en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘嘉栋,男,1992年生。博士研究生,主要从事地壳结构研究。E-mail: Jiadong_Liu@outlook.com。

通讯作者:

吴庆举,男,1966年生。博士,研究员,主要从事地球内部结构研究。E-mail: wuqj@cea-igp.ac.cn。

参考文献
Agrawal S, Eakin C M, O'Donnell J. 2022. Characterizing the cover across South Australia: A simple passive-seismic method for estimating sedimentary thickness. Geophysical Journal International, 231(3): 1850~1864.
参考文献
Ai Sanxi, Zheng Yong, Riaz M S, Song Meiqing, Zeng Sijia, Xie Zujun. 2019. Seismic evidence on different rifting mechanisms in southern and northern segments of the Fenhe-Weihe Rift Zone. Journal of Geophysical Research: Solid Earth, 124(1): 609~630.
参考文献
Chen Ling. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120(1): 96~115.
参考文献
Chen Jie, Chen Yongshun, Guo Zhen, Yang Ting. 2020. Crustal structure of the Ordos block and adjacent regions along an N-S profile of 107. 6°E. Chinese Journal of Geophysics, 63(7): 2592~2604 (in Chinese with English abstract).
参考文献
Chen Yifang, Chen Jiuhui, Guo Biao, Li Shuncheng, Qi Shaohua, Zhao Panpan, Li Xiaoshu. 2020. Crustal structure and deformation between different blocks in the northern part of the western margin of Ordos. Chinese Journal of Geophysics, 63(3): 886~896 (in Chinese with English abstract).
参考文献
Chen Yifang, Chen Jiuhui, Guo Biao, Li Shuncheng, Li Yu, Qi Shaohua, Zhao Panpan. 2022. Seismic structure and deformation features beneath the Yinchuan-Hetao graben, NW China. Physics of the Earth and Planetary Interiors, 329~330: 106911.
参考文献
Deng Qidong, Cheng Shaoping, Min Wei, Yang Guizhi, Ren Dianwei. 1999. Discussion on Cenozoic tectonics and dynamics of Ordos block. Journal of Geomechanics, 5(3): 13~21 (in Chinese with English abstract).
参考文献
Duan Yonghong, Liu Baojin, Zhao Jinren, Liu Baofeng, Zhang Chengke, Pan Suzhen, Lin Jiyan, Guo Wenbin. 2015. 2-D P-wave velocity structure of lithosphere in the North China tectonic zone: Constraints from the Yancheng-Baotou deep seismic profile. Science China: Earth Sciences, 58(9): 1577~1591.
参考文献
Feng Mei, An Meijian, Dong Shuwen, 2017. Tectonic history of the Ordos block and Qinling orogen inferred from crustal thickness. Geophysical Journal International, 210(1): 303~320.
参考文献
Feng Shaoying, Liu Baojin, Ji Jifa, He Yinjuan, Tan Yali, Li Yiqing. 2015. The survey on fine lithospheric structure beneath Hohhot-Baotou basin by deep seismic reflection profile. Chinese Journal of Geophysics, 58(4): 1158~1168 (in Chinese with English abstract).
参考文献
Fu Suotang, Fu Jinhua, Yu Jian, Yao Jingli, Zhang Caili, Ma Zhanrong, Yang Yajuan, Zhang Yan. 2018. Petroleum geological features and exploration prospect of Linhe depression in Hetao basin, China. Petroleum Exploration and Development, 45(5): 749~762 (in Chinese with English abstract).
参考文献
He Jing, Wu Qingju, Sandvol E, Ni J, Gallegos A, Gao Mengtan, Ulziibat M, Demberel S. 2016. The crustal structure of south central Mongolia using receiver functions. Tectonics, 35(6): 1392~1403.
参考文献
Hu Xuzhi, Xu Mijian, Xu Mingjie, Zhang Yueqiao, Huang Zhouchuan. 2022. A relic thickened crustal root beneath the Cenozoic rift zone of the NW Ordos margin, North China, revealed by receiver functions. Physics of the Earth and Planetary Interiors, 333: 106953.
参考文献
Jia Meng, Wang Xianguang, Li Shilin, Chen Yongshun. 2015. Crustal structures of Ordos block and surrounding regions from receiver functions. Progress in Geophysics, 30(6): 2474~2481 (in Chinese with English abstract).
参考文献
Kennett B L N, Engdahl E R. 1991. Travel times for global earthquake location and phase identification. Geophysical Journal International, 105(2): 429~465.
参考文献
Li Qinghe, Guo Shounian, Lv Dehui. 1999. Deep Structure and Construction Beneath the Section of the Western Margin and Southwest of the Ordos Basin. Beijing: Seismological Press (in Chinese).
参考文献
Li Shilin, Guo Zhen, Chen Yongshun John, Yang Yingjie, Huang Qinghua. 2018. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography. Journal of Geophysical Research: Solid Earth, 123(8): 6940~6957.
参考文献
Li Yonghua, Pan Jiatie, Wu Qingju, Ding Zhifeng. 2017. Lithospheric structure beneath the northeastern Tibetan Plateau and the western Sino-Korea Craton revealed by Rayleigh wave tomography. Geophysical Journal International, 210(2): 570~584.
参考文献
Ligorría J P, Ammon C J. 1999. Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5): 1395~1400.
参考文献
Liu Baojin, Feng Shaoying, Ji Jifa, Wang Shuaijun, Zhang Jianshi, Yuan Hongke, Yang Guojun. 2017. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan basin: Results of deep seismic reflection profiling. Science China: Earth Sciences, 60(3): 589~601.
参考文献
Liu Jiadong, Wu Qingju, Qiang Zhengyang, Zhu Min. 2024. Crustal structure characteristics beneath the Weiyuan area, Sichuan revealed by receiver functions. Chinese Journal of Geophysics, 67(7): 2637~2653 (in Chinese with English abstract).
参考文献
Luo Yan, Chong Jiajun, Ni Sidao, Chen Qifu, Chen Yong. 2008. Moho depth and sedimentary thickness in Capital region. Chinese Journal of Geophysics, 51(4): 1135~1145 (in Chinese with English abstract).
参考文献
Marignier A, Eakin C M, Hejrani B, Agrawal S, Hassan R. 2024. Sediment thickness across Australia from passive seismic methods. Geophysical Journal International, 237(2): 849~861.
参考文献
Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189(4201): 419~426.
参考文献
Northrup C J, Royden L H, Burchfiel B C. 1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 23(8): 719~722.
参考文献
Owens T J, Zandt G. 1997. Implications of crustal property variations for models of Tibetan Plateau evolution. Nature, 387(6628): 37~43.
参考文献
Tao Guoqiang. 2002. The structure characteristics of Chagandelesu fault depression and its petroleum accumulation condition. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Tapponnier P, Molnar P. 1979. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal regions. Journal of Geophysical Research: Solid Earth, 84(B7): 3425~3459.
参考文献
Teng Jiwen, Wang Fuyun, Zhao Wenzhi, Zhang Yongqian, Zhang Xiankang, Yan Yafen, Zhao Jinren, Li Ming, Yang Hui, Zhang Hongshuang, Ruan Xiaomin. 2010. Velocity structure of layered block and deep dynamic process in the lithosphere beneath the Yinshan orogenic belt and Ordos basin. Chinese Journal of Geophysics, 53(1): 67~85 (in Chinese with English abstract).
参考文献
The Research group on “Activate fault system around ordos massif”, State Seismological Bureau. 1988. Activate Fault System around Ordos Massif. Beijing: Seismological Press.
参考文献
Tian Xiaobo, Teng Jiwen, Zhang Hongshuang, Zhang Zhongjie, Zhang Yongqian, Yang Hui, Zhang Keke. 2011. Structure of crust and upper mantle beneath the Ordos block and the Yinshan Mountains revealed by receiver function analysis. Physics of the Earth and Planetary Interiors, 184(3~4): 186~193.
参考文献
Uyeda S, Kanamori H. 1979. Back-arc opening and the mode of subduction. Journal of Geophysical Research: Solid Earth, 84(B3): 1049~1061.
参考文献
Wang Qiushi, Li Yonghua, Wu Yan. 2024. Sedimentary structures beneath the northern Bohai basin constrained by the autocorrelation of receiver function. Chinese Journal of Geophysics, 67(6): 2291~2303 (in Chinese with English abstract).
参考文献
Wang Shenglang, Ma Weimin, Zhu Zhixin, Shang Yazheng. 2002. Structural-depositional framework and hydrocarbon exploration prospects in the Chagan depression, the Yingen-Ejinaqi basin. Petroleum Geology and Experiment, 24(4): 296~300 (in Chinese with English abstract).
参考文献
Wang Weilai, Wu Jianping, Fang Lihua, Lai Guijuan, Cai Yan. 2017. Sedimentary and crustal thicknesses and Poisson's ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays. Earth and Planetary Science Letters, 462: 76~85.
参考文献
Wang Weilai, Cai Guangyao, Lai Guijuan, Zhang Xianwei, Bao Jingjing, Zhang Long, Su Jun, Cheng Mingfei. 2023. Three-dimensional S-wave velocity structure of the crust and upper mantle for the normal fault system beneath the Yinchuan basin from joint inversion of receiver function and surface wave. Science China: Earth Sciences, 66(5): 997~1014.
参考文献
Wang Xingchen, Ding Zhifeng, Wu Yan, Zhu Lupei. 2017a. Crustal thicknesses and Poisson's ratios beneath the northern section of the north-south seismic belt and surrounding areas in China. Chinese Journal of Geophysics, 60(6): 2080~2090 (in Chinese with English abstract).
参考文献
Wang Xingchen, Li Yonghua, Ding Zhifeng, Zhu Lupei, Wang Chunyong, Bao Xuewei, Wu Yan. 2017b. Three-dimensional lithospheric S wave velocity model of the NE Tibetan Plateau and western North China Craton. Journal of Geophysical Research: Solid Earth, 122(8): 6703~6720.
参考文献
Wang Xu, Chen Ling, Yao Huajian. 2021. A new body-wave amplitude ratio-based method for imaging shallow crustal structure and its application in the Sichuan basin, southwestern China. Geophysical Research Letters, 48(18): e2021GL095186.
参考文献
Wu Yan, Ding Zhifeng, Zhu Lupei. 2011. Crustal structure of the North China Craton from teleseismic receiver function by the Common Conversion Point stacking method. Chinese Journal of Geophysics, 54(10): 2528~2537 (in Chinese with English abstract).
参考文献
Xiao Xiao, Cheng Shihua, Wu Jianping, Wang Weilai, Sun Li, Wang Xiaoxin, Wen Liangxing. 2021. Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function. Geophysical Journal International, 225(2): 998~1019.
参考文献
Xu Xiaoming, Niu Fenglin, Ding Zhifeng, Chen Qifu. 2018. Complicated crustal deformation beneath the NE margin of the Tibetan Plateau and its adjacent areas revealed by multi-station receiver-function gathering. Earth and Planetary Science Letters, 497: 204~216.
参考文献
Xu Zeyang. 2023. Characteristics of differential superposition between Meso-Cenozoic basins and mechanism of hydrocarbon enrichment in the Linhe depression, Hetao basin. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Yeck W L, Sheehan A F, Schulte-Pelkum V. 2013. Sequential H-κ stacking to obtain accurate crustal thicknesses beneath sedimentary basins. Bulletin of the Seismological Society of America, 103(3): 2142~2150.
参考文献
Yu Youqiang, Song Jianguo, Liu K H, Gao S S. 2015. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions. Journal of Geophysical Research: Solid Earth, 120(5): 3208~3218.
参考文献
Zandt G, Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson's ratio. Nature, 374(6518): 152~154.
参考文献
Zhang Chen, Guo Zhen, Yu Yong, Yang Ting, Chen Yongshun John. 2022. Distinct lithospheric structures of the Ordos block and its margins from P and S receiver functions and its implications for the Cenozoic lithospheric reworking. Geophysical Research Letters, 49(6): e2021GL097680.
参考文献
Zhang Fengxue, Wu Qingju, Li Yonghua, Zhang Ruiqing, Sun Lian, Pan Jiatie, Ding Zhifeng. 2018. Seismic tomography of eastern Tibet: Implications for the Tibetan Plateau growth. Tectonics, 37(9): 2833~2847.
参考文献
Zhang Hongshuang, Tian Xiaobo, Liu Fang, Cao Jingquan, Teng Jiwen. 2009. Structure of crust and mantle beneath the Hu-bao basin and its adjacent region. Progress in Geophysics, 24(5): 1609~1615 (in Chinese with English abstract).
参考文献
Zhang Yueqiao, Mercier J L, Vergély P. 1998. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of South China with respect to Gobi-Mongolia. Tectonophysics, 285(1): 41~75.
参考文献
Zhang Yueqiao, Liao Changzheng, Shi Wei, Hu Bo. 2006. Neotectonic evolution of the peripheral zones of the Ordos basin and geodynamic setting. Geological Journal of China Universities, 12(3): 285~297 (in Chinese with English abstract).
参考文献
Zhang Zhenfa. 1995. Approach to the mechanism and relative problems of Yinshan Chain uplift. Geology of Inner Mongolia, Z1: 17~35 (in Chinese with English abstract).
参考文献
Zhao Zhongyuan, Guo Zhongming, Hui Binyao. 1984. Hetao arcuate tectonic system and their mechanism of formation and evolution. Oil and Gas Geology, 5(4): 349~361 (in Chinese with English abstract).
参考文献
Zheng Chen, Ding Zhifeng, Song Xiaodong. 2018. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure beneath the northern north-south seismic zone. Chinese Journal of Geophysics, 61(4): 1211~1224 (in Chinese with English abstract).
参考文献
Zhu Lupei. 2000. Crustal structure across the San Andreas fault, southern California from teleseismic converted waves. Earth and Planetary Science Letters, 179(1): 183~190.
参考文献
Zhu Lupei, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2): 2969~2980.
参考文献
Zhu Rixiang, Chen Ling, Wu Fuyuan, Liu Junlai. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China: Earth Sciences, 54(6): 789~797.
参考文献
陈洁, 陈永顺, 郭震, 杨挺. 2020. 沿107. 6°E南北向剖面鄂尔多斯地块及周缘地区地壳结构. 地球物理学报, 63(7): 2592~2604.
参考文献
陈一方, 陈九辉, 郭飚, 李顺成, 齐少华, 赵盼盼, 李晓姝. 2020. 鄂尔多斯西缘北段的地壳结构和块体间变形关系. 地球物理学报, 63(3): 886~896.
参考文献
邓起东, 程绍平, 闵伟, 杨桂枝, 任殿卫. 1999. 鄂尔多斯块体新生代构造活动和动力学的讨论. 地质力学学报, 5(3): 13~21.
参考文献
酆少英, 刘保金, 姬计法, 何银娟, 谭雅丽, 李怡青. 2015. 呼和浩特-包头盆地岩石圈细结构的深地震反射探测. 地球物理学报, 58(4): 1158~1168.
参考文献
付锁堂, 付金华, 喻建, 姚泾利, 张才利, 马占荣, 杨亚娟, 张艳. 2018. 河套盆地临河坳陷石油地质特征及勘探前景. 石油勘探与开发, 45(5): 749~762.
参考文献
国家地震局《鄂尔多斯周缘活动断裂系》课题组. 1988.鄂尔多斯周缘活动断裂系. 北京: 地震出版社.
参考文献
贾萌, 王显光, 李世林, 陈永顺. 2015. 鄂尔多斯块体及周边区域地壳结构的接收函数研究. 地球物理学进展, 30(6): 2474~2481.
参考文献
李清河, 郭守年, 吕德徽. 1999. 鄂尔多斯西缘与西南缘深部结构与构造. 北京: 地震出版社.
参考文献
刘嘉栋, 吴庆举, 强正阳, 朱敏. 2024. 利用接收函数研究四川威远地区地壳结构特征. 地球物理学报, 67(7): 2637~2653.
参考文献
罗艳, 崇加军, 倪四道, 陈棋福, 陈颙. 2008. 首都圈地区莫霍面起伏及沉积层厚度. 地球物理学报, 51(4): 1135~1145.
参考文献
陶国强. 2002. 查干德勒苏凹陷构造特征及油气成藏条件. 中国地质大学(北京)博士学位论文.
参考文献
滕吉文, 王夫运, 赵文智, 张永谦, 张先康, 闫雅芬, 赵金仁, 李明, 杨辉, 张洪双, 阮小敏. 2010. 阴山造山带-鄂尔多斯盆地岩石圈层、块速度结构与深层动力过程. 地球物理学报, 53(1): 67~85.
参考文献
王秋实, 李永华, 武岩. 2024. 使用接收函数自相关约束渤海湾北部沉积层结构. 地球物理学报, 67(6): 2291~2303.
参考文献
王生朗, 马维民, 竺知新, 尚雅珍. 2002. 银根-额济纳旗盆地查干凹陷构造-沉积格架与油气勘探方向. 石油实验地质, 24(4): 296~300.
参考文献
王兴臣, 丁志峰, 武岩, 朱露培. 2017. 中国南北地震带北段及其周缘地壳厚度与泊松比研究. 地球物理学报, 60(6): 2080~2090.
参考文献
武岩, 丁志峰, 朱露培. 2011. 利用共转换点叠加方法研究华北地区地壳结构. 地球物理学报, 54(10): 2528~2537.
参考文献
徐泽阳. 2023. 临河坳陷中-新生代盆地差异叠合及油气富集机制研究. 中国石油大学(北京)博士学位论文.
参考文献
张洪双, 田小波, 刘芳, 曹井泉, 滕吉文. 2009. 呼包盆地周缘壳、幔结构研究. 地球物理学进展, 24(5): 1609~1615.
参考文献
张岳桥, 廖昌珍, 施炜, 胡博. 2006. 鄂尔多斯盆地周边地带新构造演化及其区域动力学背景. 高校地质学报, 12(3): 285~297.
参考文献
张振法. 1995. 阴山山链隆起机制及有关问题探讨. 内蒙古地质, Z1: 17~35.
参考文献
郑晨, 丁志峰, 宋晓东. 2018. 面波频散与接收函数联合反演南北地震带北段壳幔速度结构. 地球物理学报, 61(4): 1211~1224.
参考文献
赵重远, 郭忠铭, 惠斌耀. 1984. 河套弧形构造体系及其形成和演化机制. 石油与天然气地质, 5(4): 349~361.
目录contents

