基于高光谱和机器学习的岩石基本质量等级分级模型研究
DOI:
作者:
作者单位:

中国地质调查局哈尔滨自然资源综合调查中心

作者简介:

通讯作者:

中图分类号:

基金项目:

中国地质调查局地质调查项目(编号:DD20242535)


Research on Rock Basic Quality Grading Model Based on Hyperspectral and Machine Learning
Author:
Affiliation:

Harbin Center for Integrated Natural Resources Survey, China Geological Survey

Fund Project:

单位:
  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精准获取军事地质要素属性信息,可有效支撑战场地质环境保障体系建设,为军事决策提供基础数据保障。传统军事地质要素获取以实地调查或遥感图像人工解译方法为主,在陌生地域数据获取方面,存在成本高、效率低、精度无法确定等问题;利用已知地域数据,采用机器学习、深度学习方法构建高光谱卫星影像军事地质要素属性模型,成为陌生地域数据获取的有效手段。本文提出机器学习支持下的岩石基本质量等级预测方法,对陌生地域岩石基本质量等级预测效果良好。在系统收集研究区岩石基本质量等级数据基础上,创建样本数据集,以资源一号02E高光谱卫星数据为数据源,采用SVC、RF、XGBoost、Stacking、Blending和ResNet50机器学习方法,开展陌生地域岩石基本质量等级的预测模型研究。研究结果表明,ResNet50模型为研究区岩石基本质量等级最佳预测模型,预测精度达65.53%,其次为Stacking模型,预测精度为41.53%,预测精度最低的是Blending模型;模型预测结果反映出研究区岩石基本质量等级的空间分异明显,总体呈现出北部岩石基本质量等级较高,以Ⅰ、Ⅱ级为主,西南部岩石基本质量等级较低,以Ⅳ、Ⅴ级为主的空间分布特点;陌生地域岩石基本质量等级以Ⅲ级及以下为主,东北方向岩石基本质量等级较高。研究以期为军事地质数据获取和数据应用提供依据。

    Abstract:

    Accurately obtaining attribute information of military geological elements can effectively support the construction of the battlefield geological environment guarantee system and provide basic data support for military decision-making. Traditional methods for obtaining military geological elements, such as field surveys or manual interpretation of remote sensing images, are characterized by high costs, low efficiency, and uncertain accuracy when obtaining data from unfamiliar areas. Utilizing known regional data and machine learning and deep learning methods to construct a military geological element attribute model for hyperspectral satellite imagery has become an effective means of obtaining data from unfamiliar regions. This paper proposes a machine learning-supported method for predicting the basic quality level of rocks, which performs well in predicting the basic quality level of rocks in unfamiliar areas. Based on collecting basic quality grade data of rocks in the research area, a sample dataset was created using the Resource One 02E hyperspectral satellite data as the data source. SVC, RF, XGBoost, Stacking, Blending, and ResNet50 machine learning methods were employed, applied to study the prediction model of the basic quality grade of rocks in unfamiliar areas. The research results show that the ResNet50 model is the best prediction model for the basic quality grade of rocks in the study area, with a prediction accuracy of 65.53%. The Stacking model follows with a prediction accuracy of 41.53%, and the blending model has the lowest prediction accuracy. The overall prediction results of the model reflect a clear spatial differentiation of the basic quality grades of rocks in the study area, presenting a spatial distribution characteristic of higher basic quality grades of rocks in the north, mainly grades I and II, and lower basic quality grades of rocks in the southwest, mainly grades IV and V. The basic quality grade of rocks in unfamiliar areas is mainly grade III or below, with higher basic quality grades in the northeast direction. The research aims to provide a basis for the acquisition and application of military geological data.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-14
  • 最后修改日期:2024-10-27
  • 录用日期:2024-12-23
  • 在线发布日期:
  • 出版日期: