en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

贺振宇,男,1976年生。博士,教授,主要从事火山地质和火成岩岩石学研究。E-mail: zhenyuhe@ustb.edu.cn。

参考文献
Annen C, Blundy J D, Sparks R S J. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3): 505~539.
参考文献
Annen C, Blundy J D, Leuthold J, Sparks R S J. 2015. Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism. Lithos, 230: 206~221.
参考文献
Bachmann O, Bergantz G W. 2004. On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. Journal of Petrology, 45(8): 1565~1582.
参考文献
Bachmann O, Huber C. 2016. Silicic magma reservoirs in the Earth's crust. American Mineralogist, 101(11): 2377~2404.
参考文献
Barboza S A, Bergantz G W. 2000. Metamorphism and anatexis in the mafic complex contact aureole, Ivrea zone, northern Italy. Journal of Petrology, 41(8): 1307~1327.
参考文献
Bouvet de Maisonneuve C, Forni F, Bachmann O. 2021. Magma reservoir evolution during the build up to and recovery from caldera-forming eruptions—A generalizable model? Earth-Science Reviews, 218: 103684.
参考文献
Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1~2): 48~57.
参考文献
Branney M, Acocella V. 2015. Calderas. In: The Encyclopedia of Volcanoes. Amsterdam: Elsevier: 299~315.
参考文献
Cao Mingxuan, Zhao Xilin, Xing Guangfu, Fan Feipeng, Yu Minggang, Duan Zheng, Chu Pingli, Chen Rong. 2021. Tectonic transition from subduction to retreat of the palaeo-Pacific plate: New geochemical constraints from the late Mesozoic volcanic sequence in eastern Fujian Province, SE China. Geological Magazine, 158(6): 1074~1108.
参考文献
Cashman K V, Sparks R S J, Blundy J D. 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355(6331): eaag3055.
参考文献
Chauvel C, Garçon M, Bureau S, Besnault A, Jahn Borming, Ding Zhongli. 2014. Constraints from loess on the Hf-Nd isotopic composition of the upper continental crust. Earth and Planetary Science Letters, 388: 48~58.
参考文献
Chen Jiangfeng, Jahn Borming. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284(1~2): 101~133.
参考文献
Chen Jingyuan, Yang Jinhui, Zhang Jiheng, Sun Jinfeng, Zhu Yusheng, Hartung E. 2022. Generation of Cretaceous high-silica granite by complementary crystal accumulation and silicic melt extraction in the coastal region of southeastern China. Geological Society of America Bulletin, 134(1~2): 201~222.
参考文献
Chen Zhihong, Zhao Ling, Chen Dandan, Zhao Xilin, Xing Guangfu. 2017. First discovery of a Palaeoproterozoic A-type granite in southern Wuyishan terrane, Cathaysia Block: Evidence from geochronology, geochemistry, and Nd-Hf-O isotopes. International Geology Review, 59(1): 80~93.
参考文献
Clarke D B, Dorais M, Barbarin B, Barker D, Cesare B, Clarke G, El Baghdadi M, Erdmann S, Förster H J, Gaeta M, Gottesmann B, Jamieson R A, Kontak D J, Koller F, Leal Gomes C, London D, Morgan G B, Neves L J P F, Pattison D R M, Pereira A J S C, Pichavant M, Rapela C W, Renno A D, Richards S, Roberts M, Rottura A, Saavedra J, Sial A N, Toselli A J, Ugidos J M, Uher P, Villaseca C, Visonà D, Whitney D L, Williamson B, Woodard H H. 2005. Occurrence and origin of andalusite in peraluminous felsic igneous rocks. Journal of Petrology, 46(3): 441~472.
参考文献
Cole J W, Milner D M, Spinks K D. 2005. Calderas and caldera structures: A review. Earth-Science Reviews, 69(1~2): 1~26.
参考文献
Deering C D, Gravley D M, Vogel T A, Cole J W, Leonard G S. 2010. Origins of cold-wet-oxidizing to hot-dry-reducing rhyolite magma cycles and distribution in the Taupo volcanic zone, New Zealand. Contributions to Mineralogy and Petrology, 160(4): 609~629.
参考文献
Dong Shuwen, Li Jianhua, Cawood P A, Gao Rui, Zhang Yueqiao, Xin Yujia. 2020. Mantle influx compensates crustal thinning beneath the Cathaysia Block, South China: Evidence from SINOPROBE reflection profiling. Earth and Planetary Science Letters, 544: 116360.
参考文献
Dufek J, Bergantz G W. 2005. Lower crustal magma genesis and preservation: A stochastic framework for the evaluation of basalt-crust interaction. Journal of Petrology, 46(11): 2167~2195.
参考文献
Ellis B S, Bachmann O, Wolff J A. 2014. Cumulate fragments in silicic ignimbrites: The case of the Snake River Plain. Geology, 42(5): 431~434.
参考文献
Frost C D, Frost B R, Beard J S. 2016. On silica-rich granitoids and their eruptive equivalents. American Mineralogist, 101(6): 1268~1284.
参考文献
Greene A R, Debari S M, Kelemen P B, Blusztajn J, Clift P D. 2006. A detailed geochemical study of island arc crust: The Talkeetna arc section, south-central Alaska. Journal of Petrology, 47(6): 1051~1093.
参考文献
Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133~147.
参考文献
Griffin W L, Wang Xiang, Jackson S E, Pearson N J, O'Reilly S Y, Xu Xisheng, Zhou Xinmin. 2002. Zircon chemistry and magma mixing, SE China: In situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3~4): 237~269.
参考文献
Guo Feng, Fan Weiming, Li Chaowen, Zhao Liang, Li Hongxia, Yang Jinhui. 2012. Multi-stage crust-mantle interaction in SE China: Temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong-Fujian provinces. Lithos, 150: 62~84.
参考文献
Hawkesworth C J, Kemp A I S. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3~4): 144~162.
参考文献
He Zhenyu, Xu Xisheng. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to the geodynamics of paleo-Pacific plate subduction. Chemical Geology, 328: 208~221.
参考文献
He Zhenyu, Yan Lili, Chu Pingli, Zhang Jin. 2022a. Typical recognition features of the Changyu caldera in the eastern Zhejiang Province. East China Geology, 43(4): 448~459 (in Chinese with English abstract).
参考文献
He Zhenyu, Yan Lili, Chu Pingli, Xiang Hua, Jiang Zikun. 2022b. Volcanological evolution and paleoenvironment of the Late Cretaceous Changyu volcano in the coastal SE China. Acta Petrologica Sinica, 38(5): 1419~1442 (in Chinese with English abstract).
参考文献
Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4): 455~489.
参考文献
Huppert H E, Sparks R S J. 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology, 29(3): 599~624.
参考文献
Janoušek V, Moyen J F, Martin H, Erban V, Farrow C. 2016. Geochemical Modelling of Igneous Processes-Principles and Recipes in R Language: Bringing the Power of R to a Geochemical Community. Berlin: Springer-Verlag Berlin Heidelberg.
参考文献
Jiang Yang, Zhao Xilin, Zhang Yanjie, Xing Guangfu, Xu Mincheng, Liu Huan. 2019. Neoproterozoic arc volcanic rocks of the Nanping-Ninghua tectonic belt, South China: Implications for the collision between the North and South Wuyi blocks. Geological Journal, 54(4): 2679~2692.
参考文献
Jahn B M, Zhou X H, Li J L. 1990. Formation and tectonic evolution of Southeastern China and Taiwan: Isotopic and geochemical constraints. Tectonophysics, 183(1~4): 145~160.
参考文献
Karakas O, Dufek J, Mangan M T, Wright H M, Bachmann O. 2017a. Thermal and petrologic constraints on lower crustal melt accumulation under the Salton Sea Geothermal Field. Earth and Planetary Science Letters, 467: 10~17.
参考文献
Karakas O, Degruyter W, Bachmann O, Dufek J. 2017b. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nature Geoscience, 10: 446~450.
参考文献
Karakas O, Wotzlaw J F, Guillong M, Ulmer P, Brack P, Economos R, Bergantz G W, Sinigoi S, Bachmann O. 2019. The pace of crustal-scale magma accretion and differentiation beneath silicic caldera volcanoes. Geology, 47(8): 719~723.
参考文献
Keller C B, Schoene B, Barboni M, Samperton K M, Husson J M. 2015. Volcanic-plutonic parity and the differentiation of the continental crust. Nature, 523(7560): 301~307.
参考文献
Kennedy B, Stix J. 2007. Magmatic processes associated with caldera collapse at Ossipee ring dyke, New Hampshire. Geological Society of America Bulletin, 119(1~2): 3~17.
参考文献
Kennedy B M, Holohan E P, Stix J, Gravley D M, Davidson J R J, Cole J W. 2018. Magma plumbing beneath collapse caldera volcanic systems. Earth-Science Reviews, 177: 404~424.
参考文献
Kent A J R, Darr C, Koleszar A M, Salisbury M J, Cooper K M. 2010. Preferential eruption of andesitic magmas through recharge filtering. Nature Geoscience, 3: 631~636.
参考文献
Li Jianhua, Dong Shuwen, Gao Rui, Cawood P A, Zhang Yueqiao, Zhao Guochun, Li Qiusheng, Xin Yujia, Wang Jinming, Lü Fang. 2022. The thinnest crust in South China associated with the Cretaceous lithospheric extension: Evidence from SINOPROBE seismic reflection profiling. Tectonics, 41: e2022TC007240.
参考文献
Li Xiyao, Li Sanzhong, Suo Yanhui, Dai Liming, Guo Lingli, Ge Fengjian, Lin Peijun. 2018. Late Cretaceous basalts and rhyolites from Shimaoshan Group in eastern Fujian Province, SE China: Age, petrogenesis, and tectonic implications. International Geology Review, 60(11~14): 1721~1743.
参考文献
Lin Shoufa, Xing Guangfu, Davis D W, Yin Changqing, Wu Meiling, Li Longming, Jiang Yang, Chen Zhihong. 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China. Geology, 46(4): 319~322.
参考文献
Lindsay J M, De Silva S, Trumbull R, Emmermann R, Wemmer K. 2001. La pacana caldera, N. Chile: A re-evaluation of the stratigraphy and volcanology of one of the world's largest resurgent calderas. Journal of Volcanology and Geothermal Research, 106(1~2): 145~173.
参考文献
Lipman P W. 1997. Subsidence of ash-flow calderas: Relation to caldera size and magma-chamber geometry. Bulletin of Volcanology, 59(3): 198~218.
参考文献
Lipman P W. 2007. Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the Southern Rocky Mountain volcanic field. Geosphere, 3(1): 42.
参考文献
Liu Lei, Xu Xisheng, Zou Haibo. 2012. Episodic eruptions of the late Mesozoic volcanic sequences in southeastern Zhejiang, SE China: Petrogenesis and implications for the geodynamics of paleo-Pacific subduction. Lithos, 154: 166~180.
参考文献
Liu Lei, Xu Xisheng, Xia Yan. 2014. Cretaceous Pacific plate movement beneath SE China: Evidence from episodic volcanism and related intrusions. Tectonophysics, 614: 170~184.
参考文献
Liu Lei, Xu Xisheng, Xia Yan. 2016. Asynchronizing paleo-Pacific slab rollback beneath SE China: Insights from the episodic Late Mesozoic volcanism. Gondwana Research, 37: 397~407.
参考文献
Liu Lei, Zhao Yang, He Zhenyu, Sun Jie, Liu Xijun, Zhao Zengxia. 2023. Volcanic activity process and petrogenesis of the Liaotianshan caldera in SW Fujian: Evidence from zircon U-Pb, Hf isotopic and trace element concentrations. Acta Geologica Sinica, 97(7): 2176~2194(in Chinese with English abstract).
参考文献
Liu Liang, Yang Jiehua, Kang Lifang, Zhong Hong, Zhang Xingchun. 2023. The long-lived transcrustal magmatic systems of Southeast China in response to paleo-Pacific plate subduction, recorded by the Cretaceous volcanic sequences in southeastern Zhejiang Province. Geological Society of America Bulletin, 135(5~6): 1091~1108.
参考文献
Liu Qian, Yu Jinhai, O'Reilly S Y, Zhou Meifu, Griffin W L, Wang Lijuan, Cui Xiang. 2014. Origin and geological significance of Paleoproterozoic granites in the northeastern Cathaysia Block, South China. Precambrian Research, 248: 72~95.
参考文献
Liu Pingping, Caricchi L, Chung Sunlin, Li Xianhua, Li Qiuli, Zhou Meifu, Lai Yuming, Ghani A A, Sihotang T, Sheldrake T E, Simpson G. 2021. Growth and thermal maturation of the Toba magma reservoir. Proceedings of the National Academy of Sciences, 118(45): e2101695118.
参考文献
Liu Pingping, Chung S L, Chesner C A, Gao Menghao, Lai Yuming, Lee H Y, Yang Yueheng. 2022. New insights into the petrogenesis of voluminous crustal-signature silicic volcanic rocks of the Toba eruptions (Indonesia). Journal of Geophysical Research: Solid Earth, 127(12): e2022JB024559.
参考文献
Lu Kejia, Li Longming, Lin Shoufa, Ren Shenglian, Feng Lamei, Han Xu, Ge Yanpeng, Jiang Jian, Wang Lei, Wang Bo. 2020. Geochronological and geochemical data of paragneiss and amphibolite from the Chencai Group in South China: Implications for petrogenesis and tectonic significance. Geological Journal, 55(10): 6823~6840.
参考文献
Lu Tianyu, He Zhenyu, Klemd R. 2022. Identifying crystal accumulation and melt extraction during formation of high-silica granite. Geology, 50(2): 216~221.
参考文献
Lubbers J, Deering C, Bachmann O. 2020. Genesis of rhyolitic melts in the upper crust: Fractionation and remobilization of an intermediate cumulate at Lake City caldera, Colorado, USA. Journal of Volcanology and Geothermal Research, 392: 106750.
参考文献
Ma Changqian, Liu Bin, Xue Zhenhua, Zou Bowen, Huang Guizhi, Lian Quancheng, Gao Ke, Sun Yang, Wang Lianxun. 2024. Insights into the volcanic eruption process and magmatic plumbing systems from felsic intrusions. Acta Petrologica Sinica, 40(7): 1997~2018 (in Chinese with English abstract).
参考文献
Moran S C, Newhall C, Roman D C. 2011. Failed magmatic eruptions: Late-stage cessation of magma ascent. Bulletin of Volcanology, 73(2): 115~122.
参考文献
Nebel O, Nebel-Jacobsen Y, Mezger K, Berndt J. 2007. Initial Hf isotope compositions in magmatic zircon from Early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages. Chemical Geology, 241(1~2): 23~37.
参考文献
Qi Liang, Xu Yajun, Cawood P A, Wang Wei, Du Yuansheng. 2019. Implications of 770 Ma Rhyolitic Tuffs, eastern South China Craton in constraining the tectonic setting of the Nanhua basin. Lithos, 324: 842~858.
参考文献
Shu Liangshu, Yao Jinlong, Wang Bo, Faure M, Charvet J, Chen Yan. 2021. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block. Earth-Science Reviews, 216: 103596.
参考文献
Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3~4): 311~324.
参考文献
Spencer C J, Kirkland C L, Roberts N M W, Evans N J, Liebmann J. 2020. Strategies towards robust interpretations of in situ zircon Lu-Hf isotope analyses. Geoscience Frontiers, 11(3): 843~853.
参考文献
Storck J C, Wotzlaw J F, Karakas Ö, Brack P, Gerdes A, Ulmer P. 2020. Hafnium isotopic record of mantle-crust interaction in an evolving continental magmatic system. Earth and Planetary Science Letters, 535: 116100.
参考文献
Storck J C, Laurent O, Karakas O, Wotzlaw J F, Galli A, Sinigoi S, Bachmann O, Chelle-Michou C. 2021. Mantle versus crustal contributions in crustal-scale magmatic systems (Sesia Magmatic System, northern Italy) from coupling Hf isotopes and numerical modelling. Contributions to Mineralogy and Petrology, 176(11): 95.
参考文献
Thompson A B, Matile L, Ulmer P. 2002. Some thermal constraints on crustal assimilation during fractionation of hydrous, mantle-derived magmas with examples from Central Alpine batholiths. Journal of Petrology, 43(3): 403~422.
参考文献
Vervoort J D, Kemp A I S. 2016. Clarifying the zircon Hf isotope record of crust-mantle evolution. Chemical Geology, 425: 65~75.
参考文献
Wan Yusheng, Liu Dunyi, Xu Meihui, Zhuang Jianmin, Song Biao, Shi Yuruo, Du Lilin. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research, 12(1~2): 166~183.
参考文献
Wang Yuejun, Gan Chengshi, Tan Qingli, Zhang Yuzhi, He Huiying, Xin Qian, Zhang Yanhua. 2018. Early Neoproterozoic (~840 Ma) slab window in South China: Key magmatic records in the Chencai complex. Precambrian Research, 314: 434~451.
参考文献
Wolff J A, Ellis B S, Ramos F C, Starkel W A, Boroughs S, Olin P H, Bachmann O. 2015. Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: A comparison of cool, wet and hot, dry rhyolitic magma systems. Lithos, 236: 275~286.
参考文献
Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220 (in Chinese with English abstract).
参考文献
Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 60(7): 1201~1219.
参考文献
Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1~2): 105~126.
参考文献
Xia Yan, Xu Xisheng, Zhu Kongyang. 2012. Paleoproterozoic S- and A-type granites in southwestern Zhejiang: Magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement. Precambrian Research, 216: 177~207.
参考文献
Xia Yan, Xu Xisheng, Zhao Guochun, Liu Lei. 2015. Neoproterozoic active continental margin of the Cathaysia block: Evidence from geochronology, geochemistry, and Nd-Hf isotopes of igneous complexes. Precambrian Research, 269: 195~216.
参考文献
Xiang Hua, Zhang Li, Zhou Hanwen, Zhong Zengqiu, Zeng Wen, Liu Rui, Jin Song. 2008. U-Pb zircon geochronology and Hf isotope study of metamorphosed basic-ultrabasic rocks from metamorphic basement in southwestern Zhejiang: The response of the Cathaysia Block to Indosinian orogenic event. Science in China Series D: Earth Sciences, 51(6): 788~800.
参考文献
Xiong Fuhao, Yan Dongdong, Ma Changqian, Hou Mingcai, Wang Mingchi, Huang Hu, Wang Wei. 2024. Geochemical and petrological diversity of a transcrustal magmatic system driven by mushy magma mixing: Insights from the Triassic dike swarms in East Kunlun Orogen, northern Tibetan Plateau. Geological Society of America Bulletin, 136(11~12): 5058~5074.
参考文献
Xu Xisheng, O'Reilly S Y, Griffin W L, Wang Xiaolei, Pearson N J, He Zhenyu. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158(1~2): 51~78.
参考文献
Xu Xisheng, Zhao Kai, He Zhenyu, Liu Lei, Hong Wentao. 2021. Cretaceous volcanic-plutonic magmatism in SE China and a genetic model. Lithos, 402: 105728.
参考文献
Yan Lili, He Zhenyu, Jahn Borming, Zhao Zhidan. 2016. Formation of the Yandangshan volcanic-plutonic complex (SE China) by melt extraction and crystal accumulation. Lithos, 266~267: 287~308.
参考文献
Yan Lili, He Zhenyu, Beier C, Klemd R. 2018. Geochemical constraints on the link between volcanism and plutonism at the Yunshan caldera complex, SE China. Contributions to Mineralogy and Petrology, 173: 4.
参考文献
Yan Lili, He Zhenyu. 2022. Influence of magma recharge on the evolution of silicic volcanic system. Acta Geologica Sinica, 96(5): 1697~1710 (in Chinese with English abstract).
参考文献
Yan Lili, He Zhenyu, Lu Tianyu. 2023. Mush rejuvenation in silicic magmatic systems and its petrological records. Bulletin of Mineralogy Petrology and Geochemistry, 42(5): 1028~1041 (in Chinese with English abstract).
参考文献
Yao Jinlong, Shu Liangshu, Santosh M, Xu Zhiqin. 2014. Palaeozoic metamorphism of the Neoproterozoic basement in NE Cathaysia: Zircon U-Pb ages, Hf isotope and whole-rock geochemistry from the Chencai Group. Journal of the Geological Society, 171: 281~297.
参考文献
Yu Jinhai, O'Reilly S Y, Wang Lijuan, Griffin W L, Zhang Ming, Wang Rucheng, Jiang Shaoyong, Shu Liangshu. 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research, 164(1~2): 1~15.
参考文献
Yu Jinhai, Wang Lijuan, O'Reilly S Y, Griffin W L, Zhang Ming, Li Chunzhong, Shu Liangshu. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research, 174(3~4): 347~363.
参考文献
Yu Jinhai, O'Reilly S Y, Wang Lijuan, Griffin W L, Zhou Meifu, Zhang Ming, Shu Liangshu. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research, 181(1~4): 97~114.
参考文献
Yu Jinhai, O'Reilly S Y, Zhou Meifu, Griffin W L, Wang Lijuan. 2012. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambrian Research, 222: 424~449.
参考文献
Zeng Gang, He Zhenyu, Li Zhen, Xu Xisheng, Chen Lihui. 2016. Geodynamics of paleo-Pacific plate subduction constrained by the source lithologies of Late Mesozoic basalts in southeastern China. Geophysical Research Letters, 43: 10189~10197.
参考文献
Zhang Aimei, Ma Liyan, Liu Huichuan, Cai Yongfeng, Chen Min, Fang Qi. 2021. Identification of two-phased late Paleoproterozoic magmatism in the Wuyishan domain (SE China): Implications for the tectonic evolution of the Cathaysia Block. Precambrian Research, 355: 106093.
参考文献
Zhang Chengchen, Xu Changhai, He Min, Gao Shunli. 2019. Late Mesozoic convergent continental margin with magmatic arc from East to South China Seas: A review. Advances in Earth Science, 34(9): 950~961 (in Chinese with English abstract).
参考文献
Zhang Jiheng, Yang Jinhui, Chen Jingyuan, Wu Fuyuan, Wilde S A. 2018. Genesis of late Early Cretaceous high-silica rhyolites in eastern Zhejiang Province, Southeast China: A crystal mush origin with mantle input. Lithos, 296: 482~495.
参考文献
Zhang Zeming, Ding Huixia, Dong Xing, Tian Zuolin. 2020. Partial melting of subduction zones. Acta Petrologica Sinica, 36: 2589~2615 (in Chinese with English abstract).
参考文献
Zhao Lei, Zhou Xiwen, Zhai Mingguo, Santosh M, Ma Xudong, Shan Houxiang, Cui Xiahong. 2014. Paleoproterozoic tectonic transition from collision to extension in the eastern Cathaysia Block, South China: Evidence from geochemistry, zircon U-Pb geochronology and Nd-Hf isotopes of a granite-charnockite suite in southwestern Zhejiang. Lithos, 184: 259~280.
参考文献
Zhao Lei, Zhou Xiwen, Zhai Mingguo, Santosh M, Geng Yuansheng. 2015. Zircon U-Th-Pb-Hf isotopes of the basement rocks in northeastern Cathaysia block, South China: Implications for Phanerozoic multiple metamorphic reworking of a Paleoproterozoic terrane. Gondwana Research, 28(1): 246~261.
参考文献
Zhao Lei, Zhai Mingguo, Zhou Xiwen, Santosh M, Ma Xudong. 2016. Thermal gradient and geochronology of a Paleozoic high-grade terrane in the northeastern Cathaysia block, South China. Tectonophysics, 691: 311~327.
参考文献
Zhao Lei, Zhai Mingguo, Zhou Xiwen. 2023. Early Precambrian basement components of the Cathaysia Block in South China exhumed by Phanerozoic orogenic events. Precambrian Research, 398: 107218.
参考文献
Zhao Liang, Guo Feng, Zhang Xiaobing, Wang Guoqing. 2021. Cretaceous crustal melting records of tectonic transition from subduction to slab rollback of the Paleo-Pacific Plate in SE China. Lithos, 384: 105985.
参考文献
Zheng Yongfei, Gao Peng. 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries. Lithos, 402: 106232.
参考文献
Zhou Xinmin, Li Wuxian. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269~287.
参考文献
Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26~33.
参考文献
贺振宇, 颜丽丽, 褚平利, 张进. 2022a. 浙东长屿破火山的典型识别特征. 华东地质, 43(4): 448~459.
参考文献
贺振宇, 颜丽丽, 褚平利, 向华, 蒋子堃. 2022b. 中国东南沿海晚白垩世长屿火山的活动过程与古环境意义. 岩石学报, 38(5): 1419~1442.
参考文献
刘磊, 赵阳, 贺振宇, 孙杰, 刘希军, 赵增霞. 2023. 闽西南廖天山破火山活动过程与岩石成因: 锆石U- Pb、Hf同位素及微量元素制约. 地质学报, 97(7): 2176~2194.
参考文献
马昌前, 刘彬, 薛振华, 邹博文, 黄贵治, 连泉程, 高珂, 孙洋, 王连训. 2024. 从长英质侵入体揭示火山喷发过程与岩浆通道系统. 岩石学报, 40(7): 1997~2018.
参考文献
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.
参考文献
颜丽丽, 贺振宇. 2022. 岩浆补给作用对硅质火山岩浆系统演化的制约. 地质学报, 96(5): 1697~1710.
参考文献
颜丽丽, 贺振宇, 陆天宇. 2023. 硅质岩浆系统的晶粥活化作用及其岩石学记录. 矿物岩石地球化学通报, 42(5): 1028~1041.
参考文献
张成晨, 许长海, 何敏, 高顺莉. 2019. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述. 地球科学进展, 34(9): 950~961.
参考文献
张泽明, 丁慧霞, 董昕, 田作林. 2020. 俯冲带部分熔融. 岩石学报, 36(9): 2589~2615.
目录contents