    摘要

    位于河套裂谷系西段的临河坳陷和狼山隆起,是环鄂尔多斯裂谷系和阴山造山带的重要组成部分,其地壳结构对于认识河套裂谷系和阴山造山带的形成机制具有重要意义。目前对于该区域地壳结构已有一些认识,但仍然存在争议,较为重要的是临河坳陷地壳是否增厚。本文基于临河坳陷和狼山隆起及周边布设的118个宽频带地震观测台阵数据,提取远震P波接收函数,探究了研究区的地壳结构信息。利用沉积层基底转换波时间延时获得了研究区沉积层厚度,结果显示临河坳陷规模较大,新生界地层平均厚约5.3 km,查干德勒苏坳陷规模较小,沉积层平均厚度2.7 km。H-κ叠加得到的狼山山前断裂带以北区域波速比相对较低,平均值约1.75,推断该区域地壳岩石组分以长英质为主。H-κ叠加得到的地壳厚度和共转换点(CCP)叠加成像得到的莫霍面埋深较为一致,表现为狼山隆起莫霍面较深西北侧较浅的特征。结合狼山隆起相对较低的波速比,本文推断狼山隆起受南北向挤压导致上地壳增厚是隆起造山的主要原因。本文得到的临河坳陷莫霍面轻微上隆,推断临河坳陷地壳在拉张环境下受地幔物质上涌影响发生减薄。本研究的结果对探索河套裂谷系和阴山造山带的形成机制提供了一定的约束。

    Abstract

    The Linhe rift and Langshan uplift, located in the western section of the Hetao rift system, are important parts of both the Ordos rift system and the Yinshan orogenic belt. The crustal structure in this region is of great importance for unraveling the geodynamic processes responsible for the formation of both the Hetao rift system and the Yinshan orogenic belt. However, aspects of this crustal structure, such as the crustal thickness of the Linhe rift, remain a subject of debate. This study analyzes teleseismic waveforms from 118 broadband seismic stations deployed across the western Hetao rift and adjacent areas. P-wave receiver functions are calculated to obtain information about the crustal structure. Time delays of the sediment-converted Ps phase are employed to determine the thickness of Cenozoic and overlying sedimentary layers. Our results indicate an average sedimentary thickness of approximately 5.3 km in the Linhe rift, compared to about 2.7 km in the Chagandelesu rift. H-κ stacking reveals a relatively low crustal VP/VS ratio of 1.75, suggesting a predominantly felsic composition in the crust northwest of the Langshan piedmont fault. Besides, crustal thickness obtained from H-κ stacking is consistent with Moho depths derived from CCP stacking, showing a deeper Moho beneath the Langshan uplift and a shallower one on the northwest side. Combined with the relatively low VP/VS ratio beneath the Langshan uplift, it is inferred that the uplift is primarily caused by upper crustal thickening under north-south compression. In contrast to previous findings, this study identifies a slight Moho uplift beneath the Linhe rift, suggesting crustal thinning occurred under extensional conditions and may be influenced by mantle upwelling. These new insights constrain the formation mechanisms of the Hetao rift system and the Yinshan orogenic belt.

  • 银川-河套裂谷系位于青藏高原东北缘,处于鄂尔多斯块体、阿拉善块体和阴山造山带之间,是研究大陆裂谷成因的独特场所(图1a)。关于银川-河套裂谷系的形成机制目前尚有争议,有拉分、挤分和底劈三种不同的解释。拉分观点认为该区属于华北构造体系,断陷盆地的形成与演化,和太平洋板块的西向俯冲、弧后扩张形成的东南方向拖曳力有关(Uyeda et al.,1979; Northrup et al.,1995; Zhu Rixiang et al.,2011)。挤分观点认为该区毗邻青藏高原东北缘,属于青藏高原构造体系,青藏高原向东北方向推挤,导致相邻块体沿边界走滑断裂差异运动,是形成盆地的直接原因(Molnar et al.,1975; Tapponnier et al.,1979; 邓起东等,1999; 张岳桥等,2006)。底劈观点认为深部软流圈物质上涌引起地表向两侧的拉张作用,形成了主动裂谷型盆地(李清河等,1999)。

  • 地壳长期记录和保存了大陆构造的演化信息,可以为岩石圈构造演化及动力学机制提供重要约束。目前,已有一些学者对于银川-河套裂谷系及周边的地壳结构开展了研究,获得了裂谷系及周边区域的地壳厚度和波速比(张洪双等,2009; Tian Xiaobo et al.,2011; 贾萌等,2015; 王兴臣等,2017; Xu Xiaoming et al.,2018; 陈洁等,2020; 陈一方等,2020; Zhang Chen et al.,2022),或P波和S波速度信息(滕吉文等,2010; Duan Yonghong et al.,2015; 酆少英等,2015; Liu Baojin et al.,2017; Li Shilin et al.,2018; 郑晨等,2018; Ai Sanxi et al.,2019; Wang Weilai et al.,2023)。但是,这些研究对银川-河套裂谷系地壳结构的认识存在一定的争议。例如,部分学者发现,河套断陷系临河坳陷的莫霍面下陷(Feng Mei et al.,2017; 陈洁等,2020; 陈一方等,2020; Chen Yifang et al.,2022; Hu Xuzhi et al.,2022),地壳明显厚于鄂尔多斯块体和阴山造山带的狼山隆起,并推断存在基性岩浆的底侵或造山运动中形成的加厚地壳根遗迹。但是,也有研究发现临河坳陷地壳厚度不足45 km(Li Shilin et al.,2018; Ai Sanxi et al.,2019);并且,银川盆地(Liu Baojin et al.,2017; Wang Weilai et al.,2023)和呼包坳陷(滕吉文等,2010; Tian Xiaobo et al.,2011; 酆少英等,2015)的研究显示,裂谷系下方莫霍面均存在隆起现象,推断可能是拉伸环境下地幔物质的上涌造成的地壳减薄。此外,裂谷西北侧的阴山隆起的形成机制也存在一定的争议。例如,有学者发现阴山造山带大青山隆起不存在“山根”特征,认为阴山隆起是深部物质上涌造成的(张洪双等,2009; 酆少英等,2015),但也有研究认为阴山造山带主要是挤压环境地壳增厚形成(张振法,1995; 滕吉文等,2010; Tian Xiaobo et al.,2011)。

  • P波接收函数对地壳及上地幔速度界面敏感,H-κ叠加(Zhu Lupei et al.,2000)和CCP(Zhu Lupei,2000)叠加方法可以有效地获取地壳厚度、波速比和莫霍面及壳内界面起伏信息,得到了广泛的应用。近年来基于接收函数获得地表低速沉积层结构的方法也越发成熟(Yeck et al.,2013; Yu Youqiang et al.,2015; Marignier et al.,2024)。因此,针对该区域仍然存在的争议点,本文利用在河套裂谷系西段新布设的宽频带地震观测台阵所记录到的地震波形,提取P波接收函数,获得了该区域的沉积层厚度、地壳厚度和波速比分布情况,进而讨论临河坳陷和狼山隆起的形成机制。

  • 1 地质背景

  • 在华北克拉通西部,稳定的鄂尔多斯块体周缘,分布着力学性质不同、形态复杂、具有圈层分布特征的构造变形带和盆—山耦合系统(张岳桥等,2006)。银川—河套裂谷系位于鄂尔多斯盆地的西北缘,其中银川盆地近南北走向,河套断陷在临河坳陷附近弯曲,由东北—西南走向转变为近东西走向。河套断陷的西界为狼山山前断裂,东界为和林格尔断裂,北界为阴山山前断裂系,南界为鄂尔多斯北缘断裂(国家地震局《鄂尔多斯周缘活动断裂系》课题组,1988)。河套断陷系自渐新世以来开始下沉,新近系下沉加速(Zhang Yueqiao et al.,1998),自东向西可分为呼和坳陷、包头隆起、乌前坳陷、乌拉山隆起和临河坳陷5个单元(付锁堂等,2018)。临河坳陷呈东北—西南走向,是鄂尔多斯周缘裂谷系沉积层最厚区域约15 km,地表为第四系内陆盆地河湖相沉积,基底为前寒武系结晶岩(赵重远等,1984)。

  • 临河坳陷西北侧为控制河套裂谷系的狼山隆起,属于阴山造山带的西端,二者之间的狼山山前断裂带走向55°,倾向东南,倾角约60°,长度超过160 km,主要为正断层,但具有一定的左旋扭动分量(国家地震局《鄂尔多斯周缘活动断裂系》课题组,1988)。狼山隆起地表裸露前寒武系变质岩基底,部分区域存在上侏罗统和下白垩统红色砂岩、砂砾岩不整合盖层。自新生代以来,由于狼山山前断裂的强烈活动,狼山隆起与临河坳陷的相对高差达到了1 km左右。

  • 阴山造山带被认为是华北克拉通和中亚造山带的分界线。研究区范围内,狼山隆起西北侧属中亚造山带的中段,主要地质单元为东北向展布的查干德勒苏坳陷。该坳陷位于银根-额济纳旗盆地东部,主要发育下白垩统、上白垩统和新生界沉积层,厚度最大约6.4 km,基底由前寒武系结晶岩、石炭系—二叠系浅变质褶皱地层和晚海西期及早燕山期的岩浆岩组成(陶国强,2002)。

  • 2 数据与方法

  • 2.1 数据

  • 从2022年8月开始,中国地震局地球物理研究所在位于河套裂谷西段的狼山隆起南北两侧陆续布设了118套宽频带流动地震台(图1b)。这些地震台均由频带为50 Hz~60 s的CMG-3ESPC宽频带地震计和Reftek 130B数据采集器组成,采用太阳能板供电。该台阵主要覆盖了临河坳陷、狼山隆起及西北侧的中亚造山带部分区域,台间距约5~25 km。

  • 本文收集了上述台阵从2022年8月至2024年4月记录到的连续波形数据,从USGS(United States Geological Survey)提供的全球地震目录挑选了矩震级MW≥5.0,以台阵中心为参考点震中距在30°~90°的远震事件,共计1006个,较好的覆盖了研究区的各个方位(图1c)。基于这些事件的P波理论到,从连续数据截取了P波初至前50 s,后150 s的波形。在计算接收函数前,首先对事件波形数据进行了带通滤波(0.05~2 Hz),降采样至10 Hz,并将水平NE分量旋转至相对于射线大圆路径的RT分量。然后,计算了Z分量波形的信噪比(SNR),SNR=max|As|/mean(|An|),As为信号窗口的振幅,An为噪声窗口的振幅,噪声窗口为P波到时前10 s,信号窗口为P波到时后2 s。本文挑选SNR大于2的Z、R分量数据进行时间域迭代反褶积(Ligorría et al.,1999),提取R分量P波接收函数。在反褶积过程中,使用高斯低通滤波器压制高频噪声,高斯系数(α)为2.5。最后,人工挑选Ps转换波和多次波清晰的接收函数共计15801条。

  • 图1 银川-河套裂谷系构造环境、台站及远震事件分布

  • Fig.1 The tectonic environment of the Yinchuan-Hetao rift, and the distribution of stations and teleseismic events

  • (a)—研究区构造背景;白色实线框代表研究区范围;LS—狼山隆起;BYS—巴彦乌拉山隆起;SS—色尔腾山隆起;LH—临河坳陷;CGR—查干德勒苏坳陷;(b)—台站分布;蓝色三角代表台站;紫色实线为3条CCP叠加剖面;红色圆点为接收函数在42 km深处穿透点位置;黑色虚线代表断层;F1—狼山山前断裂;F2—色尔滕山山前断裂;F3—杭锦后旗断裂;F4—五原断裂;F5—临河断裂;F6—磴口—本井断裂;F7—乌拉山北麓断裂;F8—鄂尔多斯北缘断裂;F9—巴彦乌拉山断裂;(c)—远震事件分布,黑色三角代表研究区中心位置

  • (a) —regional tectonic settings; the white solid block represents the study area; LS—Langshan uplift; BYS—Bayan Ula mountain uplift; SS—Sertengshan uplift; LH—Linhe rift; CGR—Chagandelesu rift; (b) —the distribution of stations; the blue triangles represent the stations; three purple solid lines are CCP profiles; the red dots are the locations of the receiver function pierce point at a depth of 42 km; the black dotted lines represent faults: F1—Langshan Piedmont fault; F2—Sertengshan Piedmont fault; F3—Hangjinhou Banner fault; F4—Wuyuan fault; F5—Linhe fault; F6—Dengkou—Benjing fault; F7—Wulashan northern fault; F8—Ordos northern fault; F9—Bayan Ula fault; (c) —the distribution of teleseismic events; the black triangle indicates the central of the study area

  • 先前的研究表明,地壳顶部存在低速沉积盆地时,P波射线路径在地表近似垂直,能量相对较弱,但其后跟随的沉积层基底转换波(Pbs)能量较强,使得最大振幅相对于零时刻发生了延时,且这一延时时间和沉积层的厚度呈正相关(罗艳等,2008)。已有多位学者使用这一延时现象研究台站下方沉积层的厚度(罗艳等,2008; Wang Weilai et al.,2017; Marignier et al.,2024)。本文提取了各台接收函数的Pbs震相的延迟时间(图3b),并利用Wang Weilai et al.(2017)在研究青藏高原东北缘时提出的沉积层厚度和Pbs震相延迟时间的经验关系(图3a),获得了各台站下方的沉积层厚度(图3c)。

  • 2.2 H-κ叠加

  • 假设地下介质为水平均匀层状模型,P波在穿过莫霍面时,会产生Ps转换波,这一转换波在自由表面和莫霍面之间经过多次反射及转换,产生PpPs、PpSs和PsPs等多次波震相(Zhu Lupei et al.,2000),这些震相的走时分别为:

  • tPs=HVPVS2-p2VP2-1-p2VP2VPtPpPs=HVPVS2-p2VP2+1-p2VP2VPtPsPs+PpSs=2HVPVS2-p2VP2VP
    (1)
  • 式中,H为地壳厚度(km),VP为地壳平均P波速度(km/s),Vs为地壳平均S波速度(km/s),p为P波射线参数(s/km)。若给定VP,对地壳厚度H和波速比κ进行网格搜索,可以得到对应的到时,3个到时处对应的振幅进行叠加,当叠加值最大时得到地壳厚度H和波速比κ,即:

  • S(H,κ)=w1rtPs+w2rtPpPs-w3rtPsPs+PpSs)
    (2)
  • 式中,r表示对应时刻的接收函数振幅,w为各震相振幅的权重(和为1)。本文在进行H-κ叠加时,3个震相采用的权重分别为0.6、0.3和0.1。根据人工地震广角反射、折射的结果(滕吉文等,2010),VP设置为6.4 km/s,H的扫描范围为35~50 km,κ的扫描范围为1.5~2.0。

  • 但是,当地壳顶部存在低速沉积层时,P波震相在沉积层基底和自由表面之间多次反射和转换,这些震相在接收函数中产生能量极强的混响,尤其是沉积层厚度较大、S波速度较低时,使H-κ叠加结果明显偏离真实情况(Yeck et al.,2013; Yu Youqiang et al.,2015)。根据2.1节中得到的沉积层分布情况,本文认为查干德勒苏坳陷规模较小,低速沉积层较薄,其H-κ叠加的结果仍然具有一定的参考意义;但临河坳陷低速沉积层太厚,该区域台站H-κ叠加结果有待分析。因此,本文仅对狼山山前断裂带西北侧沉积层相对较薄处台站的H-κ叠加结果进行了分析。

  • 2.3 CCP叠加

  • CCP叠加方法基于射线理论,使用一定的速度模型,将接收函数各震相从时间域转换至深度域,并将一个剖面上多个台站得到的结果进行叠加,是获取界面二维形态的有效手段(Zhu Lupei,2000)。此外,该方法可以选择不同的模型进行时深转换,因此,有效地克服了H-κ叠加中单一层状均匀介质的假设,使得该方法可以用于低速沉积层较厚的区域,如渤海湾盆地(武岩等,2011)等。但是,低速沉积层多次波震相可能干扰莫霍面转换波震相,为此,本文对临河坳陷各台站的接收函数进行了分析。例如,Y092台站的接收函数6 s左右存在一个较为连续的正震相,本文拾取了每条接收函数这一震相的到时,发现该到时随射线参数的增大而增大,表现为正斜率,约2.3,符合界面转换波的特征(刘嘉栋等,2024)。因此,可以推断这一震相主要为莫霍面转换波。

  • 正如上文所说,在进行CCP叠加时需要使用速度模型进行时深转换,但速度模型的选择对时深转换的结果有较大的影响。研究区浅部速度结构横向变化剧烈,尤其是在狼山断裂两侧,狼山山前断裂带东南侧临河坳陷存在巨厚沉积,西北侧的查干德勒苏坳陷沉积厚度相对较小,若采用同一速度模型,得到的结果将偏离真实情况。本文在CCP叠加过程中,使用前文得到的沉积层厚度和对应的S波速度,波速比固定为2,将沉积层模型设置为各台站浅部速度结构,深部结构采用IASP91模型(Kennett et al.,1991),然后对各台站接收函数分别进行时深转换。之后,构建了3条自东南向西北的叠加剖面(图1b)用以研究狼山山前断裂带两侧的莫霍面起伏情况。每条剖面的叠加箱均为圆形,半径15 km,沿剖面方向1 km移动,深度方向1 km移动。

  • 图2 Y035、Y066和Y092台站接收函数

  • Fig.2 Receiver functions of Y035, Y066 and Y092 stations

  • (a)—Y035台站接收函数,黑色虚线代表莫霍面转换波及多次波到时,红色实线指示了Pbs震相,时间延迟约0.45 s;(b)—Y066台站接收函数;(c)—Y092台站接收函数,Pbs震相时间延迟约1.82 s

  • (a) —the receiver functions of Y035, the black dashed lines represent the arrival times of Ps phase and the multiples, the red line indicates the Pbs phase, the delay time is 0.45 s; (b) —the receiver functions of Y066; (c) —the receiver functions of Y092, the Pbs phase delay time is about 1.82 s

  • 3 结果

  • 3.1 沉积层厚度分布

  • 图2展示了台站Y035、Y066和Y092的接收函数,三者分别位于查干德勒苏坳陷、阴山造山带和临河坳陷。可以看到,位于查干德勒苏坳陷的Y035台站最大振幅处偏离0 s时刻,此时最大振幅对应Pbs震相,延迟时间约0.45 s;位于临河坳陷内Y092台站接收函数Pbs震相延迟时间约1.82 s,符合存在巨厚低速沉积层的特征。各个台站沉积层厚度分布的结果显示(图3c),研究区的沉积层主要分布在狼山山前断裂带东南的临河坳陷和断裂带以北的查干德勒苏坳陷。临河坳陷处的沉积层平均厚度约5.3 km,最大厚度位于杭锦后旗断裂附近,可达5.6 km;向东南跨过磴口-本井断裂进入鄂尔多斯块体,沉积层厚度逐渐减薄至2~3 km,整体上呈现出从西北向东南逐渐减薄的趋势,与前人提出的河套断陷带为北深南浅的箕状相吻合,但厚度存在较大的差别(国家地震局《鄂尔多斯周缘活动断裂系》课题组,1988)。根据声波时差测井结果显示(徐泽阳,2023),临深三井5 km深度声波速度约4.5 km/s,与本文利用公式得到的结果4.7 km/s接近,证实本文用于计算沉积层厚度的速度模型相对较为可靠。临河坳陷沉积层厚度结果与前人利用天然地震方法得到的结果相似(Wang Weilai et al.,2017; Wang Xingchen et al.,2017b; 郑晨等,2018; Xiao Xiao et al.,2021),但这些研究受限于较为稀疏的台站分布,未得到查干德勒苏坳陷的沉积层分布情况。本文得到的查干德勒苏坳陷沉积层大致为东北-西南走向,与狼山隆起走向近乎一致,平均厚度约 2.7 km,最厚处位于乌力吉附近,约4 km。查干德勒苏坳陷沉积层的规模明显小于临河坳陷。

  • 3.2 H-k叠加结果

  • 图4展示了台站Y035、Y066和Y092的接收函数H-κ叠加的结果。与Y092台站相比,前两个台站因沉积层厚度相对较小,接收函数Ps和PpPs震相清晰连续,H-κ叠加能量较为集中,标准差仅1.43 km/0.033和1.54 km/0.035。而位于临河坳陷的Y092台站虽然可以得到叠加结果,但标准差较大,并且考虑到其Pbs震相延迟时间较大,莫霍面的转换波及多次波到时受到了严重干扰,其结果存疑,因此本文不对临河坳陷H-κ叠加结果进行讨论。

  • 图3 Pbs震相时间延迟和沉积层厚度的关系及分布

  • Fig.3 The delay time of the Pbs phase and the distribution of sedimentary thickness

  • (a)—Wang Weilai et al.(2017)接收函数Pbs震相时间延迟和沉积层厚度关系;(b)—各台站Pbs震相时间延迟;(c)—沉积层厚度分布;CAOB—中亚造山带;YSOB—阴山造山带;OB—鄂尔多斯块体

  • (a) —the relationship between receiver functions' Pbs phase time delay and the sedimentary thickness from Wang Weilai et al. (2017) ; (b) —the distribution of receiver functions' Pbs phase time delay of each station; (c) —the sedimentary thickness; CAOB—the Central Asia Orogenic Belt; YSOB—the Yinshan Orogenic Belt; OB—the Ordos Block

  • 本文得到了研究区狼山山前断裂带以北区域68个台站的地壳厚度和波速比,包含狼山隆起和北部的中亚造山带部分区域(图5a、b)。对所有台站H-κ叠加结果标准差的统计表明,地壳厚度的误差基本小于2 km,波速比的误差基本小于0.04,说明结果较为稳健(图5c、d)。

  • 狼山山前断裂带以北地壳厚度在40~47 km之间,平均约43.4 km,整体呈现出从西北向东南逐渐增厚的趋势。中亚造山带地壳厚度略薄于狼山隆起,平均地壳厚度约42 km,尤其是研究区西北角,地壳厚度仅约40.4 km。狼山隆起区域地壳厚度相对较厚,平均超过44 km,并且呈现出从东向西增厚的趋势,最厚接近49 km,位于狼山隆起与巴彦乌拉山交汇处。研究区波速比在1.65~1.85之间,平均值约1.75,波速比的横向变化较为明显,高值与低值具有明显的分区特征。狼山隆起以北,除去查干德勒苏坳陷附近,其他区域波速比均低于1.75,坳陷内波速比最高可达1.84。狼山隆起波速比平均约1.76,局部大于1.8,整体上较为均一。

  • 本文得到的地壳厚度和波速比的结果与前人研究结果基本一致(王兴臣等,2017; Xu Xiaoming et al.,2018),并且,依赖于新布设的较为密集的宽频带台阵,本文的结果刻画了研究区地壳结构更加精细的分布特征。

  • 3.3 CCP叠加结果

  • 前文已经提到,若地壳顶部存在较厚的低速沉积层,沉积层多次波混响可能对莫霍面转换波Ps的振幅和到时产生干扰,H-κ叠加的结果并不能反映真实的地壳厚度和波速比,H-κ叠加的结果并不能反映真实的地壳厚度和波速比。本文构建了三条近乎垂直于狼山山前断裂带走向的CCP叠加剖面(图6),获得了横跨狼山隆起两侧的莫霍面起伏情况。狼山山前断裂带以北,CCP叠加得到的地壳厚度大部分略小于H-κ叠加的结果,这可能是CCP叠加对顶部速度结构校正造成的。总体上,CCP叠加和H-κ叠加得到的地壳厚度显示出了较好的一致性,且与地形高程呈镜像关系,狼山隆起地壳厚度略厚于中亚造山带和临河坳陷。本文莫霍面相对地表深度在狼山山前断裂带以北与前人接收函数结果较为一致,但在临河坳陷存在差异(陈一方等,2020; 陈洁等,2020; Chen Yifang et al.,2022; Hu Xuzhi et al.,2022; Zhang Chen et al.,2022)。本文的结果显示,莫霍面相对地表深度在狼山隆起超过45 km,AA′和BB′剖面莫霍面越过狼山山前断裂后抬升至40 km左右;CC′剖面临河坳陷和狼山隆起莫霍面深度几乎相同,均在45 km左右。张洪双等(2009)在靠近CC′剖面东南端的固定台XSZ使用H-κ叠加得到地壳厚度约45 km,波速比约1.72,本文结果与上述结果基本一致。临河坳陷莫霍面隆起这一特征,与联合反演的结果基本一致(Ai Sanxi et al.,2019),同时与他人在河套裂谷系其他区域得到的莫霍面埋深变化一致,如利用人工地震(滕吉文等,2010)或接收函数(Tian Xiaobo et al.,2011)在呼包盆地得到的结果,联合反演(Wang Weilai et al.,2023)或人工地震(Liu Baojin et al.,2017)在银川盆地得到的结果。

  • 图4 Y035(a)、Y066(b)和Y092(c)站台H-κ叠加结果

  • Fig.4 The H-κ results of Y035 (a) , Y066 (b) and Y092 (c)

  • 图5 狼山隆起及周边地壳厚度、波速比分布及误差统计

  • Fig.5 The crustal thickness, VP/VS ratio distribution and the statistic of standard deviation of the Langshan uplift and adjacent area

