• 图片
    全选
    显示模式:: |
    2024年第98卷第1期
    • SUN Boyang

      2024,98(1):1-9, DOI: 10.1111/1755-6724.15097

      Abstract:

      The Linxia Basin is characterized by an abundance of Cenozoic sediments, that contain exceptionally rich fossil resources. Equids are abundant in the Linxia Basin, the fossil record of equids in this region including 16 species that represent 10 genera. In comparison to other classic late Cenozoic areas in China, the Linxia Basin stands out, because the fauna and chronological data accompanying Linxia equids render them remarkably useful for biostratigraphy. The anchitheriines in the region, such as Anchitherium and Sinohippus, represent early equids that appeared in the late stages of the middle and late Miocene, respectively. Among the equines, most species of Chinese hipparions have been identified in the Linxia Basin and some species of the genera Hipparion and Hippotherium have FAD records for China. Furthermore, Equus eisenmannae is one of the earliest known species of Equus in the Old World and is well-represented at the Longdan locality. Some species with precise geohistorical distributions can serve as standards for high-resolution chronological units within this framework. Located at the eastern margin of the Tibetan Plateau and subject to considerable uplift, the Linxia Basin has served as a biogeographic transition area for equids throughout the late Cenozoic.

    • ZHANG Yingli,GUO Xianqing,MA Shouxian

      2024,98(1):10-31, DOI: 10.1111/1755-6724.15138

      Abstract:

      During the Late Carboniferous to Early Permian, a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean (PAO) subduction in the Xi Ujimqin area. Nevertheless, the closure time of the PAO is still under debate. Thus, to identify the origin of the PAO, the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine, polymict clastic boulders and sandstones in the Shoushangou Formation within the basin. The analyses revealed magmatic activity and tectonic evolution. The conglomerates include megaclasts of granite (298.8 ± 9.1?Ma) and granodiorite porphyry (297.1 ± 3.1?Ma), which were deposited by muddy debris flow. Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite, characterized by low Zr + Nb + Ce + Y and low Ga/Al values. The granitoid boulders were formed in island arc setting, indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin. Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks. Detrital zircon U-Pb age cluster of 330–280?Ma was obtained, indicating input from granite, ophiolite, Xilin Gol complex, and Carboniferous sources to the south. The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc. The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO. The backarc basin and intrusive rocks, in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol, confirm the presence of an Early Permian trench-arc-basin system in the region, represented by the Baolidao arc and Xi Ujimqin backarc basin. This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.

    • FENG Yipeng,WANG Genhou,WANG Shulai,LI Dian,WANG Huan,LU Yang,LIU Han,ZHANG Peilie

      2024,98(1):32-49, DOI: 10.1111/1755-6724.15119

      Abstract:

      The Jitang metamorphic complex is key to studying the tectonic evolution of the Northern Lancangjiang zone. Through structural-lithological mapping, structural analysis and laboratory testing, the composition of the Jitang metamorphic complex was determined. The macro- and microstructural analyses of the ductile detachment shear zone (Guoxuepu ductile shear zone, 2–4 km wide) between the metamorphic complex and the overlying sedimentary cap show that the shear sense of the ductile shear zones is top-to-the-southeast. The presence of various deformation features and quartz C-axis electron backscatter diffraction (EBSD) fabric analysis suggests multiple deformation events occurring at different temperatures. The average stress is 25.68 MPa, with the strain rates (?) ranging from 9.77×10?14 s?1 to 6.52×10?16 s?1. The finite strain of the Guoxuepu ductile shear zone indicates an elongated strain pattern. The average kinematic vorticity of the Guoxuepu ductile shear zone is 0.88, implying that the shear zone is dominated by simple shear. The muscovite selected from the protomylonite samples in the Guoxuepu ductile shear zone yields a 40Ar-39Ar age of 60.09 ± 0.38 Ma. It is suggested that, coeval with the initial Indo–Eurasian collision, the development of strike-slip faults led to a weak and unstable crust, upwelling of lower crust magma, then induced the detachment of the Jitang metamorphic complex in the Eocene.

    • ZHANG Huijun,WU Chu,HE Fubing,WANG Biren,CUI Yubin,LIU Zhenghua,YOU Shina,DONG Jing

      2024,98(1):50-66, DOI: 10.1111/1755-6724.15112

      Abstract:

      The Nianzi granite unit, which includes the Nianzi, Xiaolianghou and Xiawopu granitic intrusions, is a significant component of the northern part of the North China Craton (NCC) and is situated in the Yanshan fold and thrust belt (YFTB). However, there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period, specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean. The Nianzi granite unit exhibits unique petrological, geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB. This study presents detailed petrology, whole-rock geochemistry, together with Sr-Nd isotopic, zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit. Our findings demonstrate that the granites primarily consist of subhedral K-feldspar, plagioclase, quartz, minor biotite and hornblende, with accessory titanite, apatite, magnetite and zircon. Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5 ± 0.62 Ma. Additionally, the adakitic characteristics of the Nianzi, Xiawopu and Xiaolianghou granitic intrusions, such as high Sr and Ba contents and high ratios of Sr/Y and (La/Yb)N, combined with negative Sr-Nd and Lu-Hf isotopes (87Sr/86Sr)i = 0.705681–0.7057433, εNd(t) = ?21.98 to ?20.97, zircon εHf(t) = ?20.26 to ?9.92), as well as the I-type granite features of high SiO2, Na2O and K2O/Na2O ratios, enriched Rb, K, Sr and Ba, along with depleted Th, U, Nb, Ta, P and Ti, suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous, calc-alkaline to high-K calc-alkaline, mafic to intermediate metamorphic rocks. In light of these parameters, we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.

    • Nadezhda KANYGINA,Andrey TRETYAKOV,Dmitriy ALEXEIEV,Kirill DEGTYAREV,Anfisa SKOBLENKO,Natalia SOLOSHENKO,Boris ERMOLAEV

      2024,98(1):67-82, DOI: 10.1111/1755-6724.15132

      Abstract:

      The combined petrographic, petrological, geochemical and geochronological study of the Neoproterozoic gneisses of the Sarychabyn and Baskan complexes of the Junggar Alataw of South Kazakhstan elucidate the Precambrian tectonic evolution of the Aktau–Yili terrane. It is one of the largest Precambrian crustal blocks in the western Central Asian orogenic belt. The U-Pb single-grain zircon ages indicate that granite-gneisses formed from the same source and crystallised in the early Neoproterozoic ca. 930–920 Ma. The chemical composition of gneisses corresponds to A2-type granites. The whole-rock Nd isotopic characteristics (εNd(t) = ?4.9 to ?1.0 and TNd(DM-2st) = 1.9 to 1.7 Ga) indicate the involvement of Paleoproterozoic crustal rocks in magma generation. Early Neoproterozoic ca. 930–920 Ma A-type granitoids in the Aktau–Yili terrane of South and Central Kazakhstan might reflect within-plate magmatism adjacent to the collisional belt or a local extension setting in back-arc areas of the continental arc.

