong, Li Qiwei, Liu Hang, Wang Wei. 2018. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (south China) controlled by slab subduction and subduction-transform-edge-propagator. Earth-Science Reviews, 187: 1~18.

    • Zhao Tian, Zhu Guang, Wu Qi, Hu Rongmei, Wu Yihao, Xu Zhengyan, Ye Jin. 2021. Evidence for discrete Archean microcontinents in the Yangtze Craton. Precambrian Research, 361: 106259.

    • Zhao Tianyu, Cawood P A, Wang Kai, Zi Jianwei, Feng Qinglai, Nguyen Q M, Tran D M. 2019a. Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan Complex, north Vietnam: Constraints on the early crustal evolution of the Yangtze Block. Precambrian Research, 332: 105395.

    • Zhao Tianyu, Cawood P A, Zi Jianwei, Wang Kai, Feng Qinglai, Nguyen Q M, Tran D M. 2019b. Early Paleoproterozoic magmatism in the Yangtze Block: Evidence from zircon U-Pb ages, Sr—Nd—Hf isotopes and geochemistry of ca. 2. 3 Ga and 2. 1 Ga granitic rocks in the Phan Si Pan Complex, north Vietnam. Precambrian Research, 324: 253~268.

    • Zhao Tianyu, Li Jing, Liu Guichun, Cawood P A, Zi Jianwei, Wang Kai, Feng Qinglai, Hu Shaobin, Zeng Wentao, Zhang Hu. 2020. Petrogenesis of Archean TTGs and potassic granites in the southern Yangtze Block: Constraints on the early formation of the Yangtze Block. Precambrian Research, 347: 105848.

    • Zheng Jianping, Griffin W L, O’Reilly S Y, Zhang Ming, Pearson N, Pan Yuanming. 2006. Widespread Archean basement beneath the Yangtze craton. Geology, 34(6): 417~420.

    • Zhou Guangyan, Wu Yuanbao, Gao Shan, Yang Jianzhou, Zheng Jianping, Qin Zhengwei, Wang Hao, Yang Saihong. 2015. The 2. 65 Ga A-type granite in the northeastern Yangtze craton: Petrogenesis and geological implications. Precambrian Research, 258: 247~259.

    • Zhou Guangyan, Wu Yuanbao, Li Long, Zhang Wenxiang, Zheng Jianping, Wang Hao, Yang Saihong. 2018. Identification of ca. 2. 65 Ga TTGs in the Yudongzi Complex and its implications for the early evolution of the Yangtze Block. Precambrian Research, 314: 240~263.

  • 参考文献

    • 李江海, 牛向龙, 钱祥麟, 田永清. 2006. 五台山区太古宙/元古宙界线划分及其地球演化意义. 大地构造与成矿学, 30(4): 409~418.

    • 涂城, 张少兵, 苏克, 梁婷. 2021. 肥东杂岩锆石 U-Pb 年龄和 Lu-Hf 同位素: 对扬子克拉通统一结晶基底的限制. 地球科学, 46(5): 1630~1643.

    • 王洪亮, 徐学义, 陈隽璐, 闫臻, 李婷, 朱涛. 2011. 南秦岭略阳鱼洞子岩群磁铁石英岩形成时代的锆石 U-Pb 年代学约束. 地质学报, 85(8): 1284~1290.

    • 王翔, 马昌前, 邓佳良, 吴衡. 2020. 扬子陆块中东部宿松县柳坪镇发现~ 2. 5 Ga 斜长角闪岩. 中国地质, 47(4): 1262~1263.

    • 魏君奇, 王建雄. 2012. 崆岭杂岩中斜长角闪岩包体的锆石年龄和 Hf 同位素组成. 高校地质学报, 18(4): 589~600.

    • 翟明国, 赵磊, 祝禧艳, 焦淑娟, 周艳艳, 周李岗. 2020. 早期大陆与板块构造启动——前沿热点介绍与展望. 岩石学报, 36(8): 2249~2275.

    • 张欣, 徐学义, 宋公社, 王洪亮, 陈隽璐, 李婷. 2010. 西秦岭略阳地区鱼洞子杂岩变形花岗岩锆石 LA-ICP-MS U-Pb 测年及地质意义. 地质通报, (4): 510~517.