  • (a)—地壳厚度分布;(b)—波速比分布;(c)—地壳厚度误差统计;(d)—波速比误差统计;CAOB—中亚造山带;YSOB—阴山造山带;OB—鄂尔多斯块体

  • (a) —the distribution of crustal thickness; (b) —the distribution of VP/VS ratio; (c) —the statistic of crustal thickness standard deviation; (d) —the statistic of VP/VS ratio standard deviation; CAOB—the Central Asia Orogenic Belt; YSOB—the Yinshan Orogenic Belt; OB—the Ordos Block

  • 图6 狼山隆起两侧接收函数CCP叠加剖面(a~c)

  • Fig.6 The CCP profiles across the Langshan uplift (a~c)

  • 黑色三角代表台站,黑色虚线示意断层在剖面投影位置,黑色圆点和误差棒对应H-κ叠加得到的地壳厚度和误差,紫色实线代表莫霍面位置,紫色虚线代表推断的莫霍面位置

  • The black triangles represent the stations, the black dotted lines indicate the location of the faults, the black dots and the error bars correspond to the thickness and error of the crust obtained by the H-κ stacking, the purple solid lines represent the Moho, and the purple dashed lines represent the inferred Moho

  • 4 讨论

  • 4.1 沉积层分布

  • 石油勘探的结果显示,临河盆地沉积层呈现北深南浅的不对称箕状,厚度可达15 km(赵重远等,1984)。本文得到的沉积层厚度平均厚度仅5.3 km,明显薄于石油勘探的结果。根据石油部长庆油田河套前线指挥部在1983年完成的《河套盆地临河地区临深三井完井地质总结报告》,临河区西侧的临深3井揭示新生界地层5182.5 m,本文周边台站沉积层厚度与此数据接近,可推断本文得到的沉积层厚度可能指示新生界沉积物厚度。前人的研究认为,对于较厚的沉积盆地,深部的沉积物、尤其是结晶基底附近的沉积物可能因重力压实产生轻微变质,导致沉积层深部与结晶地壳之间的波阻抗相差较小,从而使接收函数得到的沉积层厚度小于真实的沉积层厚度(Agrawal et al.,2022; 王秋实等,2024)。临河坳陷基底为太古界变质岩系,上覆下白垩统,从上新世开始,临河坳陷周边断陷作用加强,上新统和第四系沉积速率明显大于更老的地层(国家地震局《鄂尔多斯周缘活动断裂系》课题组,1988)。徐泽阳(2023)给出了狼山山前断裂附近沉积速率,结果显示新生界临河组以上地层沉积速率相对较大,古近系临河组约300 m/Ma,新近系乌兰图克组可达1500 m/Ma,第四系河套群也有超过500 m/Ma。这些较新的地层以较快的速度沉积,可能导致新生界与中生界地层间出现较为明显的波阻抗界面。另外下白垩统固阳组及以下地层沉积时期较早,受上覆地层压实变质作用,使得与结晶地壳之间的波阻抗差别较小,进而导致本文得到的沉积层厚度薄于实际情况。

  • 与临河坳陷相比,查干德勒苏坳陷的沉积厚度明显减薄。先前的研究(陶国强,2002)表明,查干德勒苏坳陷位于银根—额济纳旗盆地东部,走向北东,查参1井在约4 km处钻遇二叠系浅变质岩基底,本文得到的结果与之相近。查干德勒苏坳陷发育于晚古生代褶皱基底之上,并在喜马拉雅期受印度板块与欧亚板块碰撞的远程效应出现挤压和冲断现象(王生朗等,2002),使其规模远小于现今仍受拉张伸展的临河坳陷。

  • 4.2 地壳厚度和波速比与地壳结构的关系

  • 本文利用H-κ叠加得到了研究区狼山山前断裂带以北区域的地壳厚度和波速比,包含了狼山隆起、查干德勒苏坳陷。然后使用CCP叠加方法得到了临河坳陷、狼山隆起和查干德勒苏坳陷的莫霍面埋深,后两者与H-κ叠加的结果具有较好的一致性。

  • H-κ叠加得到的研究区平均波速比约1.75,明显低于全球大陆平均值(Zandt et al.,1995)。地壳泊松比σ(波速比κ)与地壳组分直接相关,主要成分为长英质的岩石表现为低值(σ<0.26,κ<1.76),往往具有较高的SiO2含量;相反,高值(σ>0.28,κ>1.81)反映岩石具有较高的铁镁质成分,SiO2含量相对较低;而异常高值(σ>0.33,κ>1.99)往往表示岩石结构较为松散、存在流体或存在部分熔融(Owens et al.,1997)。低速沉积层往往具有较高的波速比(Wang Xu et al.,2021),查干德勒苏坳陷较高的波速比与较厚沉积层的位置基本一致,因此推断,该区域较高的波速比可能主要受到了浅部低速沉积层的影响。研究区北部较低的波速比和较薄的地壳与He Jing et al.(2016)得到的蒙古中部祖恩巴彦断层以南结果相似,说明二者地壳组分均为富长英质。狼山隆起区域,波速比随地壳厚度的增大略有升高,但均值1.76仍是中低水平,仅部分台站超过1.81。滕吉文等(2010)研究发现,阴山造山带上下地壳的分界面明显比鄂尔多斯块体深,Tian Xiaobo et al.(2011)的研究结果显示其具有较低的波速比,他们认为这是由于阴山造山带隆起主要受到富长英质上地壳增厚的影响造成的。综上,本文认为狼山山前断裂带及北侧临近地块的地壳组分以长英质为主。

  • 研究区地壳厚度存在明显的分区现象,从西北向东南表现为薄—厚—薄的特征。狼山隆起地壳较厚这一现象与前人结果基本一致,表明中生代以来,阴山造山带受南北挤压力作用地壳增厚。结合前文提到的狼山隆起较低的波速比和较厚的上地壳,本文推断,上地壳在挤压环境下部分层位发生逆冲推覆,是狼山隆起地壳增厚的主要原因。

  • 在存在争议的临河坳陷,有研究成果认为莫霍面在此下陷至50 km左右,地壳厚度存在增厚现象,厚度超过狼山隆起区域,并将这种现象解释为基性岩浆的底侵(陈洁等,2020)或造山运动中形成的加厚地壳根遗迹(Feng Mei et al.,2017; Chen Yifang et al.,2022; Hu Xuzhi et al.,2022)。本文结果显示,临河坳陷地壳厚度相对于阴山隆起有所减薄,这与一些学者在银川-河套裂陷系其他地质单元的研究结果较为一致(滕吉文等,2010; Tian Xiaobo et al.,2011; 贾萌等,2015; Liu Baojin et al.,2017; Wang Weilai et al.,2023)。研究区东南侧的鄂尔多斯地块北部莫霍面埋深约42 km(王兴臣等,2017),与临河坳陷相比略厚。结合前人研究得到的临河坳陷岩石圈明显减薄(Chen Ling,2010; Li Yonghua et al.,2017),上地幔S波速度较低(Li Shilin et al.,2018; Zhang Fengxue et al.,2018)等结果,本文推断临河坳陷地壳受到地幔热物质上涌的影响,在拉张环境下发生了减薄,相对于较为稳定的鄂尔多斯块体北部,减薄约2 km。

  • 5 结论

  • 本文使用布设于河套断裂带西段狼山隆起两侧的宽频带流动台阵,提取了远震P波接收函数。基于接收函数中沉积层基底转换波延时获得了研究区沉积层厚度分布;使用H-κ叠加和CCP叠加方法,得到了研究区地壳厚度和波速比的分布情况。结合研究区的相关研究结果,本文得到的结论如下:

  • (1)研究区狼山隆起东南侧临河坳陷规模较大,沉积较厚,新生界沉积层厚度平均约5.3 km;西北侧查干德勒苏坳陷规模较小,沉积层较薄,平均厚度仅2.7 km。

  • (2)狼山隆起和临近的中亚造山带区域地壳波速比整体较低,平均1.75,推断该区域地壳岩石组分以长英质为主。

  • (3)狼山隆起地壳较厚,平均45 km,波速比较低,与中生代以来南北向挤压作用造成的上地壳推覆隆升有关,这可能是狼山隆起的动力学原因;临河坳陷莫霍面隆起,地壳厚度仅约40 km,推断地壳受拉张环境和上地幔物质上涌影响发生减薄,相比鄂尔多斯块体北部减薄约2 km。

  • 致谢:谨以此文祝贺任纪舜院士90华诞。感谢参与台阵建设和维护的各位老师和同学。感谢《地质学报》编辑部,感谢两位审稿专家的宝贵意见。

  • 参考文献

    • Agrawal S, Eakin C M, O'Donnell J. 2022. Characterizing the cover across South Australia: A simple passive-seismic method for estimating sedimentary thickness. Geophysical Journal International, 231(3): 1850~1864.

    • Ai Sanxi, Zheng Yong, Riaz M S, Song Meiqing, Zeng Sijia, Xie Zujun. 2019. Seismic evidence on different rifting mechanisms in southern and northern segments of the Fenhe-Weihe Rift Zone. Journal of Geophysical Research: Solid Earth, 124(1): 609~630.

    • Chen Ling. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120(1): 96~115.

    • Chen Jie, Chen Yongshun, Guo Zhen, Yang Ting. 2020. Crustal structure of the Ordos block and adjacent regions along an N-S profile of 107. 6°E. Chinese Journal of Geophysics, 63(7): 2592~2604 (in Chinese with English abstract).

    • Chen Yifang, Chen Jiuhui, Guo Biao, Li Shuncheng, Qi Shaohua, Zhao Panpan, Li Xiaoshu. 2020. Crustal structure and deformation between different blocks in the northern part of the western margin of Ordos. Chinese Journal of Geophysics, 63(3): 886~896 (in Chinese with English abstract).

    • Chen Yifang, Chen Jiuhui, Guo Biao, Li Shuncheng, Li Yu, Qi Shaohua, Zhao Panpan. 2022. Seismic structure and deformation features beneath the Yinchuan-Hetao graben, NW China. Physics of the Earth and Planetary Interiors, 329~330: 106911.

    • Deng Qidong, Cheng Shaoping, Min Wei, Yang Guizhi, Ren Dianwei. 1999. Discussion on Cenozoic tectonics and dynamics of Ordos block. Journal of Geomechanics, 5(3): 13~21 (in Chinese with English abstract).

    • Duan Yonghong, Liu Baojin, Zhao Jinren, Liu Baofeng, Zhang Chengke, Pan Suzhen, Lin Jiyan, Guo Wenbin. 2015. 2-D P-wave velocity structure of lithosphere in the North China tectonic zone: Constraints from the Yancheng-Baotou deep seismic profile. Science China: Earth Sciences, 58(9): 1577~1591.

    • Feng Mei, An Meijian, Dong Shuwen, 2017. Tectonic history of the Ordos block and Qinling orogen inferred from crustal thickness. Geophysical Journal International, 210(1): 303~320.