    摘要

    硅质火山活动产物及其岩浆系统构成了大陆地壳的重要组成部分,记录了大陆地壳分异演化的重要信息。中国东南沿海广泛发育白垩纪火山活动产物,以流纹英安质和流纹质火山岩为主,为揭示大规模穿地壳岩浆系统的形成与演化提供了理想对象。本文选取浙江东部温岭长屿破火山为研究对象,在已有研究基础上,通过系统的锆石Hf同位素研究,探讨其穿地壳岩浆系统的岩浆来源及演化过程。长屿破火山口形成喷发、破火山口形成后喷发及流纹岩穹隆等各阶段火山岩具有一致的锆石Hf同位素组成(锆石εHf (t)值为-7.4~-0.2,Hf模式年龄为1.45~1.04 Ga),表明不同阶段火山岩之间具有密切的成因联系,岩浆主要由亏损地幔来源岩浆与华夏地块古老地壳来源岩浆混合形成。综合已发表的东南沿海晚侏罗世—白垩纪火山岩的锆石Hf同位素数据,其εHf(t)值均远离亏损地幔演化线,并具有较大的变化范围,Hf模式年龄主要集中在1.8~1.0 Ga,基本缺乏太古宙的模式年龄,暗示华夏地块除了零星出露的前寒武纪基底外,政和-大埔断裂以东的火山岩区之下也应存在古老的地壳基底,古老地壳物质不同程度地参与了东南沿海白垩纪火山岩浆的起源。包括长屿破火山在内的中国东南沿海白垩纪破火山高硅流纹质岩浆的形成,反映了长期的穿地壳岩浆系统演化以及晶体-熔体分离过程,幔源岩浆不仅参与了硅质岩浆的起源和大陆地壳的生长,也为大规模硅质火山作用穿地壳岩浆系统的形成提供了必须的岩浆通量和热的地壳环境。破火山内、外部结构的精细解剖、成因类型和时空分布的综合编图研究、火山活动的详细喷发历史和过程等问题是未来中国东南沿海白垩纪穿地壳岩浆系统研究的关键基础和重要内容。

    Abstract

    As an essential component of the continental crust, the products and magmatic systems of silicic volcanic activity recorded the vital information on the continental crust differentiation. Intensive Cretaceous volcanism was widespread along the coastal area of SE China, dominated by rhyodacites and rhyolites, offering a unique opportunity to unravel the growth and evolution of transcrustal magmatic systems. Here we present systematic zircon Hf isotopic data integrated with previous researches for the Changyu caldera in eastern Zhejiang Province, in order to constrain the magma sources and evolution of the magmatic system. The different eruption stages of the caldera, including caldera-forming eruptions, post-caldera eruptions and the rhyolite domes show consistent zircon Hf isotopic compositions with εHf(t) values of -7.4 to -0.2 and TDMC Hf model ages of 1.45 Ga to 1.04 Ga, suggesting the genetic link of the volcanic rocks of different eruption stages and that the magmas were mainly formed by the mixing of depleted mantle-derived magma and magma derived from ancient crust of the Cathaysia block. The compiled zircon Hf isotope data of the Late Jurassic to Cretaceous volcanic rocks from the coastal SE China reveal that their εHf(t) values are typically located far below the depleted-mantle evolution trend with a particularly wide range, and their TDMC Hf model ages cluster mainly between 1.8 and 1.0 Ga almost without Archean ages. This implies that the ancient crustal basements of the Cathaysia block should also be prevalent beneath the volcanic field east of the Zhenghe-Dapu fault, besides the sporadic outcrops of the Precambrian basement rock, and that the ancient crust materials were involved to varying degrees in the origin of volcanic magmas along the coastal SE China. Furthermore, the generation of high-silica rhyolitic magmas from the Changyu caldera and other Cretaceous calderas in the coastal SE China reflects the long-term evolution of the transcrustal magmatic system as well as crystal-melt segregation processes. Juvenile mantle-derived magmas not only contribute to the genesis of silicic magmas and the growth of continental crust, but also supply the necessary magma and heat flux for the transcrustal magmatic system of the large-scale silicic volcanism. The internal and external structures of calderas, the comprehensive mapping on genetic types, spatiotemporal distributions, as well as the volcanic eruption history are the crucial foundations and important contents of future studies on the transcrustal magmatic systems of the intensive Cretaceous volcanism in the coastal area of SE China.

  • 硅质火山活动产物及其岩浆系统构成了大陆地壳的重要组成部分,由于一般只有小部分(约10%~20%)的岩浆喷发出地表形成火山岩,大部分则残留在地壳中固结形成侵入体。因此,硅质火山活动及其岩浆系统记录了大陆地壳分异演化的重要信息(Bachmann and Huber,2016; Cashman et al.,2017; Kennedy et al.,2018; Storck et al.,2021; 马昌前等,2024)。硅质岩浆可能来源于地壳岩石的部分熔融作用,或者与幔源岩浆的分异演化有关(Annen et al.,2006; Keller et al.,2015; Frost et al.,2016; Karakas et al.,2017a; Storck et al.,2020)。近年来提出的穿地壳岩浆系统模型,认为大型硅质火山的岩浆系统是穿地壳尺度的,由深浅多个岩浆房相连构成,幔源岩浆在下地壳热带中长期累积、存储和演化,并与中上地壳岩浆房相连通,且岩浆主要以相对低温(<750℃),结晶度高甚至是近固结的晶粥状态存储,熔体比例高的可运移岩浆只占很小比例,呈透镜状位于岩浆房的顶部,强调了反复的岩浆补给和晶粥活化作用对岩浆分异演化的驱动,以及地壳来源岩浆或地壳物质在岩浆演化以及大陆地壳生长和再造过程中的影响(Annen et al.,2006; Kennedy and Stix,2007; Cashman et al.,2017; Karakas et al.,2019; Bouvet de Maisonneuve et al.,2021; 颜丽丽和贺振宇,2022)。

  • 大规模硅质火山喷发一般伴随着塌陷破火山口(caldera)的形成(Lipman,1997)。这里需要指出的是,“caldera”这一术语既可以指火山塌陷构造,一般翻译成破火山口;同时也指具有塌陷破火山口的火山,是火山的一种类型(即:caldera volcano),我们建议翻译成破火山(Cole et al.,2005; Branney and Acocella,2015; 贺振宇等,2022a)。破火山的形成往往伴随着多阶段火山活动过程,破火山形成以后,补给作用会导致残留岩浆或堆晶体活化上侵形成流纹岩穹隆或浅成侵入体,并可以导致破火山底板复活隆起,记录了复杂的穿地壳岩浆系统形成与演化历史(Lipman,19972007)。中国东南沿海地区白垩纪火山活动强烈,火山岩分布广泛,在浙闽粤沿海地区构成一条长约1500 km、宽约400 km的巨型火山岩带(图1)。面积达144000 km2,总厚度约5000 m,在成分上以流纹质和流纹英安质火山岩为主(Zhou Xinmin et al.,2006; Yan Lili et al.,2016; Xu Xisheng et al.,2021; Li Jianhua et al.,2022; 刘磊等,2023)。并且,大量发育并在一些地区相对集中分布的破火山构成了中国东南沿海白垩纪火山活动的典型地质特征,为揭示大规模硅质岩浆的岩浆来源及复杂的穿地壳岩浆系统演化历史提供了理想对象。

  • 锆石是硅质火山岩常见的副矿物,含有Th、U、Ti、Hf、P等多种微量元素和稀土元素,且具有较好的难熔性、稳定性,可保留其长期的结晶生长历史(吴福元等,2007)。锆石具有很高的Hf含量和很低的176Lu/177Hf比值(大约0.001),放射性衰变形成的176Hf极低。通过与不同的源区对比(如:球粒陨石、亏损地幔、大陆地壳等),锆石Hf同位素被广泛用于示踪大陆地壳形成演化,以及岩浆和成矿物质来源等研究(Griffin et al.,2002; Hawkesworth and Kemp,2006; 吴福元等,2007; Vervoort and Kemp,2016; Spencer et al.,2020)。穿地壳岩浆系统内部具有显著的地球化学和岩石学的多样性,以及地幔和地壳不同来源岩浆的贡献和复杂的岩浆演化过程。近年来,锆石Hf同位素在相关研究中也得到重视并发挥了关键作用(Storck et al.,20202021; Liu Liang et al.,2023; Xiong Fuhao et al.,2024)。本文选取浙江东部温岭长屿破火山为代表性研究对象,在已有研究基础上,通过系统的锆石Hf同位素研究,探讨其穿地壳岩浆系统的岩浆来源及演化过程。

  • 图1 中国东南部晚中生代花岗岩和火山岩以及火山区分布图(据Zhou Xinmin et al.,2006; Yan Lili et al.,2018

  • Fig.1 Simplified geological map of SE China showing the distribution of the Late Mesozoic granitic and volcanic rocks and the volcanic fields (after Zhou Xinmin et al., 2006; Yan Lili et al., 2018)

  • 1 长屿破火山地质概况

  • 长屿破火山位于浙东温岭市东北部,浙东括苍山大型火山区的东南边缘。括苍山火山区范围包括天台、临海、仙居等地,面积约7000 km2,分布有10余个破火山。长屿破火山地处沿海丘陵平原区,山峰平地拔起,海拔100~300 m,火山岩呈直径约12 km的圆形分布,周围为第四系(图2)。在破火山南部的湖漫水库一带,可以观察到长屿破火山流纹质角砾熔结凝灰岩和时代相对较老的高坞组富晶体凝灰岩(107±1 Ma;未发表数据)在空间上并置(图2),并且高坞组富晶体凝灰岩中可见高角度正断层,推测为破火山边缘断裂(peripheral fracture)。因此,高坞组火山岩构成了长屿破火山的围岩和基底,两者之间的边界推测为破火山地形边界(topographic margin)。长屿破火山还发育两组火山活动之后的新生代断层系统,切割了早期破火山构造。一组是NW向逆冲断层系统,另一组是NE向正断层系统。其中,NE向正断层系统显著控制了山脉、山谷和水系的走向,并控制了新生代的沉积(图2;贺振宇等,2022a)。

  • 破火山从初始喷发到破火山的形成直至火山活动结束,会经历多阶段的火山喷发,并可以分为塌陷前喷发、破火山口形成喷发、破火山口形成后喷发和破火山复活等多个阶段(Lipman,1997; Cole et al.,2005; 贺振宇等,2022a)。根据火山岩的空间分布,以及火山岩碎屑组成和熔结程度等岩石学特征的变化,长屿破火山可能主要经历了3个阶段火山喷发和晚期复活穹隆的形成。三个阶段形成的流纹质凝灰岩主要出露在破火山口内部,总厚度约570 m,垂向上依次叠置,均具有火山碎屑流相的岩相学特征。我们认为第一阶段火山活动导致了塌陷破火山口的形成,火山岩在破火山口内外均有分布;而第二、第三阶段为破火山口形成后喷发,导致破火山进一步塌陷,同时喷发产物进一步填充了破火山口(贺振宇等,2022a)。在破火山口边部的晋岙、崇国寺、白峰山,以及中心的花芯水库等地,发育多个复活阶段流纹岩穹隆,并有集块岩共生,代表了可能的古火山口位置(图2)。并且,破火山口边部的晋岙、崇国寺、白峰山等几个穹隆可能限定了环状断裂的位置(例如:Lindsay et al.,2001; Moran et al.,2011)。对长屿破火山不同阶段火山岩和穹隆的LA-ICP-MS锆石U-Pb定年获得了在误差范围内一致的年龄结果,也支持了它们都是长屿破火山形成过程不同阶段的火山活动产物(97±2~96±2 Ma;贺振宇等,2022b)。

  • 图2 浙东长屿破火山地质简图(修改自贺振宇等,2022a

  • Fig.2 Simplified geological map of the Changyu caldera, eastern Zhejiang (after He Zhenyu et al., 2022a)

  • 第一阶段火山岩主要岩性为流纹质角砾熔结凝灰岩。塑性玻屑和浆屑构成强烈的流动构造。岩屑含量约5%~7%,主要为凝灰岩、黑曜岩,少量安山岩、玄武岩等。晶屑含量约15%~20%,以斜长石为主,其次为碱性长石、黑云母、少量石英等,可见斜长石、碱性长石和黑云母组成的聚晶(图3a)。第二阶段火山岩主要岩性为流纹质角砾凝灰岩。岩石为弱熔结或不熔结,玻屑为刚性,呈弧面多角状,少量为完整气泡壁。晶屑含量约20%~25%,以斜长石为主,其次为碱性长石、黑云母,少量石英。岩屑成棱角状,主要为流纹斑岩、黑曜岩、安山岩、凝灰岩等。可见碎屑状或透镜状浮岩碎屑(图3b),这是区别其他两阶段岩石的主要特征。第三阶段火山岩主要岩性为流纹质角砾强熔结凝灰岩,塑性玻屑和浆屑被压扁、拉长,构成强烈的流动构造(图3c)。晶屑含量约10%~15%,以斜长石为主,其次为碱性长石、黑云母,少量石英。岩屑含量约3%~5%,主要为凝灰岩、黑曜岩、安山岩、玄武岩等。流纹岩穹隆呈斑状结构,发育流纹构造、珍珠构造、球泡构造或自碎构造等。基质为隐晶质或玻璃质,可见球粒定向排列构成的流纹构造(图3d)。斑晶含量约3%~5%,主要有斜长石、碱性长石、黑云母和少量石英、Fe-Ti氧化物等,可见斜长石和碱性长石聚晶。

  • 图3 长屿火山岩的显微岩相学特征

  • Fig.3 Photomicrographs of the representative Changyu volcanic rocks

  • (a)—第一阶段角砾熔结凝灰岩,显示斜长石、碱性长石和黑云母组成的聚晶,以及浆屑条带;(b)—第二阶段角砾凝灰岩,显示浮岩碎屑及刚性玻屑;(c)—第三阶段含角砾强熔结凝灰岩的强烈流动构造;(d)—流纹岩穹隆,显示球粒构成的流纹构造

  • (a) —welded lapilli-tuff of the first unit showing glomerocrysts of plagioclase, K-feldspar and biotite and flattened fiamme; (b) —lapilli-tuff of the second unit showing pumice fragments and rigid glass shards; (c) —densely welded lapilli-tuff of the third unit showing strongly foliated and deformed glass shards; (d) —rhyolite dome showing flow banding marked by small spherulites

  • 长屿破火山三个阶段流纹质凝灰岩以及流纹岩穹隆具有高的且变化范围较大的SiO2含量(67%~76%),总体上第二阶段凝灰岩SiO2含量相对偏低(67%~71%),流纹岩穹隆SiO2含量相对偏高(69%~76%)。它们的铝饱和指数(A/CNK)具有较大的变化范围,为0.76~1.14,但主体为准铝质至弱过铝质。此外,它们显示了轻稀土相对重稀土富集,富集Rb、Ba等元素,亏损Sr、P、Ti等元素的特点,反映岩浆经历了一定程度的分异(贺振宇等,2022b)。

  • 2 锆石Hf同位素分析方法及数据处理

  • 原位微区锆石Hf同位素分析在武汉上谱分析科技有限责任公司完成,激光剥蚀系统为GeolasPro 193nm(Coherent,德国),斑束固定为44 μm。多接收电感耦合等离子体质谱仪(MC-ICP-MS)为Neptune Plus(Thermo Fisher Scientific,德国)。详细分析方法、以及176Yb和176Lu对176Hf的同质异位素干扰扣除见Wu Fuyuan et al.(2006)。锆石标样91500和TEMORA与测试样品同时分析,以检测分析数据的可靠性。在计算(176Hf/177Hf)i和εHf值时,176Lu的衰变常数采用1.867×10-11 a-1Söderlund et al.,2004),εHf的计算采用Bouvier et al.(2008)推荐的球粒陨石Hf同位素值,即176Lu/177Hf=0.0336,176Hf/177Hf=0.282785。Hf模式年龄计算中,亏损地幔176Hf/177Hf现在值采用0.28325,176Lu/177Hf为0.0384(Griffin et al.,2000)。

  • 由于部分熔融时Lu趋于保留在难熔残余相中,而Hf大部分进入熔体相,因而亏损地幔作为壳幔分异的残留相具有高的176Hf/177Hf,代表了幔源或新生地壳来源样品的最高值。对于研究样品来说,我们可以计算获得其岩浆地壳源区从亏损地幔分异的时间,即其地壳源区的形成时代,称为亏损地幔模式年龄(图4;depleted mantle model ages)。如果岩浆直接来自亏损地幔或者新生地壳,那么模式年龄应等于其结晶年龄。但是,一般来说,硅质岩浆中不可避免地有古老地壳物质的贡献,在计算中需采用二阶段模式年龄(TDMC),即在源区部分熔融(或锆石结晶)之前的阶段采用地壳176Lu/177Hf比值参与计算(图4;Vervoort and Kemp,2016; Spencer et al.,2020)。目前给出的地壳176Lu/177Hf比值由于假定的地壳岩石组成不同,具有很大的变化范围,从长英质大陆上地壳(0.0083)到镁铁质下地壳(0.022),不同的比值对模式年龄计算结果可能存在约500 Ma的影响(图4;Hawkesworth and Kemp,2006; Nebel et al.,2007; Chauvel et al.,2014; Vervoort and Kemp,2016; Spencer et al.,2020)。由于本文研究样品为高硅流纹质火山岩,故采用Chauvel et al.(2014) 提出的大陆上地壳176Lu/177Hf 值(0.0125±0.0018)进行两阶段模式年龄计算。需要指出的是虽然模式年龄被广泛应用于岩石学研究,但是模式年龄并不是真正的地壳形成事件年龄,许多情况下仅反映岩浆源区不同时代地壳物质或壳幔混合物质的平均年龄(图4;吴福元等,2007; Nebel et al.,2007; Vervoort and Kemp,2016; Spencer et al.,2020)。

