en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吕大炜,男,1980年生,教授,主要从事沉积学、能源地质学等方面的研究与教学工作;E-mail:lvdawei95@163.com。

参考文献
陈留勤, 刘鑫, 李鹏程. 2018. 古土壤: 沉积环境和古气候变化的灵敏指针. 沉积学报, 36(3): 510~520.
参考文献
陈涛, 王欢, 张祖青, 王河锦. 2003. 粘土矿物对古气候指示作用浅析. 岩石矿物学杂志, 22(4): 416~420.
参考文献
陈旭, 布科, 阮亦萍, 斯科梯司, 樊隽轩. 1997. 显生宙全球气候变化与生物绝灭事件的联系. 地学前缘, 4(3~4): 123~127.
参考文献
洪汉烈. 2010. 黏土矿物古气候意义研究的现状与展望. 地质科技情报, 29(1): 1~8.
参考文献
蓝先洪. 1990. 粘土矿物作为古气候指标矿物的探讨. 地质科技情报, 9(4): 31~35.
参考文献
刘东生. 2002. 黄土与环境. 西安交通大学学报: 社会科学版, 22(4): 7~12.
参考文献
鲁春霞. 1997. 粘土矿物在古环境研究中的指示作用. 中国沙漠, 17(4): 456~460.
参考文献
毛学刚, 刘秀铭. 2016. 浅析中元古界和白垩系红层中泥裂的特征和古环境意义. 亚热带资源与环境学报, 11(3): 20~28.
参考文献
毛学刚, 刘秀铭, 师永辉, 陈金牛. 2019. 甘肃张掖早白垩世彩丘中古土壤的判别, 类型和序列特征. 第四纪研究, 39(2): 429~437.
参考文献
乔彦松, 赵志中, 王燕, 傅建利, 王书兵, 蒋复初. 2010. 川西甘孜黄土—古土壤序列的地球化学演化特征及其古气候意义. 科学通报, 55(3): 255~260.
参考文献
宋宏, 郭雪莲, 贺陆胜. 2019. 晚泥盆世古土壤元素地球化学特征及其古气候意义. 地质科学, 54(4): 1252~1264.
参考文献
宋宏. 2020. 甘肃白银晚泥盆世古土壤黏土矿物特征及古气候研究. 导师: 郭雪莲. 兰州: 兰州大学硕士学位论文: 1~40.
参考文献
蔚远江, 杨晓萍, 雷振宇, 张洪, 陆万雨. 2002. 羌塘盆地查郎拉地区中新生代古气候演化初探. 地球学报, 23(1): 55~62.
参考文献
杨利军, 邵龙义, 张鹏飞. 2002. 古土壤的类型及识别标志. 中国煤田地质, 14(3): 1~3.
参考文献
叶喜艳, 冯展涛, 彭廷江, 于凤霞, 李孟, 于昊. 2018. 兰州西津黄土—古土壤序列中黏土矿物特征. 兰州大学学报 (自然科学版), 1: 1~4.
参考文献
殷科, 洪汉烈, 李荣彪, 徐耀明, 杜鹃, 季军良, 张克信. 2010. 循化盆地晚渐新世—早中新世沉积物中黏土矿物特征及其古气候指示意义. 地质科技情报, 29(3): 41~48.
参考文献
张铭杰, 张昱, 李小虎, 王记周, 孟广路, 史宝光. 2007. 干旱半干旱地区土壤矿物组成特征及其环境意义. 兰州大学学报(自然科学版), 43(3): 1~5.
参考文献
张青青. 2018. 典型黄土—古土壤剖面有机碳和黏土矿物分布特征及古环境意义. 导师: 赵世伟. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心)硕士学位论文: 1~40.
参考文献
赵锡文. 1992. 古气候学概论. 北京: 地质出版社: 1~30.
参考文献
Alekseeva T V, Alekseev A O, Gubin S V. 2016a. Paleosol complex in the uppermost Mikhailovian Horizon (Viséan, Lower Carboniferous) in the southern flank of the Moscow Syneclise. Paleontological Journal, 50(4): 319~335.
参考文献
Alekseeva T V, Alekseev A O, Gubin S V, Kabanov P B, Alekseeva V A. 2016b. Palaeoenvironments of the Middle-Late Mississippian Moscow Basin (Russia) from multiproxy study of palaeosols and palaeokarsts. Palaeogeography, Palaeoclimatology, Palaeoecology, 450: 1~16.
参考文献
Alekseeva T V, Alekseev A O, Kalinin P I. 2018. The Mississippian paleosols in the Brontsy quarry, Kaluga region. Eurasian Soil Science, 51(7): 744~757.
参考文献
Blanchard S, Fielding C R, Frank T D. 2015. Impact of continental motion and dynamic glaciations on low-latitude climate during the Carboniferous: The record of the Wyoming Shelf (Western United States). Palaeogeography, Palaeoclimatology, Palaeoecology, 436: 214~230.
参考文献
Boucot A J, Chen Xu, Scotese C R, Morley R J. 2013. Phanerozoic paleoclimate: an atlas of lithologic indicators of climate. The Sedimentary Record, 12(4): 53~140.
参考文献
Brezinski D K, Cecil C B, Skema V W, Stamm R. 2008. Late Devonian glacial deposits from the eastern United States signal an end of the mid-Paleozoic warm period. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3~4): 143~151.
参考文献
Bruch A A, Mosbrugger V. 2002. Palaeoclimate versus vegetation reconstruction-palynological investigations on the Oligocene sequence of the Sava Basin, Slovenia. Review of Palaeobotany and Palynology, 122(3~4): 117~141.
参考文献
Charbonnier G, Duchamp A S, Deconinck J F, Adatte T, Spangenberg J E, Colin C, Föllmi K B. 2020. A global palaeoclimatic reconstruction for the Valanginian based on clay mineralogical and geochemical data. Earth-Science Reviews, 202: 103092.
参考文献
Chen Liuqin, Liu Xin, Li Pengcheng. 2018&. Paleosols: Sensitive indicators of depositional environments and paleocli-mate. Journal of sedimentary, 36(3): 510~520.
参考文献
Chen Jitao, Montañez I P, Qi Yuping, Shen Shuzhong, Wang Xiangdong. 2018. Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation. Geology, 46(5): 395~398.
参考文献
Chen Tao, Wang Huan, Zhang Zuqing, Wang Hejin. 2003&. Clay minerals as indicators of paleoclimate. Acta Petrologica et Mineralogica, 22(4): 416~420.
参考文献
Chen Xu, Boucot A J, Ruan Yiping, Scotese C R, Fan Junxuan. 1997#. Correlation between geologically marked climatic changes and extinctions. Earth Science Frontiers (China University of Geosciences, Beijing) , 4(3~4): 123~127.
参考文献
Driese S G, Ober E G. 2005. Paleopedologic and paleohydrologic records of precipitation seasonality from early Pennsylvanian" underclay" Paleosols, USA. Journal of Sedimentary Research, 75(6): 997~1010.
参考文献
Fielding C R, Frank T D, Isbell J L. 2008. The late Paleozoic ice age-A review of current understanding and synthesis of global climate patterns. Resolving the late Paleozoic ice age in time and space, 441: 343~354.
参考文献
Foster G L, Royer D L, Lunt D J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature communications, 8(1): 1~8.
参考文献
Hong Hanlie. 2010&. A Review on paleoclimate interpretation of clay minerals. Geological Science and Technology Information, 29(1): 1~8.
参考文献
Janssens P. 1964. The metabolism of the aestivating African lungfish. Comparative biochemistry and physiology, 11(1): 105~117.
参考文献
Kahmann J A, Driese S G. 2008. Paleopedology and geochemistry of Late Mississippian (Chesterian) Pennington Formation paleosols at Pound Gap, Kentucky, USA: Implications for high-frequency climate variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 259(4): 357~381.
参考文献
Kämpf N, Schwertmann U. 1983. Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma, 29(1): 27~39.
参考文献
Kraus M J. 1999. Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews, 47(1~2): 41~70.
参考文献
Kraus M J, Hasiotis S T. 2006. Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, USA. Journal of Sedimentary Research, 76(4): 633~646.
参考文献
Khaziev R, Krinari G, Nurgalieva N, Batalin G, Gareev B. 2016. The Permian clayey sediments genesis by XRF data on the reference section (Volga River, Russia). Indian Journal of Science and Technology, 9(48): 1~11.
参考文献
Kuleshov V N, Arefiev M P, Pokrovsky B G. 2019. Isotope characteristics (δ13C, δ18O) of continental carbonates from Permian-Triassic rocks in the Northeastern Russian Plate: Paleoclimatic and biotic reasons and chemostratigraphy. Lithology and Mineral Resources, 54(6): 489~510.
参考文献
Kuznetsova A M, Khokhlova O S. 2010. Morphology of carbonate accumulations in soils of various types. Lithology and Mineral Resources, 45(1): 89~100.
参考文献
Lan Xianhong. 1990&. Discussion on clay minerals as paleoclimate index minerals. Geological Scientific Information, 9(4): 31~35.
参考文献
Liao Weihua. 2002. Biotic recovery from the Late Devonian FF mass extinction event in China. Science in China Series D: Earth Sciences, 45(4): 380~384.
参考文献
Liu Dongsheng. 2002&. Loess and environment. Journal of Xian Jiaotong University: Social Sciences Edition, 22(4): 7~12.
参考文献
Liberato G P, Cornamusini G, Perotti M, Sandroni S, Talarico F M. 2017. Stratigraphy of a Permian-Triassic fluvial-dominated succession in Southern Victoria Land (Antarctica): preliminary data. Journal of Mediterranean Earth Sciences, 9: 167~171.
参考文献
Lu Chunxia. 1997&. Clay minerals as indicators of paleoenvironment. Journal of Desert Research, 17(4): 456~460.
参考文献
Mao Xuegang, Liu Xiuming. 2016&. Preliminary analysis on characterization of mud-cracks in meso-proterozoic red beds and Cretaceous Danxia red beds and their paleo-environmental implications. Journal of Subtropical Resources and Environment, 11(3): 20~28.
参考文献
Mao Xuegang, Liu Xiuming, Shi Yonghui, Chen Jingniu. 2019&. Paleosol recognition, pedotypes and paleosol development sequences in Zhangye colorful hills, Gansu Province. Quaternary Sciences, 39(2): 429~437.
参考文献
Mack G H, James W. 1994. Paleoclimate and the global distribution of paleosols. The Journal of Geology, 102(3): 360~366.
参考文献
Michel L A, Tabor N J, Montañez I P, Schmitz M D, Davydov V I. 2015. Chronostratigraphy and paleoclimatology of the Lodève Basin, France: evidence for a pan-tropical aridification event across the Carboniferous-Permian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 430: 118~131.
参考文献
Qiao Yansong, Zhao Zhizhong, Wang Yan, Fu Jianli, Wang Shubing, Jiang Fuchu. 2010&. Variations of geochemical compositions and the paleoclimatic significance of loess-soil sequence fromGanzi County of western Sichuan Province, China. Chinese Science Bulletin, 55(3): 255~260.
参考文献
Retallack G J. 2008. Soils of the past: An introduction to paleopedology: 11~55.
参考文献
Robinson D, Wright V. 1987. Ordered illite-smectite and kaolinite-smectite: pedogenic minerals in a lower Carboniferous paleosol sequence, South Wales? Clay Minerals, 22(1): 109~118.
参考文献
Sheldon N D, Tabor N J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-science reviews, 95(1~2): 1~52.
参考文献
Song Hong, Guo Xuelian, He Lusheng. 2019&. Geochemical characteristics of paleosols from Late Devonian and its paleoclimatic significance. Chinese Journal of Geology, 54(4): 1252~1264.
参考文献
Song Hong. 2020&. The clay minerals characyeristics of Late Devonian palaeosol and their paleoclimate in Baiyin, Gansu Province. Supervisor: Professor Guo Xuelian. Lanzhou: Master thesis of Lanzhou University: 1~40.
参考文献
Tabor N J, Myers T S. 2015. Paleosols as indicators of paleoenvironment and paleoclimate. Annual Review of Earth and Planetary Sciences, 43: 333~361.
参考文献
Wang Yue, Wang Xunlian, Shi Xiaoying. 2006. Pioneer organisms after FF mass extinction in Dushan region, Guizhou Province, and their significance in establishing new ecosystem. Science in China Series D, 49(5): 449~460.
参考文献
Wei Jiangyuan, Yang Xiaoping, Lei Zhenyu, Zhang Hong, Lu Wanyu. 2002&. A preliminary study of the Mesozoic-Cenozoic palaeoclimate evolution in Chalangla Areas, Qiangtang Basin, Northern Tibet. Acta Geoscientia Sinica, 23(1): 55~62.
参考文献
Wright V P. 1994. Paleosols in shallow marine carbonate sequences. Earth-Science Reviews, 35(4): 367~395.
参考文献
Wynn J G. 2007. Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology, 251(3~4): 437~448.
参考文献
Yang Lijun, Shao Longyi, Zhang Pengfei. 2002&. Palaeosols: Types and recognition. Coal Geology of China, 14(3): 1~3.
参考文献
Ye Xiyan, Feng Zhantao, Peng Yanjiang, Yu Fengxia, Li Meng, Yu Hao. 2018&. Preliminary clay minerals on the loess-paleosol sequence in the Xijin core, Lanzhou. Journal of Lanzhou University Natural Sciences, 1: 1~4.
参考文献
Yin Ke, Hong Hanlie, Li Rongbiao, Xu Yaoyang, Du Juan, Ji Junliang, Zhang Kexin. 2010&. Clay mineralogy and its palaeoclimatic indicator of the Late Oligocene and Early Miocene in Xunhua Basin. Geological Science and Technology Information, 29(3): 41~48.
参考文献
Zhang Mingjie, Zhang Yu, Li Xiaohu, Wang Jizhou, Meng Guanglu, Shi Baoguang. 2007&. Mineral compositions of soil in the arid and semiarid region and their environmental significance. Journal of Lanzhou University(Natural Sciences), 43(3): 1~5.
参考文献
Zhang Ling, Bao Zhidong, Zhang Changming, Dou Luxing, Fu Ping, Zhao Jiahong, Wang Wuxue, Ji Yu. 2020. Paleosols in an outcrop of red beds from the Upper Cretaceous Yaojia Formation, southern Songliao Basin, Jilin Province, NE China. Journal of Palaeogeography, 9(1): 1~10.
参考文献
Zhang Qingqing. 2018&. The distribution of organic carbon and clay minerals in a typical loess-paleosol profile and their paleoclimatic significance. Supervisor: Professor Zhao Shiwei. Beijing: Master thesis of the University of Chinese Academy of Sciences(Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education): 1~40.
参考文献
Zhao Xiwen. 1992#. Introduction Paleoclimatology. Beijing: Geology Press: 1~30.
目录contents

    摘要

    古土壤是地质历史时期气候变化的重要记录者,通过古土壤记录的信息,可以定性和定量重建深时古环境和古气候,为认识地质历史时期的各种地质事件提供依据。前人大多对特定区域展开古土壤研究,对全球性古土壤数据的整理和古气候、古环境研究相对较少。基于古土壤的干湿情况对古气候环境的指示作用,我们按照植物根迹、根系结构与根化石、黏土矿物以及古土壤的结构构造等依据,将前人报道的古生代(410 ~ 255 Ma)古土壤分为干旱古土壤和湿润古土壤两种类型。将古土壤干湿特征与其他气候敏感性沉积物进行对照,显示为干旱古土壤分布与钙质结核以及蒸发岩等指示干旱气候带的敏感性沉积物分布一致,湿润古土壤分布与高岭石、煤以及铝土矿等指示湿润气候带的敏感性沉积物分布一致。干旱古土壤大都分布在晚古生代中低纬度干旱地区;湿润古土壤大都分布在晚古生代赤道附近及中纬度湿润地区。通过以上分析认为,古土壤干湿特征可以作为一个新的气候敏感指标指示古气候环境,进而作为划分气候带的有力依据。

    Abstract

    Objectives: Paleosoil is an important record of climate change in geological history. Through the information of palaeosoil records, the paleoenvironmentand paleoclimatecan be reconstructed qualitatively and quantitatively, providing basis for understanding various geological events in geological history. Most of the previous studies have been carried out on palaeosoil in specific areas, but the global palaeosoil data collation, paleoclimateand paleoenvironment research are relatively few.

    Methods: Based on the indicator function of the dry and wet condition of paleosoil to the paleoclimate environment, we classified the paleosol ( 410 ~ 255 Ma) reported by previous researchers into two types: arid paleosoil and humid paleosoil according to the plant root trace, root structure and root fossil, clay minerals and the structure of paleosoil.

    Results: Paleoclimate compares the dry and wet characteristics of paleosoils with other climate-sensitive sediments, Compared with typical sensitivity sediments, the arid and humid paleosoil distributions are consitent with calcareous tuberculosis (evaporite), kaolinite (coal and bauxite), respectively. The arid paleosoilis mainly distributed in the middle and low latitude arid area of late Paleozoic. Humidpaleosoils are mainly distributed in the Late Paleozoic near the equator and mid-latitude moist regions.

    Conclusions: Based on the above analysis, it is concluded that the dry and wet characteristics of paleosoil can be used as a new climate sensitive index to indicate the paleoclimate environment, and then as a strong basis for the division of climatic zones.

  • 古土壤(paleosoil)是指形成于古代地层以及地形地貌之中的土壤(Tabor et al.,2015),是地质历史时期气候变化的灵敏指针,具有丰富的气候指示意义(Kraus,1999; Driese et al.,2005; Kahmann et al.,2008; Tabor et al.,2015; 陈留勤等,2018)。从太古代到新生代,古土壤广泛存在于不同深度的地层之中(Wright,1994; 杨利军等,2002)。古土壤作为沉积地层的一部分,在形成过程中长期与当时大气相接触,长期受到大气圈、水圈、生物圈和岩石圈的不同作用( Kraus,1999; Sheldon et al.,2009; Tabor et al.,2015),是集构造地形、沉积物组成、母岩、空间与时间、土壤生物以及相对物源区的位置和气候的综合产物( Wright,1994; Retallack,2008; Sheldon et al.,2009; Tabor et al.,2015)。因此古土壤可能记录有关地球表面过去的物理、生物和化学信息; 通过古土壤记录的信息,我们可以重建丰富的古环境、古水文、古植被以及古气候(Sheldon et al.,2009; Tabor et al.,2015)。

  • 国际上,已有很多学者用古土壤定性定量重建了深时古环境和古气候,涉及到了从太古代到新生代多个地质历史时期(刘东生,2002; Kraus et al.,2006; Sheldon et al.,2009; Kuleshov et al.,2019; 宋宏,2020)。晚古生代时期,一系列的地质事件频繁发生,如冰川的发生与消融等演化( Fielding et al.,2008; Chen Jitao et al.,2018)、气候变暖变冷事件(Fielding et al.,2008; Blanchard et al.,2015; Chen Jitao et al.,2018)以及生物灭绝事件(F-F 事件)( Liao Weihua,2002; Wang Yue et al.,2006)等,这些地质现象都在古土壤沉积特征上有所表现(Tabor et al.,2015)。研究古土壤中所反映的地质信息对重建晚古生代古环境与古气候具有重要意义,同时也有助于发展和优化基于古土壤的古气候替代性指标。

