en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

秦占杰,男,1987年生。博士,副研究员,从事盐类矿床成因与演化研究。E-mail: qinzhanjie@isl.ac.cn。

通讯作者:

李庆宽,男,1991年生。副研究员,从事盐类矿床成因与演化研究。E-mail: liqingkuan@isl.ac.cn。

参考文献
Booth J, Sattayarak N. 2011. Subsurface Carboniferous-Cretaceous geology of NE Thailand. In: Ridd, M F, Barber A J, Crow M J. (Eds. ), The Geology of Thailand. Geological Society London, 184~222.
参考文献
Carter A, Bristow C S. 2003. Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: A study of the Khorat Plateau basin, eastern Thailand. Basin Research, 15(2): 271~285.
参考文献
Carter A, Moss S J. 1999. Combined detrital-zircon fission-track and U-Pb dating: A new approach to understanding hinterland evolution. Geology, 27(3): 235~238.
参考文献
Cooper M A, Herbert R, Hel G S. 1989. The structural evolution of Triassic intermontane basins in Northeastern Thailand. In: Thanasuthipitak T, Ounchanum P (Eds. ), Proc. of International Symposium on Intermontane Basins: Geology and Resources, Chiang Mai: 231~242.
参考文献
El Tabakh M, Utha-Aroon C, Schreiber B C. 1999. Sedimentology of the Cretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand. Sedimentary Geology, 123(1-2): 31~62.
参考文献
Fang Long, Qin Zhanjie, Shi Guocheng, Li Qingkuan, Zhu Dengxian, Li Qiang, Du Yongsheng, Yuan Qin, Zhang Xiying, Shan Fashou. 2024. Characteristics and origin of coarse halite in the first sedimentary cycle of the potash deposit, Non Sung district, Nakhon Ratchasima province, Thailand. Journal of Salt Lake Research, 32(1): 107~119 (in Chinese with English abstract).
参考文献
Garrett D E. 1996. Potash Deposits, Processing, Properties and Uses. London: Chapman & Hall, 1~734.
参考文献
Han Yuanhong, Ma Haizhou, Zhang Xiying, Wang Qi, Luo Houyong, Li Jiansen, Liao Peng, Zhu Jun. 2015. Carbon and oxygen isotopic constraint on the sedimentary environment and formation mechanism of the Longhu Potash Deposit, Laos. Geotectonica et Metallogenia, 39(2): 334~343 (in Chinese with English abstract).
参考文献
Hansen B T, Wemmer K, Eckhardt M, Putthapiban P, Assavapatchara S. 2016. Isotope dating of the potash and rock salt deposit at Bamnet Narong, NE-Thailand. Open Journal of Geology, 6(8): 875~894.
参考文献
Hara H, Kon Y, Usuki T, Lan C Y, Kamata Y, Hisada K I, Ueno K, Charoentitirat T, Charusiri P. 2013. U-Pb ages of detrital zircons within the Inthanon Zone of the Paleo-Tethyan subduction zone, northern Thailand: New constraints on accretionary age and arc activity. Journal of Asian Earth Sciences, 74, 50~61.
参考文献
Harris R W. 1977. Paleontology of the Phu Horm-1 Well. In: Open File Report by Harris R W. of ESSO. Bangkok: Department of Mineral Resources.
参考文献
Hite R J. 1982. Progress report on the potash deposits of theKhorat Plateau, Thailand. In: United States Department of the Interior Geological Survey. Project Report Thailand Investigation (IR) TH-25, 1~70.
参考文献
Hite R J, Japakasetr T. 1979. Potash deposits of the Khorat Plateau, Thailand and Laos. Economic Geology, 74(2): 448~458.
参考文献
Li Jianghai, Wang Honghao, Zhou Xiaobei, Li Honglin, Ma Liya, Li Weibo, Liu Zhonglan, Zhang Huatian, Xu Li. 2015. Salt Tectonics, Beijing: Science Press, 1~264 (in Chinese).
参考文献
Li Minghui, Yan Maodu, Fang Xiaomin, Zhang Zengjie, Wang Zhengrong, Sun Shurui, Li Jiao, Liu Xiaoming. 2018. Origins of the Mid-Cretaceous evaporite deposits of the Sakhon Nakhon basin in Laos: Evidence from the stable isotopes of halite. Journal of Geochemical Exploration, 184: 209~222.
参考文献
Li Qingkuan, Zhang Xiangru, Fan Qishun, Qin Zhanjie, Wang Jianping, Shan Fashou. 2020. Influence of non-marine fluid inputs on potash deposits in northeastern Thailand: Evidence from δ37Cl value and Br/Cl ratio of halite. Carbonates and Evaporites, 35(11): 11.
参考文献
Liang Guanghe, Xu Xingwang. 2022. Potash deformation and enrichment modes in Vientiane Sag, Laos. Earth Science, 47(1): 136~148 (in Chinese with English abstract).
参考文献
Liu Chenglin, Wang Licheng, Yan Maodu, Zhao Yanjun, Cao Yangtong, Fang Xiaomin, Shen Lijian, Wu Chihua, Lv Fenglin, Ding Ting. 2018a. The Mesozoic-Cenozoic tectonic settings, paleogeography and evaporitic sedimentation of Tethyan blocks within China: Implications for potash formation. Ore Geology Reviews, 102: 406~425.
参考文献
Liu Chenglin, Jiao Pengcheng, Sun Xiaohong, Lv Fenglin, Zhang Hua. 2018b. Research on potash forming and exploration progress in potash deposits in the Lop Nur Salt Lake. Acta Geologica Sinica, 92(8): 1551~1570 (in Chinese with English abstract).
参考文献
Lovatt Smith P F, Stokes R B. 1997. Geology and petroleum potential of theKhorat Plateau basin in the Vientiane area of Lao P. D. R. Journal of Petroleum Geology, 20(1): 27~49.
参考文献
Luo Ting, Zhang Yongqing, Zheng Minggui, Dong Juan. 2022. Security assessment and early warning of potash resources in China. Advances in Earth Science, 37(6): 575~587 (in Chinese with English abstract).
参考文献
Ma Haizhou, Li Yongshou, Cheng Huaide, Qin Xiwei, Zhang Xiying, Miao Weiliang, Xu Jianxin, Li Binkai, Hai Qingyu. 2019. Metallogenic model and process of the Ctetaceous potassium-bearing evaporites involving Changdu, Lanping-Simao and Khorat basin. Journal of Salt Lake Research, 27(1): 1~11 (in Chinese with English abstract).
参考文献
Metcalfe I. 2011. Tectonic framework and Phanerozoic evolution ofSundaland. Gondwana Research, 19(1): 3~21.
参考文献
Morley C K. 2012. Late Cretaceous-EarlyPalaeogene tectonic development of SE Asia. Earth-Science Reviews, 115(1-2): 37~75.
参考文献
Pisutha A V, Chiba H, Yumuang S. 1986. A preliminary sulphur and oxygen isotope study of the Maha Sarakham evaporitic anhydrite from Bamnet Narong Area of NE Thailand.
参考文献
Bulleit of the Geological Souiety of Malaysia, 19: 209~222.
参考文献
Qian Ziqiang, Qu Yihua, Liu Qun. 1994. Potash Deposits. Beijing: Geological Publishing House, 1~273 (in Chinese).
参考文献
Qin Zhanjie. 2019. Geochemical research on the provenance and sedimentary characteristics of potash deposits in the Khorat Plateau. Doctov degree thesis of University of Chinese Academy of Sciences (in Chinese with English abstract).
参考文献
Qin Zhanjie, Yuan Qin, Wei Haicheng, Sheng Shurong, Shan Fashou. 2013. Sporo-pollen assemblages of the Late Cretaceous Nong Bok formation in Khammouane, Laos, and their environmental significance for salt formation. Acta Geoscientica Sinica, 34(5): 638~642 (in Chinese with English abstract).
参考文献
Qin Zhanjie, Li Qingkuan, Zhang Xiangru, Fan Qishun, Wang Jianping, Du Yongsheng, Ma Yunqi, Wei Haicheng, Yuan Qin, Shan Fashou. 2020. Origin and recharge model of the Late Cretaceous evaporites in the Khorat Plateau. Ore Geology Reviews, 116: 103226.
参考文献
Qin Zhanjie, Li Qingkuan, Yuan Qin, Li Qiang, He Haifang, Du Yongsheng, Wang Jianping, Shan Fashou, Xue Chaoping. 2023. Discussion on research status and prospects of the Khorat Plateau potash deposit on the basis of the metallogenic system theory. Acta Geologica Sinica, 97(2): 596~612 (in Chinese with English abstract).
参考文献
Qu Yihua. 1982. Deep brines-A new origin of potash deposits. Mineralogy and Petrology, 2(1): 7~14 (in Chinese with English abstract).
参考文献
Racey A. 2009. Mesozoic red bed sequences from SE Asia and the significance of theKhorat Group of NE Thailand. Geological Society of London Special Publications, 315(1), 41~67.
参考文献
Racey A, Goodall J G. 2009. Palynology and stratigraphy of the Mesozoic Khorat Group red bed sequences from Thailand. Geological Society of London Special Publications, 315(1): 69~83.
参考文献
Ratanajaruraks P. 1990. Formation of the potash deposits, Khorat Plateau, Thailand. New South Wales: University of New South Wales, 1~258.
参考文献
Satarugsa P, Youngmee W, Meesawat S. 2005. New regional boundary of Maha Sarakham Formation in the northeastern Thailand: Results from 2D seismic mapping. International Conference on Geology, Geotechnology and Mineral Resources of Indochina, Khon Kaen, 212~220.
参考文献
Shan Fashou, Qin Zhanjie, Fan Qishun, Du Yongsheng, Shan Chengbin, Wang Mingxiang, Wei Haicheng, Li Jiansen, Li Qingkuan. 2018. The “Concave, Mouth and Convex” metallogenic model and prospecting method of potassium salt. Journal of Salt Lake Research, 26(1): 1~6, 31 (in Chinese with English abstract).
参考文献
Shen Lijian, Siritongkham N. 2020. The characteristics, formation and exploration progress of the potash deposits on the Khorat Plateau, Thailand and Laos, Southeast Asia. China Geology, 3(1): 67~82.
参考文献
Shi Guocheng, Lu Yaozu, Xu Xinwen, Kong Xun. 2010. Investigation on the relationship between salt anticline and solid potash deposits: Taking potash deposits of Nongbo basin in Laos as an example. Journal of Qinghai University (Nature Science), 28(6): 69~72, 84 (in Chinese with English abstract).
参考文献
Suwanich P. 1983. Potash and rock salt in Thailand. In: Conference on Geology and Mineral Resources of Thailand. Bangkok, 1~10.
参考文献
Suwanich P. 1986. Potash and rock salt in Thailand. In: Nonmetallic Minerals Bulletin No. 2. Bangkok: Economic Geology Division Department of Mineral Resources, 1~362.
参考文献
Suwanich P, Ratanajaruraks P. 1982. Sequences of rock salt and potash in Thailand. In: Nonmetallic minerals bulletin No. 1. Bangkok: Economic Geology Division Department of Mineral Resources, 1~76.
参考文献
Tan Hongbing, Ma Haizhou, Li Binkai, Zhang Xiying, Xiao Yingkai. 2010. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos. Chinese Science Bulletin, 55(27-28): 3181~3188.
参考文献
Tang Qiliang, Zhang Xiying, Miao Weiliang, Li Yongshou, Li Wenxia, Yuan Xiaolong. 2021. Correlatiion of water-insoluble minerals in different potash forming areas of the Vientiane basin and its indicative significance. Acta Geologica Sinica, 95(7): 2214~2224 (in Chinese with English abstract).
参考文献
Timofeeff M N, Lowenstein T K, da Silva M A M, Harris N B. 2006. Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites. Geochimica et Cosmochimica Acta, 70(8): 1977~1994.
参考文献
Wang Licheng, Liu Chenglin, Shen Lijian, Bo Ying. 2018. Research advances in potash forming of the Simao Basin, eastern Tethyan realm. Acta Geologica Sinica, 92(8): 1707~1723 (in Chinese with English abstract).
参考文献
Wang Licheng, Shen Lijian, Liu Chenglin, Ding Lin. 2020. Evolution of the paleo-Mekong River in the Early Cretaceous: Insights from the provenance of sandstones in the Vientiane basin, central Laos. Palaeogeography, Palaeoclimatology, Palaeoecology, 545: 109651.
参考文献
Wang Licheng, Shen Lijian, Liu Chenglin, Chen Ke, Ding Lin, Wang Chengshan. 2021. The Late Cretaceous source-to-sink system at the eastern margin of the Tibetan Plateau: Insights from the provenance of the Lanping basin. Geoscience Frontiers, 12(3): 101102.
参考文献
Wang Licheng, Ding Lin, Garzanti E, Shen Lijian, Nulay P, Siritongkham N. 2022. Mid-Cretaceous drainage reorganization and exorheic to endorheic transition in Southeast Tibet. Sedimentary Geology, 439: 106221.
参考文献
Wang Licheng, Shen Lijian, Liu Chenglin, Siritongkham N. 2023. Formation of marine sylvite on the Khorat Plateau, Southeast Asia: Evidence from B isotopes, trace elements, and petrography. Sedimentary Geology, 444: 106315.
参考文献