  • 图4 锆石Hf模式年龄计算原理图(显示地壳源区不同176Lu/177Hf比值对计算结果的影响,以及模式年龄可能反映了混合的岩浆源区)

  • Fig.4 The calculation of depleted mantle model ages from Hf isotopes in zircon (showing model ages calculated using different 176Lu/177Hf of the crustal source and the case where the zircon crystallized from a hybrid magma source)

  • 3 分析结果

  • 对7件代表性样品开展了共108点的LA-MC-ICP-MS锆石Hf同位素分析,包括2件第一阶段凝灰岩样品、2件第二阶段凝灰岩样品、1件第三阶段凝灰岩样品、2件流纹岩穹隆样品(表1,图5)。不同样品中锆石晶体特征和内部结构基本一致,CL图像显示出较好的振荡环带,但第一阶段火山岩样品CY22-12中锆石环带相对较弱,且部分锆石内部有继承的核部(图5)。

  • 长屿破火山口形成喷发、形成后喷发及流纹岩穹隆等不同阶段火山岩显示了变化的、但基本一致的锆石Hf同位素组成(表1,图6)。破火山口形成喷发第一阶段凝灰岩(样品CY21-2和CY22-12)的锆石初始176Hf/177Hf比值为0.282519~0.282632,相应的εHft)值为-7.3~-3.3,平均为-5.8±2.1(2SD),TDMC模式年龄为1.45~1.22 Ga。样品CY22-12中3个位于继承核部的分析点(年龄为127~96 Ma),εHft)值为-10.6~-8.2,TDMC模式年龄为1.66~1.51 Ga。

  • 破火山口形成后喷发第二阶段凝灰岩(样品CY21-14和CY21-17)的初始176Hf/177Hf比值为0.282516~0.282718,相应的εHft)值为-7.4~-0.2,TDMC模式年龄为1.45~1.04 Ga。锆石Hf同位素组成变化范围相对较大,且更偏亏损,εHft)平均值为-4.4±3.5(2SD)。第三阶段凝灰岩(样品CY21-10)的锆石初始176Hf/177Hf比值为0.282557~0.282651,相应的εHft)值为-5.9~-2.6,平均值为-5.0±1.7(2SD),TDMC模式年龄为1.37~1.18 Ga。流纹岩穹隆(样品CY21-11和CY21-15)锆石Hf同位素组成与凝灰岩基本一致,但变化范围更小,初始176Hf/177Hf比值为0.282537~0.282609,相应的εHft)值为-6.6~-4.1,平均值为-5.2±1.4(2SD)。TDMC模式年龄为1.41~1.27 Ga。

  • 4 讨论

  • 4.1 长屿破火山的岩浆来源与华夏地块古老地壳的贡献

  • 中国东南部晚侏罗世—白垩纪大规模火山活动产物主要分布于华夏地块的浙江、福建、广东三省沿海地带,限于“火山岩线”(Zhou Xinmin and Li Wuxian,2000)以东,并主要位于政和-大埔断裂以东的沿海地区(图1)。其成因受古太平洋俯冲作用的制约,形成于活动大陆边缘的构造环境(Jahn et al.,1990; Zhou Xinmin et al.,2006; Xu Xisheng et al.,2021; Li Jianhua et al.,2022)。

  • 华夏地块前寒武纪基底岩石大部分被晚中生代火山岩覆盖,仅零星出露于江绍断裂和政和-大埔断裂之间的武夷山和云开山—南岭地区(Chen Jiangfeng and Jahn Borming,1998; Xu Xisheng et al.,2007; Yu Jinhai et al.,2010; Shu Liangshu et al.,2021)。武夷山地区(也称武夷山地体)是华夏地块前寒武纪基底出露相对集中的地区。最古老的基底岩石是分布在诸暨、龙游、龙泉、遂昌、庆元、松阳、景宁、浦城、建宁、邵武等地的古元古代花岗岩、火山岩和基性岩,年龄为1925±8~1750±17 Ma(Yu Jinhai et al.,2009; Liu Qian et al.,2014; Chen Zhihong et al.,2017; Zhang Aimei et al.,2021; Zhao Lei et al.,2023)。东海陆架钻遇基底也揭示了古元古代岩浆岩,例如LF-1井中温东群片麻岩的锆石U-Pb年龄为~1.85 Ga(张成晨等,2019)。新元古代岩浆岩,包括辉长岩、闪长岩、花岗岩、玄武岩、流纹岩等,零星分布在浙西陈蔡、金华和闽西长汀、明溪等地,形成年龄为984±6~735±3 Ma(Yao Jinlong et al.,2014; Xia Yan et al.,2015; Wang Yuejun et al.,2018; Jiang Yang et al.,2019; Shu Liangshu et al.,2021)。

  • 图5 长屿火山岩的代表性锆石CL图像

  • Fig.5 Cathodoluminescence images of representative zircons from the Changyu volcanic rocks

  • 表1 长屿破火山火山岩锆石Hf同位素组成

  • Table1 Hf isotopic compositions of zircon grains from volcanic rocks of the Changyu caldera

  • 续表1

  • 图6 长屿火山岩的锆石εHft)直方图

  • Fig.6 Histograms of zircon εHf (t) values of the Changyu volcanic rocks

  • 除上述古元古代和新元古代岩浆岩以外,武夷山地区还发育有古元古界八都群、麻源群、天井坪组等变质沉积岩,它们的古元古代(1.89~1.85 Ga)变质年龄和碎屑锆石组成指示了更古老的原岩沉积时代(2.5~1.9 Ga; Yu Jinhai et al.,20092012; Zhao Lei et al.,20142015)。浙江陈蔡群、龙泉群和福建的马面山群和万全群等还发育有新元古代的沉积岩,其中含有大量新元古代、古元古代和新太古代或更古老的碎屑物质(Wan Yusheng et al.,2007; Yu Jinhai et al.,2010; Lu Kejia et al.,2020)。云开山—南岭地区主要为新元古代沉积岩,分布在广东的龙川、梅县、南雄、增城,及江西寻乌等地,其中包含了大量新元古代、古元古代和太古宙的古老地壳物质(Wan Yusheng et al.,2007; Yu Jinhai et al.,20082010; Lin Shoufa et al.,2018)。

  • 大量已有锆石Hf同位素研究资料显示华夏地块古元古代岩浆岩的Hf模式年龄为3.76~1.96 Ga,主要集中在3.0~2.5 Ga,反映其岩浆主要来自新太古代地壳的再造,并有少量古元古代新生地壳的加入(图7; Yu Jinhai et al.,2009; Xia Yan et al.,2012; Liu Qian et al.,2014; Chen Zhihong et al.,2017; Zhang Aimei et al.,2021; Zhao Lei et al.,2023)。新元古代岩浆岩的锆石Hf模式年龄主要集中在中元古代(1.5~1.1 Ga),指示了新元古代的地壳生长与古元古代或新太古代地壳的再造(图7)。古元古代和新元古代沉积岩中碎屑锆石,以及古元古代岩浆岩中继承锆石的Hf同位素组成与古元古代和新元古代岩浆岩的锆石组成类似,也指示了新元古代和新太古代的地壳生长,以及古元古代的地壳再造(图7)。类似地,前人通过华夏地块地壳基底岩石的Nd同位素研究,也揭示了华夏地块的地壳基底形成时代为新太古代—中元古代(2.8~1.6 Ga;Jahn et al.,1990; Chen Jiangfeng and Jahn Borming1998; Yu Jinhai et al.,2012)。

  • 上述研究资料表明华夏地块是具有前寒武纪基底的古老陆块。我们进一步统计了部分已发表的晚中生代火山岩的锆石Hf同位素分析结果(图7),结果显示晚中生代火山岩的锆石εHft)值均远离亏损地幔演化线,Hf模式年龄为2.27~0.44 Ga,并且主要集中在1.8~1.0 Ga,表明它们的岩浆可能主要来自古老地壳的再造作用。这同时也暗示了华夏地块除了零星出露的前寒武纪基底外,政和-大埔断裂以东的晚中生代火山岩区之下也应普遍存在古老的地壳基底(图1;Jahn et al.,1990; Chen Jiangfeng and Jahn Borming,1998)。本文研究的长屿破火山口形成喷发、形成后喷发及流纹岩穹隆等各阶段火山岩锆石Hf同位素组成也显示类似地壳来源的特征,锆石εHft)值为-7.4~-0.2,Hf模式年龄为1.45~1.04 Ga,在锆石Hf演化图解上远离亏损地幔演化线(图7)。在俯冲带,俯冲沉积物熔体加入地幔源区也可能导致岩浆活动产物具有类似古老地壳的同位素组成(Liu Pingping et al.,20212022)。前人通过中国东南沿海白垩纪正长岩、辉长岩、玄武岩等幔源岩石的研究,也认为岩浆来自被俯冲沉积物交代富集的地幔楔与亏损地幔的相互作用(He Zhenyu and Xu Xisheng,2012; Zeng Gang et al.,2016)。但是,锆石Hf同位素统计结果显示早白垩世晚期—晚白垩世(120~90 Ma)火山岩具有明显相对偏高的锆石εHft)值,早白垩世早期火山岩(150~120 Ma)具有明显相对偏低的锆石εHft)值。同时,各时代火山岩均显示了非常大的锆石εHft)值变化范围且缺乏太古宙的模式年龄(图7;Zhou Xinmin et al.,2006; Guo Feng et al.,2012; Xu Xisheng et al.,2021刘磊等,2023)。此外,在活动大陆边缘环境,古老地壳不可避免地参与了硅质岩浆的形成(Storck et al.,20202021)。因此,这暗示了锆石Hf同位素的变化不可能单纯由地幔源区的变化导致,而更主要反映了古老地壳物质或地壳来源岩浆参与程度的增加或减少,暗示了中国东南沿海晚中生代硅质火山岩,包括长屿破火山的岩浆应主要来自亏损地幔来源岩浆与华夏地块古老地壳来源岩浆的混合成因,虽然仍不能排除有一定比例富集地幔来源岩浆的贡献。其锆石Hf模式年龄一般应代表其地壳源区时代的最小值,也就是说其地壳源区的时代相对其锆石Hf模式年龄应更古老(吴福元等,2007; Vervoort and Kemp,2016; Spencer et al.,2020)。我们通过简单的两端元混合计算(Janoušek et al.,2016),显示长屿破火山的岩浆可以由亏损地幔来源岩浆与15%~20%的古老地壳物质混合形成(图7)。

  • 图7 中国东南沿海晚侏罗世—白垩纪火山岩华夏地块晚中生代火山岩锆石Hf同位素演化图解

  • Fig.7 Zircon Hf isotopic evolution diagram for the Late Jurassic-Cretaceous volcanic rocks from the coastal SE China

  • 中国东南沿海晚侏罗世—白垩纪火山岩数据引自Liu Lei et al.(2012,2014,2016); Guo Feng et al.(2012); Yan Lili et al.(2016,2018); Li Xiyao et al.(2018); Zhang Jiheng et al.(2018); Cao Mingxuan et al.(2021); Zhao Liang et al.(2021)。华夏地块前寒武纪岩浆岩数据引自Xiang Hua et al.(2008); Yu Jinhai et al.(2009); Xia Yan et al.(2012,2015); Liu Qian et al.(2014); Zhao Lei et al.(2014); Chen Zhihong et al.(2017); Wang Yuejun et al.(2018); Jiang Yang et al.(2019); Qi Liang et al.(2019); Zhang Aimei et al.(2021)。华夏地块前寒武纪沉积岩数据引自Zhao Lei et al.(2015,2016); Yu Jinhai et al.(2008,2010,2012); Lu Kejia et al.(2020);简单二元混合曲线显示地壳基底贡献的百分比;地壳基底数据引自Yu Jinhai et al.(2009),为古元古代S型花岗岩,重新计算到100 Ma

  • The data of the Late Jurassic-Cretaceous volcanic rocks from SE China are from Liu Lei et al. (2012, 2014, 2016) ; Guo Feng et al. (2012) ; Yan Lili et al. (2016, 2018) ; Li Xiyao et al. (2018) ; Zhang Jiheng et al. (2018) ; Cao Mingxuan et al. (2021) ; Zhao Liang et al. (2021) . The data of Precambrian magmatic rocks from Cathaysia block are from Xiang Hua et al. (2008) ; Yu Jinhai et al. (2009) ; Xia Yan et al. (2012, 2015) ; Liu Qian et al. (2014) ; Zhao Lei et al. (2014) ; Chen Zhihong et al. (2017) ; Wang Yuejun et al. (2018) ; Jiang Yang et al. (2019) ; Qi Liang et al. (2019) ; Zhang Aimei et al. (2021) . The data of Precambrian sedimentary rocks from Cathaysia block are from Zhao Lei et al. (2015, 2016) ; Yu Jinhai et al. (2008, 2010, 2012) ; Lu Kejia et al. (2020) . Binary mixing line indicates percentages of crustal basement contribution. Data for the crustal basement is from Yu Jinhai et al. (2009) which is a Paleoproterozoic S-type granite with age corrected to 100 Ma

  • 4.2 硅质岩浆成因与穿地壳岩浆系统演化

  • 由于硅质岩浆在成分上不可能与上地幔岩石平衡,一般认为大规模的硅质岩浆是地壳深熔成因,玄武质岩浆为地壳熔融提供了热和流体(Huppert and Sparks,1988; Zheng Yongfei and Gao Peng,2021)。但是热力学模拟并不支持地壳岩石的大规模熔融,例如:Karakas et al.(2017a) 通过热力学模拟研究提出玄武质岩浆底侵带来的热流很难造成大规模的地壳熔融,尤其是地壳相对较薄的情况下。对有限出露的地壳剖面观察也表明即使大量的基性岩浆侵入中下地壳,也难以发生大规模的地壳熔融(Barboza and Bergantz,2000; Thompson et al.,2002; Greene et al.,2006)。单一地壳来源的岩浆一般形成于加厚地壳的碰撞造山环境(Clarke et al.,2005; 张泽明等,2020)。不同于岛弧环境或区域伸展的裂谷环境,在活动大陆边缘的构造环境,例如中生代北美科迪勒拉和中国东南沿海,一般具有较厚的大陆地壳,大部分地幔来源的玄武质岩浆不会直接喷发出地表,而是在壳幔边界或下地壳的不同水平侵位,发生分异并与地壳物质相互作用,形成大规模硅质火山喷发和共生的侵入体,仅伴有小规模的玄武质火山喷发(Zhou Xinmin et al.,2006; Lipman,2007; Reubi and Blundy,2009; Storck et al.,20202021)。Annen et al.(2006,2015)提出了中性至硅质岩浆的下地壳热带成因模型:长期持续的基性岩浆底侵或内侵于中下地壳,岩浆累积形成热带,同时导致地壳岩石的部分熔融;地壳来源岩浆与玄武质岩浆分异产物的不同比例混合作用产生了同位素较大变化的中酸性岩浆。