    • Feng Shaoying, Liu Baojin, Ji Jifa, He Yinjuan, Tan Yali, Li Yiqing. 2015. The survey on fine lithospheric structure beneath Hohhot-Baotou basin by deep seismic reflection profile. Chinese Journal of Geophysics, 58(4): 1158~1168 (in Chinese with English abstract).

    • Fu Suotang, Fu Jinhua, Yu Jian, Yao Jingli, Zhang Caili, Ma Zhanrong, Yang Yajuan, Zhang Yan. 2018. Petroleum geological features and exploration prospect of Linhe depression in Hetao basin, China. Petroleum Exploration and Development, 45(5): 749~762 (in Chinese with English abstract).

    • He Jing, Wu Qingju, Sandvol E, Ni J, Gallegos A, Gao Mengtan, Ulziibat M, Demberel S. 2016. The crustal structure of south central Mongolia using receiver functions. Tectonics, 35(6): 1392~1403.

    • Hu Xuzhi, Xu Mijian, Xu Mingjie, Zhang Yueqiao, Huang Zhouchuan. 2022. A relic thickened crustal root beneath the Cenozoic rift zone of the NW Ordos margin, North China, revealed by receiver functions. Physics of the Earth and Planetary Interiors, 333: 106953.

    • Jia Meng, Wang Xianguang, Li Shilin, Chen Yongshun. 2015. Crustal structures of Ordos block and surrounding regions from receiver functions. Progress in Geophysics, 30(6): 2474~2481 (in Chinese with English abstract).

    • Kennett B L N, Engdahl E R. 1991. Travel times for global earthquake location and phase identification. Geophysical Journal International, 105(2): 429~465.

    • Li Qinghe, Guo Shounian, Lv Dehui. 1999. Deep Structure and Construction Beneath the Section of the Western Margin and Southwest of the Ordos Basin. Beijing: Seismological Press (in Chinese).

    • Li Shilin, Guo Zhen, Chen Yongshun John, Yang Yingjie, Huang Qinghua. 2018. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography. Journal of Geophysical Research: Solid Earth, 123(8): 6940~6957.

    • Li Yonghua, Pan Jiatie, Wu Qingju, Ding Zhifeng. 2017. Lithospheric structure beneath the northeastern Tibetan Plateau and the western Sino-Korea Craton revealed by Rayleigh wave tomography. Geophysical Journal International, 210(2): 570~584.

    • Ligorría J P, Ammon C J. 1999. Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5): 1395~1400.

    • Liu Baojin, Feng Shaoying, Ji Jifa, Wang Shuaijun, Zhang Jianshi, Yuan Hongke, Yang Guojun. 2017. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan basin: Results of deep seismic reflection profiling. Science China: Earth Sciences, 60(3): 589~601.

    • Liu Jiadong, Wu Qingju, Qiang Zhengyang, Zhu Min. 2024. Crustal structure characteristics beneath the Weiyuan area, Sichuan revealed by receiver functions. Chinese Journal of Geophysics, 67(7): 2637~2653 (in Chinese with English abstract).

    • Luo Yan, Chong Jiajun, Ni Sidao, Chen Qifu, Chen Yong. 2008. Moho depth and sedimentary thickness in Capital region. Chinese Journal of Geophysics, 51(4): 1135~1145 (in Chinese with English abstract).

    • Marignier A, Eakin C M, Hejrani B, Agrawal S, Hassan R. 2024. Sediment thickness across Australia from passive seismic methods. Geophysical Journal International, 237(2): 849~861.

    • Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189(4201): 419~426.

    • Northrup C J, Royden L H, Burchfiel B C. 1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 23(8): 719~722.

    • Owens T J, Zandt G. 1997. Implications of crustal property variations for models of Tibetan Plateau evolution. Nature, 387(6628): 37~43.

    • Tao Guoqiang. 2002. The structure characteristics of Chagandelesu fault depression and its petroleum accumulation condition. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Tapponnier P, Molnar P. 1979. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal regions. Journal of Geophysical Research: Solid Earth, 84(B7): 3425~3459.

    • Teng Jiwen, Wang Fuyun, Zhao Wenzhi, Zhang Yongqian, Zhang Xiankang, Yan Yafen, Zhao Jinren, Li Ming, Yang Hui, Zhang Hongshuang, Ruan Xiaomin. 2010. Velocity structure of layered block and deep dynamic process in the lithosphere beneath the Yinshan orogenic belt and Ordos basin. Chinese Journal of Geophysics, 53(1): 67~85 (in Chinese with English abstract).

    • The Research group on “Activate fault system around ordos massif”, State Seismological Bureau. 1988. Activate Fault System around Ordos Massif. Beijing: Seismological Press.

    • Tian Xiaobo, Teng Jiwen, Zhang Hongshuang, Zhang Zhongjie, Zhang Yongqian, Yang Hui, Zhang Keke. 2011. Structure of crust and upper mantle beneath the Ordos block and the Yinshan Mountains revealed by receiver function analysis. Physics of the Earth and Planetary Interiors, 184(3~4): 186~193.

    • Uyeda S, Kanamori H. 1979. Back-arc opening and the mode of subduction. Journal of Geophysical Research: Solid Earth, 84(B3): 1049~1061.

    • Wang Qiushi, Li Yonghua, Wu Yan. 2024. Sedimentary structures beneath the northern Bohai basin constrained by the autocorrelation of receiver function. Chinese Journal of Geophysics, 67(6): 2291~2303 (in Chinese with English abstract).

    • Wang Shenglang, Ma Weimin, Zhu Zhixin, Shang Yazheng. 2002. Structural-depositional framework and hydrocarbon exploration prospects in the Chagan depression, the Yingen-Ejinaqi basin. Petroleum Geology and Experiment, 24(4): 296~300 (in Chinese with English abstract).

    • Wang Weilai, Wu Jianping, Fang Lihua, Lai Guijuan, Cai Yan. 2017. Sedimentary and crustal thicknesses and Poisson's ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays. Earth and Planetary Science Letters, 462: 76~85.

    • Wang Weilai, Cai Guangyao, Lai Guijuan, Zhang Xianwei, Bao Jingjing, Zhang Long, Su Jun, Cheng Mingfei. 2023. Three-dimensional S-wave velocity structure of the crust and upper mantle for the normal fault system beneath the Yinchuan basin from joint inversion of receiver function and surface wave. Science China: Earth Sciences, 66(5): 997~1014.

    • Wang Xingchen, Ding Zhifeng, Wu Yan, Zhu Lupei. 2017a. Crustal thicknesses and Poisson's ratios beneath the northern section of the north-south seismic belt and surrounding areas in China. Chinese Journal of Geophysics, 60(6): 2080~2090 (in Chinese with English abstract).

    • Wang Xingchen, Li Yonghua, Ding Zhifeng, Zhu Lupei, Wang Chunyong, Bao Xuewei, Wu Yan. 2017b. Three-dimensional lithospheric S wave velocity model of the NE Tibetan Plateau and western North China Craton. Journal of Geophysical Research: Solid Earth, 122(8): 6703~6720.

    • Wang Xu, Chen Ling, Yao Huajian. 2021. A new body-wave amplitude ratio-based method for imaging shallow crustal structure and its application in the Sichuan basin, southwestern China. Geophysical Research Letters, 48(18): e2021GL095186.

    • Wu Yan, Ding Zhifeng, Zhu Lupei. 2011. Crustal structure of the North China Craton from teleseismic receiver function by the Common Conversion Point stacking method. Chinese Journal of Geophysics, 54(10): 2528~2537 (in Chinese with English abstract).

    • Xiao Xiao, Cheng Shihua, Wu Jianping, Wang Weilai, Sun Li, Wang Xiaoxin, Wen Liangxing. 2021. Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function. Geophysical Journal International, 225(2): 998~1019.

    • Xu Xiaoming, Niu Fenglin, Ding Zhifeng, Chen Qifu. 2018. Complicated crustal deformation beneath the NE margin of the Tibetan Plateau and its adjacent areas revealed by multi-station receiver-function gathering. Earth and Planetary Science Letters, 497: 204~216.

    • Xu Zeyang. 2023. Characteristics of differential superposition between Meso-Cenozoic basins and mechanism of hydrocarbon enrichment in the Linhe depression, Hetao basin. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Yeck W L, Sheehan A F, Schulte-Pelkum V. 2013. Sequential H-κ stacking to obtain accurate crustal thicknesses beneath sedimentary basins. Bulletin of the Seismological Society of America, 103(3): 2142~2150.

    • Yu Youqiang, Song Jianguo, Liu K H, Gao S S. 2015. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions. Journal of Geophysical Research: Solid Earth, 120(5): 3208~3218.

    • Zandt G, Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson's ratio. Nature, 374(6518): 152~154.

    • Zhang Chen, Guo Zhen, Yu Yong, Yang Ting, Chen Yongshun John. 2022. Distinct lithospheric structures of the Ordos block and its margins from P and S receiver functions and its implications for the Cenozoic lithospheric reworking. Geophysical Research Letters, 49(6): e2021GL097680.

    • Zhang Fengxue, Wu Qingju, Li Yonghua, Zhang Ruiqing, Sun Lian, Pan Jiatie, Ding Zhifeng. 2018. Seismic tomography of eastern Tibet: Implications for the Tibetan Plateau growth. Tectonics, 37(9): 2833~2847.

    • Zhang Hongshuang, Tian Xiaobo, Liu Fang, Cao Jingquan, Teng Jiwen. 2009. Structure of crust and mantle beneath the Hu-bao basin and its adjacent region. Progress in Geophysics, 24(5): 1609~1615 (in Chinese with English abstract).

    • Zhang Yueqiao, Mercier J L, Vergély P. 1998. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of South China with respect to Gobi-Mongolia. Tectonophysics, 285(1): 41~75.

    • Zhang Yueqiao, Liao Changzheng, Shi Wei, Hu Bo. 2006. Neotectonic evolution of the peripheral zones of the Ordos basin and geodynamic setting. Geological Journal of China Universities, 12(3): 285~297 (in Chinese with English abstract).

    • Zhang Zhenfa. 1995. Approach to the mechanism and relative problems of Yinshan Chain uplift. Geology of Inner Mongolia, Z1: 17~35 (in Chinese with English abstract).

    • Zhao Zhongyuan, Guo Zhongming, Hui Binyao. 1984. Hetao arcuate tectonic system and their mechanism of formation and evolution. Oil and Gas Geology, 5(4): 349~361 (in Chinese with English abstract).

    • Zheng Chen, Ding Zhifeng, Song Xiaodong. 2018. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure beneath the northern north-south seismic zone. Chinese Journal of Geophysics, 61(4): 1211~1224 (in Chinese with English abstract).

    • Zhu Lupei. 2000. Crustal structure across the San Andreas fault, southern California from teleseismic converted waves. Earth and Planetary Science Letters, 179(1): 183~190.

    • Zhu Lupei, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2): 2969~2980.

    • Zhu Rixiang, Chen Ling, Wu Fuyuan, Liu Junlai. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China: Earth Sciences, 54(6): 789~797.

