硅(Si)同位素地球化学与硅质岩成因机理的研究进展
DOI:
作者:
作者单位:

1.长江大学地球科学学院;2.中国石油勘探开发研究院

作者简介:

通讯作者:

中图分类号:

基金项目:


New Progress in Silicon (Si) Isotope Geochemistry and GeneticMechanism of Siliceous Rocks
Author:
Affiliation:

1.School of Geosciences,Yangtze University;2.Research Institute of Petroleum Exploration and Development,PetroChina

Fund Project:

单位:
  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确判识硅质岩(SiO2)的成因机理一直是地质学研究中的难点问题。作为硅质岩的直接示踪同位素,硅(Si)同位素在揭示硅质岩成因机理方面潜力巨大。近年来,随着高精度Si同位素测试分析技术的快速发展,运用Si同位素示踪不同硅质岩的硅质来源、迁移过程、沉积-成岩演化背景等方面取得了重大进展。为进一步推动Si同位素在约束硅质岩成因机理中更广泛的应用,本文回顾了硅质岩成因类型,Si同位素的分析测试方法、分馏机理、以及其在硅质岩成因研究中的应用,取得如下认识:硅质岩按成因类型可分为热水成因、火山成因、生物成因和交代成因。多接收电感耦合等离子质谱法和二次离子质谱法在 Si 同位素测试中都具有较高的精度,分别可达优于±0.10‰和±0.10‰ ~ ±0.22‰。Si同位素分馏机理涉及多个方面,扩散作用会造成Si同位素的选择性迁移并且影响同位素分馏的程度。温度、压力和化学成分等因素在凝结过程中共同作用,决定了Si同位素的分馏程度。蒸发作用通过改变熔体的化学成分和物理性质,影响Si同位素的分馏。在低温地质作用中,Si同位素分馏比高温地质过程更为显著,例如化学风化、生物-非生物沉淀、生物吸收、吸附等过程。生物在吸收硅的过程中会引起同位素分馏,从而导致生物地球化学过程中硅同位素相对丰度发生变化。不同生物在吸收过程中对 Si 同位素分馏存在差异。Si同位素在硅质岩成因研究中的应用展现了其独特优势,如揭示热液硅质岩的热液活动特征、火山硅质岩的岩浆起源和演化、生物硅质岩的形成机制以及交代硅质岩的硅质来源。为更准确判识硅质岩成因机理,未来的研究需要在提高Si同位素分析测试精度、积累大样本数据、明确分馏机理和构建成因理论模型等深入探索。本文展示了Si同位素在硅质岩成因研究中的独特优势和重要意义,为未来的研究方向和应用领域提供了有益的参考。

    Abstract:

    The accurate identification of the genetic mechanism of siliceous rocks (SiO2) has always been a challenging issue in geological research. As the direct tracer isotope of siliceous rocks, silicon (Si) isotope holds great potential in revealing the genetic mechanism of siliceous rocks. In recent years, with the rapid development of high-precision Si isotope testing and analysis techniques, significant progress has been made in tracing the silicon sources, migration processes, and sedimentation-diagenesis evolution backgrounds of different siliceous rocks using Si isotope. To further promote the broader application of Si isotope in constraining the genetic mechanism of siliceous rocks, this paper reviews the genetic types of siliceous rocks, the analytical testing methods of Si isotope, the fractionation mechanisms, and its applications in the study of siliceous rock genesis, and reaches the following understandings: Siliceous rocks can be classified into hydrothermal genesis, volcanic genesis, biogenic genesis, and metasomatic genesis based on their genetic types. Both multi-receiver inductively coupled plasma mass spectrometry and secondary ion mass spectrometry have high precision in Si isotope testing, reaching accuracies of better than ±0.10‰ and ±0.10‰ - ±0.22‰, respectively. The fractionation mechanism of Si isotope involves multiple aspects. Diffusion causes the selective migration of Si isotopes and influences the degree of isotopic fractionation. Factors such as temperature, pressure, and chemical composition interact during the crystallization process, determining the degree of Si isotope fractionation. Evaporation affects the fractionation of Si isotopes by altering the chemical composition and physical properties of the melt. In low-temperature geological processes, Si isotope fractionation is more significant than in high-temperature geological processes, such as chemical weathering, biogenic-abiotic precipitation, biological absorption, and adsorption. Organisms absorb silicon during the process, causing isotopic fractionation and resulting in changes in the relative abundance of silicon isotopes in biogeochemical processes. There are differences in Si isotope fractionation among different organisms during the absorption process. The application of Si isotope in the study of siliceous rock genesis demonstrates its unique advantages, such as revealing the hydrothermal activity characteristics of hydrothermal siliceous rocks, the magmatic origin and evolution of volcanic siliceous rocks, the formation mechanism of biogenic siliceous rocks, and the silicon sources of metasomatic siliceous rocks. To more accurately identify the genetic mechanism of siliceous rocks, future research needs to conduct in-depth explorations in improving the analytical testing precision of Si isotope, accumulating large sample data, clarifying the fractionation mechanism, and constructing genetic theoretical models. This paper showcases the unique advantages and significance of Si isotope in the study of siliceous rock genesis, providing a useful reference for future research directions and application fields.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-04
  • 最后修改日期:2025-01-04
  • 录用日期:2025-01-14
  • 在线发布日期:
  • 出版日期: