-
超大陆是地质历史上曾经出现的、涵盖全球规模主要大陆克拉通在内的、具有统一运动学行为的大陆板块(Meert,2012)。超大陆演化的历史和过程是地质学研究的重要内容,其汇聚和裂解直接导致岩石圈的物质组成和结构发生显著变化,进而影响地球深时的大气圈、水圈和生物圈等表层环境系统(赵国春等,2022;徐义刚等,2024)。现有资料表明,地质历史上至少经历过三期超大陆事件,由老到新依次是古元古代和中元古代之交的Nuna超大陆(或称为Columbia超大陆)、中元古代和新元古代之交的Rodinia超大陆、古生代和中生代之交的Pangea超大陆。Rodinia大陆是以劳伦古陆为核心,全球其他主要大陆克拉通环绕其周缘,伴随规模宏大的构造活动带(Hoffman,1991;Li Zhengxiang et al.,2008)。自20世纪80年代末,围绕Rodinia超大陆的构型、存在时限、聚散方式和过程以及超大陆古地理位置和运动学轨迹开展了广泛的研究。一般认为,Rodinia超大陆通过格林威尔Grenville 期(1.3~0.9 Ga)全球规模的造山作用形成,劳伦大陆周缘发育的裂谷-被动大陆边缘盆地指示新元古代中晚期逐步裂解。
-
华北克拉通是我国三大古老克拉通之一,其地质演化历史至少可以追溯到38亿年之前(Liu Dunyi et al.,1992),经历并记录了自太古宙以来多期重大地质事件,是研究前寒武纪地质演化的关键克拉通之一(Zhao Guochun et al.,2002,2004;Lu Songnian et al.,2008)。自吕梁运动/中条运动(~1.8 Ga)完成微陆块拼合后,华北克拉通整体进入伸展构造阶段。沿克拉通边缘发育中元古代早期(1.8~1.3 Ga)的三大裂谷系统,即西北缘(狼山)渣尔泰-白云鄂博-化德裂谷系,东北缘燕辽裂陷槽和西南缘熊耳裂谷系。沉积建造以陆源碎屑岩和碳酸盐岩旋回组合为主,夹少量的火山岩层(Zhai Mingguo et al.,2015)。高精度年代学研究认为,华北克拉通整体缺失中元古代晚期的地质记录,中国地层年代表2014将1.4~1.0 Ga暂称为待建系,尤其匮乏格林威尔期对应Rodinia超大陆活动造山过程的岩浆事件、构造变形与区域变质记录(李怀坤等,2020;相振群等,2020)。正因如此,引发了第一层次的科学问题,即华北克拉通是否参与到Rodinia超大陆的形成过程。中国河南—安徽—江苏—山东—辽宁—内蒙古以及朝鲜平南等地发育中元古代晚期—新元古代早期的沉积地层,相继报道格林威尔期碎屑锆石年龄(Luo Yan et al.,2006;高林志等,2010;初航等,2011;陆松年等,2012;Yang Debin et al.,2012;Hu Bo et al.,2012;He Tianchen et al.,2017;田德欣等,2018;吴昊,2018;Kim et al.,2019;Liu Chaohui et al.,2020,2023;Zhao Hanqing et al.,2020,2022;Sun Fengbo et al.,2020,2022;Wu Zijie et al.,2022;Cho et al.,2023;Li Zhensheng et al.,2024),这些沉积盆地位于华北克拉通的周缘,暗示其参与到Rodinia超大陆的形成过程,这也是目前达成较为统一的认识。
-
然而,关于第二层次的科学问题,即华北克拉通如何参与到Rodinia超大陆形成过程存在明显的分歧,可以进一步引申为华北克拉通在Rodinia超大陆的相对位置或者该时期构造属性的问题。针对上述问题,已开展的研究内容大致分为三类:岩石地球化学、沉积学和古地磁学。尽管每种方法逐渐积累了大量数据,并获得极具启发性的认识。然而,不同方法获得的结论却无法互为验证,甚至彼此矛盾。例如,岩石地球化学认为,华北克拉通周缘沉积盆地内,顺地层侵入的基性岩床以及少量岩墙(940~890 Ma)属于地幔柱上涌诱导岩石圈伸展拉张环境下的产物(Peng Peng et al.,2011a,2011b;Zhang Shuanhong et al.,2016;Zhu Renzhi et al.,2019;Su Xiangdong et al.,2020,2021;Cho et al.,2023),以大火成岩省自下而上(bottom-to-up)的地球动力机制为主导,驱动Rodinia超大陆的裂解;而古地磁极移曲线定量计算则揭示,华北克拉通在极为短暂的时间范围内(1100~950 Ma)发生大规模的纬向运动(Fu Xingmei et al.,2015;Zhao Hanqing et al.,2020;Ding Jikai et al.,2021;Zhang Shihong et al.,2021),位移速率可与特提斯构造域微陆块的“单向列车”比拟(Wan Bo et al.,2019)。此外,古地磁显示950~780 Ma华北克拉通位于Rodinia超大陆的外围,与南塔里木-阿尔金-柴达木-祁连地块联接(Xu Yan et al.,2023),这些地块都保存较为完整的Rodinia超大陆聚合和裂解的地质记录,暗示华北克拉通极有可能参与其中。
-
显然,地幔柱无论起源于核幔边界还是地幔过渡带,相对于上覆刚性岩石圈是静止的。在板块构造宏观背景下,难以满足地幔柱和刚性岩石圈的长期耦合,二者之间的物质和能量交换在瞬态完成。而大洋板块受到持续重力俯冲的牵引作用,更容易实现华北克拉通中元古代晚期—新元古代早期在赤道与极地之间的快速折返;盆地内碎屑岩锆石年龄统计表明,沉积体系的下部显示多个早前寒武纪的峰值,对应华北克拉通多期次的地壳生长事件(Yang Debin et al.,2012)。相比之下,体系上部地层的锆石年龄分布则出现多个旋回,并逐渐收敛于中元古代的峰值,早前寒武纪锆石年龄的占比低(Liu Chaohui et al.,2023;Li Zhensheng et al.,2024)。同位素方面的差异更为明显,绝大多数早前寒武纪年龄的锆石Hf同位素位于太古宙地壳演化线上,而中元古代年龄的锆石Hf同位素更接近于亏损地幔线,属于新生地壳物质(Cho et al.,2023;Li Zhensheng et al.,2024)。华北克拉通内部该时期发育的岩浆热事件主要包括中元古代早期的中基性火山岩、脉体以及A型花岗岩,此外还有少量中元古代中晚期的基性岩墙/床(相振群等,2020;张健等,2021)。前者绝大多数源自岩石圈物质的再循环,不符合徐淮胶辽盆地对新生物质的要求;虽然基性岩墙/床的Hf同位素亏损,但其出露规模有限,以侵入体的形式就位于基底或者盖层之中,在源汇系统中很难实现有选择地仅沉积新生地壳物质。另外,地层中碎屑锆石CL多具有振荡环带,而基性岩锆石CL不规则带状分区的特点也决定了其不能成为盆地物源的主要通量。由此可以确定,碎屑物质的源区发生了根本性的转变,即由克拉通内部向外围迁移,同时暗示克拉通周缘存在局部隆升,引起古地形和古地貌高程的显著变化,携带外来的、新生地壳的碎屑物质(source)汇入克拉通周缘盆地(sink)。实际上,沉积学和古地磁学的观测数据更符合俯冲背景(top-to-bottom)的地球动力驱动。
-
相同的观测对象,不同的观测手段却获得相悖的认识,不符合科学逻辑。如何更合理地回答第二层次的科学问题,华北克拉通新元古代早期的古大陆恢复和重建需要综合考虑,本文以徐淮盆地发育的基性岩床作为研究线索,运用岩石学、年代学和地球化学等分析手段探究其成因和构造背景。结合沉积地层碎屑锆石年龄所揭示的物源信息,试图用板块构造理论俯冲后撤或大地幔楔模型解释多种观测手段获得的资料。
-
1 区域地质背景
-
华北克拉通南接秦岭-大别-苏鲁造山带,北邻中亚造山带(图1a),与扬子、塔里木共同组成我国三大古老克拉通,其岩石记录最早可追溯到38亿年(Liu Dunyi et al.,1992),具有典型的双层结构,即太古宙至古元古代结晶基底和中元古代至新生代未变质或弱变质的盖层。华北克拉通基底由不同的微陆块拼合、增生而形成。关于微陆块划分及拼合时间、方式等存在诸多解释和模型,广泛采用的方案为古元古代晚期(~1.85 Ga)经吕梁运动(中条运动)的变质造山事件,将东部陆块和西部陆块沿中部造山带拼贴形成一个规模较大的基底陆块,并最终完成克拉通化。华北克拉通充分参与到Columbia超大陆的汇聚和裂解过程(Condie,2002;Wilde et al.,2002;Zhao Guochun et al.,2002,2004)。自中元古代早期进入裂谷盆地和沉积盖层的发育阶段,构造机制由碰撞挤压转向伸展拉张,与“地球中年期”的特点一致。华北克拉通东北缘燕辽、西南缘熊耳和西北缘渣尔泰-白云鄂博三大裂谷系统(1.8~1.4 Ga)逐渐形成(Lu Songnian et al.,2008;Zhai Mingguo et al.,2015;Li Sanzhong et al.,2019)。
-
中元古代晚期—新元古代早期(1.1~0.9 Ga)地层主要沿郯庐断裂带(两侧)分布在辽东、鲁中、苏皖北部和淮南地区。如果将郯庐断裂的左旋位移构造恢复,上述地区的古地理位置相互贯通(Peng Peng et al.,2011a)。构造地层分区同属于胶辽徐淮分区,以苏皖北部淮北群与辽东细河群、五行山群和金县群为代表,同期地层在鲁中、安徽北部淮南地区也有分布,如土门群、淮南群和肥水群等。朝鲜平南盆地祥原超群的地层序列与胶辽徐淮高度相似,通常被认为同一套沉积系统(Sun Fengbo et al.,2020;Cho et al.,2023)。这些盆地沉积建造以大陆边缘的碎屑岩和碳酸盐岩为主、富含前寒武纪微体古生物化石。多数地层单元之间接触关系明确,未变质或弱变质,区域可对比性较强,本文仅概述研究程度较高的徐淮和大连地区。
-
徐淮地区位于华北克拉通东南缘,郯庐断裂以西~100 km(图1b),地理位置在苏鲁皖三省交界处。蚌埠隆起将徐淮地区中—新元古界分割成淮南和淮北两个次级盆地(安徽省地质矿产局,1987)。中—新元古界淮北群分布于区域的北东部,角度不整合覆盖在太古宇泰山群山草峪组变质岩(黑云斜长片麻岩和黑云斜长角闪岩)之上。中新元古界和下古生界在中侏罗世发生褶皱变形,以逆冲板片状出露,构成徐州-宿州弧形构造带的一部分。淮北群划分为3个沉积阶段:下部兰陵组、新兴组和岠山组(又称城山组),以滨浅海碎屑岩为主,仅新兴组下部为碳酸盐岩,代表盆地拉张凹陷和快速海侵;中部贾园组、赵圩组、倪园组、九顶山组、张渠组和魏集组以灰岩和白云岩为主,夹少量砂岩、页岩及燧石结核或条带,叠层石、竹节状灰岩和臼齿构造发育,指示盆地沉降和浅海碳酸盐台地发育;上部史家组、望山组、金山寨组和沟后组(?)由两个从砂岩到灰岩的沉积旋回构成,反映海侵-海退的交替过程。淮北群被寒武系猴家山组平行不整合覆盖(图1d)。碎屑锆石年龄报道主要集中于新兴组、倪园组、史家组和金山寨组(详见后文4.3)。两期辉绿岩床分别沿地层侵入赵圩组—倪园组和史家组—望山组,与围岩同步褶皱,并出露在背斜和向斜构造的两翼。
-
大连地区位于华北克拉通东北缘,郯庐断裂带以东。以金州为沉积中心,构成近东西向的向斜构造,被近东西向的普兰店断裂分割成北部复州和南部金州-大连两个次级盆地。地层自下而上:永宁组,细河群(钓鱼台组、南芬组、桥头组),五行山群(长岭子组、南关岭组、甘井子组)和金县群(营城子组、十三里台组、马家屯组、崔家屯组、兴民村组、葛屯组)(辽宁省地质矿产局,1989)。金州-大连地层遭受轻微的变质,局部可见板岩、片岩和千枚岩,而复州地区未变质或弱变质。永宁组角度不整合覆盖于古元古界辽河群之上,与上覆的细河群为平行整合关系。永宁组和细河群均以砂岩为主,夹少量的页岩和泥质灰岩。五行山群下部为砂岩和页岩组合,向上逐渐过渡为白云岩。金县群整体以灰岩为主,夹极少量砂页岩,其顶部与寒武纪灰岩、白云岩平行不整合接触。锆石年代学研究主要围绕永宁组、钓鱼台组、桥头组、南芬组、长岭子组和兴民村组碎屑岩(Wu Zijie et al.,2022)。大连地区发育基性岩床的地层单元包括桥头组、长岭子组、南关岭组、甘井子组、营城子组、崔家屯组和兴民村组等,目前有明确年龄约束的基性岩床来自于细河群的桥头组和金县群的崔家屯组和兴民村组(Zhang Shuanhong et al.,2016;Zhao Hanqin et al.,2020)。
-
图1 华北克拉通构造位置示意图(a),华北克拉通东南缘中元古代晚期—新元古代早期地层分布(b),基性岩床分布示意图(c),徐淮地区中元古代晚期—新元古代早期地层格架(d)(据Zhao Hanqing et al.,2020修改)
-
Fig.1 Outline of the NCC and the location of the Xuzhou region (a) , Distribution of the studied late Mesoproterozoic to early Neoproterozoic successions in the southeastern NCC (b) , Simplified geological maps for mafic sills locations (c) , Simplified stratigraphic columns of the late Mesoproterozoic to early Neoproterozoic successions in the Xuhuai regions, not to scale (d, not to scale) (modified after Zhao Hanqing et al., 2020)