  • 气候敏感性沉积物是划分古气候分带的重要依据,同时也是确定相关古气候的重要参照物(张铭杰等,2007; Boucot et al.,2013)。根据气候敏感沉积物的分布规律及古气候信息可以恢复和确定全球的古环境和古气候信息。 20 世纪以来,许多学者开始对气候敏感性沉积物类型和特征开展研究,认为气候敏感性沉积物主要包括高岭石、煤、蒸发岩等多种具有典型指示的沉积物(陈旭等,1997; Boucot et al.,2013)。例如,高岭石、煤和铝铁矿等是潮湿气候带的主要敏感性沉积物,多用来指示较为潮湿的古气候环境; 而钙质结核、蒸发岩等是干旱气候带的主要敏感性沉积物,多用来指示较为干旱的古气候环境。气候敏感沉积物的分布模式和分布规律可以重建恢复地质历史时期的气候带( Kämpf et al.,1983; 蓝先洪,1990; 鲁春霞,1997; 蔚远江等,2002; 张铭杰等,2007; Boucot et al.,2013; 宋宏,2020)。这些成果对于全球古气候重建起到积极性的推动作用,也对人类认识深时古气候发展演化提供了坚实的依据。用于重建古气候的敏感性沉积物如煤、钙质结核、高岭石等在指示古气候上确实有优势,但是很多情况下都与古土壤密切相关,比如钙质结核往往出现在干旱的古土壤之中,煤则与湿润古土壤共生。同时钙质结核理论上就属于干旱古土壤的一部分,但并不是所有的干旱古土壤中都存在钙质结核,干旱古土壤中也会存在其他指示物( Tabor et al.,2015; 毛学刚等,2016; 陈留勤等,2018); 对使用钙质结核作为一种气候敏感性沉积物来研究古气候带的理论已经基本成立( Tabor et al.,2015),但是钙质结核并不能代表所有的干旱古土壤来研究古气候带。本文系统整合干湿指标分类之后的古土壤,着重于研究古土壤是否能够作为气候敏感性沉积物来进行古气候的研究。

  • 晚古生代时期气候分带明显,气候变化显著,可作为进一步加强古气候带划分的依据,推动古土壤领域的研究进展。本研究收集泥盆纪、石炭纪和二叠纪的古土壤数据,通过古土壤数据点与已有气候敏感性沉积物的对比,讨论干湿古土壤是否可以作为气候敏感性沉积物指示古气候,检验古生代古气候带的划分。

  • 1 研究方法

  • 前人对于古土壤的研究大多都探讨区域性古环境和古气候特征(Driese et al.,2005; Alekseeva et al.,2016a),而对于全球性古土壤资料的整理和研究较少。笔者等通过整理与收集晚古生代古土壤资料建立数据库。数据库包括晚古生代不同时期古土壤的地质年代、古今地理位置、干湿情况等空间古土壤数据(附表1,见 www. geojournals. cn / georev 的网上文件,印刷版略),古土壤数据信息总计 282 条; 其中泥盆纪古土壤数据 57 条,石炭纪古土壤数据 140 条,二叠纪古土壤数据 85 条,多数的古土壤数据出现在石炭纪和二叠纪时期。

  • 图1 晚古生代不同阶的古土壤数据南北半球分布图

  • Fig.1 Distribution of paleosoil data of different stages in the Late Paleozoic

  • 本研究建立的数据库中,古土壤数据点在古地理地图上显示南半球分布较多,北半球分布较少(图1、图2)。这一点同泥盆纪、石炭纪、二叠纪的南北大陆面积相对应; 在泥盆纪、石炭纪和二叠纪这三个时期,南半球的大陆面积要明显的多于北半球的大陆面积,大陆面积的差异是导致古土壤数据点南北半球分布差异的主要原因。泥盆纪和石炭纪时期在南半球的古土壤数据点明显多于北半球,而在二叠纪时期,南北半球的古土壤数据点比较均匀,数据点数量基本持平。

  • 2 干旱和湿润古土壤的特征

  • 古土壤按照干湿情况可以分为干旱古土壤和湿润古土壤两种,干旱古土壤常发育于干旱的气候环境中,有机质含量较少,颜色常呈浅红褐色且包含泥裂、钙质层和石膏层等典型特征(陈留勤等,2018; 毛学刚等,2019)。例如,宋宏等在分析晚泥盆纪古土壤特征时,发现较为干旱的旱成土层具有颜色呈浅红褐色且包含泥裂、钙质层等特征( 宋宏等,2019); 毛学刚等在分析白垩纪时期红色古土壤特征时,发现较为干旱的古土壤表面常出现泥裂与钙质层等特征(毛学刚等,2016)。湿润古土壤常发育于较为湿润气候环境中,有机质含量相对较高,根迹由于土壤水分含量高而在土壤中的延伸长度较短,根石类型常以金属氧化物形式存在,土壤颜色由于排水不良常呈深灰色且含有较多的氧化矿物且成土作用较为明显(Kraus et al.,2006; 宋宏,2020)。例如,Kraus 在分析不同古土壤的排水特征时,发现较为湿润的古土壤由于其排水不良或排水较差等土壤特征,古土壤呈深灰色且有机质含量较高,存在于其中的植物根迹较为短小( Kraus et al.,2006); Tabor 在阐述降雨量较大或季节性降水较强的古土壤时,发现根迹发育较短小且根石常呈铁锰氧化物或黄钾铁矾形式出现(Tabor et al.,2015)。干旱古土壤和湿润古土壤在根系结构与根化石、植物根特征、所含矿物以及特有的沉积结构和构造都有比较明显的区别(表1)。本次研究的工作方法就是,通过这些特征对数据库中收集的古土壤进行相应的干湿划分,并进一步分析干旱古土壤和湿润古土壤蕴藏的古气候意义。

  • 图2 晚古生代古土壤数据点纬度分布图

  • Fig.2 Latitudinal distribution of paleosoil data in the Late Paleozoic

  • P:布拉格阶; Ems:埃姆斯阶; Eif—Giv:艾菲尔阶—吉维特阶; Fra—Fam:弗拉斯阶—法门阶; Tou—Vis:杜内阶—维宪阶; Serp:谢尔普霍夫阶; Bas—Mo:巴什基尔阶—莫斯科阶; Ka—Gz:卡西莫夫阶—格舍尔阶; A—S:阿瑟尔阶—萨克马林阶; Art—Wu:阿尔丁斯克阶—吴家坪阶

  • P: Pragian; Ems: Emsian; Eif—Giv: Eifelian—Givetian; Fra—Fam: Frasnian—Famennian; Tou—Vis: Tournaisian—Visean; Serp: Serpukhovian; Bas—Mo: Bashkirian —Moscovian; Ka—Gz: Kasimovian—Gzhelian; A—S: Asselian—Sakmarian; Art—Wu: Artinskian—Wuchiapingian

  • 2.1 植物根迹

  • 埋藏在古土壤之中的植物根迹可以用来区分干旱古土壤和湿润古土壤(Kraus et al.,2006; Tabor et al.,2015; 毛学刚等,2016)。古土壤在漫长的地质历史时期内,有各种各样的植物的根存在于古土壤中。从古土壤的含水量多少来看,古土壤的含水量的多少往往会影响植物根系的发展程度,在气候干旱地区形成的古土壤含水量较少,其中生长的根迹会因为土壤缺水而延伸较深,以便吸取更多水分,且根迹发育比较细小,防止根迹中水分的流失; 而在气候湿润地区形成的古土壤,由于其土壤中水分含量较多,根系生长所需要的水分供给充足,植物根迹往往向下延伸较短(Kraus,1999; Kraus et al.,2006; Tabor et al.,2015)。从植物根迹的颜色来看,干旱气候条件下古土壤中的根迹颜色因为氧化作用较强而主要呈现红色; 在湿润的气候条件下,水分的聚集使得土壤发生潜育化或者有机质发生分解,从而形成还原环境,导致根迹出现褐色或青灰色(Kraus et al.,2006; Tabor et al.,2015; 毛学刚等,2019)。

  • 表1 干湿古土壤的区分特征

  • Table1 Distinguishing characteristics of arid and humid paleosoil

  • 2.2 根系结构与根化石

  • Kraus 发现古土壤记录了不同排水情况的古土壤对古环境和古气候的影响(Kraus et al.,2006)。干旱的古土壤其排水相对较好,古土壤因为水分的流失会呈现出红色或者浅红色。在相对排水良好的古土壤中,根系结构与根化石会出现两种形态:①以带有红色边缘的细长灰色斑点(根晕)组成的根瘤体形式出现(图3a),②在红色排水良好的古土壤中出现带有紫色边缘的灰色根晕(图3b)( Kraus et al.,2006)。湿润的古土壤其排水相对较差,水分会在古土壤中堆积和残留,在湿润的土壤条件下,古土壤会因为发生化学还原作用和潜育作用而呈现深灰色或紫色(Kraus et al.,2006; Kuleshov et al.,2019)。在排水相对较差的古土壤中,根系结构与根化石会出现两种形态:①保存在根岩体内的碳质链体化石很常见(图3c),而含有氧化铁下涂层的灰色根晕则很稀少; ②边缘呈黄棕色的用铁锰氧化物和黄钾铁矾保存的根石( 图3d)( Kraus et al.,2006; Wynn,2007; 乔彦松等,2010; 毛学刚等,2019)。