    • 张宗清, 张国伟, 唐索寒, 王进辉. 2001. 鱼洞子群变质岩年龄及秦岭造山带太古宙基底. 地质学报, 75(2): 198~204.

    • Bryant D L, Ayers J C, Gao Shan, Zhang Hongfei. 2004. Geochemical, age, and isotopic constraints on the location of the Sino—Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China. Geological Society of American Bulletin, 116: 698~717.

    • Cawood P A, Wang Wei, Zhao Tianyu, Xu Yajun, Mulder J A, Pisarevsky S A, Zhang Limin, Gan Chengshi, He Huiying, Liu Huichuan, Qi Liang, Wang Yuejun, Yao Jinlong, Zhao Guochun, Zhou Mei-Fu, Zi Jianwei. 2020. Deconstructing South China and consequences for reconstructing Nuna and Rodinia. Earth-Science Reviews, 204: 103169.

    • Chen Kang, Gao Shan, WuYuanbao, Guo Jingliang, Hu Zhaochu, Liu Yongsheng, Zong Keqing, Liang Zhengwei, Geng Xianlei. 2013. 2. 6~2. 7 Ga crustal growth in Yangtze craton, South China. Precambrian Research, 224: 472~490.

    • Chen Qiong, Sun Min, Zhao Guochun, Zhao Junhong, Zhu Weilin, Long Xiaoping, Wang Jun. 2019. Episodic crustal growth and reworking of the Yudongzi terrane, South China: Constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites. Lithos, 326~327: 1~18.

    • Condie K C, Bickford M E, Aster R C, Belousova E, Scholl D W. 2011. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geological Society of American Bulletin, 123(5~6): 951~957.

    • Condie K C, Davaille A, Aster R C, Arndt N. 2015. Upstairs—downstairs: supercontinents and large igneous provinces, are they related? International Geology Review, 57(11~12): 1341~1348.

    • Condie K C. 1989. Geochemical changes inbaslts and andesites across the Archean—Proterozoic boundary: Identification and significance. Lithos, 23(1~2): 1~18.

    • Condie K C. 1992. Evolutionary changes at the Archean—Proterozoic boundary. The Archaean: Terrains, processes and metallogeny. University of Western Australia, Geology Department (Key Centre) and University Extension Publication, 22: 177~189.

    • Condie K C, O’Neill C. 2010. The Archean—Proterozoic boundary: 500My of tectonic transition in Earth history. American Journal of Science, 310(9), 775~790.

    • Cui Xiaozhuang, Wang Jian, Wang Xuance, Wilde S A, Ren Guangming, Li Shaojie, Deng Qi, Ren Fei, Liu Junping. 2021. Early crustal evolution of the Yangtze Block: Constraints from zircon U—Pb—Hf isotope systematics of 3. 1~1. 9 Ga granitoids in the Cuoke Complex, SW China. Precambrian Research, 357: 106155.

    • Dong Shuwen, Zhang Yueqiao, Gao Rui, Su Jinbao, Liu Mian, Li Jianhua. 2015. A possible buried Paleoproterozoic collisional orogen beneath central South China: Evidence from seismic-reflection profiling. Precambrian Research, 264: 1~10.

    • Dong Yunpeng, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1~40.

    • Faure M, Lin Wei, Shu Liangshu, Sun Yan, Schrer U. 1999. Tectonics of the Dabieshan (eastern China) and possible exhumation mechanism of ultra high-pressure rocks. Terra Nova, 11: 251~258.

    • Gao Shan, Yang Jie, Zhou Lian, Li Ming, Hu Zhaochu, Guo Jingliang, Yuan Honglin, Gong Hujun, Xiao Gaoqiang. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3. 3 Ga granitoid gneisses. America Journal of Science, 311: 153~182.