    • LIN Bin,TANG Juxing,TANG Pan,SUN Yan,QI Jing,M. SANTOSH,XIE Jinling,DENG Shilin,LI Faqiao,XIE Fuwei,ZHOU Aorigele

      2024,98(1):83-103, DOI: 10.1111/1755-6724.15113

      Abstract:

      Rubidium (Rb) deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites. This study investigates a newly-discovered giant Rb deposit at Gariatong in the Central Lhasa terrane in Tibet. Detailed field studies and logging data revealed that the Rb mineralization mainly occurs in monzogranite and is related to greisenization. LA-ICP-MS U-Pb dating of zircon yielded ages of 19.1 ± 0.2 Ma and 19.0 ± 0.2 Ma for greisenized monzogranite and fresh monzogranite, respectively. The monzogranites are characterized as strongly peraluminous, with high contents of SiO2, Al2O3, K2O and Na2O as well as a high differentiation index. They are enriched in light rare earth and large ion lithophile elements with signi?cant negative Eu anomalies and depleted high field-strength elements. Petrological and geochemical features of these ore-related monzogranites suggest that they are highly fractionated S-type granites, derived from remelting of crustal materials in a post-collisional setting. The geochemistry of zircon and apatite points to a low oxygen fugacity of the ore-related monzogranite during the magma’s evolution. The discovery of the Gariatong Rb deposit suggests that the Central Lhasa terrane may be an important region for rare metal mineralization.

    • ZHANG Huichao,CHAI Peng,ZHANG Hongrui,ZHOU Limin,HOU Zengqian

      2024,98(1):104-116, DOI: 10.1111/1755-6724.15125

      Abstract:

      Lamprophyres typically appear in hydrothermal gold deposits. The relationship between lamprophyres and gold deposits is investigated widely. Some researchers suggest that the emplacement of lamprophyres triggers gold mineralization, whereas others hypothesize that the formation of lamprophyres increases the fertility of mantle sources and ore-forming fluids. K-feldspar veins, with ages between those of lamprophyres and gold deposits, appear in lamprophyres in Zhenyuan. Therefore, K-feldspar veins are ideal for investigating the relationship between lamprophyres and gold deposits. Phlogopite in K-feldspar veins has lower Mg#, Ni, and Cr contents and higher TiO2, Li, Ba, Sr, Sc, Zr, Nb, and Cs contents than phlogopite in lamprophyres. The in-situ Sr isotopic values of apatites (0.7063–0.7066) in K-feldspar veins are within the range for apatites (0.7064–0.7078) from lamprophyres. High large-ion lithophile element concentrations and low Nb and Ta concentrations in phlogopite from lamprophyres, in addition to high (87Sr/86Sr)i values of apatite (0.7064–0.7078), indicate that the magma parental to these phlogopite and apatite crystals is derived from an enriched mantle. K-feldspar veins are genetically correlated with lamprophyres, whereas sulfide mineral assemblage and trace element compositions of pyrite in K-feldspar veins suggest that K-feldspar veins in lamprophyres are not directly related to gold mineralization of the Zhenyuan deposit.

    • WANG Yiyun,WU Zhishan,CHEN Wenqing,DU Qing’an,TANG Liwei,SHI Hongzhao,MA Guotao,ZHANG Zhi,LIANG Wei,WU Bo,MIAO Hengyi

      2024,98(1):117-131, DOI: 10.1111/1755-6724.15120

      Abstract:

      The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt, Tibet, China. However, the genetic type of this deposit has been controversial since its discovery. Based on a study of the geological characteristics of the deposit, this study presents mineralization stages, focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed, referred to as Sch-A and Sch-B, respectively. Through LA-ICP-MS trace element and Sr isotope analyses, the origin, evolutionary process of the ore-forming fluid and genesis of the ore deposit are investigated. Scanning Electron Microscope-Cathodoluminescence (SEM-CL) observations reveal that Sch-A consists of three generations, with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3, with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band. In contrast, Sch-B exhibits a ‘core-rim’ structure, with the core part (Sch-B1) being dark gray and displaying a uniform growth band, while the rim part (Sch-B2) is light gray and homogeneous. The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and, later on, some country rock material was mixed in, due to strong water-rock interaction. Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources, with contributions from metamorphic water caused by water-rock interaction during the mineralization process, as well as later meteoric water. The intense water-rock interaction likely played a crucial role in the precipitation of scheelite, leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage, while also causing a gradual decrease in oxygen fugacity (fO2) and a slow rise in pH value. Additionally, the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite. Therefore, considering the geological features of the deposit, the geochemical characteristics of scheelite and the O-H isotope data published previously, it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.

    • GUO Chunli,Simon A. WILDE,Coralie SIEGEL,CHEN Zhenyu,WU Shichong

      2024,98(1):132-149, DOI: 10.1111/1755-6724.15096

      Abstract:

      There are two factors, source composition and magmatic differentiation, potentially controlling W-Sn mineralization. Which one is more important is widely debated and may need to be determined for each individual deposit. The Xitian granite batholith located in South China is a natural laboratory for investigating the above problem. It consists essentially of two separate components, formed in the Triassic at ca. 226 Ma and Jurassic at ca. 152 Ma, respectively. The Triassic and Jurassic rocks are both composed of porphyritic and fine-grained phases. The latter resulted from highly-differentiated porphyritic ones but they have similar textural characteristics and mineral assemblages, indicating that they reached a similar degree of crystal fractionation. Although both fine-grained phases are highly differentiated with elevated rare metal contents, economic W–Sn mineralization is rare in the Triassic granitoids and this can be attributed to less fertile source materials than their Jurassic counterparts, with a slightly more enriched isotopic signature and whole-rock εNd(226 Ma) of ?10.4 to ?9.2 (2σ = 0.2) compared with εNd(152 Ma) of ?9.2 to ?8.2 (2σ = 0.2) for the Jurassic rocks. The initial W-Sn enrichment was derived from the metasedimentary rocks and strongly enhanced by reworking of the continental crust, culminating in the Jurassic.