  • 在俯冲带,随着幔源岩浆通量的增加,幔源岩浆在下地壳持续累积,导致地壳地热梯度升高,形成高熔体比例的晶粥岩浆房,促进玄武质岩浆与地壳围岩之间发生更多的相互作用,地壳物质参与程度也相应增加,从而产生更大规模的熔体(Hildreth and Moorbath,1988; Lipman,2007; Cashman et al.,2017; Storck et al.,20202021; Liu Pingping et al.,20212022)。例如中国东南沿海早白垩世早期(150~120 Ma)是岩浆活动的峰期,而该时期火山岩具有明显相对偏低的锆石εHft)值,反映了地壳来源岩浆参与程度的增加(图7)。长屿破火山火山岩具有一定变化范围的锆石Hf同位素组成(εHft)=-7.4~-0.2),也反映了地幔来源岩浆与地壳来源之间的相互作用过程(图6,图8)。但是,玄武质岩浆在下地壳热带的分异以及与地壳物质的混合作用,一般难以形成高硅的流纹质岩浆,而是形成安山质或英安质岩浆(Dufek and Bergantz,2005; Kent et al.,2010; Karakas et al.,2017b)。因此,形成高硅的流纹质岩浆还需要安山质或英安质岩浆在浅部地壳的进一步分异作用(图8;Bachmann and Bergantz,2004; Deering et al.,2010; Bachmann and Huber,2016; Karakas et al.,2019)。近年来的研究认识到高硅流纹质火山相应的岩浆系统由深浅多个岩浆房经由管道相连通,形成穿地壳岩浆系统(Bachmann and Huber,2016; Yan Lili et al.,2016; Cashman et al.,2017; Wu Fuyuan et al.,2017; Storck et al.,2021; Xu Xisheng et al.,2021; Xiong Fuhao et al.,2024)。偏中性岩浆以不能喷发的晶体含量约50%~60%或更高的晶粥状态存储在上地壳,在高温、偏基性的补给岩浆的作用下,发生反复的晶粥活化作用,晶体框架间的熔体被大规模的抽取、汇聚,通过晶体-熔体分离过程实现岩浆分异和高硅岩浆的形成(Bachmann and Bergantz,2004; Yan Lili et al.,2016; Bachmann and Huber,2016; Cashman et al.,2017; Wu Fuyuan et al.,2017; Chen Jingyuan et al.,2022; Lu Tianyu et al.,2022; 颜丽丽等,2023)。长屿破火山各阶段火山岩基本一致的锆石Hf同位素组成反映了破火山及其穿地壳岩浆系统的不同阶段活动产物之间的密切成因联系(图6、8)。第二阶段火山岩为破火山口形成后喷发,其锆石Hf同位素组成变化范围相对较大,且更偏亏损(εHft)=-4.4±3.5(2SD); 图6),其SiO2含量也相对偏低(67%~71%),暗示了在峰期破火山口形成喷发之后的岩浆补给和岩浆房累积过程(Storck et al.,20202021)。此外,长屿各阶段火山岩中普遍发育斜长石、钾长石和黑云母组成的聚晶表明部分晶粥随熔体进入了喷发岩浆房(图3),同时也暗示了长屿火山岩的岩浆在浅部地壳的晶体-熔体分离过程,高硅流纹质岩浆主要为提取自晶粥的熔体(图8;Ellis et al.,2014; Wolff et al.,2015; Lubbers et al.,2020; 颜丽丽等,2023)。

  • 已有研究通过雁荡山、云山等代表性火山-侵入杂岩的研究建立了中国东南沿海白垩纪破火山浅部岩浆房的晶体-熔体分离模型,提出破火山共生的火山岩和侵入岩是同一岩浆分异演化的产物,火山岩岩浆来自晶粥中提取的熔体并有少量晶粥来源晶体,而残留的熔体和富含结晶矿物的堆晶体经活化形成中央侵入体(Yan Lili et al.,20162018; Xu Xisheng et al.,2021; 颜丽丽和贺振宇,2022)。最近的深地震剖面研究在华夏地块的白垩纪中、下地壳的不同深度均揭示了大量的镁铁质岩席的存在(Dong Shuwen et al.,2020; Li Jianhua et al.,2022),较好支持了上述中性至硅质岩浆的下地壳热带成因模型(图8;Annen et al.,20062015)。这些新生幔源岩浆不仅参与了岩浆的起源和大陆地壳的生长,也为大规模硅质火山作用的穿地壳岩浆系统的形成与演化提供了必须的岩浆通量和热的地壳环境(Storck et al.,2021)。

  • 图8 长屿破火山穿地壳岩浆系统模式图

  • Fig.8 Schematic model illustrating the transcrustal magmatic system of the Changyu caldera

  • 基性岩浆底侵或内侵于下地壳形成热带,同时导致地壳岩石的部分熔融;地壳来源岩浆与玄武质岩浆分异产物的混合作用产生了中酸性岩浆;中酸性岩浆在浅部地壳经晶体-熔体分离过程,提取自晶粥的熔体形成高硅流纹质岩浆

  • The mantle-derived basaltic magma was emplaced into the lower crust, generating deep crustal hot zones where the basaltic magmas crystallized to form mushes and evolved melt, and mixing of segregated evolved melt and crustal melt generated intermediate-silicic magmas; the intermediate-silicic magma was subsequently transferred to upper-crustal levels, where the high-silica magma was formed by crystal-melt separation and melt extraction from a crystal mush

  • 5 主要认识与展望

  • 长屿破火山口形成喷发、破火山口形成后喷发及流纹岩穹隆等各阶段火山岩具有基本一致的锆石Hf同位素组成(锆石εHft)值为-7.4~-0.2,Hf模式年龄为1.45~1.04 Ga),表明长屿破火山及其穿地壳岩浆系统的不同阶段活动产物之间的密切成因联系和演化过程,其岩浆主要由亏损地幔来源岩浆与华夏地块古老地壳来源岩浆混合形成。结合已发表的晚中生代火山岩的锆石Hf同位素分析结果,表明华夏地块除了零星出露的前寒武纪基底外,政和-大埔断裂以东的晚中生代火山岩区之下应普遍存在古老的前寒武纪地壳基底。长屿破火山以及中国东南沿海其他白垩纪破火山高硅流纹质岩浆的形成,反映了穿地壳岩浆系统的形成与演化过程,幔源岩浆为大规模硅质火山作用的形成提供了必须的岩浆通量和热能,古老地壳物质不同程度的参与了岩浆的起源。

  • 大量发育的破火山是中国东南沿海白垩纪大规模火山活动的典型地质特征,并经历了后期抬升剥蚀,较好地展示了破火山从环状断裂产生到喷发、塌陷、填充和复活过程,以及多阶段的火山喷发产物、岩墙、穹隆,以及浅成侵入体等结构,是研究硅质火山穿地壳岩浆系统的理想对象。当前应加强破火山内、外部结构的精细解剖,以及成因类型和时空分布的综合编图研究,重建火山活动的详细喷发历史和过程,并在这些关键基础上开展精细的岩石学、矿物学、年代学,以及热力学和岩浆流体力学模拟研究,深入揭示中国东南沿海白垩纪穿地壳岩浆系统的深浅结构、不同端元来源岩浆的贡献及方式,及其随破火山形成与演化的动态演化过程,为硅质火山岩浆系统、岩浆储库理论研究提供立典性案例。

  • 致谢:感谢温岭市方山-长屿硐天旅游开发服务中心在野外考察与研究工作中的大力协助。三位审稿专家对本文进行了严谨的审阅,并提出许多宝贵的建设性意见,极大地丰富了论文的内容与深度。

  • 参考文献

    • Annen C, Blundy J D, Sparks R S J. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3): 505~539.

    • Annen C, Blundy J D, Leuthold J, Sparks R S J. 2015. Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism. Lithos, 230: 206~221.

    • Bachmann O, Bergantz G W. 2004. On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. Journal of Petrology, 45(8): 1565~1582.

    • Bachmann O, Huber C. 2016. Silicic magma reservoirs in the Earth's crust. American Mineralogist, 101(11): 2377~2404.

    • Barboza S A, Bergantz G W. 2000. Metamorphism and anatexis in the mafic complex contact aureole, Ivrea zone, northern Italy. Journal of Petrology, 41(8): 1307~1327.

    • Bouvet de Maisonneuve C, Forni F, Bachmann O. 2021. Magma reservoir evolution during the build up to and recovery from caldera-forming eruptions—A generalizable model? Earth-Science Reviews, 218: 103684.

    • Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1~2): 48~57.

    • Branney M, Acocella V. 2015. Calderas. In: The Encyclopedia of Volcanoes. Amsterdam: Elsevier: 299~315.

    • Cao Mingxuan, Zhao Xilin, Xing Guangfu, Fan Feipeng, Yu Minggang, Duan Zheng, Chu Pingli, Chen Rong. 2021. Tectonic transition from subduction to retreat of the palaeo-Pacific plate: New geochemical constraints from the late Mesozoic volcanic sequence in eastern Fujian Province, SE China. Geological Magazine, 158(6): 1074~1108.

    • Cashman K V, Sparks R S J, Blundy J D. 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355(6331): eaag3055.

    • Chauvel C, Garçon M, Bureau S, Besnault A, Jahn Borming, Ding Zhongli. 2014. Constraints from loess on the Hf-Nd isotopic composition of the upper continental crust. Earth and Planetary Science Letters, 388: 48~58.

    • Chen Jiangfeng, Jahn Borming. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284(1~2): 101~133.

    • Chen Jingyuan, Yang Jinhui, Zhang Jiheng, Sun Jinfeng, Zhu Yusheng, Hartung E. 2022. Generation of Cretaceous high-silica granite by complementary crystal accumulation and silicic melt extraction in the coastal region of southeastern China. Geological Society of America Bulletin, 134(1~2): 201~222.

    • Chen Zhihong, Zhao Ling, Chen Dandan, Zhao Xilin, Xing Guangfu. 2017. First discovery of a Palaeoproterozoic A-type granite in southern Wuyishan terrane, Cathaysia Block: Evidence from geochronology, geochemistry, and Nd-Hf-O isotopes. International Geology Review, 59(1): 80~93.

    • Clarke D B, Dorais M, Barbarin B, Barker D, Cesare B, Clarke G, El Baghdadi M, Erdmann S, Förster H J, Gaeta M, Gottesmann B, Jamieson R A, Kontak D J, Koller F, Leal Gomes C, London D, Morgan G B, Neves L J P F, Pattison D R M, Pereira A J S C, Pichavant M, Rapela C W, Renno A D, Richards S, Roberts M, Rottura A, Saavedra J, Sial A N, Toselli A J, Ugidos J M, Uher P, Villaseca C, Visonà D, Whitney D L, Williamson B, Woodard H H. 2005. Occurrence and origin of andalusite in peraluminous felsic igneous rocks. Journal of Petrology, 46(3): 441~472.

    • Cole J W, Milner D M, Spinks K D. 2005. Calderas and caldera structures: A review. Earth-Science Reviews, 69(1~2): 1~26.

    • Deering C D, Gravley D M, Vogel T A, Cole J W, Leonard G S. 2010. Origins of cold-wet-oxidizing to hot-dry-reducing rhyolite magma cycles and distribution in the Taupo volcanic zone, New Zealand. Contributions to Mineralogy and Petrology, 160(4): 609~629.

    • Dong Shuwen, Li Jianhua, Cawood P A, Gao Rui, Zhang Yueqiao, Xin Yujia. 2020. Mantle influx compensates crustal thinning beneath the Cathaysia Block, South China: Evidence from SINOPROBE reflection profiling. Earth and Planetary Science Letters, 544: 116360.

    • Dufek J, Bergantz G W. 2005. Lower crustal magma genesis and preservation: A stochastic framework for the evaluation of basalt-crust interaction. Journal of Petrology, 46(11): 2167~2195.

    • Ellis B S, Bachmann O, Wolff J A. 2014. Cumulate fragments in silicic ignimbrites: The case of the Snake River Plain. Geology, 42(5): 431~434.

    • Frost C D, Frost B R, Beard J S. 2016. On silica-rich granitoids and their eruptive equivalents. American Mineralogist, 101(6): 1268~1284.

    • Greene A R, Debari S M, Kelemen P B, Blusztajn J, Clift P D. 2006. A detailed geochemical study of island arc crust: The Talkeetna arc section, south-central Alaska. Journal of Petrology, 47(6): 1051~1093.

    • Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133~147.

    • Griffin W L, Wang Xiang, Jackson S E, Pearson N J, O'Reilly S Y, Xu Xisheng, Zhou Xinmin. 2002. Zircon chemistry and magma mixing, SE China: In situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3~4): 237~269.

    • Guo Feng, Fan Weiming, Li Chaowen, Zhao Liang, Li Hongxia, Yang Jinhui. 2012. Multi-stage crust-mantle interaction in SE China: Temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong-Fujian provinces. Lithos, 150: 62~84.

    • Hawkesworth C J, Kemp A I S. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3~4): 144~162.

    • He Zhenyu, Xu Xisheng. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to the geodynamics of paleo-Pacific plate subduction. Chemical Geology, 328: 208~221.

    • He Zhenyu, Yan Lili, Chu Pingli, Zhang Jin. 2022a. Typical recognition features of the Changyu caldera in the eastern Zhejiang Province. East China Geology, 43(4): 448~459 (in Chinese with English abstract).

    • He Zhenyu, Yan Lili, Chu Pingli, Xiang Hua, Jiang Zikun. 2022b. Volcanological evolution and paleoenvironment of the Late Cretaceous Changyu volcano in the coastal SE China. Acta Petrologica Sinica, 38(5): 1419~1442 (in Chinese with English abstract).

    • Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4): 455~489.

    • Huppert H E, Sparks R S J. 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology, 29(3): 599~624.

    • Janoušek V, Moyen J F, Martin H, Erban V, Farrow C. 2016. Geochemical Modelling of Igneous Processes-Principles and Recipes in R Language: Bringing the Power of R to a Geochemical Community. Berlin: Springer-Verlag Berlin Heidelberg.

    • Jiang Yang, Zhao Xilin, Zhang Yanjie, Xing Guangfu, Xu Mincheng, Liu Huan. 2019. Neoproterozoic arc volcanic rocks of the Nanping-Ninghua tectonic belt, South China: Implications for the collision between the North and South Wuyi blocks. Geological Journal, 54(4): 2679~2692.

    • Jahn B M, Zhou X H, Li J L. 1990. Formation and tectonic evolution of Southeastern China and Taiwan: Isotopic and geochemical constraints. Tectonophysics, 183(1~4): 145~160.

    • Karakas O, Dufek J, Mangan M T, Wright H M, Bachmann O. 2017a. Thermal and petrologic constraints on lower crustal melt accumulation under the Salton Sea Geothermal Field. Earth and Planetary Science Letters, 467: 10~17.

    • Karakas O, Degruyter W, Bachmann O, Dufek J. 2017b. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nature Geoscience, 10: 446~450.

    • Karakas O, Wotzlaw J F, Guillong M, Ulmer P, Brack P, Economos R, Bergantz G W, Sinigoi S, Bachmann O. 2019. The pace of crustal-scale magma accretion and differentiation beneath silicic caldera volcanoes. Geology, 47(8): 719~723.

    • Keller C B, Schoene B, Barboni M, Samperton K M, Husson J M. 2015. Volcanic-plutonic parity and the differentiation of the continental crust. Nature, 523(7560): 301~307.

    • Kennedy B, Stix J. 2007. Magmatic processes associated with caldera collapse at Ossipee ring dyke, New Hampshire. Geological Society of America Bulletin, 119(1~2): 3~17.

    • Kennedy B M, Holohan E P, Stix J, Gravley D M, Davidson J R J, Cole J W. 2018. Magma plumbing beneath collapse caldera volcanic systems. Earth-Science Reviews, 177: 404~424.

    • Kent A J R, Darr C, Koleszar A M, Salisbury M J, Cooper K M. 2010. Preferential eruption of andesitic magmas through recharge filtering. Nature Geoscience, 3: 631~636.

    • Li Jianhua, Dong Shuwen, Gao Rui, Cawood P A, Zhang Yueqiao, Zhao Guochun, Li Qiusheng, Xin Yujia, Wang Jinming, Lü Fang. 2022. The thinnest crust in South China associated with the Cretaceous lithospheric extension: Evidence from SINOPROBE seismic reflection profiling. Tectonics, 41: e2022TC007240.

    • Li Xiyao, Li Sanzhong, Suo Yanhui, Dai Liming, Guo Lingli, Ge Fengjian, Lin Peijun. 2018. Late Cretaceous basalts and rhyolites from Shimaoshan Group in eastern Fujian Province, SE China: Age, petrogenesis, and tectonic implications. International Geology Review, 60(11~14): 1721~1743.

    • Lin Shoufa, Xing Guangfu, Davis D W, Yin Changqing, Wu Meiling, Li Longming, Jiang Yang, Chen Zhihong. 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China. Geology, 46(4): 319~322.

    • Lindsay J M, De Silva S, Trumbull R, Emmermann R, Wemmer K. 2001. La pacana caldera, N. Chile: A re-evaluation of the stratigraphy and volcanology of one of the world's largest resurgent calderas. Journal of Volcanology and Geothermal Research, 106(1~2): 145~173.

    • Lipman P W. 1997. Subsidence of ash-flow calderas: Relation to caldera size and magma-chamber geometry. Bulletin of Volcanology, 59(3): 198~218.

    • Lipman P W. 2007. Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the Southern Rocky Mountain volcanic field. Geosphere, 3(1): 42.

    • Liu Lei, Xu Xisheng, Zou Haibo. 2012. Episodic eruptions of the late Mesozoic volcanic sequences in southeastern Zhejiang, SE China: Petrogenesis and implications for the geodynamics of paleo-Pacific subduction. Lithos, 154: 166~180.

    • Liu Lei, Xu Xisheng, Xia Yan. 2014. Cretaceous Pacific plate movement beneath SE China: Evidence from episodic volcanism and related intrusions. Tectonophysics, 614: 170~184.

    • Liu Lei, Xu Xisheng, Xia Yan. 2016. Asynchronizing paleo-Pacific slab rollback beneath SE China: Insights from the episodic Late Mesozoic volcanism. Gondwana Research, 37: 397~407.

    • Liu Lei, Zhao Yang, He Zhenyu, Sun Jie, Liu Xijun, Zhao Zengxia. 2023. Volcanic activity process and petrogenesis of the Liaotianshan caldera in SW Fujian: Evidence from zircon U-Pb, Hf isotopic and trace element concentrations. Acta Geologica Sinica, 97(7): 2176~2194(in Chinese with English abstract).

    • Liu Liang, Yang Jiehua, Kang Lifang, Zhong Hong, Zhang Xingchun. 2023. The long-lived transcrustal magmatic systems of Southeast China in response to paleo-Pacific plate subduction, recorded by the Cretaceous volcanic sequences in southeastern Zhejiang Province. Geological Society of America Bulletin, 135(5~6): 1091~1108.

    • Liu Qian, Yu Jinhai, O'Reilly S Y, Zhou Meifu, Griffin W L, Wang Lijuan, Cui Xiang. 2014. Origin and geological significance of Paleoproterozoic granites in the northeastern Cathaysia Block, South China. Precambrian Research, 248: 72~95.

    • Liu Pingping, Caricchi L, Chung Sunlin, Li Xianhua, Li Qiuli, Zhou Meifu, Lai Yuming, Ghani A A, Sihotang T, Sheldrake T E, Simpson G. 2021. Growth and thermal maturation of the Toba magma reservoir. Proceedings of the National Academy of Sciences, 118(45): e2101695118.

    • Liu Pingping, Chung S L, Chesner C A, Gao Menghao, Lai Yuming, Lee H Y, Yang Yueheng. 2022. New insights into the petrogenesis of voluminous crustal-signature silicic volcanic rocks of the Toba eruptions (Indonesia). Journal of Geophysical Research: Solid Earth, 127(12): e2022JB024559.

    • Lu Kejia, Li Longming, Lin Shoufa, Ren Shenglian, Feng Lamei, Han Xu, Ge Yanpeng, Jiang Jian, Wang Lei, Wang Bo. 2020. Geochronological and geochemical data of paragneiss and amphibolite from the Chencai Group in South China: Implications for petrogenesis and tectonic significance. Geological Journal, 55(10): 6823~6840.

    • Lu Tianyu, He Zhenyu, Klemd R. 2022. Identifying crystal accumulation and melt extraction during formation of high-silica granite. Geology, 50(2): 216~221.

    • Lubbers J, Deering C, Bachmann O. 2020. Genesis of rhyolitic melts in the upper crust: Fractionation and remobilization of an intermediate cumulate at Lake City caldera, Colorado, USA. Journal of Volcanology and Geothermal Research, 392: 106750.

    • Ma Changqian, Liu Bin, Xue Zhenhua, Zou Bowen, Huang Guizhi, Lian Quancheng, Gao Ke, Sun Yang, Wang Lianxun. 2024. Insights into the volcanic eruption process and magmatic plumbing systems from felsic intrusions. Acta Petrologica Sinica, 40(7): 1997~2018 (in Chinese with English abstract).

    • Moran S C, Newhall C, Roman D C. 2011. Failed magmatic eruptions: Late-stage cessation of magma ascent. Bulletin of Volcanology, 73(2): 115~122.

    • Nebel O, Nebel-Jacobsen Y, Mezger K, Berndt J. 2007. Initial Hf isotope compositions in magmatic zircon from Early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages. Chemical Geology, 241(1~2): 23~37.

    • Qi Liang, Xu Yajun, Cawood P A, Wang Wei, Du Yuansheng. 2019. Implications of 770 Ma Rhyolitic Tuffs, eastern South China Craton in constraining the tectonic setting of the Nanhua basin. Lithos, 324: 842~858.

    • Shu Liangshu, Yao Jinlong, Wang Bo, Faure M, Charvet J, Chen Yan. 2021. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block. Earth-Science Reviews, 216: 103596.

    • Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3~4): 311~324.

    • Spencer C J, Kirkland C L, Roberts N M W, Evans N J, Liebmann J. 2020. Strategies towards robust interpretations of in situ zircon Lu-Hf isotope analyses. Geoscience Frontiers, 11(3): 843~853.

    • Storck J C, Wotzlaw J F, Karakas Ö, Brack P, Gerdes A, Ulmer P. 2020. Hafnium isotopic record of mantle-crust interaction in an evolving continental magmatic system. Earth and Planetary Science Letters, 535: 116100.

    • Storck J C, Laurent O, Karakas O, Wotzlaw J F, Galli A, Sinigoi S, Bachmann O, Chelle-Michou C. 2021. Mantle versus crustal contributions in crustal-scale magmatic systems (Sesia Magmatic System, northern Italy) from coupling Hf isotopes and numerical modelling. Contributions to Mineralogy and Petrology, 176(11): 95.

    • Thompson A B, Matile L, Ulmer P. 2002. Some thermal constraints on crustal assimilation during fractionation of hydrous, mantle-derived magmas with examples from Central Alpine batholiths. Journal of Petrology, 43(3): 403~422.

    • Vervoort J D, Kemp A I S. 2016. Clarifying the zircon Hf isotope record of crust-mantle evolution. Chemical Geology, 425: 65~75.

    • Wan Yusheng, Liu Dunyi, Xu Meihui, Zhuang Jianmin, Song Biao, Shi Yuruo, Du Lilin. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research, 12(1~2): 166~183.

    • Wang Yuejun, Gan Chengshi, Tan Qingli, Zhang Yuzhi, He Huiying, Xin Qian, Zhang Yanhua. 2018. Early Neoproterozoic (~840 Ma) slab window in South China: Key magmatic records in the Chencai complex. Precambrian Research, 314: 434~451.

    • Wolff J A, Ellis B S, Ramos F C, Starkel W A, Boroughs S, Olin P H, Bachmann O. 2015. Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: A comparison of cool, wet and hot, dry rhyolitic magma systems. Lithos, 236: 275~286.

    • Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220 (in Chinese with English abstract).

    • Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 60(7): 1201~1219.

    • Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1~2): 105~126.

    • Xia Yan, Xu Xisheng, Zhu Kongyang. 2012. Paleoproterozoic S- and A-type granites in southwestern Zhejiang: Magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement. Precambrian Research, 216: 177~207.

    • Xia Yan, Xu Xisheng, Zhao Guochun, Liu Lei. 2015. Neoproterozoic active continental margin of the Cathaysia block: Evidence from geochronology, geochemistry, and Nd-Hf isotopes of igneous complexes. Precambrian Research, 269: 195~216.

    • Xiang Hua, Zhang Li, Zhou Hanwen, Zhong Zengqiu, Zeng Wen, Liu Rui, Jin Song. 2008. U-Pb zircon geochronology and Hf isotope study of metamorphosed basic-ultrabasic rocks from metamorphic basement in southwestern Zhejiang: The response of the Cathaysia Block to Indosinian orogenic event. Science in China Series D: Earth Sciences, 51(6): 788~800.

    • Xiong Fuhao, Yan Dongdong, Ma Changqian, Hou Mingcai, Wang Mingchi, Huang Hu, Wang Wei. 2024. Geochemical and petrological diversity of a transcrustal magmatic system driven by mushy magma mixing: Insights from the Triassic dike swarms in East Kunlun Orogen, northern Tibetan Plateau. Geological Society of America Bulletin, 136(11~12): 5058~5074.

    • Xu Xisheng, O'Reilly S Y, Griffin W L, Wang Xiaolei, Pearson N J, He Zhenyu. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158(1~2): 51~78.

    • Xu Xisheng, Zhao Kai, He Zhenyu, Liu Lei, Hong Wentao. 2021. Cretaceous volcanic-plutonic magmatism in SE China and a genetic model. Lithos, 402: 105728.

    • Yan Lili, He Zhenyu, Jahn Borming, Zhao Zhidan. 2016. Formation of the Yandangshan volcanic-plutonic complex (SE China) by melt extraction and crystal accumulation. Lithos, 266~267: 287~308.

    • Yan Lili, He Zhenyu, Beier C, Klemd R. 2018. Geochemical constraints on the link between volcanism and plutonism at the Yunshan caldera complex, SE China. Contributions to Mineralogy and Petrology, 173: 4.

    • Yan Lili, He Zhenyu. 2022. Influence of magma recharge on the evolution of silicic volcanic system. Acta Geologica Sinica, 96(5): 1697~1710 (in Chinese with English abstract).

    • Yan Lili, He Zhenyu, Lu Tianyu. 2023. Mush rejuvenation in silicic magmatic systems and its petrological records. Bulletin of Mineralogy Petrology and Geochemistry, 42(5): 1028~1041 (in Chinese with English abstract).

    • Yao Jinlong, Shu Liangshu, Santosh M, Xu Zhiqin. 2014. Palaeozoic metamorphism of the Neoproterozoic basement in NE Cathaysia: Zircon U-Pb ages, Hf isotope and whole-rock geochemistry from the Chencai Group. Journal of the Geological Society, 171: 281~297.

    • Yu Jinhai, O'Reilly S Y, Wang Lijuan, Griffin W L, Zhang Ming, Wang Rucheng, Jiang Shaoyong, Shu Liangshu. 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research, 164(1~2): 1~15.

    • Yu Jinhai, Wang Lijuan, O'Reilly S Y, Griffin W L, Zhang Ming, Li Chunzhong, Shu Liangshu. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research, 174(3~4): 347~363.

    • Yu Jinhai, O'Reilly S Y, Wang Lijuan, Griffin W L, Zhou Meifu, Zhang Ming, Shu Liangshu. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research, 181(1~4): 97~114.

    • Yu Jinhai, O'Reilly S Y, Zhou Meifu, Griffin W L, Wang Lijuan. 2012. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambrian Research, 222: 424~449.

    • Zeng Gang, He Zhenyu, Li Zhen, Xu Xisheng, Chen Lihui. 2016. Geodynamics of paleo-Pacific plate subduction constrained by the source lithologies of Late Mesozoic basalts in southeastern China. Geophysical Research Letters, 43: 10189~10197.

    • Zhang Aimei, Ma Liyan, Liu Huichuan, Cai Yongfeng, Chen Min, Fang Qi. 2021. Identification of two-phased late Paleoproterozoic magmatism in the Wuyishan domain (SE China): Implications for the tectonic evolution of the Cathaysia Block. Precambrian Research, 355: 106093.

    • Zhang Chengchen, Xu Changhai, He Min, Gao Shunli. 2019. Late Mesozoic convergent continental margin with magmatic arc from East to South China Seas: A review. Advances in Earth Science, 34(9): 950~961 (in Chinese with English abstract).

    • Zhang Jiheng, Yang Jinhui, Chen Jingyuan, Wu Fuyuan, Wilde S A. 2018. Genesis of late Early Cretaceous high-silica rhyolites in eastern Zhejiang Province, Southeast China: A crystal mush origin with mantle input. Lithos, 296: 482~495.

    • Zhang Zeming, Ding Huixia, Dong Xing, Tian Zuolin. 2020. Partial melting of subduction zones. Acta Petrologica Sinica, 36: 2589~2615 (in Chinese with English abstract).

    • Zhao Lei, Zhou Xiwen, Zhai Mingguo, Santosh M, Ma Xudong, Shan Houxiang, Cui Xiahong. 2014. Paleoproterozoic tectonic transition from collision to extension in the eastern Cathaysia Block, South China: Evidence from geochemistry, zircon U-Pb geochronology and Nd-Hf isotopes of a granite-charnockite suite in southwestern Zhejiang. Lithos, 184: 259~280.

    • Zhao Lei, Zhou Xiwen, Zhai Mingguo, Santosh M, Geng Yuansheng. 2015. Zircon U-Th-Pb-Hf isotopes of the basement rocks in northeastern Cathaysia block, South China: Implications for Phanerozoic multiple metamorphic reworking of a Paleoproterozoic terrane. Gondwana Research, 28(1): 246~261.

    • Zhao Lei, Zhai Mingguo, Zhou Xiwen, Santosh M, Ma Xudong. 2016. Thermal gradient and geochronology of a Paleozoic high-grade terrane in the northeastern Cathaysia block, South China. Tectonophysics, 691: 311~327.

    • Zhao Lei, Zhai Mingguo, Zhou Xiwen. 2023. Early Precambrian basement components of the Cathaysia Block in South China exhumed by Phanerozoic orogenic events. Precambrian Research, 398: 107218.

    • Zhao Liang, Guo Feng, Zhang Xiaobing, Wang Guoqing. 2021. Cretaceous crustal melting records of tectonic transition from subduction to slab rollback of the Paleo-Pacific Plate in SE China. Lithos, 384: 105985.

    • Zheng Yongfei, Gao Peng. 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries. Lithos, 402: 106232.

    • Zhou Xinmin, Li Wuxian. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269~287.

    • Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26~33.

    • 贺振宇, 颜丽丽, 褚平利, 张进. 2022a. 浙东长屿破火山的典型识别特征. 华东地质, 43(4): 448~459.

    • 贺振宇, 颜丽丽, 褚平利, 向华, 蒋子堃. 2022b. 中国东南沿海晚白垩世长屿火山的活动过程与古环境意义. 岩石学报, 38(5): 1419~1442.

    • 刘磊, 赵阳, 贺振宇, 孙杰, 刘希军, 赵增霞. 2023. 闽西南廖天山破火山活动过程与岩石成因: 锆石U- Pb、Hf同位素及微量元素制约. 地质学报, 97(7): 2176~2194.

    • 马昌前, 刘彬, 薛振华, 邹博文, 黄贵治, 连泉程, 高珂, 孙洋, 王连训. 2024. 从长英质侵入体揭示火山喷发过程与岩浆通道系统. 岩石学报, 40(7): 1997~2018.

    • 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.

    • 颜丽丽, 贺振宇. 2022. 岩浆补给作用对硅质火山岩浆系统演化的制约. 地质学报, 96(5): 1697~1710.

    • 颜丽丽, 贺振宇, 陆天宇. 2023. 硅质岩浆系统的晶粥活化作用及其岩石学记录. 矿物岩石地球化学通报, 42(5): 1028~1041.

    • 张成晨, 许长海, 何敏, 高顺莉. 2019. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述. 地球科学进展, 34(9): 950~961.

    • 张泽明, 丁慧霞, 董昕, 田作林. 2020. 俯冲带部分熔融. 岩石学报, 36(9): 2589~2615.

  • 参考文献

    • Annen C, Blundy J D, Sparks R S J. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3): 505~539.

    • Annen C, Blundy J D, Leuthold J, Sparks R S J. 2015. Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism. Lithos, 230: 206~221.

    • Bachmann O, Bergantz G W. 2004. On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. Journal of Petrology, 45(8): 1565~1582.

    • Bachmann O, Huber C. 2016. Silicic magma reservoirs in the Earth's crust. American Mineralogist, 101(11): 2377~2404.

    • Barboza S A, Bergantz G W. 2000. Metamorphism and anatexis in the mafic complex contact aureole, Ivrea zone, northern Italy. Journal of Petrology, 41(8): 1307~1327.

    • Bouvet de Maisonneuve C, Forni F, Bachmann O. 2021. Magma reservoir evolution during the build up to and recovery from caldera-forming eruptions—A generalizable model? Earth-Science Reviews, 218: 103684.

    • Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1~2): 48~57.

    • Branney M, Acocella V. 2015. Calderas. In: The Encyclopedia of Volcanoes. Amsterdam: Elsevier: 299~315.

    • Cao Mingxuan, Zhao Xilin, Xing Guangfu, Fan Feipeng, Yu Minggang, Duan Zheng, Chu Pingli, Chen Rong. 2021. Tectonic transition from subduction to retreat of the palaeo-Pacific plate: New geochemical constraints from the late Mesozoic volcanic sequence in eastern Fujian Province, SE China. Geological Magazine, 158(6): 1074~1108.

    • Cashman K V, Sparks R S J, Blundy J D. 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355(6331): eaag3055.

    • Chauvel C, Garçon M, Bureau S, Besnault A, Jahn Borming, Ding Zhongli. 2014. Constraints from loess on the Hf-Nd isotopic composition of the upper continental crust. Earth and Planetary Science Letters, 388: 48~58.

    • Chen Jiangfeng, Jahn Borming. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284(1~2): 101~133.

    • Chen Jingyuan, Yang Jinhui, Zhang Jiheng, Sun Jinfeng, Zhu Yusheng, Hartung E. 2022. Generation of Cretaceous high-silica granite by complementary crystal accumulation and silicic melt extraction in the coastal region of southeastern China. Geological Society of America Bulletin, 134(1~2): 201~222.

    • Chen Zhihong, Zhao Ling, Chen Dandan, Zhao Xilin, Xing Guangfu. 2017. First discovery of a Palaeoproterozoic A-type granite in southern Wuyishan terrane, Cathaysia Block: Evidence from geochronology, geochemistry, and Nd-Hf-O isotopes. International Geology Review, 59(1): 80~93.

    • Clarke D B, Dorais M, Barbarin B, Barker D, Cesare B, Clarke G, El Baghdadi M, Erdmann S, Förster H J, Gaeta M, Gottesmann B, Jamieson R A, Kontak D J, Koller F, Leal Gomes C, London D, Morgan G B, Neves L J P F, Pattison D R M, Pereira A J S C, Pichavant M, Rapela C W, Renno A D, Richards S, Roberts M, Rottura A, Saavedra J, Sial A N, Toselli A J, Ugidos J M, Uher P, Villaseca C, Visonà D, Whitney D L, Williamson B, Woodard H H. 2005. Occurrence and origin of andalusite in peraluminous felsic igneous rocks. Journal of Petrology, 46(3): 441~472.

    • Cole J W, Milner D M, Spinks K D. 2005. Calderas and caldera structures: A review. Earth-Science Reviews, 69(1~2): 1~26.

    • Deering C D, Gravley D M, Vogel T A, Cole J W, Leonard G S. 2010. Origins of cold-wet-oxidizing to hot-dry-reducing rhyolite magma cycles and distribution in the Taupo volcanic zone, New Zealand. Contributions to Mineralogy and Petrology, 160(4): 609~629.

    • Dong Shuwen, Li Jianhua, Cawood P A, Gao Rui, Zhang Yueqiao, Xin Yujia. 2020. Mantle influx compensates crustal thinning beneath the Cathaysia Block, South China: Evidence from SINOPROBE reflection profiling. Earth and Planetary Science Letters, 544: 116360.

    • Dufek J, Bergantz G W. 2005. Lower crustal magma genesis and preservation: A stochastic framework for the evaluation of basalt-crust interaction. Journal of Petrology, 46(11): 2167~2195.

    • Ellis B S, Bachmann O, Wolff J A. 2014. Cumulate fragments in silicic ignimbrites: The case of the Snake River Plain. Geology, 42(5): 431~434.

    • Frost C D, Frost B R, Beard J S. 2016. On silica-rich granitoids and their eruptive equivalents. American Mineralogist, 101(6): 1268~1284.

    • Greene A R, Debari S M, Kelemen P B, Blusztajn J, Clift P D. 2006. A detailed geochemical study of island arc crust: The Talkeetna arc section, south-central Alaska. Journal of Petrology, 47(6): 1051~1093.

    • Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133~147.

    • Griffin W L, Wang Xiang, Jackson S E, Pearson N J, O'Reilly S Y, Xu Xisheng, Zhou Xinmin. 2002. Zircon chemistry and magma mixing, SE China: In situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3~4): 237~269.

    • Guo Feng, Fan Weiming, Li Chaowen, Zhao Liang, Li Hongxia, Yang Jinhui. 2012. Multi-stage crust-mantle interaction in SE China: Temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong-Fujian provinces. Lithos, 150: 62~84.

    • Hawkesworth C J, Kemp A I S. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3~4): 144~162.

    • He Zhenyu, Xu Xisheng. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to the geodynamics of paleo-Pacific plate subduction. Chemical Geology, 328: 208~221.

    • He Zhenyu, Yan Lili, Chu Pingli, Zhang Jin. 2022a. Typical recognition features of the Changyu caldera in the eastern Zhejiang Province. East China Geology, 43(4): 448~459 (in Chinese with English abstract).

    • He Zhenyu, Yan Lili, Chu Pingli, Xiang Hua, Jiang Zikun. 2022b. Volcanological evolution and paleoenvironment of the Late Cretaceous Changyu volcano in the coastal SE China. Acta Petrologica Sinica, 38(5): 1419~1442 (in Chinese with English abstract).

    • Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4): 455~489.

    • Huppert H E, Sparks R S J. 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology, 29(3): 599~624.

    • Janoušek V, Moyen J F, Martin H, Erban V, Farrow C. 2016. Geochemical Modelling of Igneous Processes-Principles and Recipes in R Language: Bringing the Power of R to a Geochemical Community. Berlin: Springer-Verlag Berlin Heidelberg.

    • Jiang Yang, Zhao Xilin, Zhang Yanjie, Xing Guangfu, Xu Mincheng, Liu Huan. 2019. Neoproterozoic arc volcanic rocks of the Nanping-Ninghua tectonic belt, South China: Implications for the collision between the North and South Wuyi blocks. Geological Journal, 54(4): 2679~2692.

    • Jahn B M, Zhou X H, Li J L. 1990. Formation and tectonic evolution of Southeastern China and Taiwan: Isotopic and geochemical constraints. Tectonophysics, 183(1~4): 145~160.

    • Karakas O, Dufek J, Mangan M T, Wright H M, Bachmann O. 2017a. Thermal and petrologic constraints on lower crustal melt accumulation under the Salton Sea Geothermal Field. Earth and Planetary Science Letters, 467: 10~17.

    • Karakas O, Degruyter W, Bachmann O, Dufek J. 2017b. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nature Geoscience, 10: 446~450.

    • Karakas O, Wotzlaw J F, Guillong M, Ulmer P, Brack P, Economos R, Bergantz G W, Sinigoi S, Bachmann O. 2019. The pace of crustal-scale magma accretion and differentiation beneath silicic caldera volcanoes. Geology, 47(8): 719~723.

    • Keller C B, Schoene B, Barboni M, Samperton K M, Husson J M. 2015. Volcanic-plutonic parity and the differentiation of the continental crust. Nature, 523(7560): 301~307.

    • Kennedy B, Stix J. 2007. Magmatic processes associated with caldera collapse at Ossipee ring dyke, New Hampshire. Geological Society of America Bulletin, 119(1~2): 3~17.

    • Kennedy B M, Holohan E P, Stix J, Gravley D M, Davidson J R J, Cole J W. 2018. Magma plumbing beneath collapse caldera volcanic systems. Earth-Science Reviews, 177: 404~424.

    • Kent A J R, Darr C, Koleszar A M, Salisbury M J, Cooper K M. 2010. Preferential eruption of andesitic magmas through recharge filtering. Nature Geoscience, 3: 631~636.

    • Li Jianhua, Dong Shuwen, Gao Rui, Cawood P A, Zhang Yueqiao, Zhao Guochun, Li Qiusheng, Xin Yujia, Wang Jinming, Lü Fang. 2022. The thinnest crust in South China associated with the Cretaceous lithospheric extension: Evidence from SINOPROBE seismic reflection profiling. Tectonics, 41: e2022TC007240.

    • Li Xiyao, Li Sanzhong, Suo Yanhui, Dai Liming, Guo Lingli, Ge Fengjian, Lin Peijun. 2018. Late Cretaceous basalts and rhyolites from Shimaoshan Group in eastern Fujian Province, SE China: Age, petrogenesis, and tectonic implications. International Geology Review, 60(11~14): 1721~1743.

    • Lin Shoufa, Xing Guangfu, Davis D W, Yin Changqing, Wu Meiling, Li Longming, Jiang Yang, Chen Zhihong. 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China. Geology, 46(4): 319~322.

    • Lindsay J M, De Silva S, Trumbull R, Emmermann R, Wemmer K. 2001. La pacana caldera, N. Chile: A re-evaluation of the stratigraphy and volcanology of one of the world's largest resurgent calderas. Journal of Volcanology and Geothermal Research, 106(1~2): 145~173.

    • Lipman P W. 1997. Subsidence of ash-flow calderas: Relation to caldera size and magma-chamber geometry. Bulletin of Volcanology, 59(3): 198~218.

    • Lipman P W. 2007. Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the Southern Rocky Mountain volcanic field. Geosphere, 3(1): 42.

    • Liu Lei, Xu Xisheng, Zou Haibo. 2012. Episodic eruptions of the late Mesozoic volcanic sequences in southeastern Zhejiang, SE China: Petrogenesis and implications for the geodynamics of paleo-Pacific subduction. Lithos, 154: 166~180.

    • Liu Lei, Xu Xisheng, Xia Yan. 2014. Cretaceous Pacific plate movement beneath SE China: Evidence from episodic volcanism and related intrusions. Tectonophysics, 614: 170~184.

    • Liu Lei, Xu Xisheng, Xia Yan. 2016. Asynchronizing paleo-Pacific slab rollback beneath SE China: Insights from the episodic Late Mesozoic volcanism. Gondwana Research, 37: 397~407.

    • Liu Lei, Zhao Yang, He Zhenyu, Sun Jie, Liu Xijun, Zhao Zengxia. 2023. Volcanic activity process and petrogenesis of the Liaotianshan caldera in SW Fujian: Evidence from zircon U-Pb, Hf isotopic and trace element concentrations. Acta Geologica Sinica, 97(7): 2176~2194(in Chinese with English abstract).

    • Liu Liang, Yang Jiehua, Kang Lifang, Zhong Hong, Zhang Xingchun. 2023. The long-lived transcrustal magmatic systems of Southeast China in response to paleo-Pacific plate subduction, recorded by the Cretaceous volcanic sequences in southeastern Zhejiang Province. Geological Society of America Bulletin, 135(5~6): 1091~1108.

    • Liu Qian, Yu Jinhai, O'Reilly S Y, Zhou Meifu, Griffin W L, Wang Lijuan, Cui Xiang. 2014. Origin and geological significance of Paleoproterozoic granites in the northeastern Cathaysia Block, South China. Precambrian Research, 248: 72~95.

    • Liu Pingping, Caricchi L, Chung Sunlin, Li Xianhua, Li Qiuli, Zhou Meifu, Lai Yuming, Ghani A A, Sihotang T, Sheldrake T E, Simpson G. 2021. Growth and thermal maturation of the Toba magma reservoir. Proceedings of the National Academy of Sciences, 118(45): e2101695118.

    • Liu Pingping, Chung S L, Chesner C A, Gao Menghao, Lai Yuming, Lee H Y, Yang Yueheng. 2022. New insights into the petrogenesis of voluminous crustal-signature silicic volcanic rocks of the Toba eruptions (Indonesia). Journal of Geophysical Research: Solid Earth, 127(12): e2022JB024559.

    • Lu Kejia, Li Longming, Lin Shoufa, Ren Shenglian, Feng Lamei, Han Xu, Ge Yanpeng, Jiang Jian, Wang Lei, Wang Bo. 2020. Geochronological and geochemical data of paragneiss and amphibolite from the Chencai Group in South China: Implications for petrogenesis and tectonic significance. Geological Journal, 55(10): 6823~6840.

    • Lu Tianyu, He Zhenyu, Klemd R. 2022. Identifying crystal accumulation and melt extraction during formation of high-silica granite. Geology, 50(2): 216~221.

    • Lubbers J, Deering C, Bachmann O. 2020. Genesis of rhyolitic melts in the upper crust: Fractionation and remobilization of an intermediate cumulate at Lake City caldera, Colorado, USA. Journal of Volcanology and Geothermal Research, 392: 106750.

    • Ma Changqian, Liu Bin, Xue Zhenhua, Zou Bowen, Huang Guizhi, Lian Quancheng, Gao Ke, Sun Yang, Wang Lianxun. 2024. Insights into the volcanic eruption process and magmatic plumbing systems from felsic intrusions. Acta Petrologica Sinica, 40(7): 1997~2018 (in Chinese with English abstract).

    • Moran S C, Newhall C, Roman D C. 2011. Failed magmatic eruptions: Late-stage cessation of magma ascent. Bulletin of Volcanology, 73(2): 115~122.

    • Nebel O, Nebel-Jacobsen Y, Mezger K, Berndt J. 2007. Initial Hf isotope compositions in magmatic zircon from Early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages. Chemical Geology, 241(1~2): 23~37.

    • Qi Liang, Xu Yajun, Cawood P A, Wang Wei, Du Yuansheng. 2019. Implications of 770 Ma Rhyolitic Tuffs, eastern South China Craton in constraining the tectonic setting of the Nanhua basin. Lithos, 324: 842~858.

    • Shu Liangshu, Yao Jinlong, Wang Bo, Faure M, Charvet J, Chen Yan. 2021. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block. Earth-Science Reviews, 216: 103596.

    • Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3~4): 311~324.

    • Spencer C J, Kirkland C L, Roberts N M W, Evans N J, Liebmann J. 2020. Strategies towards robust interpretations of in situ zircon Lu-Hf isotope analyses. Geoscience Frontiers, 11(3): 843~853.

    • Storck J C, Wotzlaw J F, Karakas Ö, Brack P, Gerdes A, Ulmer P. 2020. Hafnium isotopic record of mantle-crust interaction in an evolving continental magmatic system. Earth and Planetary Science Letters, 535: 116100.

    • Storck J C, Laurent O, Karakas O, Wotzlaw J F, Galli A, Sinigoi S, Bachmann O, Chelle-Michou C. 2021. Mantle versus crustal contributions in crustal-scale magmatic systems (Sesia Magmatic System, northern Italy) from coupling Hf isotopes and numerical modelling. Contributions to Mineralogy and Petrology, 176(11): 95.

    • Thompson A B, Matile L, Ulmer P. 2002. Some thermal constraints on crustal assimilation during fractionation of hydrous, mantle-derived magmas with examples from Central Alpine batholiths. Journal of Petrology, 43(3): 403~422.

    • Vervoort J D, Kemp A I S. 2016. Clarifying the zircon Hf isotope record of crust-mantle evolution. Chemical Geology, 425: 65~75.

    • Wan Yusheng, Liu Dunyi, Xu Meihui, Zhuang Jianmin, Song Biao, Shi Yuruo, Du Lilin. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research, 12(1~2): 166~183.

    • Wang Yuejun, Gan Chengshi, Tan Qingli, Zhang Yuzhi, He Huiying, Xin Qian, Zhang Yanhua. 2018. Early Neoproterozoic (~840 Ma) slab window in South China: Key magmatic records in the Chencai complex. Precambrian Research, 314: 434~451.

    • Wolff J A, Ellis B S, Ramos F C, Starkel W A, Boroughs S, Olin P H, Bachmann O. 2015. Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: A comparison of cool, wet and hot, dry rhyolitic magma systems. Lithos, 236: 275~286.

    • Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220 (in Chinese with English abstract).

    • Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 60(7): 1201~1219.

    • Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1~2): 105~126.

    • Xia Yan, Xu Xisheng, Zhu Kongyang. 2012. Paleoproterozoic S- and A-type granites in southwestern Zhejiang: Magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement. Precambrian Research, 216: 177~207.

    • Xia Yan, Xu Xisheng, Zhao Guochun, Liu Lei. 2015. Neoproterozoic active continental margin of the Cathaysia block: Evidence from geochronology, geochemistry, and Nd-Hf isotopes of igneous complexes. Precambrian Research, 269: 195~216.

    • Xiang Hua, Zhang Li, Zhou Hanwen, Zhong Zengqiu, Zeng Wen, Liu Rui, Jin Song. 2008. U-Pb zircon geochronology and Hf isotope study of metamorphosed basic-ultrabasic rocks from metamorphic basement in southwestern Zhejiang: The response of the Cathaysia Block to Indosinian orogenic event. Science in China Series D: Earth Sciences, 51(6): 788~800.

    • Xiong Fuhao, Yan Dongdong, Ma Changqian, Hou Mingcai, Wang Mingchi, Huang Hu, Wang Wei. 2024. Geochemical and petrological diversity of a transcrustal magmatic system driven by mushy magma mixing: Insights from the Triassic dike swarms in East Kunlun Orogen, northern Tibetan Plateau. Geological Society of America Bulletin, 136(11~12): 5058~5074.

    • Xu Xisheng, O'Reilly S Y, Griffin W L, Wang Xiaolei, Pearson N J, He Zhenyu. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158(1~2): 51~78.

    • Xu Xisheng, Zhao Kai, He Zhenyu, Liu Lei, Hong Wentao. 2021. Cretaceous volcanic-plutonic magmatism in SE China and a genetic model. Lithos, 402: 105728.

    • Yan Lili, He Zhenyu, Jahn Borming, Zhao Zhidan. 2016. Formation of the Yandangshan volcanic-plutonic complex (SE China) by melt extraction and crystal accumulation. Lithos, 266~267: 287~308.

    • Yan Lili, He Zhenyu, Beier C, Klemd R. 2018. Geochemical constraints on the link between volcanism and plutonism at the Yunshan caldera complex, SE China. Contributions to Mineralogy and Petrology, 173: 4.

    • Yan Lili, He Zhenyu. 2022. Influence of magma recharge on the evolution of silicic volcanic system. Acta Geologica Sinica, 96(5): 1697~1710 (in Chinese with English abstract).

    • Yan Lili, He Zhenyu, Lu Tianyu. 2023. Mush rejuvenation in silicic magmatic systems and its petrological records. Bulletin of Mineralogy Petrology and Geochemistry, 42(5): 1028~1041 (in Chinese with English abstract).

    • Yao Jinlong, Shu Liangshu, Santosh M, Xu Zhiqin. 2014. Palaeozoic metamorphism of the Neoproterozoic basement in NE Cathaysia: Zircon U-Pb ages, Hf isotope and whole-rock geochemistry from the Chencai Group. Journal of the Geological Society, 171: 281~297.

    • Yu Jinhai, O'Reilly S Y, Wang Lijuan, Griffin W L, Zhang Ming, Wang Rucheng, Jiang Shaoyong, Shu Liangshu. 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research, 164(1~2): 1~15.

    • Yu Jinhai, Wang Lijuan, O'Reilly S Y, Griffin W L, Zhang Ming, Li Chunzhong, Shu Liangshu. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research, 174(3~4): 347~363.

    • Yu Jinhai, O'Reilly S Y, Wang Lijuan, Griffin W L, Zhou Meifu, Zhang Ming, Shu Liangshu. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research, 181(1~4): 97~114.

    • Yu Jinhai, O'Reilly S Y, Zhou Meifu, Griffin W L, Wang Lijuan. 2012. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambrian Research, 222: 424~449.

    • Zeng Gang, He Zhenyu, Li Zhen, Xu Xisheng, Chen Lihui. 2016. Geodynamics of paleo-Pacific plate subduction constrained by the source lithologies of Late Mesozoic basalts in southeastern China. Geophysical Research Letters, 43: 10189~10197.

    • Zhang Aimei, Ma Liyan, Liu Huichuan, Cai Yongfeng, Chen Min, Fang Qi. 2021. Identification of two-phased late Paleoproterozoic magmatism in the Wuyishan domain (SE China): Implications for the tectonic evolution of the Cathaysia Block. Precambrian Research, 355: 106093.

    • Zhang Chengchen, Xu Changhai, He Min, Gao Shunli. 2019. Late Mesozoic convergent continental margin with magmatic arc from East to South China Seas: A review. Advances in Earth Science, 34(9): 950~961 (in Chinese with English abstract).

    • Zhang Jiheng, Yang Jinhui, Chen Jingyuan, Wu Fuyuan, Wilde S A. 2018. Genesis of late Early Cretaceous high-silica rhyolites in eastern Zhejiang Province, Southeast China: A crystal mush origin with mantle input. Lithos, 296: 482~495.

    • Zhang Zeming, Ding Huixia, Dong Xing, Tian Zuolin. 2020. Partial melting of subduction zones. Acta Petrologica Sinica, 36: 2589~2615 (in Chinese with English abstract).

    • Zhao Lei, Zhou Xiwen, Zhai Mingguo, Santosh M, Ma Xudong, Shan Houxiang, Cui Xiahong. 2014. Paleoproterozoic tectonic transition from collision to extension in the eastern Cathaysia Block, South China: Evidence from geochemistry, zircon U-Pb geochronology and Nd-Hf isotopes of a granite-charnockite suite in southwestern Zhejiang. Lithos, 184: 259~280.

    • Zhao Lei, Zhou Xiwen, Zhai Mingguo, Santosh M, Geng Yuansheng. 2015. Zircon U-Th-Pb-Hf isotopes of the basement rocks in northeastern Cathaysia block, South China: Implications for Phanerozoic multiple metamorphic reworking of a Paleoproterozoic terrane. Gondwana Research, 28(1): 246~261.

    • Zhao Lei, Zhai Mingguo, Zhou Xiwen, Santosh M, Ma Xudong. 2016. Thermal gradient and geochronology of a Paleozoic high-grade terrane in the northeastern Cathaysia block, South China. Tectonophysics, 691: 311~327.

    • Zhao Lei, Zhai Mingguo, Zhou Xiwen. 2023. Early Precambrian basement components of the Cathaysia Block in South China exhumed by Phanerozoic orogenic events. Precambrian Research, 398: 107218.

    • Zhao Liang, Guo Feng, Zhang Xiaobing, Wang Guoqing. 2021. Cretaceous crustal melting records of tectonic transition from subduction to slab rollback of the Paleo-Pacific Plate in SE China. Lithos, 384: 105985.

    • Zheng Yongfei, Gao Peng. 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries. Lithos, 402: 106232.

    • Zhou Xinmin, Li Wuxian. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269~287.

    • Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26~33.

    • 贺振宇, 颜丽丽, 褚平利, 张进. 2022a. 浙东长屿破火山的典型识别特征. 华东地质, 43(4): 448~459.

    • 贺振宇, 颜丽丽, 褚平利, 向华, 蒋子堃. 2022b. 中国东南沿海晚白垩世长屿火山的活动过程与古环境意义. 岩石学报, 38(5): 1419~1442.

    • 刘磊, 赵阳, 贺振宇, 孙杰, 刘希军, 赵增霞. 2023. 闽西南廖天山破火山活动过程与岩石成因: 锆石U- Pb、Hf同位素及微量元素制约. 地质学报, 97(7): 2176~2194.

    • 马昌前, 刘彬, 薛振华, 邹博文, 黄贵治, 连泉程, 高珂, 孙洋, 王连训. 2024. 从长英质侵入体揭示火山喷发过程与岩浆通道系统. 岩石学报, 40(7): 1997~2018.

    • 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.

    • 颜丽丽, 贺振宇. 2022. 岩浆补给作用对硅质火山岩浆系统演化的制约. 地质学报, 96(5): 1697~1710.

    • 颜丽丽, 贺振宇, 陆天宇. 2023. 硅质岩浆系统的晶粥活化作用及其岩石学记录. 矿物岩石地球化学通报, 42(5): 1028~1041.

    • 张成晨, 许长海, 何敏, 高顺莉. 2019. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述. 地球科学进展, 34(9): 950~961.

    • 张泽明, 丁慧霞, 董昕, 田作林. 2020. 俯冲带部分熔融. 岩石学报, 36(9): 2589~2615.