关于地球形成和早期演化问题
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

本文为浙江大学人才引进资助项目的成果


On some problems of formation and early evolution of the Earth
Author:
Affiliation:

Fund Project:

单位:
  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文根据物理学原理,通过对初始太阳和地球形成演化的分析,产生以下几点认识:① 在4. 7 Ga前,氢原子核在高温高压下聚变,释放出巨大能量,包括热能、光能和动能等,导致了恒星太阳的形成。在4. 6~4. 2 Ga前,核聚变导致太阳发生4次耀变,向周围空间发送具有极高能量的核裂变物质。② 太阳发生的第二次耀变,喷出物高速自旋运动后,进入到初始地球的轨道,绕原太阳运行,这是初始地球演化的第一个阶段,称为云团飞行阶段。以后地球演化分成以下几个环节:吸积扩容、圈层分异、陆核形成和原核生命形成。 ③ 吸积作用中的原始地球在重力作用下吸收陨石、冰团和彗星物质,使地球扩容,同时还发生撞击、热熔和去气作用,使原始地球进一步升温。物质向地球核心聚集过程也加剧了地核内粒子相互碰撞,激发地内的核衰变,使原始地球内部升温加速,积累了大量能量。在4. 5~4. 2 Ga前地球岩熔滚滚翻腾,形成大规模的岩浆海。④ 在4. 2 Ga后太阳不再发生强烈的耀变,因此地球周围的空间转向平静和散热,随着时间的推移,地球逐渐冷却并稳定下来。冷却使熔体发生冷凝结晶作用,岩浆地球逐渐向多层次的结构转变,形成地核、地幔、岩石圈和地壳。⑤ 由于温度降低、分子的动能减少,水蒸汽、CO2、硫化氢、甲烷等便在地球外层积累,逐渐形成了有水循环的大气圈。水蒸汽形成了云层,云层的冷却形成水滴和降雨。在4. 1 Ga前,成洋作用进行,很快形成了地球的水圈。⑥ 在岩浆球转变为水包球的过程中,熔岩依然在地下湧动。较轻的元素一般具有较低的熔点,在它们冷却的时候首先结晶成为造岩矿物。同时,海洋底部不断有火山爆发,造成岩石组成的火山岛。到了约4. 0 Ga以前,这些岩石连成一定规模的岩块,成为最早从岛屿形成的大陆核。由于大陆岩石圈的热导率比较低,可以减缓地球内部热量的散发,在4. 0~3. 8 Ga期间,大陆核在快速增长,形成大陆块。 ⑦ 比较火星与地球早期演化过程表明,由于火星体积比地球小、距离太阳远,在吸积阶段产生和积蓄的能量少。其次,火星在混沌阶段积蓄了一些能量之后,没有涌现出自组织的机制,来保存内部积蓄的能量。因此,火星的老化过程来得很早,大约在3. 0 Ga前就开始老化了。地球在3. 8 Ga以来,涌现出内部物质循环的自组织的机制,使地球系统处于稳定凝聚力和活力平衡发展的阶段,现在还没有出现老化象征。

    Abstract:

    Based on principles of physics, by analyzing the formation and evolution of the initial Sun and Earth, the following insights have been derived as follows. (1) Around 4.7 Ga ago, hydrogen nuclei fused under high temperature and pressure, releasing immense energy, including thermal, light, and kinetic energy, leading to the formation of the star and the Sun. Between 4.6 and 4.2 Ga ago, nuclear fusion caused the Sun to undergo four flares, emitting highly energetic nuclear fission material into space. (2) The second flare from the Sun ejected materials that rapidly spun and entered the orbit of the primordial Earth, revolving around the original Sun, marking the first stage of Earth’s evolution, known as the cloud flight phase. Subsequently, Earth’s evolution progressed through several stages: accretion expansion phase, differentiation phase, continental nucleus formation phase, and the formation of primitive life phase. (3) During the accretion process and under the influence of gravity, the primordial Earth absorbed meteorites, ice clusters, and comet material, causing it to expand. Additionally, collisions, melting, and degassing occurred, further warming the primordial Earth. The process of matter aggregating towards the Earth’s core intensified particle collisions within the core, triggering nuclear decay, which accelerated internal warming of the primordial Earth, accumulating vast amounts of energy. Between 4.5 and 4.2 Ga ago, Earth was covered with molten lava, forming extensive magma oceans. (4) After 4.2 Ga, the Sun no longer experienced intense flares, leading to a calm and cooling space around the Earth. Over time, Earth gradually cooled and stabilized. This cooling caused molten material to solidify and to crystallize, transforming the magma- covered Earth into a multi- layered structure with a core, mantle, lithosphere, and crust. (5) As temperatures dropped and molecular kinetic energy decreased, water vapor, CO2, hydrogen sulfide, methane, and other gases accumulated in Earth’s outer layers, eventually forming an atmosphere with a water cycle. Water vapor forms clouds, which cooled to create water droplets and precipitation. Around 4.1 Ga ago, oceanic processes began, quickly forming Earth’s hydrosphere. (6) During the transition from magma spheres to water- covered spheres, lava continued to flow underground. Lighter elements usually have lower melting points and crystallize first into rock- forming minerals as they cooled. Meanwhile, volcanic eruptions on the ocean floor created volcanic islands of rocks. By about 4 Ga ago, these rocks had coalesced into sizable blocks, forming the earliest continental nuclei. Due to the low thermal conductivity of continental lithosphere, it slowed the dissipation of Earth’s internal heat. Between 4 and 3.8 Ga ago, the continental nuclei grew rapidly, forming larger landmasses. (7) Comparing the early evolutionary processes of Mars and Earth shows that due to Mars being smaller and farther from the Sun, it generated and accumulated less energy during the accretion phase. Additionally, after accumulating some energy during its chaotic phase, Mars did not develop self- organizing mechanisms to preserve its internal energy. Therefore, Mars began to age quite early, say around 3 Ga ago. In contrast, Earth has developed self- organizing mechanisms for internal material circulation over the past 3.8 Ga, keeping the Earth system in an optimized stage of stable cohesion and balance development. Currently, there are no signs of aging on the Earth.

    参考文献
    相似文献
    引证文献
引用本文

杨文采.2025.关于地球形成和早期演化问题[J].地质论评,71(4):2025040005,[DOI].
YANG Wencai.2025. On some problems of formation and early evolution of the Earth[J]. Geological Review,71(4):2025040005.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-05
  • 最后修改日期:2025-07-16
  • 录用日期:
  • 在线发布日期: 2025-07-19
  • 出版日期: 2025-07-15