    • FANG Chaogang,ZHANG Chengcheng,MENG Guixi,XU Jinlong,XU Naicen,LI Hualing,LIU Mu,LIU Bo

      2024,98(1):150-167, DOI: 10.1111/1755-6724.15095

      Abstract:

      The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions, acting as important unconventional hydrocarbon source rocks. However, the mechanism of organic matter (OM) enrichment throughout this period is still controversial. Based on geochemical data, the marine redox conditions, paleogeographic and hydrographic environment, primary productivity, volcanism, and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section, Chaohu, to provide new insights into OM accumulation. Five Phases are distinguished based on the TOC and environmental variations. In Phase I, anoxic conditions driven by water restriction enhanced OM preservation. In Phase II, euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition. During Phase III, intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition. Phase IV was characterized by a relatively higher abundance of mercury (Hg) and TOC (peak at 16.98 wt%), indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment. In Phase V, extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity. Phases I, II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors, namely paleogeographic, hydrographic environment, volcanism, and redox conditions.

    • LIU Hua,ZHAO Shan,YANG Xianzhang,ZHU Yongfeng,WANG Shen,ZHANG Ke

      2024,98(1):168-184, DOI: 10.1111/1755-6724.15107

      Abstract:

      Gypsum caprocks' sealing ability is affected by temperature-pressure coupling. Due to the limitations of experimental conditions, there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions, which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling. Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperature-pressure action and isothermal-variable pressure action on the basis of sample feasibility analysis. According to research, the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions, and it becomes more ductile. This reduces the amount of time it takes for the rock to transition from brittle to plastic. When temperature is taken into account, both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower, and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization. The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well #ZS5 are compared. This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.

    • Masoud SHARIFI-YAZDI,Amirhossein ENAYATI,Jamal SALEHI AGHDAM,Mohammad BAHREHVAR,Seyed Mustafa REZAEI

      2024,98(1):185-206, DOI: 10.1111/1755-6724.15151

      Abstract:

      The Qom Formation is the most important hydrocarbon reservoir target in Central Iran. The Qom platform developed in a back-arc basin during the Oligo–Miocene due to the closing of the Tethyan Seaway. This formation consists of a variety of carbonate and non-carbonate facies deposited on a platform ranging from supratidal to basin. A combination of tectonic and eustatic events led to some lateral and vertical facies variations in the study area. Six third-order depositional sequences and related surfaces were identified regarding vertical facies changes in the studied sections of this Oligo–Miocene succession. According to all results and data, this succession was initially deposited during the Chattian upon a distally steepened ramp of siliciclastic-carbonate composition, including the Bouma sequence. Then, from the late Chattian to the Aquitanian, the platform changed into a homoclinal carbonate ramp with a gentle profile. With respect to tectonic activity, this phase was a calm period during the deposition of the Qom Formation. Finally, a drowned carbonate platform and a rimmed shelf emerged during the Burdigalian, terminated by the continental deposits of the Upper Red Formation. Regarding all geological characteristics, three main tectono-eustatic evolutionary phases have been recognized in the Qom back-arc basin.

    • CHEN Biying,FANG Lujia,LANG Yunchao,XU Sheng,LIU Congqiang,ZHANG Luyuan,HOU Xiaolin

      2024,98(1):207-219, DOI: 10.1111/1755-6724.15133

      Abstract:

      The knowledge of the residence time of formation water is fundamental to understanding the subsurface flow and hydrological setting. To better identify the origin and evolution of coal seam water and its impact on gas storage and production, this study collected coalbed methane co-produced water in the southeast Qinshui Basin and detected chemical and isotopic compositions, especially 36Cl and 129I concentrations. The calculated tracer ages of 129I (5.2–50.6 Ma) and 36Cl (0.13–0.76 Ma) are significantly younger than the age of coal-bearing formation (Pennsylvanian - Cisuralian), indicating freshwater recharge after coal deposition. The model that utilises 129I/I and 36Cl/Cl ratios to constrain the timing of recharge and the proportion of recharge water reveals that over 60% of pre-anthropogenic meteoric water entered coal seams since 10 Ma and mixed with residue initial deposition water, corresponding to the basin inversion in Cenozoic. The spatial distribution of major ion concentrations reveals the primary recharge pathway for meteoric water from coal outcrops at the eastern margin to the basin center. This study demonstrates the occurrence of higher gas production rates from wells that accept water recharge in recent times and suggests the possible potential of the non-stagnant zones for high gas production.

    • WANG Xiang,LIU Guangdi,SONG Zezhang,SUN Mingliang,WANG Xiaolin,WANG Feilong,CHEN Rongtao,GENG Mingyang,LI Yishu

      2024,98(1):220-240, DOI: 10.1111/1755-6724.15114

      Abstract:

      The organic matter (OM) enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag, Bohai Bay Basin in Northeast China remain controversial. To address these issues, based on Rock-Eval pyrolysis, kerogen macerals, H/C and O/C ratios, GC-MS, major and trace elements, the Dongying Formation Member (Mbr) 3 (E3d3), the Shahejie Formation mbrs 1 and 2 (E2s1+2), and the Shahejie Mbr 3 (E2s3) source rocks in the western Bozhong Sag were studied. The above methods were used to reveal their geochemical properties, OM origins and depositional environments, all of which indicate that E2s1+2 and E2s3 are excellent source rocks, and that E3d3 is of the second good quality. E3d3 source rocks were formed under a warm and humid climate, mainly belong to fluvial/delta facies, the E3d3 sediments formed under weakly oxidizing and freshwater conditions. Comparatively, the depositional environments of E2s1+2 source rocks were arid and cold climate, representing saline or freshwater lacustrine facies, and the sediments of E2s1+2 belong to anoxic or suboxic settings with large evaporation and salinity. During the period of E2s3, the climate became warm and humid, indicating the freshwater lacustrine facies, and E2s3 was characterized by freshwater and abundant algae. Moreover, compared with other intervals, the OM origin of E3d3 source rocks has noticeable terrestrial input. The OM origin of the E2s1+2 and E2s3 are mainly plankton and bacteria. Tectonic subsidence and climate change have affected the changes of the depositional environment in the western Bozhong Sag, thus controlling the distribution of the source rocks, the geochemical characteristics in the three intervals of lacustrine source rocks have distinct differences. Overall, these factors are effective to evaluate the paleoenvironmental characteristics of source rocks by biomarkers, major and trace elements. The established models may have positive implications for research of lacustrine source rocks in offshore areas with few drillings.