    • Guo Jingliang, Gao Shan, Wu Yuanbao, Li Ming, Chen Kang, Hu Zhaochu, Liang Zhengwei, Liu Yongsheng, Zhou Lian, Zong Keqing, Zhang Wen, Chen Haihong. 2014. 3. 45 Ga granitic gneisses from the Yangtze Craton, South China: Implications for Early Archean crustal growth. Precambrian Research, 242: 82~95.

    • Guo Jingliang, Wu Yuanbao, Gao Shan, Jin Zhenmin, Zong Keqing, Hu Zhaochu, Chen Kang, Chen Haihong, Liu Yongsheng. 2015. Episodic Paleoarchean—Paleoproterozoic (3. 3~2. 0 Ga) granitoid magmatism in Yangtze craton, South China: Implications for late Archean tectonics. Precambrian Research, 270: 246~266.

    • Hacker B R, Ratschbacher L, Liou Juhn-Guang. 2004. Subduction, collision and exhumation in the ultrahigh-pressure Qinling—Dabie orogen. Geological Society, London, Special Publications, 226: 157~75.

    • Hacker B R, Ratschbacher L, Webb L, Ireland T, Walker D, Dong Shuwen. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling—Dabie Orogen, China. Earth and Planetary Science Letters, 161(1~4): 215~230.

    • Hacker B R, Ratschbacher L, Webb L, McWilliams M O, Ireland T, Calvert A, Dong Shuwen, Wenk H R, Chateigner D. 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic—Early Jurassic tectonic unroofing. Journal of Geophysical Research: Solid Earth, 105(B6): 13339~13364.

    • Han Qingsen, Peng Songbai, Kusky T, Polat A, Jiang Xingfu, Cen Yang, Liu Songfeng, Deng Hao. 2017. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Research, 293: 13~38.

    • Hu Juan, Liu Xiaochun, Chen Longyao, Qu Wei, Li Huaikun, Geng Jianzhen. 2013. A 2. 5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin, 58: 3564~3579.

    • Hui Bo, Dong Yunpeng, Cheng Chao, Long Xiaoping, Liu Xiaoming, Yang Zhao, Sun Shengsi, Zhang Feifei, Varga J. 2017. Zircon U-Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean—Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze craton, China. Precambrian Research, 301: 65~85.

    • Jiao Wenfang, Wu Yuanbao, Yang Saihong, Peng Min, Wang Jing. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Science China——Earth Sciences, 52: 1393~1399.

    • Lan Ching-Ying, Chung Sun-Lin, Lo Ching-Hua, Lee Tung-Yi. , Wang Pei-Ling, Li Hui-Min, Van Toan D. 2001. First evidence for Archean continental crust in northern Vietnam and its implications for crustal and tectonic evolution in Southeast Asia. Geology, 29: 219~222.

    • Li Jianghai, Niu Xianglong, Qian Xianglin, Tian Yongqing. 2006&. Division of Archean/Proterozoic boundary and its implication for geological; evolution in Wutai Mountain area, North China. Geotectonica et Metallogena, 30(4): 419~412.

    • Li Longming, Lin Shoufa, Davis D W, Xiao Wenjiao, Xing Guangfu, Yin Changqing. 2014. Geochronology and geochemistry of igneous rocks from the Kongling terrane: Implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block. Precambrian Research, 255: 30~47.

    • Li Xiyao, Zheng Jianping, Xiong Qing, Zhou Xiang, Xiang Lu. 2018. Triassic rejuvenation of unexposed Archean—Paleoproterozoic deep crust beneath the western Cathaysia block, South China. Tectonophysics, 724: 65~79.

    • Li Yuan, Liu Yican, Yang Yang, Rolfo F, Groppo C. 2020. Petrogenesis and tectonic significance of Neoproterozoic meta-basites and meta-granitoids within the central Dabie UHP zone, China: Geochronological and geochemical constraints. Gondwana Research, 78: 1~19.

    • Liu Xiaoming, Gao Shan, Diwu Chunrong, Ling Wenli. 2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. American Journal of science, 308(4): 421~468.

    • Liu Yican, Li Shuguang, Xu Shutong. 2007. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China: Implications for decoupling within subducted continental crust. Lithos, 96(1~2): 170~185.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt—peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51: 537~571.

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34~43.