  • 2.3 黏土矿物

  • 古土壤在漫长的地质历史发展过程中,各类矿物广泛存在于古土壤中,土壤是母岩、气候、生物、地形和时间等成土因素共同作用下的产物(Khaziev et al.,2016; Charbonnier et al.,2020),古土壤形成于特定的地质背景条件下,尤其是发育于火山物质母岩之上的风化自生黏土矿物,可以准确地指示该区的古气候条件,沉积物中的黏土矿物可以更有效地运用于古气候环境的分析(陈涛等,2003; 洪汉烈,2010; Khaziev et al.,2016; Alekseeva et al.,2018),从而在相应的古气候环境中形成稳定的矿物类型。随着全球气候变化研究的发展,矿物种类对气候变化的指示作用越来越被重视; 其中黏土矿物对气候具有较好的指示意义。气候温湿有利于伊/ 蒙混层矿物和高岭石等黏土矿物的形成,湿热的气候环境与高岭石的存在相关(Kämpf et al.,1983; Robinson et al.,1987; 殷科等,2010; Tabor et al.,2015; 张青青,2018; 叶喜艳等,2018)。高岭石常发育于中低纬度的热带气候条件下,在湿热的气候条件下,高岭石会聚集出现,对比旱成土中的高岭石含量常在 3%~8%,在较为湿热的土壤层中高岭石的含量会大于这个范围(陈留勤等,2018; 宋宏,2020)。热带的化学风化与淋滤作用强烈,会形成大量的高岭石、蒙脱石; 蒙脱石在湿热的气候条件下进一步风化淋滤可以形成高岭石,所以在湿热的气候条件下,土壤层中的高岭石含量较高。伊利石常发育于气候干冷的气候地区的土壤中,土壤中的伊利石的含量超过 35%,可表示气候处于干冷的条件下,化学风化较弱; 同时伊利石的结晶度( IC 值)在干冷的气候条件下较低,在湿热的气候条件下较高; 伊利石结晶度以 0.42°Δ2θ 为界限,伊利石结晶度低于 0.42°Δ2θ 并逐渐减小表示气候变得干旱; 伊利石结晶度高于 0.42°Δ2θ 并逐渐增大表示气候变得湿润(陈涛等,2003; Liberato et al.,2017; 宋宏,2020)。

  • 2.4 古土壤结构和构造

  • 古土壤剖面中的一些结构和构造在一定范围内也可以用于指示气候( Tabor et al.,2015; 宋宏,2020),大部分的古土壤结构和构造都是可以用肉眼在剖面中观察到的,如植物痕迹一样存在于古土壤中。在干旱的古土壤中,在剖面中可以观察到钙质结核(Tabor et al.,2015; 毛学刚等,2019)、泥裂(毛学刚等,2016)以及肺鱼洞穴遗迹( Janssens,1964; 宋宏,2020)等古土壤结构和构造。钙质结核主要是由碳酸钙组成的结核状自生沉积物,又名碳酸盐结核或石灰结核。钙质结核层的形成与气候因素有关,一般在半干旱地区的平原或低地由蒸发或淋滤作用形成,也有机械沉积的原生构造,其形成机制受水动力的控制。一般是在降雨量有限的地区形成,是一种重要的气候标志。泥裂是气候变得干旱后,古土壤中的水分随之流失,在古土壤表面因为缺水而开裂形成的不规则裂缝(毛学刚等,2016; 宋宏,2020)(图4)。肺鱼洞穴遗迹野外形态呈倾斜或垂直状,无规则的分布在古土壤中,这些洞穴直径约 10 cm,长度约为 25 cm。当气候变干旱后,水分随气候变干旱而急剧变少,肺鱼大都聚集在湿润的湖底泥土中,当气候重新变湿润才会从湖底出现,因此存在肺鱼洞穴遗迹,是气候干旱的标志(Janssens,1964; 宋宏,2020)。在湿润的古土壤或干湿交替的古土壤中,雨痕、伪背斜构造和剖面滑擦面等结构和构造比较常见( Zhang Ling et al.,2020)。湿润的气候条件下,大气降雨量增多,雨水经过渗透进入古土壤剖面中,留下水流经过的痕迹称为雨痕; 伪背斜构造和剖面滑擦面等是古土壤剖面先是经历了干旱的气候条件,然后在湿润条件下即在干、湿交接的成壤条件下膨胀收缩而形成的特定的土壤构造,一般用来指示较为湿润的古土壤(Tabor et al.,2015; Zhang Ling et al.,2020)。

  • 图3 不同古土壤中的根系结构与根化石(据 Kraus et al.,2006

  • Fig.3 Root structure and root fossils in different paleosoils (from Kraus et al., 2006)

  • (a)干旱古土壤中的带有红色边缘的细长灰色斑点(根晕)组成的根瘤体;(b)干旱古土壤中出现带有紫色边缘的灰色根晕;( c)湿润古土壤中的保存在根岩体内的碳质链体化石;(d)湿润古土壤中边缘呈黄棕色以铁锰氧化物和黄钾铁矾保存的根石

  • (a) Root tumor consisting of slender gray spots (root halos) with red margins in an arid paleosoil; (b) Gray root halo with a purple margin in an arid paleosoil; (c) Fossil of a carbonaceous chain preserved in a root rock in a humid paleosoil; (d) The edge of the humid paleosol is yello-brown root stone preserved with ferromanganese oxide and jarosite

  • 图4 干旱气候条件下土壤层出现的泥裂(据宋宏,2020

  • Fig.4 Mud cracks in soil layer under arid climate conditions (from Song Hong, 2020&)

  • 3 晚古生代古土壤与气候关系

  • 将收集到的晚古生代古土壤数据进行古地理坐标的转化,结合不同类型古土壤特征识别出干旱古土壤和湿润古土壤,进而结合时间阶段的分类,确定晚古生代古土壤在地质历史时期的具体年代,将干湿古土壤的古地理坐标根据不同时期分别投点在有古气候带分带的古地理地图上。与已知的气候敏感岩性和前人研究划分好的古气候带进行分区对比,最后验证本文的假设,即干湿古土壤特征和分布能够指示古气候。

  • 3.1 泥盆纪

  • 3.1.1 早泥盆世(布拉格阶—埃姆斯阶)

  • 早泥盆世时期,全球大陆中部和北部的干旱气候带分布广泛,寒温带横向贯穿冈瓦纳大陆中部(图5; Boucot et al.,2013)。干旱带和热带以钙质结核和高岭石分隔开来; 干旱带与大陆南部寒温带以钙质结核和煤与少部分高岭石分隔开来。代表干旱气候带的敏感性沉积物蒸发岩类在干旱气候带内存在较多。本研究中的干旱古土壤主要分布于南纬27 °左右的干旱气候带地区(图5a),由于早泥盆世时期的数据点较少,泥盆纪早期本研究的古土壤数据点信息不全面,并不能较好的反映气候环境,只能指示部分地区的气候环境。

  • 图5 泥盆纪气候分带图(底图据 Boucot et al.,2013

  • Fig.5 Climate zonation in Devonian period (Base map from Boucot et al., 2013)

  • 3.1.2 中泥盆世(艾菲尔阶—吉维特阶)

  • 中泥盆世时期,劳亚大陆向东位移,冈瓦纳大陆明显向北部延伸同时大陆面积开始增大,全球气候梯度明显下降(Boucot et al.,2013)。劳亚大陆与冈瓦纳大陆中部和北部的蒸发岩和钙质结核指示了干旱气候带,相较于早泥盆世,中泥盆世干旱气候带面积有所减少,干旱带气候带比较平直,干旱古土壤的数据点分布与蒸发岩的分布规律基本一致。在劳亚大陆北部,加拿大北极区的煤、靠近干旱带与热带分界线地区的高岭石指示了热带的位置(Boucot et al.,2013; Michel et al.,2015; Charbonnier et al.,2020)。与泥盆纪早期相比,较为明显的是南半球的寒带和寒温带全部被暖温带所取代,南部的暖温带气候带中分布着部分高岭石,指示了暖温带气候带的分布位置,同时湿润古土壤在南半球的暖温带中与高岭石分布规律基本一致(图5b)。

  • 3.1.3 晚泥盆世(弗拉斯阶—法门阶)

  • 晚泥盆世时期,劳亚大陆中部地区和北部地区的干旱气候带分布面积较广。在劳亚大陆中部的干旱气候带中,大量的钙质结核聚集分布(蔚远江等,2002; 张铭杰等,2007; Boucot et al.,2013),干旱古土壤的分布位置与钙质结核聚集的位置明显一致; 在劳亚大陆北部干旱气候带中,大量的蒸发岩聚集分布,干旱古土壤的分布位置与蒸发岩聚集的位置近乎一致。晚泥盆世时期的热带气候带用乌拉尔地区出现的铝土矿指示,代表季节性湿润的古气候环境(Boucot et al.,2013; Tabor et al.,2015)。南半球的暖温带可以由巴西出现的高岭石来限定(Brezinski et al.,2008; Boucot et al.,2013),暖温带中的湿润古土壤数据点出现在气候带的冈瓦纳大陆中部以及南部与寒温带的分界线地区,这些湿润古土壤的分布位置与分布规律和高岭石等代表湿润的气候敏感沉积物基本一致(图5c)。

  • 3.2 石炭纪

  • 3.2.1 早石炭世(杜内阶—维宪阶、谢尔普霍夫阶)