-
2 样品采集和分析方法
-
2.1 样品描述
-
徐淮地区中—新元古界被数个巨型基性岩床顺层侵入,厚度10~200 m,地表露头断续展布长度可达10 km,沿NNE向平行排列(图1c)。岩床与围岩层面平行或极小角度斜交,分别以冷凝边和烘烤边为标志,围岩具有微弱的大理岩化,局部矽卡岩化和蛇纹石化,伴有铁矿产生。基性岩床呈板层状或楔状(图2a),以辉绿岩和石英辉绿岩为主,少量为辉长岩,粒度多为中粗粒(图2b)。侵入的地层为赵圩组—倪园组、张渠组—望山组以及上部层位金山寨组,部分岩体边部发育柱状节理,地表球状风化明显(图2c)。图2d为栏杆地区吴庄村东1 km处,望山组薄层条带状白云岩被辉绿岩侵入,二者接触关系明显。望山组白云岩遭受烘烤重结晶作用,辉绿岩床顶部具有冷凝边,并发育气孔杏仁构造,硅质充填。依据地球化学特征、年代学和侵位地层的区别,本文13件样品可分为两类:① 栏杆镇吴庄村东南,侵入望山组白云岩为代表的中细粒辉绿岩(16XH01-1,16XH01-2,16XH01-3;16XH20;16XH20-1);② 冠山村东(16XH03-1,16XH03-2;16XH22)和占城镇石山村(16XH04;16XH21),侵入倪园组泥质灰岩和泥质白云岩为代表的粗中粒辉绿岩。
-
岩石具辉长辉绿结构,块状构造,主要由单斜辉石(45%~65%)、基性斜长石(30%~55%)组成,含少量斜方辉石和石英,副矿物见不透明金属矿物磁铁矿和钛铁矿及磷灰石等。单斜辉石呈半自形-他形柱状,粒径0.2~1.5 mm,可见辉石式近垂直角度的解理,部分发育简单双晶,强烈绿泥石化,边部析出有不透明镁铁质组分(图2e);基性斜长石呈半自形板状,粒径0.3~2 mm,斜长石普遍粘土化及绢云母化强烈,少数颗粒发育聚片双晶及卡钠复合双晶(图2f);副矿物磷灰石呈半自形-他形细柱状、粒状,多数分布于斜长石晶体内。
-
2.2 全岩主、微量元素和Sr-Nd同位素分析方法
-
岩石样品主、微量元素成分测试在河北省区域地质矿产调查研究所实验室完成。主量元素分析使用X荧光光谱法(XRF),仪器为RIGAKU RIX 2100,国际标准参考物质为BHVO-2和AGV-2,分析精度和准确度优于4%,烧失量设定为粉末样品在1000℃下灼烧1 h后质量的减少量。微量元素成分测定采用Agilent 7500a型电感耦合等离子体质谱仪,通过标准样品BHVO-2检验和校正,分析精度和准确度优于5%。
-
Sr-Nd同位素测试在中国地质调查局天津地质调查中心实验室完成。测试方法见刘文刚等(2018)。仪器为TRITON热电离质谱仪,全流程空白本底Rb≤1.8×10-10 g,Sr≤4.8×10-10 g,Sm≤1.1×10-10 g,Nd≤1.2×10-10 g。Sr和Nd同位素数据分别以88Sr/86Sr=8.37521和146Nd/144Nd=0.7219进行质量分馏的指数校正。(87Sr/86Sr)i和εNd(t)的计算采用(87Rb/86Sr)CHUR=0.0847、(87Sr/86Sr)CHUR =0.7045、(147Sm/144Nd)CHUR=0.1967和(143Nd/144Nd)CHUR =0.512638。国际标样NBS987和BCR-2的测试结果分别为87Sr/86Sr=0.710235±6和143Nd/144Nd=0.512633±5。
-
2.3 斜锆石、锆石U-Pb年龄和Hf-O同位素分析方法
-
斜锆石和锆石分选由河北省区域地质矿产调查研究所实验室完成,通过透反射光显微照相和阴极发光CL图像,对内部结构进行研究。斜锆石U-Pb同位素分析在中国科学院地质与地球物理研究所CAMECA 1280二次离子质谱仪上完成,束斑大小20~30 μm。吹氧技术显著提高207Pb/206Pb分析精度,具体流程及数据处理见Li Qiuli et al.(2010)。斜锆石外部标样Phala borwa 207Pb/206Pb年龄为2060 Ma(Heaman et al.,1993)。锆石U-Pb和O同位素在北京离子探针中心SHRIMP II二次离子探针质谱仪上完成,U-Pb测试原理和方法见Compston et al.(1992)。一次离子流(O2-)强度为2.0~2.5 nA,束斑直径25~30 μm。采用标准锆石TEMORA(417 Ma;Black et al.,2004)进行同位素分馏校正,实测204Pb进行普通铅校正,数据处理采用SQUID和Isoplot程序(Ludwig,2003)。O同位素测试流程见文献Wan Yusheng et al.(2013),将完成SHRIMP锆石U-Pb定年的样品进行再次抛光处理,以消除前期O2-源对锆石表面的污染,一次离子流(133Cs+)强度为15 nA,加速电压为10 kV。δ18O计算方法即样品与维也纳标准海水18O/16O(V-SMOW)的千分差,仪器质量分馏(IMF)校正采用标准锆石TEMORA(δ18O=8.20 ‰;Black et al.,2004)。
-
锆石Lu-Hf同位素分析在中国地质调查局天津地质调查中心实验室采用193 nm准分子激光剥蚀系统(New Wave)和多接收器电感耦合等离子体质谱仪(Neptune)完成。仪器运行条件、Lu-Hf同位素分析方法见耿建珍等(2011)。静态信号采集模式,激光剥蚀时间30 s,积分时间0.131 s,激光束斑直径50 μm,能量密度10~11 J/cm2,频率为8 Hz,采用GJ-1和Plesövice作为外标。球粒陨石的(176Hf/177Hf)CHUR和(176Lu/177Hf)CHUR比值分别为0.0332和0.282772(Blichert-Toft et al.,1997),现今亏损地幔的(176Hf/177Hf)DM和(176Lu/177Hf)DM比值分别0.28325和0.0384(Nowell et al.,1998),用于计算地壳模式年龄(TDM2)的大陆地壳平均值为0.015(176Lu/177Hfcc;Griffin et al.,2000)。
-
图2 辉绿岩床侵入倪园组泥质灰岩(a,冠山村东),基性岩斜长石和辉石斑晶(b),辉绿岩球状风化(c),侵入望山组薄层条带状白云岩(d,吴庄村东南),徐淮高Ti(e)和低Ti(f)基性岩显微照片
-
Fig.2 Diabase sill intrusion into argillaceous limestone of the Niyuan Formation (a, eastern Guanshan Village) , plagioclase and pyroxene porphyry of mafic sample (b) , spherical weathering structure (c) , mafic sill intrudes into thin-layer banded dolomite of the Wangshan Formation (d, the dolomite underwent baked, and the chilled margin of diabase sill developed vesicular and amygdaloidal structure filled by siliceous, southeastern of the Wuzhuang village) , micrographs of high Ti (e) and low Ti (f) mafic samples
-
Pl—斜长石;Aug—普通辉石;Chl—绿泥石;Fe—Ti Oxide-铁钛氧化物
-
Pl—plagioclase; Aug—augite; Chl—chlorite
-
3 测试结果
-
3.1 锆石和斜锆石U-Pb年龄
-
辉绿岩样品16XH04和16XH22锆石多呈褐色半透明,长柱状,半自形—他形,粒径50~150 μm,长宽比为2∶1~4∶1。CL图像无明显的振荡生长环带,显示不规则带状分区,具有基性岩浆锆石特点(图3)。SHRIMP U-Pb同位素年代学测试结果见附表1。
-
16XH04(GPS:34°10′40.94″,117°43′8.16″)和16XH22(GPS:34°9′48.78″,117°27′20.84″)同属于高Ti辉绿岩样品,共有32个颗粒测试。16XH04样品U和Th含量变化范围分别为178×10-6~1960×10-6和109×10-6~5968×10-6,spot 9的Th/U比值为0.63,与其他锆石具有明显的区别,207Pb/206Pb的表面年龄为1884±49 Ma,与华北克拉通古元古代碰撞造山的时间一致,为捕获锆石,spot 11普通铅Pb含量较高206Pbc=18.3%,spot 17的U和Th含量较高,晶格可能受到辐射损伤而导致放射成因Pb丢失。其余15个点谐和度高(图4a),Th/U比值0.98~1.78属于同岩浆锆石,208Pb/238Pb的加权平均年龄为917±5 Ma(MSWD=1.5,图4b)代表16XH04形成时代。16XH22样品U和Th含量变化范围分别为371×10-6~2381×10-6和438×10-6~4678×10-6,spot 1、spot 3和spot 4的U和Th含量较高,Spot 5普通Pb含量较高。其余10个点谐和度>90%(图4c),Th/U比值1.34~2.33,206Pb/238Pb的加权平均年龄为941±5 Ma(MSWD=1.5,图4d)代表16XH22的形成时代。
-
徐淮辉绿岩样品的斜锆石多呈褐色半透明,长柱状,自形—半自形,粒径20~100 μm,长宽比为1∶1~4∶1。CL图像无明显振荡生长环带,部分斜锆石显示平行于长轴方向的带状分区(图3)。SIMS斜锆石U-Pb受晶轴效应的影响,206Pb/238U出现严重的分馏而测不准,对于显生宙的样品尤为突出,前寒武纪的斜锆石207Pb和206Pb的含量高、分馏小,207Pb/206Pb年龄能够准确代表其形成时代。非常幸运的是,徐淮辉绿岩斜锆石U-Pb年龄谐和度高(图5)测试结果见附表2。样品16XH20-1(低Ti,GPS:33°58′31.83″,117°18′21.38″)全部15个点不一致线与谐和线上交点年龄为907.8±4.5 Ma(MSWD=2.2),207Pb/206Pb表面年龄加权平均值为900.9±6.6 Ma(MSWD=1.6,图5b),二者在误差范围内一致。高Ti样品16XH21-1(GPS:34°10′39.47″,117°43′4.31″)全部19个点不一致线与谐和线上交点年龄929.5±7.1 Ma(MSWD=4.2,图5c),207Pb/206Pb表面年龄加权平均值为932.1±6.7 Ma(MSWD=1.1)(图5d),二者在误差范围内完全一致。选取上交点年龄907.8±4.5 Ma和929.5±7.1 Ma分别代表辉绿岩样品16XH20-1和16XH21-1的形成时代。
-
图3 徐淮辉绿岩锆石和斜锆石CL图像(年龄单位Ma)
-
Fig.3 CL images of zircons and baddeleyites from the mafic sill in the Xuhuai region (the numbers in unit of Ma represent spot apparent age)
-
3.2 辉绿岩主、微量元素
-
主、微量元素分析结果见附表3。原始地幔橄榄岩熔融形成的玄武质熔体TiO2含量小于1%,TFeO含量为7%~10%,本文全部样品TiO2含量远高于1%。根据TiO2含量(2.5%,Xu Yigang et al.,2001)及Ti/Y值,将徐淮辉绿岩分为低Ti(Ti/Y=372~474)和高Ti(Ti/Y=541~716)两种类型。低Ti样品具有明显低的TFe2O3(11.8%~13.8%)、TiO2(1.75%~2.09%)和P2O5(0.17%~0.22%)含量,高Ti样品分别为15.9%~18.8%、3.10%~3.72%和0.23%~0.48%;低Ti样品具有高MgO(6.07%~7.45%)、CaO(9.27%~12.3%)含量以及Mg#(48~54),高Ti样品分别为4.83%~7.10%、8.91%~8.64%和35~46;低Ti样品的Al2O3(12.0%~14.1%)、Na2O(2.54%~3.25%)、K2O(0.41%~1.00%)和MnO(0.18%~0.23%)含量与高Ti样品相当,分别为11.8%~13.2%、2.40%~3.21%、0.83%~1.24%和0.22%~0.25%,而低Ti样品的SiO2含量(47.1%~48.4%)略高于后者(45.4%~47.9%)。高Ti和低Ti样品的全碱K2O+Na2O含量分别为3.31%~4.22%和3.30%~4.23%。TAS图解上(图6a)低Ti样品全部落入亚碱性玄武岩区域,高Ti样品以亚碱性为主,部分样品显示碱性。强活性元素Na和K易受后期蚀变作用,可能影响TAS图解的判别结果。高场强元素Nb/Y-Zr/Ti图解(图6b),两种类型样品绝大多数为拉斑质,仅个别高Ti样品为碱性。在Al2O3-(TFeO+TiO2)-MgO图解(图7),全部样品具有高Fe拉斑演化趋势。