    • Ludwig K R. 2003. User’s Manual for Isoplot 3. 00: A Geochronological Toolkit for Microsoft Excel, 4. Berkeley Geochronological Center Special Publication: 1~71.

    • Nam T N, Toriumi M, Sano Y, Terada K, Thang T T. 2003. 2. 9, 2. 36, and 1. 96 Ga zircons in orthogneiss south of the Red River shear zone in Viet Nam: Evidence from SHRIMP U-Pb dating and tectonothermal implications. Journal of Asian Earth Sciences, 21: 743~753.

    • Nie Hu, Yao Jin, Wan Xin, Zhu Xiyan, Siebel W, Chen Fukun. 2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: Evidence from zircon ages and Hf—Nd isotopic compositions of basement rocks. Precambrian Research, 286: 167~179.

    • Pehrsson S J, Eglington B M, Evans D A D, Huston D, Reddy S M. 2016. Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. In: Li Zheng-Xiang et al. eds. Supercontinent Cycles Through Earth History. Geological Society, London, Special Publications, 424(1): 83~94.

    • Qiu Xiaofei, Tong Xirun, Jiang Tuo, Khattak N U. 2021. Reworking of Hadean continental crust in the Dabie orogen: Evidence from the Muzidian granitic gneisses. Gondwana Research, 89: 119~30.

    • Qiu Yumin, Gao Shan, McNaughton N J, Groves D I, Ling Wenli. 2000. First evidence of >3. 2 Ga continental crust in the Yangtze Craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28: 11~14.

    • Rubatto D, Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps. In: Cathodoluminescence in Geosciences. Berlin: Springer: 373~400.

    • Tu Cheng, Zhang Shaobing, Su Ke, Liang Ting. 2021&. Zircon U-Pb dating and Lu-Hf isotope results for the Feidong Complex: Implications for the coherent basement of the Yangtze Craton. Earth Science, 46: 1630~43.

    • Wang Hongliang, Xu Xueyi, Chen Junlu, Yan Zhen, Li Ting, Zhu Tao. 2011&. Constraint from zircon U-Pb chronology of Yudongzi Group magnetite-quartzite in Lueyang area, southern Qinling, China. Acta Geologica Sinica, 85(8): 1284~1290.

    • Wang Kai, DongShuwen, Li Zheng-Xiang, Han Baofu. 2018a. Age and chemical composition of Archean metapelites in the Zhongxiang Complex and implications for early crustal evolution of the Yangtze Craton. Lithos, 320~321: 280~301.

    • Wang Kai, Dong Shuwen, Yao Weihua, Zhang Yueqiao, Li Jianhua, Cui Jianjun, Han Baofu. 2020a. Xenocrystic/inherited Precambrian zircons entrained within igneous rocks from eastern South China: Tracking unexposed ancient crust and implications for late Paleoproterozoic orogenesis. Gondwana Research, 84: 194~210.

    • Wang Kai, Dong Shuwen, Yao Weihua, Zhao Tianyu, 2020b. Nature and evolution of pre-Neoproterozoic continental crust in south China: A review and tectonic implications. Acta Geologica Sinica (English Edition), 94(6): 1731~1756.

    • Wang Kai, Dong Shuwen. 2019. New insights into Paleoproterozoic tectonics of the Yangtze Block in the context of early Nuna assembly: Possible collisional granitic magmatism in the Zhongxiang Complex. Precambrian Research, 334: 105452.

    • Wang Kai, Li Zheng-Xiang, Dong Shuwen, Cui Jianjun, Han Baofu, Zheng Tao, Xu Yilong. 2018b. Early crustal evolution of the Yangtze Craton, south China: New constraints from zircon U—Pb—Hf isotopes and geochemistry of ca. 2. 9~2. 6 Ga granitic rocks in the Zhongxiang Complex. Precambrian Research, 314: 325~352.