Wang Licheng, Garzanti E, Cai Fulong, Zhang Jian, Shen Lijian, Nulay P, Siritongkham N, Ding Lin, Wang Chengshan. 2024. The underestimated role of tectonics in the Mid-Late Cretaceous desertification in SE Asia. The Geological Society of America, 136(1-2): 418~432.
参考文献
Warren J K. 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews, 98(3-4): 217~268.
参考文献
Yan Maodu, Zhang Dawen, Li Minghui. 2021. Research progress and new views on the potash deposits in the Simao and Khorat basins. Earth Science Frontiers, 28(6): 10~28 (in Chinese with English abstract).
参考文献
Yang Qian. 2023. Potash Salt Resources of the World. Kunming: Yunnan Science and Technology Press, 1~736 (in Chinese).
参考文献
Yang Zhenyu, Besse J, Sutheetorn V, Bassoullet J P, Fontaine H, Buffetaut E. 1995. Lower-Middle Jurassic paleomagnetic data from the Mae Sot area (Thailand): Paleogeographic evolution and deformation history of southeastern Asia. Earth and Planetary Science Letters, 136(3-4): 325~341.
参考文献
Yuan Jianqi, Huo Chengyu. 1981. Genesis of the sylvinite deposits in the Charhan Saline Lake, Qinghai Province. Earth Science, (1): 207~213 (in Chinese with English abstract).
参考文献
Yumuang S. 1983. On the Origin of Evaporate Deposits in the Maha Sarakham Formation in Bamnet Narong area, Changwat Chaiyaphum. Bangkok: Chulalongkorn University, 1~308.
参考文献
Zhang Dawen, Yan Maodu, Fang Xiaomin, Yang Yibo, Zhang Tao, Zan Jinbo, Zhang Weilin, Liu Chenglin, Yang Qian. 2018. Magnetostratigraphic study of the potash-bearing strata from drilling core ZK2893 in the Sakhon Nakhon basin, eastern Khorat Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 489: 40~51.
参考文献
Zhang Hua, Liu Chenglin, Zhao Yanjun, Mischke S, Fang Xiaomin, Ding Ting. 2015. Quantitative temperature records of mid Cretaceous hothouse: Evidence from halite fluid inclusions. Palaeogeography, Palaeoclimatology, Palaeoecology, 437: 33~41.
参考文献
Zhang Pengxi. 1987. Salt Lake in Qaidam Basin. Beijing: Science Press, 1~235 (in Chinese).
参考文献
Zhang Xiying. 2012. Constraints of the insoluble minerals on formation of tachyhydrite and evolution of brine in potash deposits of Vientiane basin, Laos. Doctor degree thesis of Chinese Academy of Sciences (in Chinese with English abstract).
参考文献
Zhang Xiying, Ma Haizhou, Tang Qiliang, Li Binkai, Li Tingwei, Li Yongshou, Yuan Xiaolong. 2010. Primary research on origin of tachyhydrite in the Khorat Plateau potash deposit. Mineral Deposits, 29(S1): 397~398 (in Chinese with English abstract).
参考文献
Zhang Xiying, Ma Haizhou, Ma Yunqi, Tang Qiliang, Yuan Xiaolong. 2013. Origin of the Late Cretaceous potash-bearing evaporites in the Vientiane basin of Laos: δ11B evidence from borates. Journal of Asian Earth Sciences, 62: 812~818.
参考文献
Zhang Xiying, Cheng Huaide, Tan Hongbing, Yuan Xiaolong, Li Yongshou, Miao Weiliang, Li Tingwei, Ma Haizhou. 2015. Late Cretaceous potash evaporites in Savannakhet basin of middle Laos: Geochemical evidence of non-marine inputs. Acta Petrologica Sinica, 31(9): 2783~2793 (in Chinese with English abstract).
参考文献
Zheng Mianping, Zhang Zhen, Yin Hongwei, Tan Xiaohong, Yu Changqing, Shi Linfeng, Zhang Xuefei, Yang Jianxu, Jiao Jian, Wu Guopeng. 2014. A new viewpoint concerning the formation of the Mengyejing potash deposit in Jiangcheng, Yunnan. Acta Geoscientica Sinica, 35(1): 11~24 (in Chinese with English abstract).
参考文献
Zhong Xiaoyong, Yuan Qin, QinZhanjie, Wei Haicheng, Shan Fashou. 2012. The sporo-pollen analyses and ore-forming age of Nong Bok Formation in Khammouane, Laos. Acta Geoscientica Sinica, 33(3): 323~330 (in Chinese with English abstract).
参考文献
方龙, 秦占杰, 石国成, 李庆宽, 朱登贤, 李强, 都永生, 袁秦, 张西营, 山发寿. 2024. 泰国暖颂钾盐矿床粗粒岩盐沉积特征及其成因研究. 盐湖研究, 32(1): 107~119.
参考文献
韩元红, 马海州, 张西营, 王琪, 罗厚勇, 李建森, 廖朋, 朱军. 2015. 老挝龙湖钾盐矿床沉积碳酸盐碳、氧同位素组成及其对成钾环境的初步指示. 大地构造与成矿学, 39(2): 334~343.
参考文献
李江海, 王洪浩, 周肖贝, 李洪林, 马丽亚, 李维波, 刘仲兰, 张华添, 许丽. 2015. 盐构造. 北京: 科学出版社, 1~264.
参考文献
梁光河, 徐兴旺. 2022. 老挝万象凹陷钾盐矿床变形改造富集模式. 地球科学, 47(1): 136~148.
参考文献
刘成林, 焦鹏程, 孙小虹, 吕凤琳, 张华. 2018b. 罗布泊盐湖成钾规律研究与找矿进展. 地质学报, 92(8): 1551~1570.
参考文献
罗婷, 张永庆, 郑明贵, 董娟. 2022. 中国钾盐资源安全评估与预警研究. 地球科学进展, 37(6): 575~587.
参考文献
马海州, 李永寿, 程怀德, 秦西伟, 张西营, 苗卫良, 许建新, 李斌凯, 海擎宇. 2019. 昌都-兰坪-呵叻成盐带白垩纪成盐成钾过程. 盐湖研究, 27(1): 1~11.
参考文献
钱自强, 曲懿华, 刘群. 1994. 钾盐矿床. 北京: 地质出版社, 1~273.
参考文献
秦占杰. 2019. 呵叻高原钾盐矿床物源及其沉积演化的地球化学研究. 中国科学院大学博士学位论文, 1~172.
参考文献
秦占杰, 袁秦, 魏海成, 盛淑蓉, 山发寿. 2013. 老挝甘蒙省晚白垩世农波组孢粉组合及其对成盐环境的指示意义. 地球学报, 34(5): 638~642.
参考文献
秦占杰, 李庆宽, 袁秦, 李强, 何海芳, 都永生, 王建萍, 山发寿, 薛超平. 2023. 成矿系统理论视角下的呵叻高原钾盐矿床研究现状及展望. 地质学报, 97(2): 596~612.
参考文献
曲懿华. 1982. 钾盐矿床母液来源的新途径——深卤补给. 矿物岩石, 2(1): 7~14.
参考文献
山发寿, 秦占杰, 樊启顺, 都永生, 山成彬, 王明祥, 魏海成, 李建森, 李庆宽. 2018. “凹口凸”钾盐成矿模式与找钾方法. 盐湖研究, 26(1): 1~6.
参考文献
石国成, 路耀祖, 徐新文, 孔逊. 2010. 试探盐背斜与固体钾盐矿的关系——以老挝农波盆地钾盐矿为例. 青海大学学报(自然科学版), 28(6): 69~72, 84.
参考文献
唐启亮, 张西营, 苗卫良, 李永寿, 李雯霞, 袁小龙. 2021. 万象盆地不同成钾区的水不溶矿物对比及其指示意义. 地质学报, 95(7): 2214~2224.
参考文献
王立成, 刘成林, 沈立建, 伯英. 2018. 东特提斯域思茅盆地钾盐成矿研究进展. 地质学报, 92(8): 1707~1723.
参考文献
颜茂都, 张大文, 李明慧. 2021. 思茅和呵叻盆地钾盐矿研究新进展和新认识. 地学前缘(中国地质大学(北京);北京大学), 28(6): 10~28.
参考文献
杨谦. 2023. 世界钾盐资源. 昆明: 云南科技出版社, 1~736.
参考文献
袁见齐, 霍承禹. 1981. 青海察尔汗盐湖钾盐矿床成因的若干问题. 地球科学, 6(1): 207~213.
参考文献
张彭熹. 1987. 柴达木盆地盐湖. 北京: 科学出版社, 1~235.
参考文献
张西营. 2012. 老挝万象盆地钾盐矿床水不溶物对溢晶石形成和卤水演化的制约. 中国科学院博士学位论文, 1~107.
参考文献
张西营, 马海州, 唐启亮, 李斌凯, 李廷伟, 李永寿, 袁小龙. 2010. 呵叻高原钾盐矿床溢晶石成因初步研究. 矿床地质, 29(S1): 397~398.
参考文献
张西营, 程怀德, 谭红兵, 袁小龙, 李永寿, 苗卫良, 李廷伟, 马海州. 2015. 老挝中部沙湾拿吉盆地晚白垩世钾盐蒸发岩: 非海相输入的地球化学证据. 岩石学报, 31(9): 2783~2793.
参考文献
郑绵平, 张震, 尹宏伟, 谭筱虹, 于常青, 施林峰, 张雪飞, 杨尖絮, 焦建, 武国朋. 2014. 云南江城勐野井钾盐成矿新认识. 地球学报, 35(1): 11~24.
参考文献
钟晓勇, 袁秦, 秦占杰, 魏海成, 山发寿. 2012. 老挝甘蒙省晚白垩世农波组下段孢粉分析及成钾时代. 地球学报, 33(3): 323~330.
目录contents

    摘要

    呵叻高原钾盐矿床是超大型固体钾盐矿床,其钾盐空间分布特征和钾盐异常富集规律至今仍不明晰,这是该钾盐矿床成矿系统的关键科学问题。本文基于该矿床447口钻孔岩芯资料,对三个沉积旋回的盐岩和碎屑层进行系统划分,对不同岩层的空间沉积厚度及埋深进行重建,主要得到以下认识:三个沉积旋回空间分布范围不同,且呈由东向西增厚趋势,钾镁盐主要集中于西部,且局部空间钾盐异常富集,其厚度明显大于下伏岩盐;盆地形态、晶间卤水迁移、区域构造挤压、重力差异载荷及盐岩自身浮力等相互作用可能是造成局部空间钾盐异常增厚的主要控制因素;钾盐局部异常富集,而非钾盐体积的绝对增加,是该矿床的显著特征之一。本研究对该矿床成矿规律的深入理解和后续勘探开发及资源评估具有重要指导意义。

    Abstract

    The Khorat Plateau potash deposit is a world-class giant deposit. The spatial distribution characteristics and the enrichment mechanisms of potassium salt are still unclear, which is a key scientific issue of the potassium salt mineralization system. Based on the 447 boreholes data in the deposit, the study systematically divided the salt and clastic layers of three sedimentary cycles and reconstructed the sediment thickness and burial depth of different rock layers. The main findings are as follows: the spatial distribution ranges of the three sedimentary cycles are different, showing a trend of increasing thickness from east to west. Potassium-magnesium salts are mainly concentrated in the western part of the plateau, with localized enrichment of potassium salts, and their thickness is significantly greater than that of the underlying rock salt. The coupling of basin morphology, intercrystalline brine migration, regional tectonic compression, gravity differential loading, and salt rock buoyancy maybe the main controlling factors leading to the local thickening of potassium salt anomalies. The local enrichment of potassium salt, rather than an absolute increase in the volume of potassium salt, is one of the significant features of the deposit. This study has important guiding significance for a deeper understanding of the mineralization mechanisms of the deposit, as well as for subsequent exploration and resource assessment.

  • 当今国际局势动荡,粮食和能源的可持续供给关乎国家的战略安全,钾肥作为粮食安全生产的关键保障,其作用无可替代。面对我国钾盐资源禀赋不足和钾肥对外依存度持续高于50%的现状(罗婷等,2022),积极构建我国多元化的钾肥供应保障体系已刻不容缓。老挝与泰国境内的呵叻高原超大型钾盐矿床资源储量达260多亿t(K2O),且与我国云南勐野井固体钾盐矿床相毗邻(钱自强等,1994),是我国建立海外钾肥生产基地的首选战略靶区。该矿床于20世纪70年代被证实存在钾盐,80~90年代的地质勘探与基础研究确定其为超大型钾盐矿床,且在成矿年代(Harris,1977Pisutha et al.,1986)、成盐物源(Hite et al.,1979曲懿华,1982)和沉积环境(Yumuang,1983El Tabakh et al.,1999)等方面获得初步认识。21世纪,随着进一步的勘探与开发,为学者系统研究该钾盐矿床提供了良好契机,得以在年代厘定(钟晓勇等,2012秦占杰等,2013Hansen et al.,2016Zhang Dawen et al.,2018颜茂都等,2021)、物源识别(Tan Hongbing et al.,2010Zhang Xiying et al.,2013Li Minghui et al.,2018Li Qingkuan et al.,2020Qin Zhanjie et al.,2020Wang Licheng et al.,2023)、成盐物质迁移演化(王立成等,2018马海州等,2019Wang Licheng et al.,20212022)、构造变形(石国成等,2010山发寿等,2018梁光河等,2022)和成矿模式(Liu Chenglin et al.,2018a秦占杰,2019Shen Lijian et al.,2020)等方面进行深入研究,总结并提出时空维度下的“源、运、储、变、保”钾盐成矿系统研究思路,梳理了该矿床成因的研究现状及目前存在的科学问题(秦占杰等,2023)。其中钾盐的储藏富集机制为最核心的科学问题且研究程度比较薄弱,尤其是钾盐的富集过程、富集程度、空间分布特征与富集模式等存在诸多盲区。

  • 前人针对钾盐富集过程开展不同盐类矿物(石盐、光卤石、钾石盐)的岩相与沉积特征(El Tabakh et al.,1999)、常微量元素和多种同位素地球化学组成(Suwanich et al.,1982Tan Hongbing et al.,2010Zhang Xiying et al.,2013Li Minghui et al.,2018Qin Zhanjie et al.,2020)、水不溶物的矿物组合特征(张西营,2012唐启亮等,2021)以及碎屑岩中自生碳酸盐C-O同位素组成等研究(韩元红等,2015),显示该过程至少经历了稳定的海相与非海相输入、混合卤水蒸发和沉积后溶蚀改造三个演化阶段(张西营等, 2015)。关于钾盐富集程度与空间分布特征,该矿床三个沉积旋回的相互叠置关系及其各自盐岩的厚度空间分布特征(Ratanajaruraks,1990),盐背斜的形态及其与钾盐的空间就位关系与成因(Suwanich,1986石国成等,2010)等已有初步研究,这为认识呵叻高原钾盐矿床含盐系地层的空间展布特征提供了基本轮廓。关于钾盐富集模式,前人基于该矿床的主要物源属性、盐类矿物组合特征、含盐系地层岩性特征及其沉积旋回韵律、基底硬石膏的空间分布特征等,认为该矿床属于海相沙洲说成盐模式(Hite et al.,19791982Suwanich,1986El Tabakh et al.,1999),但由于缺失碳酸盐与硫酸盐,“沙洲说”已逐渐被优化为多级盆地侧向迁移成钾新模式(王立成等,2018马海州等,2019Wang Licheng et al.,20212022)。

  • 然而,针对钾盐富集研究,由于缺乏高精度的岩相与沉积特征观察、水文模拟和呵叻高原不同区域的综合对比研究,钾盐富集的空间差异与演化过程仍不明晰;由于钻孔岩芯数据较少(200口左右)且未对各沉积旋回中盐岩层(硬石膏、岩盐、矿层)和碎屑层进行统计分析,同时盐背斜的成因及其对钾盐的赋存控制作用仍存争议(Hite,1982Suwanich,1983石国成等,2010山发寿等,2018梁光河等,2022),导致该矿床的空间分布规律(规模、位置、形态等)及其成因尚无科学定论。前人提出的钾盐富集模式并未对盆地内钾盐的空间位置、钾盐与岩盐的接触关系、层状溢晶石的空间分布特征等进行详细剖析,尤其是缺乏区域尺度的含盐系地层综合对比与岩相古地理研究。

  • 由此可见,呵叻高原钾盐矿床的富集规律仍存在诸多疑点亟待深入研究。本文基于前人的研究成果,结合近十年的勘查成果,选取呵叻高原钾盐矿床447口钻孔岩芯资料,详细描述了该矿床三个沉积旋回中盐岩与碎屑层的厚度及埋深空间分布特征,并对其成因进行了初步讨论;通过阐述含盐系地层空间分布规律与钾盐异常富集的关系,对钾盐富集规律进行了新的解释。该工作对深入认识呵叻高原钾盐矿床赋存状态、探究钾盐沉积模式、追溯钾盐富集过程等具有重要参考价值,同时可为呵叻高原进一步钾盐勘探、矿体圈定及钾肥生产基地布局等提供理论指导。

  • 1 区域地质背景

  • 呵叻高原位于泰国东北部和老挝中南部,覆盖面积达17万km2,其西部和南部均为山地,内部海拔仅100~300 m左右(El Tabakh et al.,1999)。该高原位于印支地块中部, NW-SE向普潘隆起将高原分为北部的沙空那空盆地和南部的呵叻盆地(图1a)。

  • 伴随三叠纪古特提斯洋的演化,冈瓦纳大陆的滇缅泰马地块、因他暖地区、素可泰弧、南府-程逸府缝合带和印支地块于印支期在东南亚发生了系列的碰撞与融合(Metcalfe,2011)。滇缅泰马地块以寒武纪至早二叠纪地层为主,与现今澳大利亚西北部地层具有一定亲缘关系(Metcalfe,2011)。因他暖地区是古特提斯洋在印支地块西侧俯冲消减区域,其向北可延伸至中国西部的昌宁-孟连缝合带(Hara et al.,2013)。素可泰弧发育于二叠纪—三叠纪时期的岛弧系统,其东侧为景洪-南府-程逸府弧后盆地(Metcalfe,2011)。印支地块西部和东北部分别以景洪-南府-程逸府缝合带和宋马缝合带与滇缅泰马、南中国等地块拼合,与我国云南的兰坪-思茅地块属于同一构造带(图1a)。