  • 在早石炭世的维宪阶,大部分的干旱气候带已经逐渐被热带和暖温带所取代,北半球基本被热带和暖温带覆盖。干旱气候带主要分布在南半球,南半球的干旱气候带中蒸发岩分布广泛,基本横贯整个干旱气候带。热带和暖温带范围较泥盆纪时期逐渐变大( Boucot et al.,2013; Alekseeva et al.,2016),煤和铝土矿广泛分布于盘古大陆东部和北部的热带气候带内。这个时期的热带湿润气候主要是用分布在中低纬度高岭石、煤和铝土矿界定的(Boucot et al.,2013)。经过对这一时期的不同古土壤的数据投点分析的结果来看,这一时期的干旱古土壤的分布规律与蒸发岩等干旱的气候敏感沉积物一致; 这一时期的湿润古土壤的分布规律与高岭石、铝土矿等湿润的气候敏感沉积物一致(图6a)。

  • 在早石炭纪末期,也就是谢尔普霍夫阶时期,南半球的干旱古气候带开始逐渐减小,被暖温带和寒温带所取代,南半球干旱带的蒸发岩主要分布在盘古大陆中部的热带与干旱带交接的地区,同时这一时期干旱古土壤的分布规律与盘古大陆中部干旱气候带中蒸发岩的分布规律一致。谢尔普霍夫阶时期北半球干旱带扩张,蒸发岩集中,北半球的干旱古土壤数据点较少,但是全部分布于北半球干旱带的中心位置。在谢尔普霍夫阶时期,从盘古大陆西部到东北部的高岭石界定了热带的界线,盘古大陆北部的煤限定了暖温带的界线(陈旭等,1997; Boucot et al.,2013),湿润古土壤的分布规律与中低纬度热带高岭石和中高纬度煤的分布规律一致(图6b)。

  • 3.2.2 晚石炭世(巴什基尔阶—莫斯科阶、卡西莫夫阶—格舍尔阶)

  • 在晚石炭世的巴什基尔阶—莫斯科阶,干旱气候带主要分布于盘古大陆中部的中低纬度地区,北半球干旱气候带以钙质结核为主要指示物来与北部的暖温带界定界线; 南半球的干旱气候带主要以蒸发岩为主要指示物来与南部的寒温带界定界线(Bruch et al.,2002; Boucot et al.,2013; Foster et al.,2017)。干旱古土壤的分布规律与南半球干旱气候带中蒸发岩的分布规律一致。(图6c)。在巴什基尔阶—莫斯科阶,盘古大陆西段热带范围较为窄小,向东热带范围逐渐变宽,主要原因是自西向东潮湿空气逐渐增加。在盘古大陆中部的热带气候带中,低纬度赤道附近广泛分布着大量的煤和高岭石用来指示这一时期的湿润的热带古气候带(Mack et al.,1994; Boucot et al.,2013)。巴什基尔阶—莫斯科阶的湿润古土壤大都分布在中低纬度热带湿润气候带中,并且这一时期的湿润古土壤的分布规律与高岭石、煤等湿润的气候敏感沉积物分布规律一致。

  • 在晚石炭世的卡西莫夫阶—格舍尔阶,与巴什基尔阶—莫斯科阶记录的古土壤信息相同,这一时期的干旱古土壤数据信息也相对较少,收集到的干旱古土壤主要分布于北半球干旱气候带和热带湿润气候带的分界位置(图6d)。同时,南北半球的暖温带面积都逐渐增大,气候较巴什基尔阶—莫斯科阶时期有所变暖,随着热带气候带向东西两侧延伸较远盘古大陆中部的煤和高岭石分布界定了热带湿润的古气候环境( 张铭杰等,2007; Boucot et al.,2013)。热带潮湿气候带于低纬度陆地范围内广泛分布。在晚石炭世的卡西莫夫阶—格舍尔阶,干旱古土壤的分布规律与钙质结核和蒸发岩等干旱的气候敏感沉积物基本一致; 湿润古土壤的分布规律与高岭石和煤等湿润的气候敏感沉积物基本一致(图6d)。

  • 图6 石炭纪气候分带图(底图据 Boucot et al.,2013

  • Fig.6 Climate zonation in Carboniferous period (base map from Boucot et al., 2013)

  • 3.3 二叠纪

  • 3.3.1 早二叠世(阿瑟尔阶—萨克马林阶)

  • 在早二叠世的阿瑟尔阶—萨克马林阶,二叠纪早期南半球冰川广布,遍及南美洲南半部和非洲; 南部半球中高纬度寒温带以及寒带中广泛分布的冰碛岩,与广泛分布的煤呈互相重叠分布,这是因为绝大部分二叠纪早期的煤都在冰川活动范围内并产于冰碛岩和其他冰川沉积层之上(Boucot et al.,2013)。干旱气候带广布于盘古大陆中低纬度地区,南北半球的干旱带均匀平衡分布在热带两侧。南北半球的干旱气候带主要是由于其中分布的蒸发岩界定(Boucot et al.,2013),而部分地区共同分布着钙质结核以及蒸发岩,代表这一地区更加干旱,干旱古土壤的位置主要集中于北半球干旱带和热带分界的地区,同时在干旱古土壤数据点分布的位置也同样存在着大量的蒸发岩以及少数的钙质结核,这一时期干旱古土壤的分布规律与蒸发岩和钙质结核等干旱的气候敏感沉积物基本一致(图7a)。早二叠世的阿瑟尔阶—萨克马林阶,热带气候带集中分布在盘古大陆中部以及古特提斯洋地区。大量的铝土矿在华南、华北、朝鲜广布并与大量的煤相伴,指示了地中海式的热带气候。北半球寒温带由分布在盘古大陆北部的煤界定( 赵锡文,1992; Boucot et al.,2013)。这一时期的湿润古土壤数据并不多,湿润古土壤的分布规律和分布范围与中低纬度煤的分布规律和分布范围基本一致(图7a)。从“晚石炭世” 开始到早二叠世,出现了煤和钙质壳的韵律层沉积,对这种异常现象最简单的解释是该区处于半干旱气候和潮湿气候的交替,可能也受到冰川活动的控制,南半球大陆冰川活动的兴衰、盈亏导致潮湿气候带在北半球中纬度带的往复变动(Bruch et al.,2002; Boucot et al.,2013; Michel et al.,2015; 宋宏等,2019)。

  • 图7 二叠纪气候分带图(底图据 Boucot et al.,2013

  • Fig.7 Climatic zonation in Permian period (Base map from Boucot et al., 2013)

  • 3.3.2 中—晚二叠世(阿尔丁斯克阶—吴家坪阶)

  • 在中—晚二叠世的阿尔丁斯克阶—吴家坪阶,全球干旱带气候带分布范围广泛,较二叠纪早期相比,南北半球的干旱带由于热带的向东推移而开始联合成一个整体,干旱带主要分布在中、低纬度地区,全球气温相对升高,南半球寒带消失,暖温带开始出现,大陆整体呈现东湿西干的特征( Boucot et al.,2013; Michel et al.,2015)。在盘古大陆的东部和西部与热带气候带分界的位置出现的大量蒸发岩和钙质结核代表着干旱的古气候环境(图7b),同时这一时期的干旱古土壤的分布规律与盘古大陆东西部蒸发岩、钙质结核等干旱的气候敏感沉积物分布规律一致。在中—晚二叠世的阿尔丁斯克阶—吴家坪阶,盘古大陆中部以及古特提斯洋东部沿岸出现大量的铝土矿和煤指示着热带潮湿气候带于此分布。寒温带与干旱带界线在南半球以澳大利亚新南威尔士和南非的煤与高岭石记录为界,在北半球以西伯利亚的煤与高岭石记录为界(赵锡文,1992; Boucot et al.,2013)。盘古大陆南部出现大量的煤指示着较为湿润的暖温气候带,同时中—晚二叠世的阿尔丁斯克阶—吴家坪阶时期的湿润古土壤的分布规律与盘古大陆南部的煤等湿润的气候敏感沉积物基本一致(图7b)。

  • 4 结论

  • 古土壤作为古气候环境信息的重要记录者,广泛存在于从太古代至第四纪的沉积序列中。在漫长的地质历史时期,古土壤受大气圈、岩石圈、生物圈和水圈等圈层的直接或间接作用,因此古土壤中存在古代沉积环境和古气候变化信息,古土壤可以提供丰富的定性和定量证据,对深时气候环境的变化研究具有重要的作用。

  • 根据古土壤的根系特征、沉积特征以及结构和构造等对古土壤进行干湿划分,然后对应在不同时期进行干旱古土壤和湿润古土壤的分别投点,与其它气候敏感岩性与气候带作对比,发现晚古生代古土壤分布范围与分布规律与煤、高岭石等已划定的气候敏感性沉积物基本一致。在泥盆纪时期早期因为数据点较少,不能显示较好的分布规律。而在泥盆纪中晚期、石炭纪时期以及二叠纪时期干旱古土壤数据点随干旱带的扩大而出现在干旱带边缘等钙质结核和蒸发岩集中分布的地区,湿润古土壤数据点随着热带和暖温带的扩大缩小而出现在热带中部或边缘以及暖温带边缘等煤和高岭石集中分布的地区。基于以上研究得出结论:古土壤干湿特征可以作为一个新的气候指标来指示古气候环境,进而作为划分气候带的有力依据。

  • 古土壤干湿特征指示晚古生代气候演化附表1:数据库

  • 注: 本数据库是对晩古生代古土壤的相关信息的整理与收集而建立的。数据信息通过搜集前人发表的关于古土壤信息的文章,进行古土壤年代和地理位置的摘取和䇘查,进行数据库信息的录人。数据库中干湿古土壤的信息是通过文章提及、植物根迹、根系结构与根化石、黏土矿物以及古土壤的结构构造等依据,将收集到的古土壤分为干旱古土壤和湿润古土壤两种类型进行数据库的相关录人,少数是通过分析整体地层干湿情况以及整体地层具有的相关特征进行的数据信息的录人。

  • 古土壤数据库包括晩古生代不同时期古土壤的地质年代、古今地理位置、干湿情况等空间古土壤数据,数据库记录了晩古生代古土壤数据信息总计 282 条; 其中泥盆纪时期古土壤数据 57 条,石炭纪时期古土壤数据 140 条,二叠纪时期古土壤数据 85 条。多数的古土壤数据出现在石炭纪和二叠纪时期,数据库中存在多个古土壤信息对应于同一位置的情况。

  • 参考文献

    • 陈留勤, 刘鑫, 李鹏程. 2018. 古土壤: 沉积环境和古气候变化的灵敏指针. 沉积学报, 36(3): 510~520.

    • 陈涛, 王欢, 张祖青, 王河锦. 2003. 粘土矿物对古气候指示作用浅析. 岩石矿物学杂志, 22(4): 416~420.

    • 陈旭, 布科, 阮亦萍, 斯科梯司, 樊隽轩. 1997. 显生宙全球气候变化与生物绝灭事件的联系. 地学前缘, 4(3~4): 123~127.

    • 洪汉烈. 2010. 黏土矿物古气候意义研究的现状与展望. 地质科技情报, 29(1): 1~8.

    • 蓝先洪. 1990. 粘土矿物作为古气候指标矿物的探讨. 地质科技情报, 9(4): 31~35.

    • 刘东生. 2002. 黄土与环境. 西安交通大学学报: 社会科学版, 22(4): 7~12.

    • 鲁春霞. 1997. 粘土矿物在古环境研究中的指示作用. 中国沙漠, 17(4): 456~460.

    • 毛学刚, 刘秀铭. 2016. 浅析中元古界和白垩系红层中泥裂的特征和古环境意义. 亚热带资源与环境学报, 11(3): 20~28.

    • 毛学刚, 刘秀铭, 师永辉, 陈金牛. 2019. 甘肃张掖早白垩世彩丘中古土壤的判别, 类型和序列特征. 第四纪研究, 39(2): 429~437.

    • 乔彦松, 赵志中, 王燕, 傅建利, 王书兵, 蒋复初. 2010. 川西甘孜黄土—古土壤序列的地球化学演化特征及其古气候意义. 科学通报, 55(3): 255~260.

    • 宋宏, 郭雪莲, 贺陆胜. 2019. 晚泥盆世古土壤元素地球化学特征及其古气候意义. 地质科学, 54(4): 1252~1264.

    • 宋宏. 2020. 甘肃白银晚泥盆世古土壤黏土矿物特征及古气候研究. 导师: 郭雪莲. 兰州: 兰州大学硕士学位论文: 1~40.

    • 蔚远江, 杨晓萍, 雷振宇, 张洪, 陆万雨. 2002. 羌塘盆地查郎拉地区中新生代古气候演化初探. 地球学报, 23(1): 55~62.

    • 杨利军, 邵龙义, 张鹏飞. 2002. 古土壤的类型及识别标志. 中国煤田地质, 14(3): 1~3.

    • 叶喜艳, 冯展涛, 彭廷江, 于凤霞, 李孟, 于昊. 2018. 兰州西津黄土—古土壤序列中黏土矿物特征. 兰州大学学报 (自然科学版), 1: 1~4.

    • 殷科, 洪汉烈, 李荣彪, 徐耀明, 杜鹃, 季军良, 张克信. 2010. 循化盆地晚渐新世—早中新世沉积物中黏土矿物特征及其古气候指示意义. 地质科技情报, 29(3): 41~48.

    • 张铭杰, 张昱, 李小虎, 王记周, 孟广路, 史宝光. 2007. 干旱半干旱地区土壤矿物组成特征及其环境意义. 兰州大学学报(自然科学版), 43(3): 1~5.

    • 张青青. 2018. 典型黄土—古土壤剖面有机碳和黏土矿物分布特征及古环境意义. 导师: 赵世伟. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心)硕士学位论文: 1~40.

    • 赵锡文. 1992. 古气候学概论. 北京: 地质出版社: 1~30.

    • Alekseeva T V, Alekseev A O, Gubin S V. 2016a. Paleosol complex in the uppermost Mikhailovian Horizon (Viséan, Lower Carboniferous) in the southern flank of the Moscow Syneclise. Paleontological Journal, 50(4): 319~335.

    • Alekseeva T V, Alekseev A O, Gubin S V, Kabanov P B, Alekseeva V A. 2016b. Palaeoenvironments of the Middle-Late Mississippian Moscow Basin (Russia) from multiproxy study of palaeosols and palaeokarsts. Palaeogeography, Palaeoclimatology, Palaeoecology, 450: 1~16.

    • Alekseeva T V, Alekseev A O, Kalinin P I. 2018. The Mississippian paleosols in the Brontsy quarry, Kaluga region. Eurasian Soil Science, 51(7): 744~757.

    • Blanchard S, Fielding C R, Frank T D. 2015. Impact of continental motion and dynamic glaciations on low-latitude climate during the Carboniferous: The record of the Wyoming Shelf (Western United States). Palaeogeography, Palaeoclimatology, Palaeoecology, 436: 214~230.

    • Boucot A J, Chen Xu, Scotese C R, Morley R J. 2013. Phanerozoic paleoclimate: an atlas of lithologic indicators of climate. The Sedimentary Record, 12(4): 53~140.

    • Brezinski D K, Cecil C B, Skema V W, Stamm R. 2008. Late Devonian glacial deposits from the eastern United States signal an end of the mid-Paleozoic warm period. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3~4): 143~151.

    • Bruch A A, Mosbrugger V. 2002. Palaeoclimate versus vegetation reconstruction-palynological investigations on the Oligocene sequence of the Sava Basin, Slovenia. Review of Palaeobotany and Palynology, 122(3~4): 117~141.

    • Charbonnier G, Duchamp A S, Deconinck J F, Adatte T, Spangenberg J E, Colin C, Föllmi K B. 2020. A global palaeoclimatic reconstruction for the Valanginian based on clay mineralogical and geochemical data. Earth-Science Reviews, 202: 103092.

    • Chen Liuqin, Liu Xin, Li Pengcheng. 2018&. Paleosols: Sensitive indicators of depositional environments and paleocli-mate. Journal of sedimentary, 36(3): 510~520.

    • Chen Jitao, Montañez I P, Qi Yuping, Shen Shuzhong, Wang Xiangdong. 2018. Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation. Geology, 46(5): 395~398.

    • Chen Tao, Wang Huan, Zhang Zuqing, Wang Hejin. 2003&. Clay minerals as indicators of paleoclimate. Acta Petrologica et Mineralogica, 22(4): 416~420.

    • Chen Xu, Boucot A J, Ruan Yiping, Scotese C R, Fan Junxuan. 1997#. Correlation between geologically marked climatic changes and extinctions. Earth Science Frontiers (China University of Geosciences, Beijing) , 4(3~4): 123~127.

    • Driese S G, Ober E G. 2005. Paleopedologic and paleohydrologic records of precipitation seasonality from early Pennsylvanian" underclay" Paleosols, USA. Journal of Sedimentary Research, 75(6): 997~1010.

    • Fielding C R, Frank T D, Isbell J L. 2008. The late Paleozoic ice age-A review of current understanding and synthesis of global climate patterns. Resolving the late Paleozoic ice age in time and space, 441: 343~354.

    • Foster G L, Royer D L, Lunt D J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature communications, 8(1): 1~8.

    • Hong Hanlie. 2010&. A Review on paleoclimate interpretation of clay minerals. Geological Science and Technology Information, 29(1): 1~8.

    • Janssens P. 1964. The metabolism of the aestivating African lungfish. Comparative biochemistry and physiology, 11(1): 105~117.

    • Kahmann J A, Driese S G. 2008. Paleopedology and geochemistry of Late Mississippian (Chesterian) Pennington Formation paleosols at Pound Gap, Kentucky, USA: Implications for high-frequency climate variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 259(4): 357~381.

    • Kämpf N, Schwertmann U. 1983. Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma, 29(1): 27~39.

    • Kraus M J. 1999. Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews, 47(1~2): 41~70.

    • Kraus M J, Hasiotis S T. 2006. Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, USA. Journal of Sedimentary Research, 76(4): 633~646.

    • Khaziev R, Krinari G, Nurgalieva N, Batalin G, Gareev B. 2016. The Permian clayey sediments genesis by XRF data on the reference section (Volga River, Russia). Indian Journal of Science and Technology, 9(48): 1~11.

    • Kuleshov V N, Arefiev M P, Pokrovsky B G. 2019. Isotope characteristics (δ13C, δ18O) of continental carbonates from Permian-Triassic rocks in the Northeastern Russian Plate: Paleoclimatic and biotic reasons and chemostratigraphy. Lithology and Mineral Resources, 54(6): 489~510.

    • Kuznetsova A M, Khokhlova O S. 2010. Morphology of carbonate accumulations in soils of various types. Lithology and Mineral Resources, 45(1): 89~100.

    • Lan Xianhong. 1990&. Discussion on clay minerals as paleoclimate index minerals. Geological Scientific Information, 9(4): 31~35.

    • Liao Weihua. 2002. Biotic recovery from the Late Devonian FF mass extinction event in China. Science in China Series D: Earth Sciences, 45(4): 380~384.

    • Liu Dongsheng. 2002&. Loess and environment. Journal of Xian Jiaotong University: Social Sciences Edition, 22(4): 7~12.

    • Liberato G P, Cornamusini G, Perotti M, Sandroni S, Talarico F M. 2017. Stratigraphy of a Permian-Triassic fluvial-dominated succession in Southern Victoria Land (Antarctica): preliminary data. Journal of Mediterranean Earth Sciences, 9: 167~171.

    • Lu Chunxia. 1997&. Clay minerals as indicators of paleoenvironment. Journal of Desert Research, 17(4): 456~460.

    • Mao Xuegang, Liu Xiuming. 2016&. Preliminary analysis on characterization of mud-cracks in meso-proterozoic red beds and Cretaceous Danxia red beds and their paleo-environmental implications. Journal of Subtropical Resources and Environment, 11(3): 20~28.

    • Mao Xuegang, Liu Xiuming, Shi Yonghui, Chen Jingniu. 2019&. Paleosol recognition, pedotypes and paleosol development sequences in Zhangye colorful hills, Gansu Province. Quaternary Sciences, 39(2): 429~437.

    • Mack G H, James W. 1994. Paleoclimate and the global distribution of paleosols. The Journal of Geology, 102(3): 360~366.

    • Michel L A, Tabor N J, Montañez I P, Schmitz M D, Davydov V I. 2015. Chronostratigraphy and paleoclimatology of the Lodève Basin, France: evidence for a pan-tropical aridification event across the Carboniferous-Permian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 430: 118~131.

    • Qiao Yansong, Zhao Zhizhong, Wang Yan, Fu Jianli, Wang Shubing, Jiang Fuchu. 2010&. Variations of geochemical compositions and the paleoclimatic significance of loess-soil sequence fromGanzi County of western Sichuan Province, China. Chinese Science Bulletin, 55(3): 255~260.

    • Retallack G J. 2008. Soils of the past: An introduction to paleopedology: 11~55.

    • Robinson D, Wright V. 1987. Ordered illite-smectite and kaolinite-smectite: pedogenic minerals in a lower Carboniferous paleosol sequence, South Wales? Clay Minerals, 22(1): 109~118.

    • Sheldon N D, Tabor N J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-science reviews, 95(1~2): 1~52.

    • Song Hong, Guo Xuelian, He Lusheng. 2019&. Geochemical characteristics of paleosols from Late Devonian and its paleoclimatic significance. Chinese Journal of Geology, 54(4): 1252~1264.

    • Song Hong. 2020&. The clay minerals characyeristics of Late Devonian palaeosol and their paleoclimate in Baiyin, Gansu Province. Supervisor: Professor Guo Xuelian. Lanzhou: Master thesis of Lanzhou University: 1~40.

    • Tabor N J, Myers T S. 2015. Paleosols as indicators of paleoenvironment and paleoclimate. Annual Review of Earth and Planetary Sciences, 43: 333~361.

    • Wang Yue, Wang Xunlian, Shi Xiaoying. 2006. Pioneer organisms after FF mass extinction in Dushan region, Guizhou Province, and their significance in establishing new ecosystem. Science in China Series D, 49(5): 449~460.

    • Wei Jiangyuan, Yang Xiaoping, Lei Zhenyu, Zhang Hong, Lu Wanyu. 2002&. A preliminary study of the Mesozoic-Cenozoic palaeoclimate evolution in Chalangla Areas, Qiangtang Basin, Northern Tibet. Acta Geoscientia Sinica, 23(1): 55~62.

    • Wright V P. 1994. Paleosols in shallow marine carbonate sequences. Earth-Science Reviews, 35(4): 367~395.

    • Wynn J G. 2007. Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology, 251(3~4): 437~448.

    • Yang Lijun, Shao Longyi, Zhang Pengfei. 2002&. Palaeosols: Types and recognition. Coal Geology of China, 14(3): 1~3.

    • Ye Xiyan, Feng Zhantao, Peng Yanjiang, Yu Fengxia, Li Meng, Yu Hao. 2018&. Preliminary clay minerals on the loess-paleosol sequence in the Xijin core, Lanzhou. Journal of Lanzhou University Natural Sciences, 1: 1~4.

    • Yin Ke, Hong Hanlie, Li Rongbiao, Xu Yaoyang, Du Juan, Ji Junliang, Zhang Kexin. 2010&. Clay mineralogy and its palaeoclimatic indicator of the Late Oligocene and Early Miocene in Xunhua Basin. Geological Science and Technology Information, 29(3): 41~48.

    • Zhang Mingjie, Zhang Yu, Li Xiaohu, Wang Jizhou, Meng Guanglu, Shi Baoguang. 2007&. Mineral compositions of soil in the arid and semiarid region and their environmental significance. Journal of Lanzhou University(Natural Sciences), 43(3): 1~5.

    • Zhang Ling, Bao Zhidong, Zhang Changming, Dou Luxing, Fu Ping, Zhao Jiahong, Wang Wuxue, Ji Yu. 2020. Paleosols in an outcrop of red beds from the Upper Cretaceous Yaojia Formation, southern Songliao Basin, Jilin Province, NE China. Journal of Palaeogeography, 9(1): 1~10.

    • Zhang Qingqing. 2018&. The distribution of organic carbon and clay minerals in a typical loess-paleosol profile and their paleoclimatic significance. Supervisor: Professor Zhao Shiwei. Beijing: Master thesis of the University of Chinese Academy of Sciences(Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education): 1~40.

    • Zhao Xiwen. 1992#. Introduction Paleoclimatology. Beijing: Geology Press: 1~30.

  • 参考文献

    • 陈留勤, 刘鑫, 李鹏程. 2018. 古土壤: 沉积环境和古气候变化的灵敏指针. 沉积学报, 36(3): 510~520.

    • 陈涛, 王欢, 张祖青, 王河锦. 2003. 粘土矿物对古气候指示作用浅析. 岩石矿物学杂志, 22(4): 416~420.

    • 陈旭, 布科, 阮亦萍, 斯科梯司, 樊隽轩. 1997. 显生宙全球气候变化与生物绝灭事件的联系. 地学前缘, 4(3~4): 123~127.

    • 洪汉烈. 2010. 黏土矿物古气候意义研究的现状与展望. 地质科技情报, 29(1): 1~8.

    • 蓝先洪. 1990. 粘土矿物作为古气候指标矿物的探讨. 地质科技情报, 9(4): 31~35.

    • 刘东生. 2002. 黄土与环境. 西安交通大学学报: 社会科学版, 22(4): 7~12.

    • 鲁春霞. 1997. 粘土矿物在古环境研究中的指示作用. 中国沙漠, 17(4): 456~460.

    • 毛学刚, 刘秀铭. 2016. 浅析中元古界和白垩系红层中泥裂的特征和古环境意义. 亚热带资源与环境学报, 11(3): 20~28.

    • 毛学刚, 刘秀铭, 师永辉, 陈金牛. 2019. 甘肃张掖早白垩世彩丘中古土壤的判别, 类型和序列特征. 第四纪研究, 39(2): 429~437.

    • 乔彦松, 赵志中, 王燕, 傅建利, 王书兵, 蒋复初. 2010. 川西甘孜黄土—古土壤序列的地球化学演化特征及其古气候意义. 科学通报, 55(3): 255~260.

    • 宋宏, 郭雪莲, 贺陆胜. 2019. 晚泥盆世古土壤元素地球化学特征及其古气候意义. 地质科学, 54(4): 1252~1264.

    • 宋宏. 2020. 甘肃白银晚泥盆世古土壤黏土矿物特征及古气候研究. 导师: 郭雪莲. 兰州: 兰州大学硕士学位论文: 1~40.

    • 蔚远江, 杨晓萍, 雷振宇, 张洪, 陆万雨. 2002. 羌塘盆地查郎拉地区中新生代古气候演化初探. 地球学报, 23(1): 55~62.

    • 杨利军, 邵龙义, 张鹏飞. 2002. 古土壤的类型及识别标志. 中国煤田地质, 14(3): 1~3.

    • 叶喜艳, 冯展涛, 彭廷江, 于凤霞, 李孟, 于昊. 2018. 兰州西津黄土—古土壤序列中黏土矿物特征. 兰州大学学报 (自然科学版), 1: 1~4.

    • 殷科, 洪汉烈, 李荣彪, 徐耀明, 杜鹃, 季军良, 张克信. 2010. 循化盆地晚渐新世—早中新世沉积物中黏土矿物特征及其古气候指示意义. 地质科技情报, 29(3): 41~48.

    • 张铭杰, 张昱, 李小虎, 王记周, 孟广路, 史宝光. 2007. 干旱半干旱地区土壤矿物组成特征及其环境意义. 兰州大学学报(自然科学版), 43(3): 1~5.

    • 张青青. 2018. 典型黄土—古土壤剖面有机碳和黏土矿物分布特征及古环境意义. 导师: 赵世伟. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心)硕士学位论文: 1~40.

    • 赵锡文. 1992. 古气候学概论. 北京: 地质出版社: 1~30.

    • Alekseeva T V, Alekseev A O, Gubin S V. 2016a. Paleosol complex in the uppermost Mikhailovian Horizon (Viséan, Lower Carboniferous) in the southern flank of the Moscow Syneclise. Paleontological Journal, 50(4): 319~335.

    • Alekseeva T V, Alekseev A O, Gubin S V, Kabanov P B, Alekseeva V A. 2016b. Palaeoenvironments of the Middle-Late Mississippian Moscow Basin (Russia) from multiproxy study of palaeosols and palaeokarsts. Palaeogeography, Palaeoclimatology, Palaeoecology, 450: 1~16.

    • Alekseeva T V, Alekseev A O, Kalinin P I. 2018. The Mississippian paleosols in the Brontsy quarry, Kaluga region. Eurasian Soil Science, 51(7): 744~757.

    • Blanchard S, Fielding C R, Frank T D. 2015. Impact of continental motion and dynamic glaciations on low-latitude climate during the Carboniferous: The record of the Wyoming Shelf (Western United States). Palaeogeography, Palaeoclimatology, Palaeoecology, 436: 214~230.