-
图4 徐淮高Ti辉绿岩锆石SHRIMP U-Pb年龄谐和图(a,c)和206Pb/238U 年龄加权平均计算(b,d)
-
Fig.4 SHRIMP zircon U-Pb concordia diagram (a, c) and 206Pb/238U age weighted mean plots (b, d) for mafic sill from the Xuhuai region
-
图5 徐淮辉绿岩斜锆石SIMS U-Pb谐和图(a,c)和207Pb/206Pb年龄加权平均计算(b,d)
-
Fig.5 SIMS baddeleyite U-Pbconcordia diagrams (a, c) and 207Pb/206Pb age weighted mean plots (b, d) for mafic sills from the Xuhuai region
-
徐淮辉绿岩稀土元素球粒陨石标准化配分(图8a),全部样品显示轻稀土富集、重稀土亏损的右倾模式,Eu异常不明显或弱的正异常,δEu=1.0~1.2。高Ti样品的稀土元素总量为90.1×10-6~116×10-6,明显高于低Ti样品69.6×10-6~100×10-6,高Ti样品轻、重稀土元素分馏程度较高ΣLREE/HREE=4.0~6.4,(La/Yb)N=3.1~8.6;低Ti样品分馏程度较低ΣLREE/HREE=3.3~4.3,(La/Yb)N=2.5~4.0。
-
辉绿岩样品的大离子亲石元素(LILE,Rb、Ba)和高场强元素(HFSE,Zr、Hf、Ti)相对富集,Nb和Ta弱亏损(Nb/La=0.63~1.12,大部分小于1)。高Ti样品的Sr明显亏损,而低Ti样品的Sr弱富集。原始地幔(PM)标准化蛛网图(图8b)显示高Ti辉绿岩与洋岛玄武岩(OIB)的微量元素组成相似,低Ti辉绿岩与拉斑质大陆溢流玄武岩(CFB)相似。
-
图6 华北克拉通新元古代早期辉绿岩TAS图解(a,据Le Bas et al.,1986)和Nb/Y-Zr/Ti图解(b,据Pearce,2014)
-
Fig.6 TAS (a, after Le Bas et al., 1986) and immobile element Nb/Y-Zr/Ti (b, after Pearce, 2014) discrimination diagram for the early-Neoproterozoic diabase of NCC
-
文献数据来自Peng Peng et al.,2011a,2011b;Wang Qinghai et al.,2012;Zhang Shuanhong et al.,2016;蔡逸涛等,2018;Su Xiangdong et al.,2018,2020,2021;Zhu Renzhi et al.,2019;张琪琪等,2021;Cho et al.,2023;侯琪,2023;连光辉等,2023;高丙飞等,2024;王博等,2024,下同
-
Reference data: Peng Peng et al., 2011a, 2011b; Wang Qinghai et al., 2012; Zhang Shuanhong et al., 2016; Cai Yitao et al., 2018; Su Xiangdong et al., 2018,2020, 2021; Zhu Renzhi et al., 2019; Zhang Qiqi et al., 2021; Cho et al., 2023; Hou Qi, 2023; Lian Guanghui et al., 2023; Gao Bingfei et al., 2024; Wang Bo et al., 2024, similarly hereinafter
-
3.3 辉绿岩全岩Sr-Nd和锆石Hf-O同位素
-
徐淮辉绿岩Sr-Nd同位素分析结果见表1,Sr同位素变化范围较大,Nd同位素组成相对均一。低Ti样品中87Sr/86Sr和(87Sr/86Sr)i的比值分别为0.7077~0.7086和0.7048~0.7062,143Nd/144Nd的比值为0.512419~0.512483,εNd(t)为0.6~2.1。高Ti样品87Sr/86Sr和(87Sr/86Sr)i的比值分别为0.7080~0.7092和0.7031~0.7054,143Nd/144Nd 的比值为0.5122214~0.512520,εNd(t)为-0.4~3.3。结合已报道数据,在εNd(t)-87Sr/86Sr(t)图解上综合对比两类岩石(图9a):高Ti样品87Sr/86Sr(t)偏低,εNd(t)略亏损(图9b),显示DM(亏损地幔)与EM1端元混合的趋势,部分样品具有HIMU地幔端元特征;低Ti样品87Sr/86Sr(t)偏高,εNd(t)略富集,显示DM与EM2或者上地壳端元混合的趋势。
-
图7 徐淮辉绿岩Al2O3-(TFeO+TiO2)-MgO图解(据Jensen,1976)
-
Fig.7 Al2O3- (TFeO+TiO2) -MgO discrimination diagram for the early-Neoproterozoic diabase of NCC (after Jensen, 1976)
-
高Ti辉绿岩锆石Lu-Hf同位素测试结果见表2和图10,14个测试点的176Hf/177Hf初始值为0.282222~0.282522,εHf(t)值为+0.9~+11.4,具有明显亏损的特征,综合Wang Qinghai et al.(2012)和Zhu Renzhi et al.(2019)报道徐淮辉绿岩床Hf同位素数据,εHf(t)正态分布峰值为+7.5,低于同期亏损地幔值(+13)。依据地球Nd-Hf同位素的经验关系公式εHf(t)=1.44εNd(t)+1.61(地球阵列terrestrial array),将两类辉绿岩εNd(t)(-0.4~+3.3)换算成εHf(t),结果为+1.0~+6.4,锆石Hf同位素亏损程度比全岩Nd同位素略高,二者显示轻微解耦的特征。锆石O同位素测试结果见表3和图11,共测试39个点:低Ti样品16XH20锆石的δ18O变化范围较大4.1‰~6.8‰;高Ti样品16XH22锆石的O同位素组成相对均一,δ18O为5.5‰~6.5‰,正态分布峰值~6.0‰,整体略高于地幔锆石5.3±0.3‰(Valley et al.,2005)。此外,侯琪(2023)报道辉绿岩中磷灰石的原位氧同位素δ18O为~7‰,明显高于地幔橄榄岩。
-
图8 徐淮辉绿岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b),球粒陨石和原始地幔标准值以及OIB和E-MORB推荐值来自Sun Shensu et al.(1989),CFB推荐值来自Li Chusi et al.(2016)
-
Fig.8 Chondrite-normalized REE patterns (a) and primitive mantle-normalized multi-element spidergrams (b) for the mafic sills from the Xuhuai region. Chondrite and primitive mantle normalized values, OIB, and E-MORB are from Sun Shensu et al. (1989) , CFB from Li Chusi et al. (2016)
-
OIB—洋岛玄武岩; E-MORB—富集洋中脊玄武岩; CFB—大陆溢流玄武岩
-
OIB—oean island basalt; E-MORB—enriched mid-ocean ridge basalt; CFB—continental flood basalt
-
4 讨论
-
4.1 华北克拉通新元古代早期基性岩床的年龄
-
徐淮地区中—新元古代沉积地层被多条基性岩床顺层侵入,发育层位主要集中在沉积系统下部的倪园组(九顶山组?)和上部望山组(史家组),野外露头岩床未变质,和围岩地层接触关系明确。本文辉绿岩样品采自冠山村、占城镇石山村和栏杆镇吴庄村,分别侵位于倪园组泥质灰岩和望山组条带状白云岩。倪园组辉绿岩SHRIMP锆石206Pb/238Pb表面年龄加权平均为941±5 Ma(MSWD=1.5,N = 10)和917±5 Ma(MSWD=1.5,N=15),锆石CL无明显振荡环带,显示不规则带状分区。Th/U比值为0.98~2.33,绝大多数大于1,符合基性岩浆高温结晶特点。斜锆石普遍存在于基性—超基性岩,从岩浆中直接晶出,少见捕获成因,且其U-Th-Pb体系谐和性好、封闭温度高,是镁铁质岩石的理想定年矿物。SMIS斜锆石U-Pb不一致线与谐和线上交点年龄分为为907.8±4.5 Ma(望山组,MSWD=2.2,N=15)和929.5±7.1 Ma(倪园组,MSWD =4.2,N=19)。因此,上述锆石和斜锆石年龄结果可以精确限定辉绿岩的侵位时间。结合前人报道的U-Pb同位素年代学结果详见附表4,徐淮地区辉绿岩床形成于新元古代早期940~890 Ma,持续时间长达~50 Ma,至少可分为940~920 Ma(高Ti)和920~890 Ma(低Ti)两期,分别对应倪园组和望山组为代表的围岩地层。早期阶段侵入倪园组(赵圩组)辉绿岩床以高Ti为主,包括凤凰山976±24 Ma和1038±26 Ma(Liu Yongqing et al.,2006,Fu Xingmei et al.,2016将其重新计算为924.5 Ma),马山930±10 Ma(Gao Linzhi et al.,2009),大黑山925.6±5.3 Ma和凤山前923±13 Ma(高丙飞等,2024),种羊场919.2±5.8 Ma和牌坊943.2±8.0 Ma、937.7±5.2 Ma(Zhao Hanqing et al.,2020)。Wang Qinghai et al.(2012)报道侵入九顶山组黄集辉绿岩的年龄为918.8±12.0 Ma和889.6±7.9 Ma,实际上在1:25万地质图被划为倪园组。晚期阶段侵入望山组(史家组)辉绿岩以低Ti为主,主要出露于淮北群西南的栏杆镇—平山—褚兰附近,年龄包括896.6±16.3 Ma和890±14 Ma(Wang Qinghai et al.,2012)、916~912 Ma(Zhu Renzhi et al.,2019)、老寨山870~890 Ma(蔡逸涛等,2018),另外牛蹄山906±10 Ma(Su Xiangdong et al.,2021)亦有分布。随着大量地质年代数据的积累,关于徐淮盆地辉绿岩时空分布规律已形成共识,先后发育两期(Zhao Hanqing et al.,2020;Zhang Shihong et al.,2021;Su Xiangdong et al.,2021),且具有明显的地球化学区别。
-
图9 华北克拉通新元古代早期基性岩Sr-Nd同位素(a)和εNd(t)统计(b),中—新元古代岩浆事件Nd同位素(c)
-
Fig.9 Sr-Nd isotope (a) and εNd (t) statistics (b) of the early Neoproterozoic mafic sills, Nd isotope of the Meso-to Neoproterozoic magmatic event from the North China craton (c)
-
DM—亏损地幔; EM—富集地幔; OIB—洋岛玄武岩; MORB—洋中脊玄武岩; HIMU—高U/Pb地幔; UC—上地壳; LC—下地壳
-
DM—depleted mantle; EM—enriched mantle; OIB—ocean island basalt; MORB-mid—ocean ridge basalt; HIMU—high U/Pb mantle; UC—upper crust, LC—lower crust
-
图10 华北克拉通中元古代晚期—新元古代早期基性岩 Hf同位素(a)和徐淮地区辉绿岩锆石Hf同位素(b)
-
Fig.10 Zircon Hf isotopes of the mafic rocks from late Mesoproterozoic to early Neoproterozoic in North China craton (a) and in-stiu zircon Hf isotope of the diabase sill in the Xuhuai region (b)
-
图11 徐淮辉绿岩锆石O同位素
-
Fig.11 In-stiu zircon oxygen isotope of the diabase sill in the Xuhuai region
-
大连地区中—新元古代沉积盆地发育的基性岩床形成时代为948~890 Ma,年代学和岩石地球化学性质与徐淮盆地具有相似性,侵位地层主要集中于沉积系统下部细河群桥头组的石英砂岩和上部金县群崔家屯组和兴民村组的砂质页岩、灰岩。总体趋势,桥头组的辉绿岩发育稍早,包括长兴947.8±7.4 Ma(Zhao Hanqing et al.,2020)和普兰店923±22 Ma(Zhang Shuanhong et al.,2016)。崔家屯组和兴民村组的辉绿岩形成时代较晚,年龄为924~886 Ma(Zhang Shuanhong et al.,2016),孙逊等(2024)测得侵入五行山群甘井子组灰岩和长岭子组粉砂质页岩的辉绿岩床更为年轻~880 Ma。此外,华北克拉通西北缘阴山地区(张琪琪等,2021)和恒山-太行地区(Peng Peng et al.,2011a;连光辉等,2023)以及朝鲜半岛的平南盆地(Peng Peng et al.,2011b;Cho et al.,2023)均有新元古代早期基性岩墙/床的记录。结合碎屑岩地层碎屑锆石限定的最大沉积年龄,可将华北克拉通周缘中—新元古代沉积盆地普遍发育的时限大致限定在1100~890 Ma。
-
4.2 辉绿岩床起源和成因
-
徐淮地区新元古代辉绿岩低SiO2,高MgO、TFeO和TiO2,TAS和Nb/Y-Zr/Ti图解(图6)为玄武岩,表明辉绿岩源自幔源的基性岩浆。高Ti和低Ti两种类型的辉绿岩MgO含量均小于7.50%,Mg#值为35~54,低Cr(4.44×10-6~256×10-6)、Ni(18.4×10-6~74.7×10-6)含量,说明岩浆不是初始熔体,经历了岩浆演化过程,部分岩浆高程度演化至石英正长岩(Su Xiangdong et al.,2021)和伟晶岩(Peng Peng et al.,2011a)。因此,在讨论岩浆起源和地幔源区之前,应对辉绿岩的蚀变作用、分离结晶和地壳混染的影响进行评估。
-
辉绿岩主要造岩矿物单斜辉石和斜长石分别经历了绿泥石化和绢云母化,烧失量LOI最高达3.75%,样品存在不同程度的后期蚀变。在低级变质作用和热液蚀变过程元素Zr保持稳定,常被用来评估元素迁移行为。本文样品SiO2、TiO2、MgO、Yb、Y、Nb、Th和 U等元素与Zr呈线性相关,表明上述元素总体上未迁移。大离子亲石元素(如Rb和Ba)与Zr大致相关,因此,讨论岩石成因尽量考虑抗蚀变能力较强的主量(如SiO2和TiO2)和微量元素(REE和HFSE)。
-
地壳混染和分离结晶作用在幔源岩浆上升侵位过程可以改变其地球化学属性。地壳混染导致岩浆富集Zr和Hf,亏损Nb、Ta和Ti。华北克拉通新元古代早期辉绿岩在微量元素蛛网图上多数表现为Nb-Ta明显的负异常(图8b),但是Ti为正异常,Zr-Hf的异常不明显。不相容元素比值(如Sm/Nd、Nb/La)和放射性成因同位素对地幔源区不均一性和地壳污染较为敏感,不受分离结晶作用影响。一般壳源组分Nb/La、Sm/Nd和MgO含量低,SiO2含量高,而软流圈地幔熔体未经历地壳混染,Nb/La、Sm/Nd和MgO含量高,SiO2含量低。如果岩浆源区受到大规模地壳混染,不相容元素比值(Sm/Nd、Nb/La)与SiO2具有正相关的关系。本文两类岩石Zr/Hf-Sm/Nd、Nb/La-Sm/Nd和La/Sm-SiO2的谐变趋势与地壳混染明显不同(图12)。另外,全岩Nd同位素的变化范围小以及锆石Hf同位素接近亏损地幔,说明辉绿岩样品受到地壳混染作用有限,岩浆富集特征主要来自源区属性。
-
样品Ni、Cr含量低于地幔橄榄岩平衡熔体的含量(Cr: 300×10-6~500×10-6,Ni >300×10-6),并且与MgO或者Mg#正相关(图13a、b),指示镁铁质矿物橄榄石、尖晶石和单斜辉石的分离结晶。与此同时,MgO与CaO正相关(图13c),说明单斜辉石分离结晶。样品Eu呈正异常(δEu: 1.0~1.2),可能与斜长石堆晶作用以及原始岩浆高氧逸度有关。但是,微量元素蛛网图显示(图8b),高Ti样品的Sr明显负异常,可以排除斜长石堆晶作用。低Ti样品无异常或部分正异常,可能存在斜长石的堆晶作用。另外,MgO与TFe2O3、TiO2和P2O5负相关(图13d~f),可能存在Fe-Ti氧化物和磷灰石的分离结晶。华北克拉通新元古代早期基性岩床以单斜辉石的分离结晶为主,和岩相学观察到单斜辉石斑晶吻合。
-
在Nb/Yb-Th/Yb图解中(图14a),多数辉绿岩样品点平行分布于MORB-OIB系列的上方,岩浆源区有壳源物质的添加。前文已排除地壳混染的影响,推测源区受到俯冲地壳熔/流体富集组分交代的影响,这与锆石(δ18O≥6‰;本文)和磷灰石(~7‰;侯琪,2023)重氧同位素的观测一致。alphaMELTS模拟不同压力和氧逸度条件下熔体的结晶过程(图13g,Wang Yaying et al.,2018),液相下降线(LLD)对比发现较深压力0.5 GPa和较高氧逸度QFM+1,更能符合在特定MgO含量下本文样品低SiO2含量的特点,反演岩浆高氧逸度是交代改造的结果。另外,实验岩石学发现无水体系熔体的结晶比含水体系具有更高的CaO/Al2O3,多数辉绿岩CaO/Al2O3比值低,与含水体系下熔体结晶类似。图15显示两类辉绿岩地幔源区以硅酸盐熔体交代为主,而栏杆地区报道部分含金刚石的辉绿岩具有低Hf/Sm和极高Zr/Hf比值(蔡逸涛等,2018),其岩浆源区可能受到碳酸盐熔体的交代。此外,高Ti辉绿岩锆石Hf同位素比低Ti样品亏损,全岩Nd同位素与锆石Hf同位素轻微解耦,可能是由于交代熔体成分不均一所致。
-
图12 徐淮辉绿岩Sm/Nd-Nb/La(a)、Sm/Nd-Nb/La(b)和La/Sm-SiO2(c)谐变图
-
Fig.12 Variation plots of Sm/Nd-Nb/La (a) , Sm/Nd-Nb/La (b) and La/Sm-SiO2 (c) for mafic sills from the Xuhuai region
-
N-MORB—正常洋中脊玄武岩;UCC—大陆上地壳;LCC—大陆下地壳;BCC—大陆平均地壳
-
N-MORB—normal mid-ridge basalt; UCC—upper continental crust; LCC—lower continental crust; BCC—bulk continental crust
-
区域上低Ti和高Ti两类基性岩共存,目前主要有两种成因解释:即岩浆部分熔融和分离结晶。徐淮地区高Ti辉绿岩的Mg#值明显小于低Ti样品,高Ti岩浆可以通过低Ti岩浆分离结晶演化形成,该模式在大型层状岩体中得到验证,尤其是低氧逸度条件下,抑制Fe-Ti氧化物的先期结晶,岩浆演化到一定程度,残留熔体的Fe-Ti逐渐饱和而形成高Ti岩石。实际上,徐淮辉绿岩床的地幔源区受到熔体相关的交代富集作用(图15),其岩浆氧逸度并不低,这与锆石(图11)和磷灰石(侯琪,2023)的O同位素以及实验岩石学对比结果(图13h)一致。更重要的是,高Ti辉绿岩形成时间比低Ti样品早,高Ti样品单Nd-Hf同位素更加亏损,因此,两类岩石难以通过分离结晶作用来建立岩浆演化的序列,其地球化学特征的区别继承自熔融源区。稀土元素球粒陨石标准配分图(图8a)以及Nb/Yb-TiO2/Yb二元图解(图14b),均表明高Ti样品轻重稀土元素的分馏程度显著大于低Ti样品。压力或者岩浆起源深度(岩石圈盖层效应)是地幔部分熔融的一级控制因素(Niu Yaoling,2021),高Ti样品的轻、重稀土元素之间LREE/HREE、(La/Yb)N以及重稀土元素内部(Gd/Yb)N分馏大,代表部分熔融的程度低(熔融区间短),熔融源区有更多石榴子石参与。与此同时,Nd-Hf同位素解耦特征可以归因于源区的石榴子石效应。由于石榴子石的Lu-Hf和Sm-Nd分配系数差异明显,即KdLu/Hf>>1,KdSm/Nd≥1,石榴子石控制着源区Lu丰度和高Lu/Hf值。由Lu放射性衰变成Hf的积累速度远高于Sm-Nd体系的衰变积累。部分熔融源区石榴子石分解,可导致岩浆HREE含量增加以及εHf(t)显著升高,而对Sm-Nd同位素体系的影响相对较小。两类辉绿岩构造判别属于岩石圈减薄的板内伸展环境,高Ti样品发育时间较早(940~920 Ma),地球化学特征与OIB近似,指示其部分熔融程度低、源区深;低Ti样品发育时间晚(915~890 Ma)接近E-MORB,代表其部分熔融程度大、源区浅。根据两类辉绿岩时空演化以及地球化学特征,结合板块构造理论模型,本文提出徐淮地区940~890 Ma基性岩经历两阶段的演化过程:① 板块俯冲深俯冲作用将长英质和碳酸盐等地壳物质运移至深部地幔,板片脱水作用引发壳源物质熔融,所产生的熔/流体交代上覆的岩石圈地幔形成富集的角闪石岩或者石榴辉石岩;② 板块俯冲角度的变化或者板片回卷,软流圈地幔上涌导致岩石圈张裂,深部岩石圈地幔较早的与软流圈地幔进行物质和能量交换,且软流圈物质参与比例高,其部分熔融形成高Ti母岩浆及亏损的同位素特征。相比之下,浅部岩石圈地幔以辉石岩(无水体系)或者角闪石岩(含水体系)为主,石榴子石的含量低,减压熔融形成了晚期低Ti样品的母岩浆。
-
图13 华北克拉通新元古代早期基性岩MgO与微量(a,b)、主量(c~h)元素双变量图解(g,模拟结果根据 Wang Yaying et al.,2018;h,实验模拟数据汇总根据Wang Xuance et al.,2016)
-
Fig.13 Binary diagrams of MgO vs. trace elements (a, b) and major elements (c~h) for the the early Neoproterozoic mafic sills in NCC (g, numerical simulation of melts liquid line descent after Wang Yaying et al., 2018; h, results compilation of crystal fractionation experiments after Wang Xuance et al., 2016)
-
Ol—橄榄石;Cpx—单斜辉石;Pl—斜长石;Fe-Ti oxides—铁钛氧化物;QFM—石英-铁橄榄石-磁铁矿
-
Ol—olivine; Cpx—clinopyroxene; Pl—plagioclase; QFM—quartz, fayalite and magnetite
-
图14 徐淮辉绿岩Nb/Yb-Th/Yb(a)和Nb/Yb-TiO2/Yb(b)谐变图解(据Pearce,2014)
-
Fig.14 Nb/Yb-Th/Yb (a) and Nb/Yb-TiO2/Yb (b) binary diagram for mafic sills from the Xuhuai region (after Pearce, 2014)
-
N-MORB—正常洋中脊玄武岩;E-MORB—富集洋中脊玄武岩;OIB—洋岛玄武岩
-
N-MORB—normal mid-ocean ridge basalt; E-MORB—enriched mid-ocean ridge basalt; OIB—ocean island basalt
-
4.3 华北克拉通中—新元古代构造演化
-
中—新元古代1.8~0.75 Ga被称为地球中年期(Earth's middle age)或无聊的十亿年(boring billion),时间跨越哥伦比亚和罗迪尼亚两个超大陆的演化阶段,是地质历史上承前启后的特殊时期。一系列岩浆活动记录和地球化学指标揭示中—新元古代的全球构造环境相对稳定。该时期华北克拉通耦合发育裂谷盆地和多期幕式岩浆事件。但是,中元古代早期和晚期在岩浆属性、沉积序列和古地理位置等方面存在显著差异。
-
4.3.1 华北克拉通中元古代早期构造
-
自~1.85 Ga吕梁运动后,华北克拉通以伸展构造为主,其边缘发育熊耳、燕辽和渣尔泰-白云鄂博三个裂谷系统(裂谷盆地)。熊耳裂谷底部发育河湖相砂岩-泥岩沉积(大古石组,1.80~1.78 Ga),是结晶基底上覆的最早沉积,而燕辽裂谷起始发育的时间稍晚(~1.65 Ga)。中元古代早期岩浆包括:① 1.83~1.75 Ga熊耳火山岩群和碱性岩带以及太行地区基性岩墙群(Wang Yuejun et al.,2004,2008;Peng Peng et al.,2007;He Yanhong et al.,2010;Hu Guohui et al.,2010;Wang Changming et al.,2016);② 1.72~1.67 Ga燕辽裂谷非造山侵入的斜长岩、纹长二长岩、紫苏花岗岩、花岗岩等(AMCG组合),莱芜地区亦有同期基性岩(Li Yun et al.,2015);③ 1.63~1.62 Ga燕辽裂谷富钾碱性岩、熊耳裂谷龙王幢碱性花岗岩和泰山基性岩墙。中元古代早期岩浆显示双峰式的地球化学特点,以基性玄武安山岩或辉绿辉长岩和酸性A型花岗岩为主,部分基性岩浆演化至中性安山岩或闪长岩。A型花岗岩通常形成于高温低压环境,是伸展构造的产物,时间范围为1.83~1.50 Ga,空间分布局限在裂谷盆地范围内,绝大多数花岗岩Nd-Hf同位素富集,位于2.5 Ga地壳演化线附近(TDMC ≈2.5 Ga),是古老基底陆壳物质部分熔融的结果。基性岩石端元以亚碱性拉斑质的岩墙或岩席为主,大红峪火山岩偏碱性,但发育规模有限。熊耳期基性岩墙Nd-Hf同位素显示富集特征,指示其源区来自岩石圈地幔,多数文献倾向于地幔柱热侵蚀的成因模式(Peng Peng et al.,2007)。但从熊耳期岩浆空间分布的角度考虑,其出露位置严格限定在华北克拉通中部造山带(TNCO)。大陆碰撞加厚的下地壳拆沉/垮塌,诱发幔源岩浆底侵作用,同样能够导致区域的高热流值以及岩石圈的部分熔融,似乎更符合实际观察和威尔逊旋回演化规律以及奥卡姆剃刀原则。大红峪火山岩1.63~1.62 Ga的Nd-Hf同位素弱亏损(胡俊良等,2007;张健等,2021),说明软流圈地幔参与程度显著提高。中元古代早期岩浆揭示华北克拉通的伸展拉张构造背景,沉积序列通常从陆源碎屑过渡到滨浅海相碳酸盐岩,进一步支持陆内裂谷环境。
-
图15 华北克拉通新元古代早期辉绿岩源区交代图解
-
Fig.15 The discrimination diagrams of mantle source metasomatic characteristics for the early Neoproterozoic basic rocks in the North China craton
-
4.3.2 华北克拉通中元古代晚期构造
-
华北克拉通中元古代晚期岩浆以基性岩墙和岩床为主,包括:① 1.33~1.30 Ga克拉通北缘侵入到下马岭组与雾迷山组的基性岩墙(床),含白云鄂博火成碳酸岩以及周边零星的花岗岩体(Zhang shuanhong et al.,2012;Zhu Yisheng et al.,2020;Hu Guohui et al.,2022;Wang Xinping et al.,2022);②~1.23 Ga通化辉绿岩墙、建平-青龙基性岩墙、滦南第四系覆盖的隐伏基性岩体以及沂水辉长岩(Peng Touping et al.,2013;Wang Wei et al.,2015;Wang Chong et al.,2016,2020);③ 0.94~0.89 Ga本文研究的徐淮胶辽和朝鲜平南盆地以及固阳-凉城的基性岩床/墙。对比Nd-Hf同位素特征,中元古代早期与晚期岩浆具有本质的区别,晚期岩浆同位素亏损,部分岩体Hf同位素接近亏损地幔值,代表岩浆源区从中元古代早期的岩石圈地幔转入中元古代晚期的软流圈地幔。熊耳、燕辽和渣尔泰-白云鄂博三大裂谷的沉积作用在~1.32 Ga骤然停止,直至1.1 Ga后重新接受碎屑物质沉积,华北克拉通普遍出现蓟县系和青白口系之间的沉积不整合,诸如下马岭组—长龙山组(燕辽裂谷)和白术沟组—三川组(熊耳裂谷)之间沉积间断至少为300 Ma,说明华北克拉通在~1.32 Ga发生整体的拾升,同期白云鄂博发育全球规模最大的火成碳酸岩型铌铁稀土矿床。由于碳酸岩的地幔稳定域(75~150 km)非常有限,其形成条件与岩石圈厚度密切相关,克拉通边缘或者岩石圈-软流圈界面(LAB)急变带,更有利于火成碳酸岩的形成。目前普遍认为地幔热点或地幔柱是华北克拉通北缘中元古代晚期大陆裂解以及白云鄂博火成碳酸岩形成是关键控制因素。然而,洋壳深俯冲在裂解过程中的作用不容忽视。大地幔楔框架下洋壳深俯冲为碳循环提供了一种新的视角(Yaxley et al.,2022),即大洋岩石圈部分碳质在弧前和弧下的深度得以保存,俯冲至地幔过渡带并与碳酸盐化榴辉岩固相线相交,熔融产生碳酸岩熔体。熔体上升过程与周围地幔橄榄岩发生的衍生作用,同样可以形成火成碳酸岩熔体,并于地表侵位或喷发。更重要的是,Zhang Ji'en et al.(2024)发现白云鄂博碳酸岩侵位前,区域上经历构造挤压,原始水平地层被置换成近东西走向陡立的构造片理,为岩浆上升提供通道。
-
古地磁APWP拟合显示,1.78~1.32 Ga华北克拉通燕辽盆地处于赤道附近的低纬度地区,与北澳大利亚克拉通McArthur盆地长期相邻,但在~1.32 Ga发生裂离,至~1.22 Ga二者出现较大的纬向差距(Wang Chong et al.,2020; Ding Jikai et al.,2021)。1.3~1.0 Ga期间,华北克拉通与劳伦大陆共同经历了赤道和极地之间折返过程,板块纬向运动速率可达27 cm/a(Swanson-Hysell et al.,2019),甚至超过特提斯域微陆块单向运移的速率(Yang Tianshui et al.,2015)。地幔热点或地幔柱相对于上覆的刚性岩石圈通常被认为是静止的,它可以弱化岩石圈,为其拉张伸展提供触发,但不足以维持超大陆裂解的持续过程。大洋岩石圈俯冲是超大陆裂解的一级动力学驱动,俯冲带重力牵引作用普适且长期,俯冲角度的变化直接影响上覆岩石圈的应力状态,导致大陆地壳的伸展和减薄,甚至克拉通破坏。因此,古地磁数据表明俯冲后撤或者大地幔楔模型在解释前寒武纪地质问题时可能被严重忽视了。此外,如果构造恢复郯庐断裂的左旋位移,本文所关注的0.94~0.89 Ga基性岩床沿华北克拉通东南缘徐淮-胶辽-平南盆地呈线状或带状分布,并不符合地幔热点或地幔柱要求的点状或面状分布方式,因此需要重新审视华北克拉通中—新元古代岩浆成因机制。
-
图16 华北克拉通徐州和大连地区中新元古代地层格架和碎屑锆石年龄图谱
-
Fig.16 Meso-Neoproterozoic stratigraphic framework and the detrital zircon age KDE statistics in Xuzhou and Dalian, the North China craton
-
徐淮胶辽及朝鲜平南地区沉积盆地的碎屑锆石U-Pb年代学分析表明,沉积作用始于~1.1 Ga,与格林威尔全球造山活动几乎同步,不同沉积阶段的物源体系发生了迁移,碎屑锆石的年龄谱系表现出显著变化。沉积体系的下部粗碎屑以华北克拉通内部新太古代和古元古代物源为主; 上部以碳酸盐台地沉积为主,所含少量细碎屑岩来自中—新元古代物源区(图16),锆石Hf同位素以亏损为主(εHf(t)>0,图17)。虽然华北克拉通记录多期中—新元古代岩浆事件,但这些岩浆多以岩床/墙形式侵入克拉通基底或沉积盖层,出露的规模相对较小。另外,华北克拉通中元古代晚期—新元古代早期的基性岩床/墙的发育大量高U含量(>2000×10-6)锆石,而沉积地层的中元古代碎屑锆石颗粒多数发育振荡生长环带,U含量普遍低于1000×10-6,与基性岩浆的原生锆石具有明显区别,因此,沉积盆地中—新元古代碎屑物质来自克拉通内生岩浆的可能性极低。
-
华北克拉通南缘新元古界物源分析对于中元古代碎屑物质的来源目前主要有三类观点:① 来源于华北克拉通内部本身(Yang Debin et al.,2012);② 来源于与华北克拉通相邻的某个陆块或陆块群,例如圣弗朗西斯科-刚果联合古陆(Sun Fengbo et al.,2020,2022)、劳伦-波罗的古陆(Liu Chaohui et al.,2020)等;③ 来源于与华北克拉通基底构成不同的中元古代物源区(初航等,2011)或者活动构造带,例如劳伦大陆东南缘格林威尔造山带(陆松年等,2012;Ding Jikai et al.,2021)、北秦岭(Li Zhensheng et al.,2024)。上述推断主要依据碎屑锆石年龄谱系,未充分考虑中元古代碎屑锆石Hf同位素的亏损特征,克拉通或微陆块岩石的Hf同位素一般沿着地壳演化线趋势分布,难以与华北克拉通南缘新元古界物源匹配。大规模新生地壳物质的出现代表着幔源岩浆的加入,活动构造的弧岩浆更有利于地幔物质增生。同样,孙逊等(2024)利用锆石微量元素判别,揭示基性岩浆可能是大陆岛弧成因。因此有理由相信,新元古代早期徐淮胶辽及朝鲜平南盆地可能处于俯冲环境,局部伸展是板块构造俯冲后撤或者大地幔楔的末端响应,造山带与沉积盆地的距离相对较近,并为后者提供物源碎屑。
-
图17 华北克拉通中—新元古代锆石Hf同位素
-
Fig.17 The compilation of Meso-Neoproterozoic zircon Hf isotopes in the North China craton
-
数据来源:岩浆锆石参考张健等,2021图5和本文图9;徐淮-胶辽盆地中—新元古代碎屑岩锆石来自Hu Bo et al.,2012;Yang Debin et al.,2012;吴昊,2018; Kim et al.,2019; Liu Jianhui et al.,2020; Sun Fengbo et al.,2020,2022; Zhang Wen et al.,2022; Wu Zijie et al.,2022; Cho et al.,2023; Liu Chaohui et al.,2023; Li Zhensheng et al.,2024
-
Data source:magmatic zircon refer to Fig.5 of Zhang Jian et al., 2021 and Fig.9 of this study; Meso-Neoproterozoic detrital zircon date of Xuhuai-Jiaoliao basin from Hu Bo et al., 2012; Yang Debin et al., 2012; Wu Hao,2018; Kim et al., 2019; Liu Jianhui et al., 2020; Sun Fengbo et al., 2020, 2022; Zhang Wen et al., 2022; Wu Zijie et al., 2022; Cho et al., 2023; Liu Chaohui et al., 2023; Li Zhensheng et al., 2024
-
综合岩石地球化学、沉积学和古地磁的研究成果,板块俯冲或者大地幔楔模型能够对华北克拉通南缘中—新元古代沉积盆地内观察到的一系列地质现象作出合理解释。
-
5 结论
-
(1)华北克拉通东南缘徐淮盆地辉绿岩床形成于新元古代早期940~890 Ma,持续时间长达~50 Ma,至少可分为940~920 Ma(高Ti,侵位于淮北群中部倪园组)和920~890 Ma(低Ti,侵位于淮北群上部望山组)两期。
-
(2)两类辉绿岩的地球化学成分以拉斑质玄武岩为主,部分高Ti样品为碱性玄武。高Ti辉绿岩具有与OIB近似的元素地球化学组成,而低Ti辉绿岩与E-MORB相似。两类辉绿岩Sr-Nd-Hf-O同位素显示不均一性。元素及同位素地球化学证实两类辉绿岩源区地幔岩石圈经历过熔/流体交代,熔/流体来自于俯冲板片的脱水熔融。
-
(3)结合沉积地层碎屑锆石年龄及Hf同位素组成所揭示的物源信息,沉积体系碎屑岩源区由克拉通内部向外部迁移,外来物质的Hf同位素亏损为新生地壳,暗示板块俯冲相关的弧岩浆。综上所述,华北克拉通中元古代晚期—新元古代早期具有板内特征的辉绿岩(辉长岩)与俯冲板块回撤和/或大地幔楔有关。
-
致谢:谨以本文敬贺任继舜院士九十寿辰!衷心感谢先生对我们长久的鼓励和帮助。感谢两位审稿人提出宝贵的意见和建议。
-
附件:本文附件(附表1~4)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202501094?st=article_issue
-
参考文献
-
Anhui Province Bureau of Geology and Mineral Resourves (ABGMR). 1987. Regional Geology of Anhui Province. Beijing: Geological Publishing House (in Chinese).
-
Black L P, Kamo S L, Allen C M, Davis D W, Aleinikoff J N, Valley J W, Mundil R, Campbell I H, Korsch R J, Williams I S, Foudoulis C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1~2): 115~140.
-
Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1~2): 243~258.
-
Cai Yitao, Zhang Jie, Dong Zhongdou, Cao Zhengqi, Xiao Shuyue, Li Shuai, Li Chengkai, Chen Lezhu, Fan Feipeng. 2018. Neoproterozoic basic magmatism in the north of Anhui Province: Evidence from whole-rock geochemistry and U-Pb geochronology of diabase in Langan area. Geology in China, 45(2): 351~366 (in Chinese with English abstract).
-
Cho D L, Peng Peng, Lee S H, Park J Y, Seo I, Sun Fengbo, Li Qiuli, Zhang Yanbin. 2023. Identify vestiges of large igneous provinces in deep time: A 0. 9 Ga case from North China (Sino-Korean) craton. Precambrian Research, 398: 107220.