    • NA Jin,JIANG Xue,SHI Zheming,CHEN Yanmei

      2024,98(1):241-249, DOI: 10.1111/1755-6724.15121

      Abstract:

      Earthquake-related hydrochemical changes in thermal springs have been widely observed; however, quantitative modeling of the reactive transport process is absent. In the present study, we apply reactive transport simulation to capture the hydrochemical responses in a thermal spring following the Wenchuan Ms 8.0 and Lushan Ms 7.0 earthquakes. We first constrain deep reservoir geothermal fluid compositions and temperature by multicomponent geothermometry, and then a reactive geochemical transport model is constructed to reproduce the hydrochemical evolution process. The results show that the recharge from the shallow aquifer increases gradually until it reaches a peak because of the permeability enhancement caused by the Lushan earthquake, which may be the mechanism to explain the earthquake-related hydrochemical responses. In contrast to the postseismic effect of the Wenchuan earthquake, the chemical evolution can be considered as hydrochemical anomalies related to the Lushan earthquake. This study proves that the efficient simulation of reactive transport processes is useful for investigating earthquake-related signals in hydrochemical time series.

    • SU Jianchao,LIN Xu,LI Chang’an,Jolivet MARC,WU Lin,CHENG Feng,DENG Bin,WU Zhonghai,CHEN Xiaokang,HU Chengwei

      2024,98(1):250-264, DOI: 10.1111/1755-6724.15117

      Abstract:

      Plate subduction leads to complex exhumation processes on continents. The Huangling Massif lies at the northern margin of the South China Block. Whether the Huangling Massif was exhumed as a watershed of the middle reaches of the Paleo-Yangtze River during the Mesozoic remains under debate. We examined the exhumation history of the Huangling Massif based on six granite bedrock samples, using apatite fission track (AFT) and apatite and zircon (U-Th)/He (AHe and ZHe) thermochronology. These samples yielded ages of 157–132 Ma (ZHe), 119–106 Ma (AFT), and 114–72 Ma (AHe), respectively. Thermal modeling revealed that three phases of rapid cooling occurred during the Late Jurassic–Early Cretaceous, late Early Cretaceous, and Late Cretaceous. These exhumation processes led to the high topographic relief responsible for the emergence of the Huangling Massif. The integrated of our new data with published sedimentological records suggests that the Huangling Massif might have been the watershed of the middle reaches of the Paleo-Yangtze River since the Cretaceous. At that time, the rivers flowed westward into the Sichuan Basin and eastward into the Jianghan Basin. The subduction of the Pacific Plate beneath the Asian continent in the Mesozoic deeply influenced the geomorphic evolution of the South China Block.

    • YANG Shaohua,PAN Jiawei,LI Haibing,SHI Yaolin

      2024,98(1):265-275, DOI: 10.1111/1755-6724.15122

      Abstract:

      The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution. An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks. If the discrete observed velocity field is obtained, the velocity related fields, such as dilatation rate and maximum shear strain rate, can be estimated by applying varied mathematical approaches. This study applied Akaike's Bayesian Information Criterion (ABIC) method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau. Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise. The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet, indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel. Additionally, distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed. The northeast region, represented by the Longmenshan area, exhibited negative dilatational anomalies; while the southwest region, represented by the Jinsha River area north of 29°N, displayed positive dilatational anomalies. This indicates compression in the former and extension in the latter. Combined with deep geophysical observations, we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state, probably caused by the escape-drag effect of material. The presence of a large, low-viscosity region south of 29°N may not enable the entire escape of the crust, but instead result in a differential escape of the lower crust faster than the upper crust.

    • HAN Jianguang,Lü Qingtian,ZHANG Zhiheng,YANG Shun,WANG Shuo

      2024,98(1):276-284, DOI: 10.1111/1755-6724.15108

      Abstract:

      The geological conditions for coal mining in China are complex, with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production. In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces. However, the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements, making it imperative to develop a new reflected in-seam wave imaging technique. This study applies the Gaussian beam summation (GBS) migration method to imaging coal seams' reflected in-seam wave data. Firstly, with regard to the characteristics of the reflected in-seam wave data, methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation, wave train compression and other processing of reflected in-seam waves. Thereafter, imaging is performed using the GBS migration technique. The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws. By applying the method to reflected in-seam wave data for an actual coal seam working face, accurate imaging of a fault structure is obtained, thereby validating its practicality.

    全选
    显示模式:: |
    2024年第98卷第1期
    全选
    显示模式: |
    • 青藏高原东北缘祁连–海原断裂带中段金强河断裂晚第四纪滑动行为

      梁淑敏, 郑文俊, 陈干, 张培震, 张冬丽, 毕海芸, 杨雪, 张逸鹏, 段磊, 卢本添

      Abstract:

      祁连–海原断裂带控制着青藏高原东北缘地区的强震活动。在其中段的金强河断裂是天祝地震空区一条关键的活动断裂,但目前对该断裂的滑动行为认识不足。本文针对沿金强河断裂的水平位移分布,利用WorldView-2立体像对和无人机摄影测量数据,提取断裂沿线高精度的DEM数据,并进行精细的构造地貌解译和水平位错测量。通过断错地貌标志的测量,得到135个位错量和8个位错丛集。同时,利用放射性碳测年方法构建4个典型点断错河流阶地的地貌单元年龄序列,从而通过位错与年龄的关系将位错丛集和地貌单元年龄序列关联起来,并获得金强河断裂全新世的滑动速率在 ~4–12 ka期间为4.8–5.6 mm/a ,在 ~4 ka以来为2.9–4.7 mm/a。最近的三次地震事件的复发间隔约为1000年,形成了一个地震活跃期,揭示着近1500年来缺乏破裂记录的金强河断裂可能具有较高的地震危险性。

      • 1
    • 南阿尔金早古生代构造演化:来自茫崖花岗质岩石地球化学、锆石U-Pb和Lu-Hf同位素的证据

      徐楠, 吴才来, 刘和武, 宋帅兵, 张贵生, 郑坤, 高栋

      Abstract:

      南阿尔金造山带是中国西南典型的俯冲造山带,由南阿尔金蛇绿混杂岩带和南阿尔金陆块组成,位于柴达木板块北侧。造山带出露大量早古生代花岗质岩石,但是这些岩石的成因及构造环境尚未查明。本文对茫崖花岗质岩石进行岩石学和地球化学研究,确定岩浆活动的期次,并深入了解南阿尔金造山带的构造演化过程。茫崖花岗质岩浆活动可以划分为三期:494-458Ma,450-436Ma和416-404Ma。根据这些岩石的成岩构造环境,我们认为第一期岩浆活动与南阿尔金洋的北向俯冲有关,形成了大量高价钙碱性、I型花岗质岩石。南阿尔金洋闭合后,柴达木板块开始向南阿尔金陆块碰撞,行了了一系列高价钙碱性、I型花岗岩。第三期岩浆活动形成了大量的造山后A-型花岗岩。

      • 1
    • 超微量(80nanomole)硫化物硫酸盐硫同位素的EA-IRMS测试

      武晓珮, 范昌福, 胡斌, 高建飞, 李延河

      Abstract:

      常规EA-IRMS进行硫同位素测试时需硫量大于2 μmol,这限制了该技术在测试含硫量低的样品时的使用。如此大的需硫量是因为He载气携带样品气体在经过元素分析仪(EA)时的流速为~100 mL/min,而气体同位素质谱仪仅允许气体以低流速进入,所以99.7%的混合气体会通过连续流接口排出,以保证混合气体以~0.3 mL/min的流速通过连续流接口。因此,大部分的样品气体会被浪费,样品的利用率仅有0.3%。在本研究中,我们将自主研发的冷冻富集、分离与纯化系统与EA-IRMS联用测试了六种标准物质的硫同位素,并检测该系统的表现。实验结果表明,使用本研究中改进的方法进行硫化物和硫酸盐标准物质的硫同位素测试,得到的硫同位素结果与常规方法一致,即需硫量仅80 nmol即可得到硫同位素测试结果精度 ±0.24‰–±0.76‰ (1σ),与使用吸附柱进行硫同位素测试的方法获得的精度相似。所以,改进后的EA-IRMS可以实现超微量硫化物、硫酸盐的硫同位素测试。此外,本方法也可应用至需样量低至100 nmol的碳、氮和氧同位素分析测试工作中。

      • 1
    • 粤北早古生代强过铝质花岗岩及其共生岩石的岩石成因及对广西运动的指示意义:来自元素和Sr-Nd-Hf同位素的制约

      贾小辉, 王晓地, 邱啸飞

      Abstract:

      本文系统报道了粤北地区早古生代强过铝质花岗岩及其共生岩石的锆石U-Pb年代学、主、微量元素及Sr-Nd-Hf同位素组成,探讨其源区特征、岩石成因及构造意义。青州花岗闪长岩为弱-强过铝质,A/CNK= 1.05–1.96。它们具有相对高的初始Sr同位素组成ISr= 0.7087– 0.7148和低的εNd(t)值(-11.2 – -10.1),以及变化的εHf(t)值-13.4– +4.81。与之不同,大帽山花岗闪长岩为准铝质(A/CNK= 0.79– 0.94),ISr= 0.7083– 0.7110, εNd(t)= -7.92– -5.28和εHf(t)= -8.69– -2.06。高寿石英闪长岩为准铝-强过铝质(0.87– 1.24),ISr值和εNd(t)值分别为0.7104– 0.7111和-9.64– -8.63。元素和Sr-Nd-Hf同位素组成结果显示,青州、大帽山和高寿花岗质侵入岩主要分别源自变杂砂岩、英安质岩和角闪石岩的部分熔融。结合前人的研究成果,这些强过铝质花岗岩形成于同造山环境。本文尝试提出一种关于华南早古生代花岗岩的岩石成因及区域地壳重组的新思路。而广西运动动力机制的揭示需要更加广阔的视野和更加丰富的地质证据。

      • 1
    全选
    显示模式:: |
    2024年第98卷第1期
    • Birendra P. Singh, Kapesa Lokho, Naval Kishore, Nancy Virmani

      2014,88(2):380-393, DOI:

      Abstract:

      A new locality bearing ichnofossils of the Cruziana Assemblage Zone-III from the Mussoorie syncline, Lesser Himalaya, is located in rocks of Member-B of the Dhaulagiri Formation, Tal Group, exposed along the Maldewta-Chhimoli fresh road cut section. The site yielded ichnofossils Bergaueria perata, Cochlichnus anguineus, ?Diplocraterion isp., Dimorphichnus obliquus, diplichnitiform Cruziana bonariensis, Diplichnites gouldi, Glockeria isp., Helminthopsis isp., Monomorphichnus lineatus, Phycodes palmatum, Palaeophycus striatus, Planolites beverleyensis, Planolites montanus, Treptichnus cf. T. pedum, scratch marks and an undetermined worm impression. An Early Cambrian age (Cambrian Series 2) is assigned to the ichnofossil-bearing strata based on the stratigraphic position between the Drepanuroides and Palaeoolenus trilobite zones. A revised Cambrian ichnofossil zonation is presented for the Tal Group of the Mussoorie syncline. Together with their occurrence on rippled surfaces, and the lateral displacement of some trackways (due to current action), a sub-aqueous shallow-marine depositional setting is proposed for the rocks of Member-B.

    • ZHU Song, WU Zhenhan, ZHAO Xitao, LI Jianping, WANG Hua

      2012,86(1):266-283, DOI:

      Abstract:

      Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691~505 kaBP middle Pleistocene ice age, 75–40 kaBP the early stage of last glacier, 27–8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn’t erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn’t form stable lake.

    • WANG Runfu, XU Shichao, WU Xiaochun, LI Chun, WANG Suozhu

      2013,87(5):1185-1197, DOI:

      Abstract:

      Shansisuchus shansisuchus Young, 1964 was restudied on the basis of a new specimen. Some anatomical features that were either briefly or not described at all in the original study were detailed. The new specimen not only provides further information on the skull anatomy and the vertebral column but also expands the range of the geographical distribution of the taxon. With new information, the diagnosis of S. shansisuchus was emended and its phylogenetic relationships were further analyzed. S. shansisuchus differs from other archosauriforms primarily in the presence of a large subnarial fenestra anterior to the antorbital fenestra, tongue-in-groove articulations between the ascending process of the premaxilla and nasal and between the premaxilla and maxilla, a tall and posterodorsally directed ascending process of the maxilla, a knee-shaped process of the postorbital projecting into the orbit, a broad descending process of squamosal distally well forked and a large, deeply bow-shaped intercentrum tightly anchoring/capping the sharp ventral edges of two neighboring centra together in cervical and at least first eight dorsal vertebrae. With additional information derived from the new specimen, the phylogenetic relationships of S. shansisuchus were reanalyzed; it is closely related to Erythrosuchus-Vjushkovia clade.

    • CHEN Lan1, 2, 3, * , YI Haisheng4, 5, TSAI Louis Loung-Yie2, XU Guiwen1, DA Xuejuan1, LIN Andrew Tien-Shun3

      2013,87(2):540-554, DOI:

      Abstract:

      The Biluo Co and Amdo 114 station, northern Tibet, cropping out the Early Toarcian and Middle-Late Tithonian (Jurassic) organic-rich black shales, have been a focus to petroleum geologists in discussing their oil-producing potential. This paper first reports the trace elements and rare earth elements to discuss the paleoenvironments, redox conditions and sedimentary mechanisms of those black shales. Both sections exhibit variation in trace element abundances with concentrations <0.1 ppm to 760 ppm, mostly enriched in V, Cr, Ni, Cu, Zn, Mo, Ba and U. Element ratios of Ni/Co, V/Cr, U/Th and V/(V+Ni) plus U were used to identify redox conditions. The shale-normalized rare earth element (REE) patterns are characterized by the flat-shale type with instable Ce anomalies and very weekly positive Eu anomalies. Positive Ceanom values are significant with values varying between –0.064 and 0.029 in Biluo Co, which may be interpreted as release of REE and input of riverine terrestrial matter with rich Ce (resulting in pH change) during the anoxic conditions. In the middle parts of Amdo 114 station, distinct negative Ceanom values are observed (?0.238 to ?0.111) and associated surface water warming were interpreted as being related to a major sea level rise. In contrast, the formation of the black shales in the lower and upper part of the studied succession took place during a cooler (Ceanom values >–0.10), lower surface water productivity, and lower sea-level stage. Thus, we emphasize the role of different factors that control the formation of local and regional black shales. The most important factors are sea-level fluctuations and increasing productivity.

    • CHEN Jitao, LEE Jeong-Hyun

      2014,88(1):260-275, DOI:

      Abstract:

      This paper reviews the current progress and problems in the study of microbialites and microbial carbonates. Microbialites and microbial carbonates, formed during growth of microbes by their calcification and binding of detrital sediment, have recently become one of the most popular geological topics. They occur throughout the entire geological history, and bear important theoretical and economic significances due to their complex structures and formative processes. Microbialites are in place benthic microbial buildups, whereas microbial carbonates can be classified into two categories: stabilized microbial carbonates (i.e., carbonate microbialites, such as stromatolites and thrombolites) and mobilized microbial carbonates (i.e., microbial carbonate grains, such as oncoids and microbial lumps). Various texture, structures, and morphologies of microbialites and microbial carbonates hamper the systematic description and classification. Moreover, complex calcification pathways and diagenetic modifications further obscure the origin of some microbialites and microbial carbonates. Recent findings of abundant sponge spicules in previously identified “microbialites” challenge the traditional views about the origins of these “microbialites” and their implications to reef evolution. Microbialites and microbial carbonates did not always flourish in the aftermath of extinction events, which, together with other evidences, suggests that they are affected not only by metazoans but also by other geological factors. Their growth, development, and demise are also closely related to sea-level changes, due to their dependence on water depth, clarity, nutrient, and sunlight. Detailed studies on microbialites and microbial carbonates throughout geological history would certainly help understand causes and effects of major geological events as well as the co-evolution of life and environment.

    • SHEN Caizhi, Lü Junchang, LIU Sizhao, Martin KUNDRáT, Stephen L. BRUSATTE, GAO Hailong

      2017,91(3):763-780, DOI:

      Abstract:

      A new troodontid dinosaur, Daliansaurus liaoningensis gen. et sp. nov., is erected based on a nearly complete specimen from the Lower Cretaceous Yixian Formation of Beipiao City, Liaoning Province, China. This well preserved skeleton provides important new details of the anatomy for Liaoning troodontids, and gives new insight into their phylogenetic relationships and evolution. Daliansaurus is distinguished from other troodontids by an enlarged ungual on pedal digit IV, which is approximately the same size as the sickle-shaped second ungual, and is differentiated from other Liaoning troodontids by a number of characters of the skull, manus, pelvis, and hindlimb. A phylogenetic analysis recovers Daliansaurus within a subclade of Liaoning troodontids that also includes Sinovenator, Sinusonasus, and Mei. We erect a name for this group—Sinovenatorinae—and argue that it reflects a localized radiation of small-bodied troodontids in the Early Cretaceous of eastern Asia, similar to previously recognized radiations of Liaoning dromaeosaurids and avialans. As more Liaoning theropods are discovered, it is becoming apparent that small, feathered paravians were particularly diverse during the Early Cretaceous, and future work is needed to clarify how this diversity arose, which species coexisted, and how these numerous species partitioned niches.

    • Richard H. SILLITOE

      2014,88(z2):597-598, DOI:

      Abstract:

      Please refer to the attachment(s) for more details

    • DU Chunguo, WANG Jianjun, ZHANG Jun, WANG Ping, XUE Mei, ZHOU Huayao

      2014,88(3):865-877, DOI:

      Abstract:

      On the basis of field observations, microscopic thin-sections and laboratory data analysis of ten faults in Xuanhan County area, northeastern Sichuan Basin, central China, the internal and megascopic structures and tectonite development characteristics are mainly controlled by the geomechanical quality in brittle formation of the Changxing-Feixianguan Formation. The fluid transportation performance difference between the faults formed by different geomechanics or different structural parts of the same fault are controlled by the megascopic structure and tectonite development characteristics. For instance, the extension fault structure consists of a tectonite breccia zone and an extension fracture zone. Good fluid transportation performance zones are the extension fracture zone adjacent to the tectonite breccia zone and the breccia zone formed at the early evolutionary stage. The typical compression fault structure consists of a boulder-clay zone or zones of grinding gravel rock, compression foliation, tectonite lens, and dense fracture development. The dense fracture development zone is the best fluid transporting area at a certain scale of the compression fault, and then the lens, grinding gravel rock zone and compression foliation zones are the worst areas for hydrocarbon migration. The typical tensor-shear fault with a certain scale can be divided into boulder-clay or grinding gravel rock zones of the fault, as well as a pinnate fractures zone and a derivative fractures zone. The grinding gravel rock zone is the worst one for fluid transportation. Because of the fracture mesh connectivity and better penetration ability, the pinnate fractures zone provides the dominant pathway for hydrocarbon vertical migration along the tensor-shear fault.

    • MA Shengming, ZHU Lixin, LIU Chongmin, XI Mingjie, TANG Shixin

      2013,87(3):843-857, DOI:

      Abstract:

      This paper discusses the enrichment and depletion regularities for porphyry copper-molybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum ore deposits (i.e., the Chengmenshan in Jiangxi, Wunugetushan in Inner Mongolia, Baishantang in Gansu) and two copper deposits in Gansu Province (the Huitongshan skarn deposit and Gongpoquan composite deposit) as case studies. The results show that porphyry Cu-Mo deposits or skarn copper deposits include both enrichment of the ore-forming elements and associated elements, and depletion of some lithophile dispersed elements, rare earth elements (REE) and some major elements. And the depleted elements vary with deposits, having generality and their own features. On a deposit scale, the positive anomalies of enriched elements and negative anomalies of depleted elements follow in a sequence to comprise regular anomaly models of spatial structures. The exploration in the Tongchang deposit in Jiangxi and Huitongshan deposit in Gansu suggests that anomaly models play a key role in the identification of mineral occurrences and deposits compared to one single enriched element anomaly. And the anomaly models exert a critical effect on the optimization of prospecting targets and their potential evaluation.