    • Boucot A J, Chen Xu, Scotese C R, Morley R J. 2013. Phanerozoic paleoclimate: an atlas of lithologic indicators of climate. The Sedimentary Record, 12(4): 53~140.

    • Brezinski D K, Cecil C B, Skema V W, Stamm R. 2008. Late Devonian glacial deposits from the eastern United States signal an end of the mid-Paleozoic warm period. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3~4): 143~151.

    • Bruch A A, Mosbrugger V. 2002. Palaeoclimate versus vegetation reconstruction-palynological investigations on the Oligocene sequence of the Sava Basin, Slovenia. Review of Palaeobotany and Palynology, 122(3~4): 117~141.

    • Charbonnier G, Duchamp A S, Deconinck J F, Adatte T, Spangenberg J E, Colin C, Föllmi K B. 2020. A global palaeoclimatic reconstruction for the Valanginian based on clay mineralogical and geochemical data. Earth-Science Reviews, 202: 103092.

    • Chen Liuqin, Liu Xin, Li Pengcheng. 2018&. Paleosols: Sensitive indicators of depositional environments and paleocli-mate. Journal of sedimentary, 36(3): 510~520.

    • Chen Jitao, Montañez I P, Qi Yuping, Shen Shuzhong, Wang Xiangdong. 2018. Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation. Geology, 46(5): 395~398.

    • Chen Tao, Wang Huan, Zhang Zuqing, Wang Hejin. 2003&. Clay minerals as indicators of paleoclimate. Acta Petrologica et Mineralogica, 22(4): 416~420.

    • Chen Xu, Boucot A J, Ruan Yiping, Scotese C R, Fan Junxuan. 1997#. Correlation between geologically marked climatic changes and extinctions. Earth Science Frontiers (China University of Geosciences, Beijing) , 4(3~4): 123~127.

    • Driese S G, Ober E G. 2005. Paleopedologic and paleohydrologic records of precipitation seasonality from early Pennsylvanian" underclay" Paleosols, USA. Journal of Sedimentary Research, 75(6): 997~1010.

    • Fielding C R, Frank T D, Isbell J L. 2008. The late Paleozoic ice age-A review of current understanding and synthesis of global climate patterns. Resolving the late Paleozoic ice age in time and space, 441: 343~354.

    • Foster G L, Royer D L, Lunt D J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature communications, 8(1): 1~8.

    • Hong Hanlie. 2010&. A Review on paleoclimate interpretation of clay minerals. Geological Science and Technology Information, 29(1): 1~8.

    • Janssens P. 1964. The metabolism of the aestivating African lungfish. Comparative biochemistry and physiology, 11(1): 105~117.

    • Kahmann J A, Driese S G. 2008. Paleopedology and geochemistry of Late Mississippian (Chesterian) Pennington Formation paleosols at Pound Gap, Kentucky, USA: Implications for high-frequency climate variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 259(4): 357~381.

    • Kämpf N, Schwertmann U. 1983. Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma, 29(1): 27~39.

    • Kraus M J. 1999. Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews, 47(1~2): 41~70.

    • Kraus M J, Hasiotis S T. 2006. Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, USA. Journal of Sedimentary Research, 76(4): 633~646.

    • Khaziev R, Krinari G, Nurgalieva N, Batalin G, Gareev B. 2016. The Permian clayey sediments genesis by XRF data on the reference section (Volga River, Russia). Indian Journal of Science and Technology, 9(48): 1~11.

    • Kuleshov V N, Arefiev M P, Pokrovsky B G. 2019. Isotope characteristics (δ13C, δ18O) of continental carbonates from Permian-Triassic rocks in the Northeastern Russian Plate: Paleoclimatic and biotic reasons and chemostratigraphy. Lithology and Mineral Resources, 54(6): 489~510.

    • Kuznetsova A M, Khokhlova O S. 2010. Morphology of carbonate accumulations in soils of various types. Lithology and Mineral Resources, 45(1): 89~100.

    • Lan Xianhong. 1990&. Discussion on clay minerals as paleoclimate index minerals. Geological Scientific Information, 9(4): 31~35.

    • Liao Weihua. 2002. Biotic recovery from the Late Devonian FF mass extinction event in China. Science in China Series D: Earth Sciences, 45(4): 380~384.

    • Liu Dongsheng. 2002&. Loess and environment. Journal of Xian Jiaotong University: Social Sciences Edition, 22(4): 7~12.

    • Liberato G P, Cornamusini G, Perotti M, Sandroni S, Talarico F M. 2017. Stratigraphy of a Permian-Triassic fluvial-dominated succession in Southern Victoria Land (Antarctica): preliminary data. Journal of Mediterranean Earth Sciences, 9: 167~171.

    • Lu Chunxia. 1997&. Clay minerals as indicators of paleoenvironment. Journal of Desert Research, 17(4): 456~460.

    • Mao Xuegang, Liu Xiuming. 2016&. Preliminary analysis on characterization of mud-cracks in meso-proterozoic red beds and Cretaceous Danxia red beds and their paleo-environmental implications. Journal of Subtropical Resources and Environment, 11(3): 20~28.

    • Mao Xuegang, Liu Xiuming, Shi Yonghui, Chen Jingniu. 2019&. Paleosol recognition, pedotypes and paleosol development sequences in Zhangye colorful hills, Gansu Province. Quaternary Sciences, 39(2): 429~437.

    • Mack G H, James W. 1994. Paleoclimate and the global distribution of paleosols. The Journal of Geology, 102(3): 360~366.

    • Michel L A, Tabor N J, Montañez I P, Schmitz M D, Davydov V I. 2015. Chronostratigraphy and paleoclimatology of the Lodève Basin, France: evidence for a pan-tropical aridification event across the Carboniferous-Permian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 430: 118~131.

    • Qiao Yansong, Zhao Zhizhong, Wang Yan, Fu Jianli, Wang Shubing, Jiang Fuchu. 2010&. Variations of geochemical compositions and the paleoclimatic significance of loess-soil sequence fromGanzi County of western Sichuan Province, China. Chinese Science Bulletin, 55(3): 255~260.

    • Retallack G J. 2008. Soils of the past: An introduction to paleopedology: 11~55.

    • Robinson D, Wright V. 1987. Ordered illite-smectite and kaolinite-smectite: pedogenic minerals in a lower Carboniferous paleosol sequence, South Wales? Clay Minerals, 22(1): 109~118.

    • Sheldon N D, Tabor N J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-science reviews, 95(1~2): 1~52.

    • Song Hong, Guo Xuelian, He Lusheng. 2019&. Geochemical characteristics of paleosols from Late Devonian and its paleoclimatic significance. Chinese Journal of Geology, 54(4): 1252~1264.

    • Song Hong. 2020&. The clay minerals characyeristics of Late Devonian palaeosol and their paleoclimate in Baiyin, Gansu Province. Supervisor: Professor Guo Xuelian. Lanzhou: Master thesis of Lanzhou University: 1~40.

    • Tabor N J, Myers T S. 2015. Paleosols as indicators of paleoenvironment and paleoclimate. Annual Review of Earth and Planetary Sciences, 43: 333~361.

    • Wang Yue, Wang Xunlian, Shi Xiaoying. 2006. Pioneer organisms after FF mass extinction in Dushan region, Guizhou Province, and their significance in establishing new ecosystem. Science in China Series D, 49(5): 449~460.

    • Wei Jiangyuan, Yang Xiaoping, Lei Zhenyu, Zhang Hong, Lu Wanyu. 2002&. A preliminary study of the Mesozoic-Cenozoic palaeoclimate evolution in Chalangla Areas, Qiangtang Basin, Northern Tibet. Acta Geoscientia Sinica, 23(1): 55~62.

    • Wright V P. 1994. Paleosols in shallow marine carbonate sequences. Earth-Science Reviews, 35(4): 367~395.

    • Wynn J G. 2007. Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology, 251(3~4): 437~448.

    • Yang Lijun, Shao Longyi, Zhang Pengfei. 2002&. Palaeosols: Types and recognition. Coal Geology of China, 14(3): 1~3.

    • Ye Xiyan, Feng Zhantao, Peng Yanjiang, Yu Fengxia, Li Meng, Yu Hao. 2018&. Preliminary clay minerals on the loess-paleosol sequence in the Xijin core, Lanzhou. Journal of Lanzhou University Natural Sciences, 1: 1~4.

    • Yin Ke, Hong Hanlie, Li Rongbiao, Xu Yaoyang, Du Juan, Ji Junliang, Zhang Kexin. 2010&. Clay mineralogy and its palaeoclimatic indicator of the Late Oligocene and Early Miocene in Xunhua Basin. Geological Science and Technology Information, 29(3): 41~48.

    • Zhang Mingjie, Zhang Yu, Li Xiaohu, Wang Jizhou, Meng Guanglu, Shi Baoguang. 2007&. Mineral compositions of soil in the arid and semiarid region and their environmental significance. Journal of Lanzhou University(Natural Sciences), 43(3): 1~5.

    • Zhang Ling, Bao Zhidong, Zhang Changming, Dou Luxing, Fu Ping, Zhao Jiahong, Wang Wuxue, Ji Yu. 2020. Paleosols in an outcrop of red beds from the Upper Cretaceous Yaojia Formation, southern Songliao Basin, Jilin Province, NE China. Journal of Palaeogeography, 9(1): 1~10.

    • Zhang Qingqing. 2018&. The distribution of organic carbon and clay minerals in a typical loess-paleosol profile and their paleoclimatic significance. Supervisor: Professor Zhao Shiwei. Beijing: Master thesis of the University of Chinese Academy of Sciences(Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education): 1~40.

    • Zhao Xiwen. 1992#. Introduction Paleoclimatology. Beijing: Geology Press: 1~30.