  • 晚三叠纪古特提斯洋的闭合及晚侏罗世—白垩纪印支地块东部安第斯型造山带的挤压作用形成了呵叻高原,此后开始广泛接受呵叻群的沉积(Carter et al.,19992003)。呵叻群由3~4 km厚的晚侏罗世和白垩纪陆相红层组成,其自下而上包括晚侏罗世 Upper Nam Phong组,晚侏罗世晚期Phu Khradung组,早白垩世Phra Wihan组,早白垩世晚期Sao Khua组和Phu Phan组,中白垩世Khok Kruat组(Carter et al.,2003; Racey et al.,2009)。Phu Phan组及下伏呵叻群地层在呵叻高原中部沉积厚达约3000 m,在南、北两侧约为2000 m,其继承了二叠纪—三叠纪呵叻高原的盆地基底格架。Khok Kruat组在高原内的沉积厚度等值线呈NNE-SSW展布,且向东侧增厚,暗示在中白垩世(Aptian期)该区域发生了重要的构造事件(Booth et al.,2011Morley,2012)。Khok Kruat组之上与一套中—晚白垩世Maha Sarakham组(马哈萨拉堪组)含盐系地层(老挝万象地区为塔贡组,老挝甘蒙地区为农波组)不整合接触。该含盐系地层上覆第三纪河流相的Phu Tok组,局部被第四系地层直接覆盖。早古新世期间,印支地块与滇缅泰马地块和南中国地块间的碰撞作用导致晚白垩世的沉积地层被严重剥蚀(约1000 m)(Booth et al.,2011Morley,2012)。

  • 图1 呵叻高原区域构造和含盐系地层岩性特征图;(a)呵叻高原区位与地质构造示意图;(b)马哈萨拉堪组钻孔岩芯综合柱状图(修改自Qin Zhanjie et al.,2020

  • Fig.1 Schematic map of regional tectonics and lithological characteristics of salt-bearing strata of the Khorat Plateau (a) Location and geological tectonics of the Khorat Plateau; (b) Lithostratigraphy of the Maha Sarakham Formation (modified from Qin Zhanjie et al., 2020)

  • 马哈萨拉堪组均厚约250 m,在高原中部可达1.1 km,由下而上包含三个沉积旋回,每个旋回由下部蒸发岩和上部碎屑岩组成。第一沉积旋回中蒸发岩主要由基底硬石膏、岩盐、钾镁盐矿层(光卤石或钾石盐)组成;第二和第三沉积旋回中蒸发岩主要是岩盐和硬石膏。三个旋回的碎屑岩组成大体相似,主要由灰绿色-棕色泥岩和粉砂岩组成(El Tabakh et al.,1999)(图1b)。不同区域三个沉积旋回的厚度和完整性存在一定差异,尤其是靠近盆地边缘,容易缺失最上部的第三沉积旋回。

  • 2 材料与方法

  • 本文运用钻孔岩芯资料重建呵叻高原钾盐矿床中马哈萨拉堪组含盐系地层的空间分布特征,具体步骤为:① 收集整理呵叻高原钾盐矿床马哈萨拉堪组相关的钻孔岩芯资料; ② 依据钻孔岩芯的岩性和矿物组合特征将同一沉积旋回的地层进行划分与整合;③ 运用Surfer 13软件的空间分析功能对整合后不同地层进行空间分布特征重建;④ 重点对钾镁盐矿层分布特征及成因进行解析。

  • 2.1 钻孔岩芯空间分布

  • 本文共收集了呵叻高原钾盐矿床447口钻孔岩芯资料(打穿与未打穿的马哈萨拉堪组含盐系地层钻孔分别为176口和243口,另有28口钻孔仅有含矿层信息),其中沙空那空盆地和呵叻盆地分别有钻孔222口和225口(图2)❶❷❸❹❺。沙空那空盆地钻孔主要分布于盆地北部的万象省和东部的甘蒙省地区,盆地中部及南部钻孔资料较少。呵叻盆地钻孔主要分布于西北部的孔敬府和西南部的猜也蓬府与呵叻府,其余位置钻孔分布较少。所收集的钻孔岩芯资料,基本覆盖了整个呵叻高原钾盐矿床的空间分布,为整体研究该矿床的空间分布特征提供了重要素材。

  • 图2 呵叻高原钾盐矿床419口钻孔岩芯空间分布图(黑线为含盐系地层横切剖面及其9个研究点位)

  • Fig.2 Spatial distribution of 419 boreholes of potash deposit in the Khorat Plateau (black line is cross section of salt-bearing strata and its nine points for comparative analysis of the strata)

  • 2.2 钻孔岩芯组合类型划分

  • 依据钻孔岩性特征及区内含盐系地层的沉积旋回组合方式,将收集的岩芯资料进行整理,共划分为7种岩芯组合类型。

  • 打穿含盐系地层的3种岩芯类型包括:打穿三个沉积旋回,即钻孔岩芯由三个完整的沉积旋回组成,每个旋回由下部蒸发岩和上部碎屑岩组成(图3a);打穿两个沉积旋回,即钻孔岩芯由第一和第二沉积旋回组成,缺失最上部的第三沉积旋回(图3b);打穿一个沉积旋回,即钻孔岩芯仅由第一沉积旋回组成,缺失第二和第三沉积旋回(图3c)。未打穿含盐系地层的3种岩芯类型包括:未打穿三个沉积旋回,即钻孔岩芯由三个沉积旋回组成,但第一旋回并未打穿基底硬石膏层,而终孔于第一旋回石盐层(图3d);未打穿两个沉积旋回,即钻孔岩芯由第一和第二沉积旋回组成,缺失第三沉积旋回,第一沉积旋回同上,钻孔于第一沉积旋回石盐层中终止(图3e);未打穿一个沉积旋回,即钻孔岩芯仅由第一沉积旋回组成,缺失第二和第三沉积旋回,且第一沉积旋回未打穿石盐层(图3f)。有些岩芯资料不全,即钻孔岩芯仅有含矿层厚度数据,其他层位信息记录不明,但这些钻孔可用来补充研究钾镁盐空间分布特征(图3g)。7种类型钻孔岩芯根据钾镁盐矿层存在与否进一步划分为含矿和不含矿钻孔(分别为383口和64口钻孔),含矿钻孔占比86%(表1)。

  • 图3 呵叻高原钾盐矿床7种钻孔岩芯类型示意图(a)~(g)

  • Fig.3 Schematic lithological columns (a) ~ (g) of seven types of boreholes in the Khorat Plateau potash deposit