-
Chu Hang, Lu Songnian, Wang Huichu, Xiang Zhenqun, Liu Huan. 2011. U-Pb age spectrum of detrital zircons from the Fuzikuang Formation, Penglai Group in Changdao, Shandong Province. Acta Petrologica Sinica, 27(4): 1017~1028 (in Chinese with English abstract).
-
Compston W, Williams I S, Kirschvink J L, Zhang Zichao, Ma Guogan. 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, 149(2): 171~184.
-
Condie K C. 2002. Breakup of a Paleoproterozoic supercontinent. Gondwana Research, 5(1): 41~43.
-
Cui Minli, Zhang Baolin, Zhang Lianchang. 2011. U-Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China Craton: Constrains on the timing and tectonic setting of the Paleoproterozoic Xiong'er Group. Gondwana Research, 20(1): 184~193.
-
Ding Jikai, Zhang Shihong, Evans D A D, Yang Tianshui, Li Haiyan, Wu Huaichun, Chen Jianping. 2021. North China Craton: The conjugate margin for northwestern Laurentia in Rodinia. Geology, 49(7): 773~778.
-
Fu Xingmei, Zhang Shihong, Li Haiyan, Ding Jikai, Li Huaikun, Yang Tianshui, Wu Huaichun, Yuan Haifan, Lv Jing. 2015. New paleomagnetic results from the Huaibei Group and Neoproterozoic mafic sills in the North China Craton and their paleogeographic implications. Precambrian Research, 269: 90~106.
-
Gao Bingfei, Pan Mingbao, Li Xiangqian, Zhao Tongyang, Du Jianguo, Cheng Yu, Wu Changzhi. 2024. Ages and geochemical characteristics of diabase walls in the Xuzhou-Suzhou area of Jiangsu in the North China Craton and their response to the fragmentation of the Rodinia continent. Geological Bulletin of China, DOI: 10. 12097/gbc. 2023. 07. 017 (in Chinese with English abstract).
-
Gao Linzhi, Zhang Chuanheng, Liu Pengju, Tang Feng, Song Biao, Ding Xiaozhong. 2009. Reclassification of the Meso- and Neoproterozoic chronostratigraphy of North China by SHRIMP zircon ages. Acta Geologica Sinica-English Edition, 83(6): 1074~1084.
-
Gao Linzhi, Zhang Chuanheng, Chen Shouming, Liu Pengju, Ding Xiaozhong, Liu Yanxue, Dong Chunyan, Song Biao. 2010. Detrital zircon SHRIMP U-Pb age from the Diaoyutai Formation, Xihe Group in Liaodong Peninsula, China and its geological significance. Geological Bulletin of China, 29(8): 1113~1122 (in Chinese with English abstract).
-
Geng Jianzhen, Li Huaikun, Zhang Jian, Zhou Hongying, Li Huimin. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508~1513 (in Chinese with English abstract).
-
Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133~147.
-
He Tianchen, Zhou Ying, Vermeesch P, Rittner M, Miao Lanyun, Zhu Maoyan, Carter A, Strandmann P A E P V, Shields G A. 2017. Measuring the ‘Great Unconformity’ on the North China Craton using new detrital zircon age data. Geological Society, London, Special Publications, 448: 145~159.
-
He Yanhong, Zhao Guochun, Sun Min, Han Yigui. 2010. Petrogenesis and tectonic setting of volcanic rocks in the Xiaoshan and Waifangshan areas along the southern margin of the North China Craton: Constraints from bulk-rock geochemistry and Sr-Nd isotopic composition. Lithos, 114(1~2): 186~199.
-
Heaman L M, Le Cheminant A N. 1993. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chemical Geology, 110(1~3): 95~126.
-
Hoffman P F. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 252(5011): 1409~1412.
-
Hou Qi. 2023. Petrological and geochemical study of diamond-bearing mafic-ultramafic rocks in the southeastern margin of the North China Craton. Doctor degree thesis of University of Science and Technology of China (in Chinese with English abstract).
-
Hu Bo, Zhai Mingguo, Li Tiesheng, Li Zhong, Peng Peng, Guo Jinghui, Kusky T M. 2012. Mesoproterozoic magmatic events in the eastern North China Craton and their tectonic implications: Geochronological evidence from detrital zircons in the Shandong Peninsula and North Korea. Gondwana Research, 22(3~4): 828~842.
-
Hu Guohui, Hu Junliang, Chen Wei, Zhao Taiping. 2010. Geochemistry and tectonic setting of the 1. 78 Ga mafie dyke swarms in the Mt. Zhongtiao and Mt. Song areas, the southerm margin of the North China Craton. Acta Petrologica Sinica, 26(5): 1563~1576 (in Chinese with English abstract).
-
Hu Guohui, Wang Mengxi, Zhang Shuanhong, Zhao Yue, Zhang Qiqi. 2022. A ca. 1. 33 Ga mafic dyke identified from the Liaodong Peninsula, northeastern North China Craton: Implications for eastward extension of the Yanliao large igneous province. Precambrian Research, 378: 106770.
-
Hu Junliang, Zhao Taiping, Xu Yonghang, Chen Wei. 2007. Geochemistry and petrogenesis of the high-K volcanic rocks in the Dahongyu Formation, North China Craton. Journal of Mineralogy and Petrology, 27(4): 70~77 (in Chinese with English abstract).
-
Jensen L S. 1976. A new cation plot for classifying subalkalic volcanic rocks. Ontario Division of Mines Miscellancous Papper, 66: 1~22.
-
Kim S W, Kwon S, Santosh M, Cho D L, Kee W S, Lee S B, Jeong Y J. 2019. Detrital zircon U-Pb and Hf isotope characteristics of the early Neoproterozoic successions in the central-western Korean Peninsula: Implication for the Precambrian tectonic history of East Asia. Precambrian Research, 322: 24~41.
-
Le Bas M J, Le Maitre R W, Streckeisen A, Zanettin B, IUGS Subcommission on the Systematics of Igneous Rocks. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745~750.
-
Li Chusi, Arndt N T, Tang Qingyan, Ripley E M. 2015. Trace element indiscrimination diagrams. Lithos, 232: 76~83.
-
Li Huaikun, Zhang Jian, Tian Hui, Zhou Hongying, Xiang Zhenqun, Li Huan. 2020. Recent advances in the study of the Meso- to Neo-proterozoic chronostratigraphy of the Yanliao aulacogen on the northern margin of the North China Craton. Geological Survey and Research, 43(2): 127~136 (in Chinese with English abstract).
-
Li Qiuli, Li Xianhua, Liu Yu, Tang Guoqiang, Yang Jinghui, Zhu Weiguang. 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. Journal of Analytical Atomic Spectrometry, 25(7): 1107~1113.
-
Li Sanzhong, Li Xiyao, Wang Guangzeng, Liu Yiming, Wang Zecheng, Wang Tongshan, Cao Xianzhi, Guo Xiaoyu, Somerville I, Li Yang, Zhou Jie, Dai Liming, Jiang Suhua, Zhao Hao, Wang Yu, Wang Gang, Yu Shan. 2019. Global Meso-Neoproterozoic plate reconstruction and formation mechanism for Precambrian basins: Constraints from three cratons in China. Earth-Science Reviews. 198: 102946.
-
Li Yun, Peng Peng, Wang Xinping, Wang Haozheng. 2015. Nature of 1800~1600 Ma mafic dyke swarms in the North China Craton: Implications for the rejuvenation of the sub-continental lithospheric mantle. Precambrian Research, 257: 114~123.
-
Li Zhengxiang, Bogdanova S V, Collins A S, Davidson A, de Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu Songnian, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1~2): 179~210.
-
Li Zhensheng, Dong Yinxiao, An Wei, Mitchell R N, Lan Zhongwu, Wang Ding, Tan Mingzhen, Zhao Zhuoya, Zhang Jiaodong. 2024. The Late Stenian and Late Tonian provenance transitions in the northern Xuhuai basin: Implications for the Precambrian evolution of the southeastern North China Craton. Journal of Asian Earth Sciences, 264: 106070.
-
Lian Guanghui, Ren Yunwei, Shi Jianrong, Xu Zhongyuan. 2023. Petrogenesis and paleogeographic reconstruction significance of mafic dykes in Liangcheng, northern margin of the North China Craton. Acta Geologica Sinica, 97(4): 1295~1314 (in Chinese with English abstract).
-
Liaoning Province Bureau of Geology and Mineral Resourves (LBGMR). 1989. Regional Geology of Liaoning Province. Beijing: Geological Publishing House (in Chinese).
-
Liu Chaohui, Zhao Guochun, Liu Fulai, Shi Jianrong, Ji Lei. 2020. Detrital zircon records of Late Paleoproterozoic to Early Neoproterozoic northern North China Craton drainage reorganization: Implications for supercontinent cycles. The Geological Society of America Bulletin, 132(9~10): 2135~2153.
-
Liu Chaohui, Zhao Guochun, Liu Fulai, Xu Wang, Sun Xun. 2023. New geochronological results from Late Mesoproterozoic to Early Neoproterozoic successions in the eastern North China Craton and implications for the reconstruction of Rodinia. The Geological Society of America Bulletin, 135(9~10): 2575~2590.
-
Liu Dunyi, Nutman A P, Compston W, Wu Jianshan, Shen Qihan. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20(4): 339.
-
Liu Jianhui, Ding Zhengjiang, Wang Xiangjian, Chen Hui, Liu Fulai. 2020. Detrital zircon U-Pb geochronology and Lu-Hf isotopic analysis of the Neoproterozoic Penglai Group and their comparisons with coeval sedimentary strata of the southeastern North China Craton: Provenance, tectonic affinity and implications. Journal of the Geological Society, 177(4): 855~865.
-
Liu Wengang, Li Guozhan, Liu Hui, Chen Yin, Xiao Zhibin, Zhou Hongying, Zhang Jian, Tu Jiarun, Li Huimin. 2018. Micro-fluorite sample digestion technology and high precision thermionic mass spectrometry determination for Sm-Nd isotopes. Acta Geoscientica Sinica, 39(1): 119~124 (in Chinese with English abstract).
-
Liu Yongqing, Gao Linzhi, Liu Yanxue, Song Biao, Wang Zongxiu. 2006. Zircon U-Pb dating for the earliest Neoproterozoic mafic magmatism in the southern margin of the North China Block. Chinese Science Bulletin, 51(19): 2375~2382.
-
Lu Songnian, Zhao Guochun, Wang Huichu, Hao Guojie. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160(1~2): 77~93.
-
Lu Songnian, Xiang Zhenqun, Li Huaikun, Wang Huichu, Chu Hang. 2012. Response of the North China Craton to Rodinia supercontinental events—GOSEN joining hypothesis. Acta Geologica Sinica, 86(9): 1396~1406 (in Chinese with English abstract).
-
Ludwig K R. 2003. User's Manual for Isoplot/Ex, Version 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 4: 1~70.
-
Luo Yan, Sun Min, Zhao Guochun, Li Sanzhong, Xia Xiaoping. 2006. LA-ICP-MS U-Pb zircon geochronology of the Yushulazi Group in the eastern block, North China Craton. International Geology Review, 48(9): 828~840.
-
Meert J G. 2012. What's in a name?The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Research, 21(4): 987~993.
-
Niu Yaoling. 2021. Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth—A review and new perspectives. Earth-Science Reviews, 217: 103614.
-
Nowell G M, Kempton P D, Noble S R, Fitton J G, Saunders A D, Mahoney J J, Taylor R N. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Insights into the depleted mantle. Chemical Geology, 149(3~4): 211~233.
-
Pan Guoqiang, Kong Qingyou, Wu Junqi, Liu Jiarun, Zhang Qinglong, Zeng Jiahu, Liu Daozhong. 2000. Geochemical features of Neo-Proterozoic diabase sills in Xuzhou-Suzhou area. Geological Journal of China Universities, 6(1): 53~63 (in Chinese with English abstract).
-
Pearce J A. 2014. Immobile element fingerprinting of ophiolites. Elements, 10(2): 101~108.
-
Peng Peng, Zhai Mingguo, Guo Jinghui, Kusky T, Zhao Taiping. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1. 78 Ga mafic dykes in the central North China Craton. Gondwana Research, 12(1~2): 29~46.
-
Peng Peng, Bleeker W, Ernst R E, Söderlund U, Mc Nicoll V. 2011a. U-Pb baddeleyite ages, distribution and geochemistry of 925 Ma mafic dykes and 900 Ma sills in the North China Craton: Evidence for a Neoproterozoic mantle plume. Lithos, 127(1~2): 210~221.
-
Peng Peng, Zhai Mingguo, Li Qiuli, Wu Fuyuan, Hou Quanlin, Li Zhong, Li Tiesheng, Zhang Yanbin. 2011b. Neoproterozoic (~900 Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research, 20(1): 243~254.
-
Peng Peng, Liu Fu, Zhai Mingguo, Guo Jinghui. 2012. Age of the Miyun dyke swarm: Constraints on the maximum depositional age of the Changcheng system. Chinese Science Bulletin, 57(1): 105~110.
-
Peng Touping, Wilde S A, Fan Weiming, Peng Bingxia, Mao Yongsheng. 2013. Mesoproterozoic high Fe-Ti mafic magmatism in western Shandong, North China Craton: Petrogenesis and implications for the final breakup of the Columbia supercontinent. Precambrian Research, 235: 190~207.
-
Su Xiangdong, Peng Peng, Wang Chong, Sun Fengbo, Zhang Zhiyue, Zhou Xiaotong. 2018. Petrogenesis of a ~900 Ma mafic sill from Xuzhou, North China: Implications for the genesis of Fe-Ti-rich rocks. Lithos, 318~319: 357~375.
-
Su Xiangdong, Peng Peng, Zhu Renzhi, Mao Yajing, Zhang Zhiyue, Sun Fengbo. 2020. Multi-stage evolution of the Xuhuai rift: Insights from the occurrence and compositional profiles of doleritic sills in the southeastern margin of the North China Craton. Gondwana Research, 82: 221~240.
-
Su Xiangdong, Peng Peng, Foley S, Teixeira W, Zhai Mingguo. 2021. Initiation of continental breakup documented in evolution of the magma plumbing system of the Ca. 925 Ma Dashigou large igneous province, North China. Lithos, 384: 105984.
-
Sun Fengbo, Peng Peng, Zhou Xiqiang, Magalhães A J C, Guadagnin F, Zhou Xiaotong, Zhang Zhiyue, Su Xiangdong. 2020. Provenance analysis of the Late Mesoproterozoic to Neoproterozoic Xuhuai basin in the southeast North China Craton: Implications for paleogeographic reconstruction. Precambrian Research, 337: 105554.
-
Sun Fengbo, Peng Peng, Zheng Deshun, Zuo Pengfei. 2022. Reappraising the provenance of Early Neoproterozoic strata in the southern-southeastern North China Craton and its implication for paleogeographic reconstruction. Minerals, 12(5): 510.
-
Sun Shensu, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.
-
Sun Xun, Liu Chaohui, Duan Ruihan. 2024. Theage and geological significance of Early Neoproterozoic mafic sills on the eastern margin of the North China Craton: Evidence from zirconology. Earth Science, 49(9): 3122~3139 (in Chinese with English abstract).
-
Swanson-Hysell N L, Ramezani J, Fairchild L M, Rose I R. 2019. Failed rifting and fast drifting: Midcontinent Rift development, Laurentia's rapid motion and the driver of Grenvillian orogenesis. The Geological Society of America Bulletin, 131(5~6): 913~940.
-
Tian Dexin, Lu Chonghai, Cai Xinming, Wang Binna, Xu Song, Wang Qiang, Lu Siqiao. 2018. Sedimentary event of marine moraine of Neoproterozoic Qiaotou Formation in sourthern Liaoning. Global Geology, 37(4): 1092~1100 (in Chinese with English abstract).
-
Valley J W, Lackey J S, Cavosie A J, Clechenko C C, Spicuzza M J, Basei M A S, Bindeman I N, Ferreira V P, Sial A N, King E M, Peck W H, Sinha A K, Wei Chunsheng. 2005. 4. 4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150(6): 561~580.
-
Wan Bin, Tang Qing, Pang Ke, Wang Xiaopeng, Bao Zhian, Meng Fanwei, Zhou Chuanming, Yuan Xunlai, Hua Hong, Xiao Shuhai. 2019. Repositioning the Great Unconformity at the southeastern margin of the North China Craton. Precambrian Research, 324: 1~17.
-
Wan Bo, Wu Fuyuan, Chen Ling, Zhao Liang, Liang Xiaofeng, Xiao Wenjiao, Zhu Rixiang. 2019. Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Science China Earth Sciences, 62(12): 2005~2016.
-
Wan Yusheng, Zhang Yuhai, Williams I S, Liu Dunyi, Dong Chunyan, Fan Runlong, Shi Yuruo, Ma Mingzhu. 2013. Extreme zircon O isotopic compositions from 3. 8 to 2. 5 Ga magmatic rocks from the Anshan area, North China Craton. Chemical Geology, 352: 108~124.
-
Wang Bo, Zhang Kaihan, Zhang Qi, Zhou Qizhong, Fan Mingsen, Luo Yue, Wang Guoqiang, Qiu Lei. 2024. Zircon U-Pb age and Hf isotopic characterization of the Niutishan dolerite sills in the northern Jiangsu region and their geological implication. Geological Bulletin of China, doi: 10. 12097/gbc. 2024. 03. 034 (in Chinese with English abstract).
-
Wang Changming, Lu Yongjun, He Xinyu, Wang Qionghui, Zhang Jing. 2016. The Paleoproterozoic diorite dykes in the southern margin of the North China Craton: Insight into rift-related magmatism. Precambrian Research, 277: 26~46.
-
Wang Chong, Peng Peng, Wang Xinping, Yang Shuyan. 2016. Nature of three Proterozoic (1680 Ma, 1230 Ma and 775 Ma) mafic dyke swarms in North China: Implications for tectonic evolution and paleogeographic reconstruction. Precambrian Research, 285: 109~126.
-
Wang Chong, Peng Peng, Li Zhengxiang, Pisarevsky S, DenyszynS, Liu Yebo, Gamal El Dien H, Su Xiangdong. 2020. The 1. 24~1. 21 Ga Licheng large igneous province in the North China Craton: Implications for paleogeographic reconstruction. Journal of Geophysical Research (Solid Earth), 125(4): e2019JB019005.
-
Wang Qinghai, Yang Debin, Xu Wenliang. 2012. Neoproterozoic basic magmatism in the southeast margin of North China Craton: Evidence from whole-rock geochemistry, U-Pb and Hf isotopic study of zircons from diabase swarms in the Xuzhou-Huaibei area of China. Science China Earth Sciences, 55(9): 1461~1479.
-
Wang Wei, Liu Shuwen, Santosh M, Zhang Lifei, Bai Xiang, Zhao Yue, Zhang Shuanhong, Guo Rongrong. 2015. 1. 23 Ga mafic dykes in the North China Craton and their implications for the reconstruction of the Columbia supercontinent. Gondwana Research, 27(4): 1407~1418.
-
Wang Xinping, Peng Peng, Wang Chong. 2022. A new 1. 32 Ga Tianshui mafic sill in the Liaodong area and its relations to the Yanliao large igneous province in the northern North China Craton. Precambrian Research, 369: 106535.
-
Wang Xuance, Wilde S A, Xu Bei, Pang Chongjin. 2016. Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination. Lithos, 261: 5~45.
-
Wang Yaying, Zeng Lingsen, Asimow P D, Gao Lie, Ma Chi, Antoshechkina P M, Guo Chunli, Hou Kejun, Tang Suohan. 2018. Early Cretaceous high-Ti and low-Ti mafic magmatism in southeastern Tibet: Insights into magmatic evolution of the Comei large igneous province. Lithos, 296: 396~411.
-
Wang Yuejun, Fan Weiming, Zhang Yanhua, Guo Feng, Zhang Hongfu, Peng Touping. 2004. Geochemical, 40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the Ca. 1800 Ma event of the North China Craton. Precambrian Research, 135(1~2): 55~77.
-
Wang Yuejun, Zhao Guochun, Cawood P A, Fan Weiming, Peng Touping, Sun Linhua. 2008. Geochemistry of Paleoproterozoic (~1770 Ma) mafic dikes from the Trans-North China Orogen and tectonic implications. Journal of Asian Earth Sciences, 33(1~2): 61~77.
-
Wilde S A, Zhao Guochun, Sun Min. 2002. Development of the North China Craton during the Late Archacan and its final amalgamation at 1. 8 Ga: Some speculations on its position within a global Palacoproterozoic supercontinent. Gondwana Research, 5(1): 85~94.
-
Wu Hao. 2018. Thesedimentary characteristic and tectonic property of Upper Neoproterozoic at Benxi, Liaoning. Doctor degree thesis of Chinese Academy of Geological Sciences (in Chinese with English abstract).
-
Wu Zijie, Lu Chonghai, Qiu Longwei, Zhao Hanqing, Wang Haipeng, Tan Wengang, Zhong Mishan. 2022. New detrital zircon geochronological results from the Meso-Neoproterozoic sandstones in the southern-eastern Liaoning region, North China Craton, and their Paleogeographic implications. Precambrian Research, 381: 106847.
-
Xiang Zhenqun, Lu Songnian, Li Huaikun, Tian Hui, Liu Huan, Zhangkuo. 2020. Mesoproterozoic magmatic events in the North China Craton. Geological Survey and Research, 43(2): 137~152 (in Chinese with English abstract).
-
Xu Yan, Zhang Shihong, Zhang Chuanlin, Ye Xiantao, Ren Qiang, Gao Yangjun, Li Haiyan, Yang Tianshui, Wu Huaichun. 2023. New early Neoproterozoic paleomagnetic constraints of the northwestern China blocks on the periphery of Rodinia. Journal of Geophysical Research: Solid Earth, 128(2): 2022JB024821.
-
Xu Yigang, Chung S L, Jahn B M, Wu Genyao. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian—Triassic Emeishan flood basalts in southwestern China. Lithos, 58(3~4): 145~168.
-
Xu Yigang, Huang Xiaolong, Wang Qiang, Wang Yu, Li Gaojun, Liu Yun, Mao Heguang, Ni Huaiwei, Zhu Maoyan. 2024. Earth's habitability driven by deep processes. Chinese Science Bulletin, 69(2): 169~183 (in Chinese with English abstract).
-
Yang Debin, Xu Wenliang, Xu Yigang, Wang Qinghai, Pei Fuping, Wang Feng. 2012. U-Pb ages and Hf isotope data from detrital zircons in the Neoproterozoic sandstones of northern Jiangsu and southern Liaoning Provinces, China: Implications for the Late Precambrian evolution of the southeastern North China Craton. Precambrian Research, 216: 162~176.
-
Yang Jinhui, Wu Fuyuan, Zhang Yanbin, Zhang Qi, Wilde S A. 2004. Identification of Mesoproterozoic zircons in a Triassic dolerite from the Liaodong Peninsula, Northeast China. Chinese Science Bulletin, 49(18): 1958~1962.
-
Yang Tianshui, Ma Yiming, Zhang Shihong, Bian Weiwei, Yang Zhenyu, Wu Huaichun, Li Haiyan, Chen Weiwei, Ding Jikai. 2015. New insights into the India-Asia collision process from Cretaceous paleomagnetic and geochronologic results in the Lhasa terrane. Gondwana Research, 28(2): 625~641.
-
Yaxley G M, Anenburg M, Tappe S, Decree S, Guzmics T. 2022. Carbonatites: Classification, sources, evolution, and emplacement. Annual Review of Earth and Planetary Sciences, 50: 261~293.
-
Zhai Mingguo, Hu Bo, Zhao Taiping, Peng Peng, Meng Qingren. 2015. Late Paleoproterozoic—Neoproterozoic multi-rifting events in the North China Craton and their geological significance: A study advance and review. Tectonophysics, 662: 153~166.
-
Zhang Jian, Li Huaikun, Tian Hui, Liu Huan, Zhou Hongying, Liu Wengang. 2021. Zircon U-Pb dating and Hf-O isotope characteristics of Changchengian alkaline rocks from the Yanliao Rift in the North China Craton. Acta Petrologica Sinica, 37(1): 231~252 (in Chinese with English abstract).
-
Zhang Ji'en, Fan Hongrui, Xiao Wenjiao, Xu Xingwang, Wakabayashi J, Zhang Lili, Zhao Yonggang, Wang Qiwei, Zhao Yulong, Wang Kaiyi. 2024. Configuration of carbonatite constrained inpreintrusion transpositional foliation in the Bayan Obo giant rare earth element deposit, China. Economic Geology, 119(4): 853~869.
-
Zhang Qiqi, Zhang Shuanhong, Zhao Yue, Hu Guohui, Gao Hailong. 2021. Identification of an Early Neoproterozoic gabbrosill emplaced into the Zha'ertai Group in the Guyang area, Inner Mongolia and its geological significance. Acta Geologica Sinica, 95(3): 667~685 (in Chinese with English abstract).
-
Zhang Shihong, Chang Linxi, Zhao Hanqing, Ding Jikai, Xian Hanbiao, Li Haiyan, Wu Huaichun, Yang Tianshui, 2021. The Precambrian drift history and paleogeography of the Chinese cratons. Ancient Supercontinents and the Paleogeography of the Earth, 333~376.
-
Zhang Shuanhong, Zhao Yue, Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222: 339~367.
-
Zhang Shuanhong, Zhao Yue, Ye Hao, Hu Guohui. 2016. Early Neoproterozoic emplacement of the diabase sill swarms in the Liaodong Peninsula and pre-magmatic uplift of the southeastern North China Craton. Precambrian Research, 272: 203~225.
-
Zhang Wen, Liu Fulai, Liu Chaohui. 2021a. Detrital zircon U-Pb ages of the Late Mesoproterozoic—Neoproterozoic Qiaotou Formation in the Liao-Ji area of the North China Craton: Implications for Rodinia reconstruction. International Geology Review, 63(11): 1311~1330.