    • Wang Kai, Zhao Tianyu, Zhang Shuanhong. 2022. Discovery of the oldest (~2. 87 Ga) granitic gneisses in the Qinling—Dabie orogenic belt: Direct evidence for Mesoarchean crust. China Geology, doi: 10. 31035/cg2022084

    • Wang Xiang, Guo Jinwei, Tao Wei, Jiang Laili, Deng Jialiang, Ma Changqian. 2021. Paleoproterozoic tectonic evolution of the Yangtze Craton: Evidence from magmatism and sedimentation in the Susong area, South China. Precambrian Research, 365: 106390.

    • Wang Xiang, Ma Changqian, Deng Jialiang, Wu Heng. 2020#. Discovery of ~2. 5 Ga amphibolite at Liuping Town of Susong County in the mid-eastern region of the Yangtze Block. Geology in China, 47: 1262~1263.

    • Wang Zhengjiang, Wang Jian, Du Qiuding, Deng Qi, Yang Fei. 2013a. The evolution of the Central Yangtze Block during early Neoarchean time: Evidence from geochronology and geochemistry. Journal of Asian Earth Sciences, 77: 31~44.

    • Wang Zhengjiang, Wang Jian, Du Qiuding, Deng Qi, Yang Fei. 2013b. Mature Archean continental crust in the Yangtze Craton: Evidence from petrology, geochronology and geochemistry. Chinese Science Bulletin, 58: 2360~2369.

    • Wei Junqi, Wang Jianxiong. 2012&. Zircon age and Hf isotope compositions of amphibolite enclaves from the Kongling Complex. Geological Journal of China Universities, 18: 589~600.

    • Wu Yuanbao, Gao Shan, Gong Hujun, Xiang Hua, Jiao Wenfang, Yang Saihong, Liu Yongsheng, Yuan Hongling. 2009. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: Refining the timing of Palaeoproterozoic high-grade metamorphism. Journal of Metamorphic Geology, 27: 461~477.

    • Wu Yuanbao, Zheng Yongfei, Gao Shan, Jiao Wenfang, Liu Yongsheng. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 101: 308~322.

    • Wu Yuanbao, Zheng Yongfei, Zhang Shaobing, Zhao Zifu, Wu Fuyuan, Liu Xiaoming. 2007. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: Constraints on partial melting. Journal of Metamorphic Geology, 25(9): 991~1009.

    • Wu Yuanbao, Zheng Yongfei. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling—Tongbai—Hong’an—Dabie—Sulu Orogenic belt in central China. Gondwana Research, 23: 1402~1428.

    • Wu Yuanbao, Zhou Guangyan, Gao Shan, Liu Xiaochun, Qin Zhengwei, Wang Hao, Yang Jianzhou, Yang Saihong. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs. Precambrian Research, 254: 73~86.

    • Xiang Hua, Zhang Zeming, Lei Hengcong, Qi Min, Dong Xin, Wang Wei, Lin Yanhao. 2014. Paleoproterozoic ultrahigh-temperature pelitic granulites in the Northern Sulu Orogen: Constraints from petrology and geochronology. Precambrian Research, 254: 273~289.

    • Xu Yang, Polat A, Deng X, Liu Hao, Yang Kunguang. 2020. The ~1. 97 Ga dioritic block in the Hong’an Terrane, central China: Syn-collisional alkaline magmatism at the northern margin of the Yangtze Block. Precambrian Research, 342: 105713.

    • Yang Zhenning, Yang Kunguang, Polat A, Xu Yang. 2018. Early crustal evolution of the eastern Yangtze Block: Evidence from detrital zircon U-Pb ages and Hf isotopic composition of the Neoproterozoic Huashan Group in the Dahongshan area. Precambrian Research, 309: 248~270.

    • Ye Hui, Wu Changzhi, Yang Tao, Santosh M, Yao Xizhu, Gao Bingfei, Wang Xiaolei, Li Weiqiang. 2017. Updating the geologic barcodes for South China: Discovery of Late Archean banded iron formations in the Yangtze Craton. Scientific Reports, 7: 15082.

    • Yin Changqing, Lin Shoufa, Davis D W, Zhao Guochun, Xiao Wenjiao, Li Longming, He Yanhong. 2013. 2. 1~1. 85 Ga tectonic events in the Yangtze Block, South China: Petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia. Lithos, 182: 200~210.