    • 陈洁, 陈永顺, 郭震, 杨挺. 2020. 沿107. 6°E南北向剖面鄂尔多斯地块及周缘地区地壳结构. 地球物理学报, 63(7): 2592~2604.

    • 陈一方, 陈九辉, 郭飚, 李顺成, 齐少华, 赵盼盼, 李晓姝. 2020. 鄂尔多斯西缘北段的地壳结构和块体间变形关系. 地球物理学报, 63(3): 886~896.

    • 邓起东, 程绍平, 闵伟, 杨桂枝, 任殿卫. 1999. 鄂尔多斯块体新生代构造活动和动力学的讨论. 地质力学学报, 5(3): 13~21.

    • 酆少英, 刘保金, 姬计法, 何银娟, 谭雅丽, 李怡青. 2015. 呼和浩特-包头盆地岩石圈细结构的深地震反射探测. 地球物理学报, 58(4): 1158~1168.

    • 付锁堂, 付金华, 喻建, 姚泾利, 张才利, 马占荣, 杨亚娟, 张艳. 2018. 河套盆地临河坳陷石油地质特征及勘探前景. 石油勘探与开发, 45(5): 749~762.

    • 国家地震局《鄂尔多斯周缘活动断裂系》课题组. 1988.鄂尔多斯周缘活动断裂系. 北京: 地震出版社.

    • 贾萌, 王显光, 李世林, 陈永顺. 2015. 鄂尔多斯块体及周边区域地壳结构的接收函数研究. 地球物理学进展, 30(6): 2474~2481.

    • 李清河, 郭守年, 吕德徽. 1999. 鄂尔多斯西缘与西南缘深部结构与构造. 北京: 地震出版社.

    • 刘嘉栋, 吴庆举, 强正阳, 朱敏. 2024. 利用接收函数研究四川威远地区地壳结构特征. 地球物理学报, 67(7): 2637~2653.

    • 罗艳, 崇加军, 倪四道, 陈棋福, 陈颙. 2008. 首都圈地区莫霍面起伏及沉积层厚度. 地球物理学报, 51(4): 1135~1145.

    • 陶国强. 2002. 查干德勒苏凹陷构造特征及油气成藏条件. 中国地质大学(北京)博士学位论文.

    • 滕吉文, 王夫运, 赵文智, 张永谦, 张先康, 闫雅芬, 赵金仁, 李明, 杨辉, 张洪双, 阮小敏. 2010. 阴山造山带-鄂尔多斯盆地岩石圈层、块速度结构与深层动力过程. 地球物理学报, 53(1): 67~85.

    • 王秋实, 李永华, 武岩. 2024. 使用接收函数自相关约束渤海湾北部沉积层结构. 地球物理学报, 67(6): 2291~2303.

    • 王生朗, 马维民, 竺知新, 尚雅珍. 2002. 银根-额济纳旗盆地查干凹陷构造-沉积格架与油气勘探方向. 石油实验地质, 24(4): 296~300.

    • 王兴臣, 丁志峰, 武岩, 朱露培. 2017. 中国南北地震带北段及其周缘地壳厚度与泊松比研究. 地球物理学报, 60(6): 2080~2090.

    • 武岩, 丁志峰, 朱露培. 2011. 利用共转换点叠加方法研究华北地区地壳结构. 地球物理学报, 54(10): 2528~2537.

    • 徐泽阳. 2023. 临河坳陷中-新生代盆地差异叠合及油气富集机制研究. 中国石油大学(北京)博士学位论文.

    • 张洪双, 田小波, 刘芳, 曹井泉, 滕吉文. 2009. 呼包盆地周缘壳、幔结构研究. 地球物理学进展, 24(5): 1609~1615.

    • 张岳桥, 廖昌珍, 施炜, 胡博. 2006. 鄂尔多斯盆地周边地带新构造演化及其区域动力学背景. 高校地质学报, 12(3): 285~297.

    • 张振法. 1995. 阴山山链隆起机制及有关问题探讨. 内蒙古地质, Z1: 17~35.

    • 郑晨, 丁志峰, 宋晓东. 2018. 面波频散与接收函数联合反演南北地震带北段壳幔速度结构. 地球物理学报, 61(4): 1211~1224.

    • 赵重远, 郭忠铭, 惠斌耀. 1984. 河套弧形构造体系及其形成和演化机制. 石油与天然气地质, 5(4): 349~361.

  • 参考文献

    • Agrawal S, Eakin C M, O'Donnell J. 2022. Characterizing the cover across South Australia: A simple passive-seismic method for estimating sedimentary thickness. Geophysical Journal International, 231(3): 1850~1864.

    • Ai Sanxi, Zheng Yong, Riaz M S, Song Meiqing, Zeng Sijia, Xie Zujun. 2019. Seismic evidence on different rifting mechanisms in southern and northern segments of the Fenhe-Weihe Rift Zone. Journal of Geophysical Research: Solid Earth, 124(1): 609~630.

    • Chen Ling. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120(1): 96~115.

    • Chen Jie, Chen Yongshun, Guo Zhen, Yang Ting. 2020. Crustal structure of the Ordos block and adjacent regions along an N-S profile of 107. 6°E. Chinese Journal of Geophysics, 63(7): 2592~2604 (in Chinese with English abstract).

    • Chen Yifang, Chen Jiuhui, Guo Biao, Li Shuncheng, Qi Shaohua, Zhao Panpan, Li Xiaoshu. 2020. Crustal structure and deformation between different blocks in the northern part of the western margin of Ordos. Chinese Journal of Geophysics, 63(3): 886~896 (in Chinese with English abstract).

    • Chen Yifang, Chen Jiuhui, Guo Biao, Li Shuncheng, Li Yu, Qi Shaohua, Zhao Panpan. 2022. Seismic structure and deformation features beneath the Yinchuan-Hetao graben, NW China. Physics of the Earth and Planetary Interiors, 329~330: 106911.

    • Deng Qidong, Cheng Shaoping, Min Wei, Yang Guizhi, Ren Dianwei. 1999. Discussion on Cenozoic tectonics and dynamics of Ordos block. Journal of Geomechanics, 5(3): 13~21 (in Chinese with English abstract).

    • Duan Yonghong, Liu Baojin, Zhao Jinren, Liu Baofeng, Zhang Chengke, Pan Suzhen, Lin Jiyan, Guo Wenbin. 2015. 2-D P-wave velocity structure of lithosphere in the North China tectonic zone: Constraints from the Yancheng-Baotou deep seismic profile. Science China: Earth Sciences, 58(9): 1577~1591.

    • Feng Mei, An Meijian, Dong Shuwen, 2017. Tectonic history of the Ordos block and Qinling orogen inferred from crustal thickness. Geophysical Journal International, 210(1): 303~320.

    • Feng Shaoying, Liu Baojin, Ji Jifa, He Yinjuan, Tan Yali, Li Yiqing. 2015. The survey on fine lithospheric structure beneath Hohhot-Baotou basin by deep seismic reflection profile. Chinese Journal of Geophysics, 58(4): 1158~1168 (in Chinese with English abstract).

    • Fu Suotang, Fu Jinhua, Yu Jian, Yao Jingli, Zhang Caili, Ma Zhanrong, Yang Yajuan, Zhang Yan. 2018. Petroleum geological features and exploration prospect of Linhe depression in Hetao basin, China. Petroleum Exploration and Development, 45(5): 749~762 (in Chinese with English abstract).

    • He Jing, Wu Qingju, Sandvol E, Ni J, Gallegos A, Gao Mengtan, Ulziibat M, Demberel S. 2016. The crustal structure of south central Mongolia using receiver functions. Tectonics, 35(6): 1392~1403.

    • Hu Xuzhi, Xu Mijian, Xu Mingjie, Zhang Yueqiao, Huang Zhouchuan. 2022. A relic thickened crustal root beneath the Cenozoic rift zone of the NW Ordos margin, North China, revealed by receiver functions. Physics of the Earth and Planetary Interiors, 333: 106953.

    • Jia Meng, Wang Xianguang, Li Shilin, Chen Yongshun. 2015. Crustal structures of Ordos block and surrounding regions from receiver functions. Progress in Geophysics, 30(6): 2474~2481 (in Chinese with English abstract).

    • Kennett B L N, Engdahl E R. 1991. Travel times for global earthquake location and phase identification. Geophysical Journal International, 105(2): 429~465.

    • Li Qinghe, Guo Shounian, Lv Dehui. 1999. Deep Structure and Construction Beneath the Section of the Western Margin and Southwest of the Ordos Basin. Beijing: Seismological Press (in Chinese).

    • Li Shilin, Guo Zhen, Chen Yongshun John, Yang Yingjie, Huang Qinghua. 2018. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography. Journal of Geophysical Research: Solid Earth, 123(8): 6940~6957.

    • Li Yonghua, Pan Jiatie, Wu Qingju, Ding Zhifeng. 2017. Lithospheric structure beneath the northeastern Tibetan Plateau and the western Sino-Korea Craton revealed by Rayleigh wave tomography. Geophysical Journal International, 210(2): 570~584.

    • Ligorría J P, Ammon C J. 1999. Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5): 1395~1400.

    • Liu Baojin, Feng Shaoying, Ji Jifa, Wang Shuaijun, Zhang Jianshi, Yuan Hongke, Yang Guojun. 2017. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan basin: Results of deep seismic reflection profiling. Science China: Earth Sciences, 60(3): 589~601.

    • Liu Jiadong, Wu Qingju, Qiang Zhengyang, Zhu Min. 2024. Crustal structure characteristics beneath the Weiyuan area, Sichuan revealed by receiver functions. Chinese Journal of Geophysics, 67(7): 2637~2653 (in Chinese with English abstract).

    • Luo Yan, Chong Jiajun, Ni Sidao, Chen Qifu, Chen Yong. 2008. Moho depth and sedimentary thickness in Capital region. Chinese Journal of Geophysics, 51(4): 1135~1145 (in Chinese with English abstract).

    • Marignier A, Eakin C M, Hejrani B, Agrawal S, Hassan R. 2024. Sediment thickness across Australia from passive seismic methods. Geophysical Journal International, 237(2): 849~861.

    • Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189(4201): 419~426.

    • Northrup C J, Royden L H, Burchfiel B C. 1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 23(8): 719~722.

    • Owens T J, Zandt G. 1997. Implications of crustal property variations for models of Tibetan Plateau evolution. Nature, 387(6628): 37~43.

    • Tao Guoqiang. 2002. The structure characteristics of Chagandelesu fault depression and its petroleum accumulation condition. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Tapponnier P, Molnar P. 1979. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal regions. Journal of Geophysical Research: Solid Earth, 84(B7): 3425~3459.

    • Teng Jiwen, Wang Fuyun, Zhao Wenzhi, Zhang Yongqian, Zhang Xiankang, Yan Yafen, Zhao Jinren, Li Ming, Yang Hui, Zhang Hongshuang, Ruan Xiaomin. 2010. Velocity structure of layered block and deep dynamic process in the lithosphere beneath the Yinshan orogenic belt and Ordos basin. Chinese Journal of Geophysics, 53(1): 67~85 (in Chinese with English abstract).