  • 表1 呵叻高原钾盐矿床含盐系地层钻孔类型统计数据(单位:口)

  • Table1 Data of different lithostratigraphical characteristics of borehole in the Khorat Plateau potash deposit (unit: number of drilling boreholes)

  • 注:总计为每行钻孔数量之和;均厚为统计钻孔的不同沉积旋回中不同盐层和碎屑层厚度平均值;“/”为无数据。

  • 2.3 含盐系地层重建原则

  • 重建呵叻高原钾盐矿床含盐系地层不同层位厚度及其顶底板埋深的空间分布特征,并在此基础上进一步约束钾镁盐的空间展布、赋存形态及其异常富集规律是本文的核心工作。本文依据7种钻孔岩芯类型及其岩性特征,对马哈萨拉堪组含盐系地层的整合提出如下原则:

  • (1)基底硬石膏厚度及埋藏特征主要由打穿该含盐系地层的3种钻孔岩芯构建,共由176口含矿与不含矿钻孔岩芯组成。

  • (2)第一沉积旋回岩盐层厚度及埋深特征由打穿和未打穿该含盐系地层的419口钻孔岩芯构建(不确定的钻孔除外),未打穿该层的钻孔岩芯终孔于第一沉积旋回岩盐层位,虽不能准确提供岩盐层厚度及底板深度,但其终孔深度与顶板可以最大限度刻画岩盐层的空间分布特征,辅助该矿床第一沉积旋回岩盐层空间展布趋势的判别;

  • (3)钾镁盐矿层的厚度及埋深特征由全部7种钻孔岩芯共同构建,共447口含矿和未见矿钻孔岩芯组成,含矿与不含矿钻孔岩芯对比研究有助于进一步查明含矿层的分布趋势及其控制因素;

  • (4)溢晶石层的厚度与埋深特征由打穿和未打穿含盐系地层的6种钻孔类型,共108口钻孔岩芯构建;

  • (5)第一沉积旋回碎屑层厚度与埋深由419口钻孔岩芯构建(除去不定性钻孔)。打穿与未打穿一个沉积旋回的钻孔岩芯(表1),因其仅含一个沉积旋回,该旋回等同于含盐系地层的第一沉积旋回(含矿或不含矿),该类型钻孔碎屑层中含少量新生代碎屑沉积,可忽略不计。

  • (6)第二沉积旋回盐岩厚度与埋深特征由363口钻孔岩芯组成,包括打穿和未打穿的二、三个旋回钻孔岩芯;

  • (7)第二沉积旋回碎屑层厚度与埋深特征由打穿和未打穿二、三个旋回的363口钻孔岩芯构建,打穿与未打穿两个旋回的钻孔含少量新生代碎屑沉积(表1),可忽略不计。

  • (8)第三沉积旋回盐岩与碎屑层的厚度由打穿和未打穿的三个沉积旋回共172口钻孔岩芯构建。

  • 依据上述地层构建原则,对三个沉积旋回各自总厚度、第一沉积旋回各盐层(基底硬石膏、岩盐、矿层、溢晶石层)和碎屑层、第二与第三旋回岩盐层和碎屑层的厚度和埋深程度分别进行统计。同时,利用Surfer 13软件(Golden Software,LLC)中的普通克里格法对地层厚度和埋深顶板进行网格化处理和三维制图。为查看地层厚度和埋深的空间变化,以涵盖地质信息最大化原则,本文进一步建立两个盆地的横切面,由0~8共9个点位组成,其中0、1、7和8号点位位于沙空那空盆地,其余位于呵叻盆地(图2,4,5)。

  • 3 呵叻高原钾盐矿床空间分布特征

  • 3.1 第一沉积旋回基底硬石膏分布特征

  • 呵叻高原钾盐矿床马哈萨拉堪组第一沉积旋回基底硬石膏与下伏呵葛组石英砂岩呈不整合接触关系(张西营等,2015)。本文共统计了176口含基底硬石膏的钻孔岩芯,基底硬石膏均厚为1.4 m,最厚为7.4 m,位于沙空那空盆地东部甘蒙省地区,最薄为0.1 m,位于呵叻盆地西南部呵叻府地区(图4a,表2)。呵叻高原钾矿矿床几乎均存在基底硬石膏,且呈现从高原东部与南部向西部与北部逐渐减薄的趋势,具体为沙空那空盆地从东南向西北逐渐减薄,呵叻盆地中南部基底硬石膏较厚,其余空间位置基底硬石膏赋存较薄(图4a)。横切面中的点位直观反映了这种厚度的空间分布特征,其中0号点位基底硬石膏最薄,1号至4号点位厚度相似(约1.0 m左右),5号至7号点位厚度约2.0 m左右,8号点位基底硬石膏最厚,达5.0 m左右(图4c)。

  • 埋藏方面,沙空那空盆地西北部基底硬石膏埋藏最深,达823.4 m左右,呵叻盆地西南部和中部埋藏深度达600.0 m左右,两盆地其余空间的基底硬石膏埋深主要在400.0 m以浅(图4b)。基底硬石膏沉积厚度和埋藏深度的空间对应关系并非完全正相关,甚至呈现相反的趋势,如0号和3号点位埋藏均较深,但其沉积厚度仅1.0 m左右,而7号和8号点位埋深较浅,但其沉积厚度较大(图4c),造成这种空间赋存差异可能与盆地中诸多原始沉积凹陷特性相关,也可能是由后期构造运动重塑盆地形态引发。

  • 3.2 第一沉积旋回岩盐分布特征

  • 第一沉积旋回岩盐位于基底硬石膏之上,是水体逐渐蒸发浓缩的产物。本文共统计419口钻孔岩芯的第一沉积旋回岩盐层,最大厚度为398.4 m,位于呵叻盆地西南部的呵叻府地区,最小厚度不足1.0 m。该岩盐层在个别钻孔缺失,基底硬石膏直接与上覆碎屑泥岩接触,整个呵叻高原平均厚度76.4 m(图4d,表2)。由于统计数据包含了未打穿含盐系地层的243口钻孔,且钻孔均终孔于该岩盐层,因此上述岩盐层的平均厚度可能被低估。该岩盐层在呵叻高原广泛分布,其中沙空那空盆地主要分布于盆地中部与西部,最厚约达350.0 m,而在盆地两侧的万象省与甘蒙省,该岩盐层减薄至150.0 m左右。呵叻盆地该岩盐层分布较均匀,尤在盆地中部与西南部的分布较厚、较集中,在盆地东南部有减薄趋势。厚度横切面可以看出9个点位中,靠近普潘隆起的1号、7号和8号点位岩盐较薄,3号至4号点位之间,以及6号点位的岩盐层较厚约250.0 m,其余点位厚约100.0 m(图4f)。

