工程岩体物理模型中结构面预制方法的综述与展望
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

本文为地震科技星火计划项目(编号:XH24060A)和国家自然科学基金资助项目(编号:42372322)的成果


Review and prospect of prefabrication methods for structural planes in engineering rock mass physical models
Author:
Affiliation:

Fund Project:

单位:
  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在岩体中,结构面的存在会弱化岩体的力学性能,使其在受到扰动时更容易发生失稳破坏。对于工程岩体稳定性的研究,还原自然岩体结构、体现原位岩体本质特征至关重要。物理模拟实验因可控性强、成本较低、结果连续性好、可模拟复杂工况等优势被广泛应用于含结构面的工程岩体研究中。因此笔者等主要对目前工程岩体物理模拟实验中结构面预制方法进行总结,分析各方法的优缺点以及适用的工程背景,为进行含结构面工程岩体的物理模拟实验提供思路。笔者等主要对平直无填充型结构面、粗糙起伏无填充型结构面和有填充型软弱结构面这三类工程岩体中常见结构面的预制方法进行了总结和介绍,根据预制结构面岩体的不同将方法分类为适用于天然岩石的传统方法和适用于类岩石的创新方法,传统方法工艺成熟,目前仍受到众多学者的青睐。创新方法可以根据实验条件进行灵活调整,以适应不同的研究需求,从而衍生出更多的技术路径,具备持续演进的潜力。在进行方法选择时,要结合相应工程背景以及场地特征来进行选择,确保试验结果的可参考性。创新方法中的3D打印技术在模拟复杂结构面岩体中具有很强优势,但目前3D打印制得的试件受制于打印材料的限制,在力学性质上和真实岩石仍有一定差距,这是在未来需要突破的技术点。

    Abstract:

    The presence of structural planes in rock masses weakens their mechanical properties, making them more prone to instability and failure under disturbances. In the study of the stability of engineering rock masses, it is crucial to restore the natural structure of rock masses and reflect the essential characteristics of in- situ rock masses. Physical simulation experiments, with advantages such as strong controllability, low cost, good continuity of results, and the ability to simulate complex working conditions, are widely used in the study of engineering rock masses containing structural planes. Therefore, this paper primarily summarizes the current methods for prefabricating structural planes in physical simulation experiments of engineering rock masses, analyzes the advantages and disadvantages of each method and their applicable engineering contexts, and provides insights for conducting physical simulation experiments on engineering rock masses with structural planes.This paper focuses on three common types of structural planes in engineering rock masses: planar, unfilled structural planes; rough, undulating, unfilled structural planes; and filled weak structural planes. Based on the types of rock masses with prefabricated structural planes, the methods are classified into traditional methods suitable for natural rocks and innovative methods suitable for rock- like materials. Traditional methods, being mature in process, remain favored by many researchers. Innovative methods, on the other hand, can be flexibly adjusted according to experimental conditions to meet various research needs, thereby leading to more technical pathways and holding potential for continuous evolution.When selecting a method, it is essential to consider the relevant engineering context and site characteristics to ensure the reliability of the experimental results. Among innovative methods, 3D printing technology demonstrates significant advantages in simulating complex structural planes in rock masses. However, the mechanical properties of specimens produced by 3D printing are still limited by the printing materials, resulting in certain discrepancies compared to real rocks. This limitation represents a technical challenge that needs to be addressed in the future.

    参考文献
    相似文献
    引证文献
引用本文

苏占东,李昆泽,孙进忠,刘晓丽,李小瑞,牛耀,曾扬农,李梦园,王鸷文.2025.工程岩体物理模型中结构面预制方法的综述与展望[J].地质论评,71(1):2025010007,[DOI].
SU Zhandong, LI Kunze, SUN Jinzhong, LIU Xiaoli, LI Xiaorui, NIU Yao, ZENG Yangnong, LI Mengyuan, WANG Zhiwen.2025. Review and prospect of prefabrication methods for structural planes in engineering rock mass physical models[J]. Geological Review,71(1):2025010007.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-30
  • 最后修改日期:2024-12-26
  • 录用日期:
  • 在线发布日期: 2025-01-19
  • 出版日期: 2025-01-15