    • Lü Junchang

      2010,84(2):241-246, DOI:

      Abstract:

      A new boreopterid pterosaur: Zhenyuanopterus longirostris gen. et sp. nov. from the Yixian Formation of western Liaoning is erected, based on the complete skeleton with a skull and lower jaws preserved. It is characterized by: a large boreopterid pterosaur with a high number of teeth, where the anterior teeth are much larger than posterior ones; the length of the dorsal + sacral vertebrae is nearly half the length of the skull; ratio of the length of the humerus to metacarpal IV is approximately 91% and the, humerus, femur and third wing phalanx are all equal in length and the feet are specially small. It represents the largest boroepterid pterosaur discovered from western Liaoning and its surrounding areas so far

    • WANG Sufen, ZHANG Tingshan, ZHOU Jixian, HU Yu

      2017,91(1):320-340, DOI:

      Abstract:

      The distribution characteristics of the oil-water contact are the basis for the reservoir exploration and development and reserves evaluation. The reservoir with a tilted oil-water contact has a unique formation mechanism, and the understanding of its distribution and formation mechanism will directly affect the evaluations for the reservoir type, well deployment, selection of well pattern and type, determination of test section, and reserves evaluation. Based on the analysis of reservoir characteristics, petrophysical properties and geological structure in 40 reservoirs worldwide with tilted oil-water contacts, the progress of the research on the formation mechanisms of titled oil-water contacts is summarized in terms of the hydrodynamic conditions, reservoir heterogeneity, neotectonic movement and oil-gas exploitation. According to the formation mechanism of tilted oil-water contacts and the needs of exploration research, different aspects of research methods are summarized and classified, such as the calculation of equipotential surfaces for oil and water in the formation, analysis of formation pressure and analysis of reservoir physical properties and so on. Based upon statistical analysis, it is suggested that the degree of the inclination of the oil-water contact be divided based on the dip of oil-water contact (DipTOWC). The tilted oil-water contact is divided into three categories: large dip (DipTOWC≥55 m/km), medium dip (4 m/km≤DipTOWC<55 m/km), and small dip (DipTOWC<4 m/km). The classification and evaluation method can be combined with structure amplitude and reservoir property. The formation mechanism of domestic and international reservoirs with tilted oil-water contacts are summarized in this paper, which have important significance in guiding the exploration and development of the oilfield with tilted oil-water contacts, reserves evaluation, and well deployment.

    • Mahboobeh JAMSHIDI BADR, Fariborz MASOUDI, Alan S. COLLINS, Ali SORBI

      2012,86(1):48-64, DOI:

      Abstract:

      The Soursat metamorphic complex (SMC) in northwestern Iran is part of the Sanandaj–Sirjan metamorphic belt. The complex is composed of different metamorphic and plutonic rocks, but is dominated by metapelites composed of garnet, staurolite, kyanite, fibrolite, cordierite, and andalusite. Porphyroblasts in schists have the same fabric, and three stages of schistosity are present. The internal schistosity (Sn) inclusion trails are also offset by conjugate sets of extensional schistosity (Sn+1) and a second (Sn+2) that crenulates (Sn+1). Polyphase metamorphisms are present in the complex. Garnet, staurolite, kyanite, and fibrolite assemblage preserves conditions during the M1 metamorphic event. This assemblage yields a P–t estimate of 645±11°C and 6.5±0.5 kbar. Other samples of the central part of SMC contain cordierite and andalusite (M2) overgrowth that yields a P–t estimate of 532±33°C and 2.1±1.1 kbar.

    • ZHENG Yadong, ZHANG Qing, HOU Quanlin

      2015,89(4):1133-1152, DOI:

      Abstract:

      The essential difference in the formation of conjugate shear zones in brittle and ductile deformation is that the intersection angle between brittle conjugate faults in the contractional quadrants is acute (usually ~60°) whereas the angle between conjugate ductile shear zones is obtuse (usually 110°). The Mohr-Coulomb failure criterion, an experimentally validated empirical relationship, is commonly applied for interpreting the stress directions based on the orientation of the brittle shear fractures. However, the Mohr-Coulomb failure criterion fails to explain the formation of the low-angle normal fault, high-angle reverse fault, and the conjugate strike-slip fault with an obtuse angle in the σ1 direction. Although it is ten years since the Maximum-Effective-Moment (MEM) criterion was first proposed, and increasingly solid evidence in support of it has been obtained from both observed examples in nature and laboratory experiments, it is not yet a commonly accepted model to use to interpret these anti-Mohr-Coulomb features that are widely observed in the natural world. The deformational behavior of rock depends on its intrinsic mechanical properties and external factors such as applied stresses, strain rates, and temperature conditions related to crustal depths. The occurrence of conjugate shear features with obtuse angles of ~110° in the contractional direction on different scales and at different crustal levels are consistent with the prediction of the MEM criterion, therefore ~110° is a reliable indicator for deformation localization that occurred at medium-low strain rates at any crustal levels. Since the strain–rate is variable through time in nature, brittle, ductile, and plastic features may appear within the same rock.

    • CHI Guoxiang1, *, CHU Haixia1, Ryan SCOTT1, CHOU I-Ming2

      2014,88(4):1169-1182, DOI:

      Abstract:

      Raman peaks of various hydrates in the H2O-NaCl-CaCl2 system have been previously identified, but a quantitative relationship between the Raman peaks and XNaCl (i.e., NaCl/(NaCl+CaCl2)) has not been established, mainly due to the difficulty to freeze the solutions. This problem was solved by adding alumina powder to the solutions to facilitate nucleation of crystals. Cryogenic (-185oC) Raman spectroscopic studies of alumina-spiced solutions indicate that XNaCl is linearly correlated with the total peak area fraction of hydrohalite. Capsules of solutions made from silica capillary were prepared to simulate fluid inclusions. Most of these artificial fluid inclusions could not be totally frozen even at temperatures as low as -185oC, and the total peak area fraction of hydrohalite is not correlated linearly with XNaCl. However, the degree of deviation (DXNaCl) from the linear correlation established earlier is related to the amount of residual solution, which is reflected by the ratio (r) of the baseline “bump” area, resulting from the interstitial unfrozen brine near 3435 cm-1, and the total hydrate peak area between 3350 and 3600 cm-1. A linear correlation between DXNaCl and r is established to estimate XNaCl from cryogenic Raman spectroscopic analysis for fluid inclusions.