    • Zhai Mingguo, Zhao Lei, Zhu Xiyan, Jiao Shujuan, Zhou Yanyan, Zhou Ligang. 2020&. Review and overview for the frontier hotspot: Early continents and start of plate tectonics. Acta Petrologica Sinica, 36(8): 2249~2275.

    • Zhai Mingguo, Zhao Lei, Zhu Xiyan, Zhou Yanyan, Peng Peng, Guo Jinghui, Li Qiuli, Zhao Taiping, Lu Junsheng, Li Xianhua. 2021. Late Neoarchean magmatic—metamorphic event and crustal stabilization in the North China Craton. American Journal of Science, 321(1~2): 206~234.

    • Zhang Shaobing, Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Gao Shan, Wu Fuyuan. 2006. Zircon isotope evidence for ≥3. 5 Ga continental crust in the Yangtze Craton of China. Precambrian Research, 146: 16~34.

    • Zhang Xin, Xu Xueyi, Song Gongshe, Wang Hongliang, Chen Junlu, Li Ting. 2010&. Zircon LA-ICP-MS U-Pb dating and significance of Yudongzi Group deformation granite from Leyang area, western Qinling, China. Geological Bulletin of China, 29: 510~517.

    • Zhang Zongqing, Zhang Guowei, Tang Suohan, Wang Jinhui. 2001&. On the age of metamorphic rocks of the Yudongzi Group and the Archean crystalline basement of the Qinling Orogen. Acta Geologica Sinica, 12(6): 739~773.

    • Zhao Guochun, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222~223: 13~54.

    • Zhao Junhong, Li Qiwei, Liu Hang, Wang Wei. 2018. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (south China) controlled by slab subduction and subduction-transform-edge-propagator. Earth-Science Reviews, 187: 1~18.

    • Zhao Tian, Zhu Guang, Wu Qi, Hu Rongmei, Wu Yihao, Xu Zhengyan, Ye Jin. 2021. Evidence for discrete Archean microcontinents in the Yangtze Craton. Precambrian Research, 361: 106259.

    • Zhao Tianyu, Cawood P A, Wang Kai, Zi Jianwei, Feng Qinglai, Nguyen Q M, Tran D M. 2019a. Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan Complex, north Vietnam: Constraints on the early crustal evolution of the Yangtze Block. Precambrian Research, 332: 105395.

    • Zhao Tianyu, Cawood P A, Zi Jianwei, Wang Kai, Feng Qinglai, Nguyen Q M, Tran D M. 2019b. Early Paleoproterozoic magmatism in the Yangtze Block: Evidence from zircon U-Pb ages, Sr—Nd—Hf isotopes and geochemistry of ca. 2. 3 Ga and 2. 1 Ga granitic rocks in the Phan Si Pan Complex, north Vietnam. Precambrian Research, 324: 253~268.

    • Zhao Tianyu, Li Jing, Liu Guichun, Cawood P A, Zi Jianwei, Wang Kai, Feng Qinglai, Hu Shaobin, Zeng Wentao, Zhang Hu. 2020. Petrogenesis of Archean TTGs and potassic granites in the southern Yangtze Block: Constraints on the early formation of the Yangtze Block. Precambrian Research, 347: 105848.

    • Zheng Jianping, Griffin W L, O’Reilly S Y, Zhang Ming, Pearson N, Pan Yuanming. 2006. Widespread Archean basement beneath the Yangtze craton. Geology, 34(6): 417~420.

    • Zhou Guangyan, Wu Yuanbao, Gao Shan, Yang Jianzhou, Zheng Jianping, Qin Zhengwei, Wang Hao, Yang Saihong. 2015. The 2. 65 Ga A-type granite in the northeastern Yangtze craton: Petrogenesis and geological implications. Precambrian Research, 258: 247~259.

    • Zhou Guangyan, Wu Yuanbao, Li Long, Zhang Wenxiang, Zheng Jianping, Wang Hao, Yang Saihong. 2018. Identification of ca. 2. 65 Ga TTGs in the Yudongzi Complex and its implications for the early evolution of the Yangtze Block. Precambrian Research, 314: 240~263.