-
Zhang Wen, Liu Fulai, Liu Chaohui. 2021b. Provenance transition from the North China Craton to the Grenvillian orogeny-related source: Evidence from Late Mesoproterozoic—Early Neoproterozoic strata in the Liao-Ji area. Precambrian Research, 362: 106281.
-
Zhang Wen, Xu Wang, Liu Pinghua, Liu Chaohui, Liu Fulai. 2022. Eastern North China Craton-North Australia Craton connection at 1. 0 Ga through detrital zircon mixing modelling. Terra Nova, 34(6): 554~560.
-
Zhao Guochun, Cawood P A, Wilde S A, Sun Min. 2002. Review of global 2. 1~1. 8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1~4): 125~162.
-
Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67(1~2): 91~123.
-
Zhao Guochun, Han Yigui, Li Jianhua, Yao Jinlong, Liu Qian, Zhang Donghai, Wang Chao, Tang Qing, Zhang Jian, Yin Changqing, Zhang Guowei. 2022. Environmental effects of assembly and breakup of supercontinents. Acta Geologica Sinica, 96(9): 3120~3127 (in Chinese with English abstract).
-
Zhao Hanqing, Zhang Shihong, Ding Jikai, Chang Linxi, Ren Qiang, Li Haiyan, Yang Tianshui, Wu Huaichun. 2020. New geochronologic and paleomagnetic results from early Neoproterozoic mafic sills and late Mesoproterozoic to early Neoproterozoic successions in the eastern North China Craton, and implications for the reconstruction of Rodinia. Geological Society of America Bulletin, 132(3~4): 739~766.
-
Zhao Hanqing, Zhang Shihong, Ren Wangqi, Ding Jikai, Yang Kunkun, Li Haiyan, Yang Tianshui, Wu Huaichun, Chen Jianping. 2022. New paleomagnetic results from the Ca. 1. 0 Ga Jiayuan Formation of the Huaibei Group in the North China Craton, and their paleogeographic implications. Precambrian Research, 379: 106807.
-
Zhu Renzhi, Ni Pei, Wang Guoguang, Ding Junying, Fan Mingsen, Ma Yuguang. 2019. Geochronology, geochemistry and petrogenesis of the Laozhaishan dolerite sills in the southeastern margin of the North China Craton and their geological implication. Gondwana Research, 67: 131~146.
-
Zhu Yusheng, Yang Jinhui, Wang Hao, Wu Fuyuan. 2020. Mesoproterozoic (~1. 32 Ga) modification of lithospheric mantle beneath the North China craton caused by break-up of the Columbia supercontinent. Precambrian Research, 342: 105674.
-
安徽省地质矿产局. 1987. 安徽省区域地质志. 北京: 地质出版社.
-
蔡逸涛, 张洁, 董钟斗, 曹正琦, 肖书阅, 李帅, 李成凯, 陈乐柱, 范飞鹏. 2018. 皖北栏杆地区新元古代岩浆活动: 含金刚石母岩U-Pb年代学及地球化学制约. 中国地质, 45(2): 351~366.
-
初航, 陆松年, 王惠初, 相振群, 刘欢. 2011. 山东长岛地区蓬莱群辅子奋组碎屑锆石年龄谱研究. 岩石学报, 27(4): 1017~1028.
-
高丙飞, 潘明宝, 李向前, 赵同阳, 杜建国, 程瑜, 吴昌志. 2024. 华北克拉通江苏徐州-宿州地区辉绿岩墙年龄、地球化学特征及其对罗迪尼亚大陆裂解的响应. 地质通报, DOI: 10. 12097/gbc. 2023. 07. 017.
-
高林志, 张传恒, 陈寿铭, 刘鹏举, 丁孝忠, 刘燕学, 董春燕, 宋彪. 2010. 辽东半岛细河群沉积岩碎屑锆石SHRIMP U-Pb年龄及其地质意义. 地质通报, 29(8): 1113~1122.
-
耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508~1513.
-
侯琪. 2023. 华北克拉通东南缘含金刚石基性-超基性岩岩石学和地球化学研究. 中国科学技术大学博士学位论文.
-
胡国辉, 胡俊良, 陈伟, 赵太平. 2010. 华北克拉通南缘中条山-嵩山地区1. 78 Ga基性岩墙群的地球化学特征及构造环境. 岩石学报, 26(5): 1563~1576.
-
胡俊良, 赵太平, 徐勇航, 陈伟. 2007. 华北克拉通大红峪组高钾火山岩的地球化学特征及其岩石成因. 矿物岩石, 27(4): 70~77.
-
辽宁省地质矿产局. 1989. 辽宁省区域地质志. 北京: 地质出版社.
-
连光辉, 任云伟, 施建荣, 徐仲元. 2023. 华北克拉通北缘凉城基性岩墙成因及古地理的重建意义. 地质学报, 97(4): 1295~1314.
-
李怀坤, 张健, 田辉, 周红英, 相振群, 刘欢. 2020. 华北克拉通北缘燕辽裂陷槽中—新元古代地层年代学研究进展. 地质调查与研究, 43(2): 127~136.
-
刘文刚, 李国占, 刘卉, 陈印, 肖志斌, 周红英, 张健, 涂家润, 李惠民. 2018. 微量萤石样品消解技术及其Sm-Nd同位素高精度热离子质谱法测试. 地球学报, 39(1): 119~124.
-
陆松年, 相振群, 李怀坤, 王惠初, 初航. 2012. 华北克拉通对罗迪尼亚超大陆事件的响应——GOSEN连接假设. 地质学报, 86(9): 1396~1406.
-
潘国强, 孔庆友, 吴俊奇, 刘家润, 张庆龙, 曾家湖, 刘道忠. 2000. 徐宿地区新元古代辉绿岩床的地球化学特征. 高校地质学报, 6(1): 53~63.
-
孙逊, 刘超辉, 段瑞涵. 2024. 华北克拉通东缘新元古代早期基性岩床的时代及其地质意义: 来自锆石学的证据. 地球科学, 49(9): 3122~3139.
-
田德欣, 卢崇海, 蔡新明, 王彬娜, 徐耸, 王强, 卢思桥. 2018. 辽南新元古代桥头组海相冰碛沉积事件. 世界地质, 37(4): 1092~1100.
-
王博, 张凯涵, 张琪, 周琦忠, 范明森, 罗跃, 王国强, 邱磊. 2024. 苏北地区牛蹄山新元古代辉绿岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 地质通报. doi: 10. 12097/gbc. 2024. 03. 034.
-
吴昊. 2018. 辽宁本溪新元古界上部沉积学特征及构造属性. 中国地质科学院博士学位论文.
-
相振群, 陆松年, 李怀坤, 田辉, 刘欢, 张阔. 2020. 华北克拉通中元古代岩浆事件群. 地质调查与研究, 43(2): 137~152.
-
徐义刚, 黄小龙, 王强, 王煜, 李高军, 刘耘, 毛河光, 倪怀玮, 朱茂炎. 2024. 地球宜居性的深部驱动机制. 科学通报, 69(2): 169~183.
-
张健, 李怀坤, 田辉, 刘欢, 周红英, 刘文刚. 2021. 华北克拉通燕辽裂谷长城纪碱性岩锆石U-Pb年代厘定和Hf-O同位素特征. 岩石学报, 37(1): 231~252.
-
张琪琪, 张拴宏, 赵越, 胡国辉, 高海龙. 2021. 内蒙古固阳地区侵入渣尔泰群中新元古代早期辉长岩岩床的发现及其意义. 地质学报, 95(3): 667~685.
-
赵国春, 韩以贵, 李建华, 姚金龙, 刘潜, 张东海, 王潮, 唐卿, 张健, 尹常青, 张国伟. 2022. 超大陆聚散的环境效应. 地质学报, 96(9): 3120~3127.
-
摘要
超大陆汇聚和裂解过程直接导致岩石圈物质组成和结构的显著变化,进而深刻影响地球深时大气圈、水圈和生物圈等表层环境系统。中元古代晚期至新元古代早期属于Rodinia超大陆聚合的关键时期,也是全球规模板块构造冷俯冲和超高压变质作用的起始阶段。由于以往报道华北克拉通在该时期岩浆-构造的记录稀少,因此与Rodinia超大陆的关联以及在Rodinia超大陆重建中的位置长期存在争议。最近研究表明,华北克拉通徐淮、大连地区以及朝鲜平南盆地广泛发育顺层侵入的辉绿岩床,与Rodinia超大陆有关。本文以徐淮盆地发育的基性岩床为代表,通过岩石学、同位素年代学和地球化学等分析手段,探究其成因和构造背景。辉绿岩床形成于新元古代早期940~890 Ma,持续时间长达~50 Ma,可分为940~920 Ma(高Ti,侵位于淮北群中部倪园组)和920~890 Ma(低Ti,侵位于淮北群上部望山组)两期。两类(期)辉绿岩的地球化学成分以拉斑质玄武岩为主,部分高Ti样品为碱性玄武岩。稀土元素配分右倾模式,轻稀土富集(La/Yb)N=2.5~8.6,Nb-Ta弱亏损Nb/La=0.63~1.12(大部分小于1),大离子亲石元素(如Rb、Ba)和高场强元素(如Zr、Hf、Ti)相对富集。高Ti样品的微量元素分馏程度高,与OIB近似;低Ti样品具有与CFB相似的地球化学属性。两类辉绿岩Sr-Nd-Hf-O同位素显示不均一性,高Ti样品的Nd-Hf同位素比低Ti样品亏损,全岩Nd与锆石Hf同位素轻微解耦。锆石重O同位素(δ18O 值为6‰)表明,两类辉绿岩源区的岩石圈地幔经历熔/流体交代,熔/流体来自于俯冲板片的脱水熔融。结合地层碎屑锆石所揭示的物源信息,华北克拉通新元古代早期沉积体系的碎屑岩源区由克拉通内部向外部迁移,且外来物质Hf同位素亏损,属于新生地壳,暗示盆地周围发育大规模与板块俯冲相关的弧岩浆。据此,本文认为华北地区中元古代晚期—新元古代早期的基性岩床与板块俯冲后撤或与大地幔楔作用有关。
Abstract
The assemblage, growth, and breakup of global-scale supercontinents profoundly influence Earth's systems. These events not only lead to significant changes in lithospheric composition and structure but also impact the surface environments such as the atmosphere, hydrosphere, and biosphere over geological timescales. The late Mesoproterozoic to early Neoproterozoic interval was crucial for the amalgamation of the Rodinia supercontinent, marking the onset of global-scale plate cold subduction and ultrahigh pressure metamorphism. However, scarcity geological records of magma-tectonic events in the North China Craton (NCC) during this period hinder its correlation with Rodinia and paleogeographic reconstruction. Extensive mafic sill and dyke emplacement in the Xuhuai, Dalian, and Korea Pyongnam areas provides a valuable opportunity to address these knowledge gaps. This study focuses on the petrology, geochronology, and geochemistry of mafic sills in the Xuhuai area to decipher their petrogenesis, tectonic setting, and the role of the NCC in Rodinia assembly. Our results indicate that the diabase sills emplaced during the early Neoproterozoic (940~890 Ma), spanning about 50 Ma. These sills can be subdivided into two stages: the 940~920 Ma high-Ti group, emplaced into the middle part of the Huaibei Group (Niyuan Formation), and the 920~890 Ma low-Ti group, emplaced into the upper part of the Huaibei Group (Wangshan Formation). Most diabase samples exhibit tholeiitic affinities, and some high-Ti samples display alkali characteristics. Trace element analysis reveals LREE enrichment with (La/Yb)N ratios ranging from 2.5 to 8.6. High large ion lithophile elements (e.g., Rb, Ba) and high field strength elements (e.g., Zr, Hf, Ti) contents are observed on PM-normalized spider diagrams, with a slight Nb-Ta trough (Nb/La=0.63~1.12, mostly below 1). High-Ti samples share OIB-like chemical compositions, while low-Ti samples display CFB-like elemental signatures. Despite these differences, both groups are associated with an intraplate extensional tectonic setting. Isotopically, the diabase shows heterogeneous Sr-Nd-Hf-O isotopic compositions. The high-Ti group exhibits more radiogenic Nd-Hf isotopes compared to the low-Ti group. Moreover, a subtle decoupling exists between whole-rock Nd and zircon Hf isotopes. Heavy oxygen isotope signatures in zircons suggest that the lithospheric mantle source regions of the diabase underwent melt/fluid metasomatism derived from dehydration melting of the subducted slab. Integrating the exotic provenance revealed by detrital zircon ages in clastic strata and the rapid latitudinal wander calculated from paleomagnetism, the large igneous province (LIP) model may not be the most plausible interpretation. Instead, a model involving plate subduction retreat or the big mantle wedge model could potentially reconcile the diverse observations obtained through geochemistry, paleomagnetism, and sedimentology.
关键词
华北克拉通 ; 中元古代晚期—新元古代早期 ; 基性岩床 ; 俯冲后撤和大地幔楔