    • LI Jianjun, Martin G. LOCKLEY, ZHANG Yuguang, HU Songmei, MATSUKAWA Masaki, BAI Zhiqiang

      2012,86(1):1-10, DOI:

      Abstract:

      A large track site with multiple, well-preserved trackways of an Early Jurassic quadrupedal ornithischian dinosaur is the first report of Moyenisauripus-like trackways from Asia, herein named Shenmuichnus youngteilhardorum. The tracks occur in a clastic fluvial sequence in the Fuxian Formation in Shenmu County, Shaanxi Province, which is in the same general region as the discovery site of Sinoichnites,the first dinosaur track reported from China. Based on size and morphology, it is likely that Sinoichnites, which is now lost, also represents an ornithischian. The Shenmuichnus youngteilhardorum trackways show two modes of preservation: the first representing deeper tracks, with sediment rims, results in Deltapodus-like tracks, with indistinct pes digit traces and sub-circular manus traces, the second produces Moyenosauripus-like tracks, with clear tridactyl and pentadactyl digit traces in the pes and manus respectively. Thus the Shenmu trackways play a key role in resolving globally significant ichnotaxonomic problems surrounding the nomenclature of Sinoichnites, Moyenosauripus, Deltapodus and other named (Ravatichnus) and unnamed trackways from Asia, Africa and Europe. In addition they shed important light on the paleogeographical and paleoecological distribution of quadrupedal ornithischians in the Early Mesozoic. The track site has been the focus of a major excavation to transfer the trackways from their original remote location to the new Shenmu Museum, in Shenmu City. Other tracksites in the area which reveal Anomoepus, Grallator and the Deltapodus morphotype, together with Shenmuichnus and plant fossil evidence, suggest an Early Jurassic age for the tracksite.

    • DU Jianjun, LI Dunpeng, WANG Yufang, MA Yinsheng

      2017,91(1):76-92, DOI:

      Abstract:

      The Weihe Graben is not only an important Cenozoic fault basin in China but also a significant active seismic zone. The Huashan piedmont fault is an important active fault on the southeast side of the Weihe Graben and has been highly active since the Cenozoic. The well–known Great Huaxian County Earthquake of 1556 occurred on the Huashan piedmont fault. This earthquake, which claimed the lives of approximately 830000 people, is one of the few large earthquakes known to have occurred on a high–angle normal fault. The Huashan piedmont fault is a typical active normal fault that can be used to study tectonic activity and the associated hazards. In this study, the types and characteristics of late Quaternary deformation along this fault are discussed from geological investigations, historical research and comprehensive analysis. On the basis of its characteristics and activity, the fault can be divided into three sections, namely eastern, central and western. The eastern and western sections display normal slip. Intense deformation has occurred along the two sections during the Quaternary; however, no deformation has occurred during the Holocene. The central section has experienced significant high–angle normal fault activity during the Quaternary, including the Holocene. Holocene alluvial fans and loess cut by the fault have been identified at the mouths of many stream valleys of the Huashan Mountains along the central section of the Huashan piedmont fault zone. Of the three sections of the Huashan piedmont fault, the central section is the most active and was very active during the late Quaternary. The rate of normal dip–slip was 1.67–2.71±0.11 mm/a in the Holocene and 0.61±0.15 mm/a during the Mid–Late Pleistocene. As is typical of normal faults, the late Quaternary activity of the Huashan piedmont fault has produced a set of disasters, which include frequent earthquakes, collapses, landslides, mudslides and ground fissures. Ground fissures mainly occur on the hanging–wall of the Huashan piedmont fault, with landslides, collapses and mudslides occurring on the footwall.

    • K.V. BADHE, H.S. PANDALAI

      2015,89(3):715-725, DOI:

      Abstract:

      Re-equilibration of fluid inclusions in crystals takes place by loss or gain of solvents and solutes from fluid inclusions and by changes in their volumes. Volume change of fluid inclusions are primarily dictated by elastic properties and available slip planes of host crystals. In the present study, the phase-behavior of fluids entrapped in co-precipitated calcite and barite is studied. While calcite contains only biphase fluid inclusions, barite has predominantly monophase fluid inclusions. Fluid inclusion petrography, microthermometry and leachate analysis are used to establish the nature of entrapped fluids and entrapment temperature is substantiated through independent sulfur isotope geothermometry using coexisting barite and pyrite. Phase transitions in the monophase fluid inclusions in barite are explained in terms of over-pressuring of fluids in these fluid inclusions relative to fluids entrapped in calcite owing to the low bulk modulus of barite.

    • 2021,95(3):1056-1056, DOI: 10.1111/1755-6724.14310

      Abstract:

    • ZHANG Gang, WANG Xuben, FANG Hui, GUO Ziming, ZHANG Zhaobin, LUO Wei, CAI Xuelin, LI Jun, LI Zhong, WU Xing

      2015,89(2):531-541, DOI:

      Abstract:

      The Panxi region is located in the frontal zone of positive squeezing subduction and side squeezing shearing between the Indian plate and the Eurasian plate. The long-period magnetotelluric (LMT) and broadband magnetotelluric (MT) techniques are both used to study the deep electrical conductivity structure in this region; magnetic and gravity surveys are also performed along the profile. According to the 2-D resistivity model along the Yanyuan-Yongshan profile, a high-conductivity layer (HCL) exists widely in the crust, and a high-resistivity block (HRB) exists widely in the upper mantle in general, as seen by the fact that a large HCL exists from the western Jinpingshan tectonic zone to the eastern Mabian tectonic zone in the crust, while the HRB found in the Panxi tectonic zone is of abnormally high resistivity in that background compared to both sides of Panxi tectonic zone. In addition, the gravity and magnetic field anomalies are of high value. Combined with geological data, the results indicate that there probably exists basic or ultrabasic rock with a large thickness in the lithosphere in the Panxi axial region, which indicates that fracture activity once occurred in the lithosphere. As a result, we can infer that the high-resistivity zone in the Panxi lithosphere is the eruption channel for Permian Emeishan basalt and the accumulation channel for basic and ultrabasic rock. The seismic sources along the profile are counted according to seismic record data. The results indicate that the most violent earthquake sources are located at the binding site of the HRB and the HCL, where the tectonic activity zone is generally acknowledged to be; however, the earthquakes occurring in the HCL are not so violent, which reflects the fact that the HCL is a plastic layer, and the fracture threshold of a plastic layer is low generally, making high stress difficult to accumulate but easy to release in the layer. As a result, a higher number of smaller earthquakes occurred in the HCL at Daliangshan tectonic zone, and violent earthquakes occurred at the binding site of high- and low-resistivity blocks at the Panxi tectonic zone.

    主编 :侯增谦

    主管单位 :中国科学技术协会

    主办单位 :中国地质学会

    创刊 :1922年

    国际标准刊号 :ISSN 1000-9515

    国内统一刊号 :CN 11-2001

    扫码订阅

    扫码订阅

    扫码可免费下载期刊所载论文PDF文件