    • The Research group on “Activate fault system around ordos massif”, State Seismological Bureau. 1988. Activate Fault System around Ordos Massif. Beijing: Seismological Press.

    • Tian Xiaobo, Teng Jiwen, Zhang Hongshuang, Zhang Zhongjie, Zhang Yongqian, Yang Hui, Zhang Keke. 2011. Structure of crust and upper mantle beneath the Ordos block and the Yinshan Mountains revealed by receiver function analysis. Physics of the Earth and Planetary Interiors, 184(3~4): 186~193.

    • Uyeda S, Kanamori H. 1979. Back-arc opening and the mode of subduction. Journal of Geophysical Research: Solid Earth, 84(B3): 1049~1061.

    • Wang Qiushi, Li Yonghua, Wu Yan. 2024. Sedimentary structures beneath the northern Bohai basin constrained by the autocorrelation of receiver function. Chinese Journal of Geophysics, 67(6): 2291~2303 (in Chinese with English abstract).

    • Wang Shenglang, Ma Weimin, Zhu Zhixin, Shang Yazheng. 2002. Structural-depositional framework and hydrocarbon exploration prospects in the Chagan depression, the Yingen-Ejinaqi basin. Petroleum Geology and Experiment, 24(4): 296~300 (in Chinese with English abstract).

    • Wang Weilai, Wu Jianping, Fang Lihua, Lai Guijuan, Cai Yan. 2017. Sedimentary and crustal thicknesses and Poisson's ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays. Earth and Planetary Science Letters, 462: 76~85.

    • Wang Weilai, Cai Guangyao, Lai Guijuan, Zhang Xianwei, Bao Jingjing, Zhang Long, Su Jun, Cheng Mingfei. 2023. Three-dimensional S-wave velocity structure of the crust and upper mantle for the normal fault system beneath the Yinchuan basin from joint inversion of receiver function and surface wave. Science China: Earth Sciences, 66(5): 997~1014.

    • Wang Xingchen, Ding Zhifeng, Wu Yan, Zhu Lupei. 2017a. Crustal thicknesses and Poisson's ratios beneath the northern section of the north-south seismic belt and surrounding areas in China. Chinese Journal of Geophysics, 60(6): 2080~2090 (in Chinese with English abstract).

    • Wang Xingchen, Li Yonghua, Ding Zhifeng, Zhu Lupei, Wang Chunyong, Bao Xuewei, Wu Yan. 2017b. Three-dimensional lithospheric S wave velocity model of the NE Tibetan Plateau and western North China Craton. Journal of Geophysical Research: Solid Earth, 122(8): 6703~6720.

    • Wang Xu, Chen Ling, Yao Huajian. 2021. A new body-wave amplitude ratio-based method for imaging shallow crustal structure and its application in the Sichuan basin, southwestern China. Geophysical Research Letters, 48(18): e2021GL095186.

    • Wu Yan, Ding Zhifeng, Zhu Lupei. 2011. Crustal structure of the North China Craton from teleseismic receiver function by the Common Conversion Point stacking method. Chinese Journal of Geophysics, 54(10): 2528~2537 (in Chinese with English abstract).

    • Xiao Xiao, Cheng Shihua, Wu Jianping, Wang Weilai, Sun Li, Wang Xiaoxin, Wen Liangxing. 2021. Shallow seismic structure beneath the continental China revealed by P-wave polarization, Rayleigh wave ellipticity and receiver function. Geophysical Journal International, 225(2): 998~1019.

    • Xu Xiaoming, Niu Fenglin, Ding Zhifeng, Chen Qifu. 2018. Complicated crustal deformation beneath the NE margin of the Tibetan Plateau and its adjacent areas revealed by multi-station receiver-function gathering. Earth and Planetary Science Letters, 497: 204~216.

    • Xu Zeyang. 2023. Characteristics of differential superposition between Meso-Cenozoic basins and mechanism of hydrocarbon enrichment in the Linhe depression, Hetao basin. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Yeck W L, Sheehan A F, Schulte-Pelkum V. 2013. Sequential H-κ stacking to obtain accurate crustal thicknesses beneath sedimentary basins. Bulletin of the Seismological Society of America, 103(3): 2142~2150.

    • Yu Youqiang, Song Jianguo, Liu K H, Gao S S. 2015. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions. Journal of Geophysical Research: Solid Earth, 120(5): 3208~3218.

    • Zandt G, Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson's ratio. Nature, 374(6518): 152~154.

    • Zhang Chen, Guo Zhen, Yu Yong, Yang Ting, Chen Yongshun John. 2022. Distinct lithospheric structures of the Ordos block and its margins from P and S receiver functions and its implications for the Cenozoic lithospheric reworking. Geophysical Research Letters, 49(6): e2021GL097680.

    • Zhang Fengxue, Wu Qingju, Li Yonghua, Zhang Ruiqing, Sun Lian, Pan Jiatie, Ding Zhifeng. 2018. Seismic tomography of eastern Tibet: Implications for the Tibetan Plateau growth. Tectonics, 37(9): 2833~2847.

    • Zhang Hongshuang, Tian Xiaobo, Liu Fang, Cao Jingquan, Teng Jiwen. 2009. Structure of crust and mantle beneath the Hu-bao basin and its adjacent region. Progress in Geophysics, 24(5): 1609~1615 (in Chinese with English abstract).

    • Zhang Yueqiao, Mercier J L, Vergély P. 1998. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of South China with respect to Gobi-Mongolia. Tectonophysics, 285(1): 41~75.

    • Zhang Yueqiao, Liao Changzheng, Shi Wei, Hu Bo. 2006. Neotectonic evolution of the peripheral zones of the Ordos basin and geodynamic setting. Geological Journal of China Universities, 12(3): 285~297 (in Chinese with English abstract).

    • Zhang Zhenfa. 1995. Approach to the mechanism and relative problems of Yinshan Chain uplift. Geology of Inner Mongolia, Z1: 17~35 (in Chinese with English abstract).

    • Zhao Zhongyuan, Guo Zhongming, Hui Binyao. 1984. Hetao arcuate tectonic system and their mechanism of formation and evolution. Oil and Gas Geology, 5(4): 349~361 (in Chinese with English abstract).

    • Zheng Chen, Ding Zhifeng, Song Xiaodong. 2018. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure beneath the northern north-south seismic zone. Chinese Journal of Geophysics, 61(4): 1211~1224 (in Chinese with English abstract).

    • Zhu Lupei. 2000. Crustal structure across the San Andreas fault, southern California from teleseismic converted waves. Earth and Planetary Science Letters, 179(1): 183~190.

    • Zhu Lupei, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2): 2969~2980.

    • Zhu Rixiang, Chen Ling, Wu Fuyuan, Liu Junlai. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China: Earth Sciences, 54(6): 789~797.

    • 陈洁, 陈永顺, 郭震, 杨挺. 2020. 沿107. 6°E南北向剖面鄂尔多斯地块及周缘地区地壳结构. 地球物理学报, 63(7): 2592~2604.

    • 陈一方, 陈九辉, 郭飚, 李顺成, 齐少华, 赵盼盼, 李晓姝. 2020. 鄂尔多斯西缘北段的地壳结构和块体间变形关系. 地球物理学报, 63(3): 886~896.

    • 邓起东, 程绍平, 闵伟, 杨桂枝, 任殿卫. 1999. 鄂尔多斯块体新生代构造活动和动力学的讨论. 地质力学学报, 5(3): 13~21.

    • 酆少英, 刘保金, 姬计法, 何银娟, 谭雅丽, 李怡青. 2015. 呼和浩特-包头盆地岩石圈细结构的深地震反射探测. 地球物理学报, 58(4): 1158~1168.

    • 付锁堂, 付金华, 喻建, 姚泾利, 张才利, 马占荣, 杨亚娟, 张艳. 2018. 河套盆地临河坳陷石油地质特征及勘探前景. 石油勘探与开发, 45(5): 749~762.

    • 国家地震局《鄂尔多斯周缘活动断裂系》课题组. 1988.鄂尔多斯周缘活动断裂系. 北京: 地震出版社.

    • 贾萌, 王显光, 李世林, 陈永顺. 2015. 鄂尔多斯块体及周边区域地壳结构的接收函数研究. 地球物理学进展, 30(6): 2474~2481.

    • 李清河, 郭守年, 吕德徽. 1999. 鄂尔多斯西缘与西南缘深部结构与构造. 北京: 地震出版社.

    • 刘嘉栋, 吴庆举, 强正阳, 朱敏. 2024. 利用接收函数研究四川威远地区地壳结构特征. 地球物理学报, 67(7): 2637~2653.

    • 罗艳, 崇加军, 倪四道, 陈棋福, 陈颙. 2008. 首都圈地区莫霍面起伏及沉积层厚度. 地球物理学报, 51(4): 1135~1145.

    • 陶国强. 2002. 查干德勒苏凹陷构造特征及油气成藏条件. 中国地质大学(北京)博士学位论文.

    • 滕吉文, 王夫运, 赵文智, 张永谦, 张先康, 闫雅芬, 赵金仁, 李明, 杨辉, 张洪双, 阮小敏. 2010. 阴山造山带-鄂尔多斯盆地岩石圈层、块速度结构与深层动力过程. 地球物理学报, 53(1): 67~85.

    • 王秋实, 李永华, 武岩. 2024. 使用接收函数自相关约束渤海湾北部沉积层结构. 地球物理学报, 67(6): 2291~2303.

    • 王生朗, 马维民, 竺知新, 尚雅珍. 2002. 银根-额济纳旗盆地查干凹陷构造-沉积格架与油气勘探方向. 石油实验地质, 24(4): 296~300.

    • 王兴臣, 丁志峰, 武岩, 朱露培. 2017. 中国南北地震带北段及其周缘地壳厚度与泊松比研究. 地球物理学报, 60(6): 2080~2090.

    • 武岩, 丁志峰, 朱露培. 2011. 利用共转换点叠加方法研究华北地区地壳结构. 地球物理学报, 54(10): 2528~2537.

    • 徐泽阳. 2023. 临河坳陷中-新生代盆地差异叠合及油气富集机制研究. 中国石油大学(北京)博士学位论文.

    • 张洪双, 田小波, 刘芳, 曹井泉, 滕吉文. 2009. 呼包盆地周缘壳、幔结构研究. 地球物理学进展, 24(5): 1609~1615.

    • 张岳桥, 廖昌珍, 施炜, 胡博. 2006. 鄂尔多斯盆地周边地带新构造演化及其区域动力学背景. 高校地质学报, 12(3): 285~297.

    • 张振法. 1995. 阴山山链隆起机制及有关问题探讨. 内蒙古地质, Z1: 17~35.

    • 郑晨, 丁志峰, 宋晓东. 2018. 面波频散与接收函数联合反演南北地震带北段壳幔速度结构. 地球物理学报, 61(4): 1211~1224.

    • 赵重远, 郭忠铭, 惠斌耀. 1984. 河套弧形构造体系及其形成和演化机制. 石油与天然气地质, 5(4): 349~361.