  • 岩盐埋深情况与基底硬石膏的整体趋势相似,均以沙空那空盆地西北部和呵叻盆地西南部及中部埋深较深为特征(图4e)。埋深横切面中的个别差异(如0号和6号点位)与基底硬石膏和岩盐统计的钻孔数量不同有关(图4c和4f)。对比两者的沉积厚度横切面,存在四个明显特征:①基底硬石膏沉积较薄的位置(0号、2号至4号点位),岩盐较厚(均厚约100.0 m,最厚约达250.0 m);②基底硬石膏沉积较厚的位置(1号、5号、7号点位),岩盐层厚度同样在50.0~100.0 m范围内;③基底硬石膏沉积厚度相似的位置(5号至7号点位),岩盐层厚度却在6号点位达到约250.0 m;④基底硬石膏最厚的位置(8号点位),岩盐层却最薄,该位置可能与普潘隆起造成的岩盐层剥蚀有关(图4c和4f)。

  • 3.3 第一沉积旋回钾镁盐空间分布特征

  • 呵叻高原钾盐矿床钾镁盐矿层主要分布于第一沉积旋回盐岩上部,仅在个别钻孔第二沉积旋回中发现了薄层钾镁盐。本文统计的383口含矿钻孔岩芯,最大限度揭示了矿层在呵叻高原的空间展布信息,矿层均厚达29.6 m,最大厚度为243.7 m,位于呵叻盆地的中部偏西,最小厚度为0.2 m,位于呵叻盆地西南部(图4g,表2)。沙空那空盆地整体含矿性良好,均厚达20.0 m以上,盆地中西部和东部边缘较集中,呵叻盆地钾盐矿层主要分布于该盆地西南部。矿层厚度横切面显示整个呵叻高原钾盐矿床空间分布存在显著差异,6号至8号点位基本不含矿,位于呵叻盆地西南部和中部的3号和5号点位含矿较厚(图4i)。

  • 矿层埋深顶板与下伏岩盐层埋深情况相似,均以沙空那空盆地西北部和呵叻盆地西南部埋藏较深(图4h),其埋深横切面也与下伏岩盐和基底硬石膏埋深趋势可类比,除5号点位因沉积的矿层较厚导致其埋深明显变浅,其余点位埋深变化幅度不大(图4i)。

  • 对比矿层与下伏岩盐沉积厚度的横切面,同样存在两者不成比例的发育特征,①岩盐较薄的位置(1号点位约50.0 m),对应的矿层厚达30.0 m左右;②岩盐较厚的位置(6号点位约250.0 m),几乎不发育钾镁盐矿层;③岩盐厚度相似的位置(2号至5号点位),矿层从0~60.0 m不等厚发育(图4i)。

  • 3.4 第一沉积旋回溢晶石空间分布特征

  • 溢晶石属于卤水蒸发浓缩后端产物,常与钾镁盐伴生或独立成层,该矿物在全球显生宙固体钾盐矿床中极为罕见,成层的溢晶石仅分布于东南亚的呵叻高原、巴西塞尔希培盆地和西非刚果盆地(曲懿华,1982张西营等,2010)。本文共收集含溢晶石钻孔108口,溢晶石层最大厚度为38.5 m,最小厚度不足0.1 m,均厚为7.5 m(图4J,表2)。溢晶石主要分布于呵叻高原西部,如沙空那空盆地中西部和呵叻盆地的西南部。呵叻高原东部几乎不发育溢晶石,靠近普潘隆起的区域同样溢晶石分布较少,可能与普潘隆起构造事件及溢晶石矿物本身易溶的特性相关(图4l)。溢晶石在沙空那空盆地西北部埋深最深,可达450.0 m左右,在呵叻盆地西南部埋深约300.0 m,而东北部约200.0 m(图4k,4l)。对比溢晶石与钾镁盐矿层(两者呈穿插或上下叠置关系)的沉积厚度和埋藏深度横切面,可见两者大体趋势相似,矿层较厚的区域溢晶石也大量发育。

  • 图4 呵叻高原钾盐矿床第一沉积旋回各层厚度及埋深空间分布特征;(a)~(o)分别是第一沉积旋回基底硬石膏、岩盐、矿层、溢晶石和碎屑层的厚度、埋深顶板和横切面图

  • Fig.4 The spatial characteristics of thickness and burial depth of strata in the first sedimentary cycle in the Khorat Plateau potash deposit; (a) ~ (o) are maps of thickness, burial depth, and cross section of base anhydrite, halite, carnallite and sylvite, tachyhydrite, and clastics in the first sedimentary cycle, respectively

  • 3.5 第一沉积旋回碎屑层空间分布特征

  • 第一沉积旋回碎屑层位于钾镁盐矿层之上,代表一次重要的淡化事件,对钾镁盐矿层发挥了重要的保护作用。本文共统计419口钻孔岩芯第一沉积旋回碎屑层,其最大厚度为523.3 m,位于沙空那空盆地西北部万象省地区;最小厚度为1.2 m,位于呵叻盆地东部边缘;平均厚度为50.2 m。该碎屑层(>100 m)主要分布于呵叻高原边缘数个不连续区域,而两个盆地内部分布较均匀(图4m,表2)。碎屑层埋深状态与第一沉积旋回其他地层特征相似,沙空那空盆地西北部仍然是埋藏最深的区域(图4n)。

  • 对比碎屑层与下伏盐岩的沉积厚度,相同点位两者的厚度沉积特征并非完全一致,碎屑层埋藏较浅的位置(2号点位),沉积厚度却很厚,达150.0 m左右;碎屑层埋藏较深的位置(1号点位),沉积厚度很薄(约30.0 m)(图4o)。地表径流是碎屑物质搬运的主要载体,单从该碎屑层的厚度可推断沙空那空盆地北部、东北部和呵叻盆地西部、西南部山区是其主要的近源输入区。

  • 3.6 第二沉积旋回盐岩与碎屑空间分布特征

  • 第二沉积旋回盐岩主要由石盐与硬石膏组成,且以石盐为主体。本文共统计363口钻孔岩芯,该层最大厚度为390.8 m,位于沙空那空盆地中北部老挝境内,最小厚度为0.1 m,位于沙空那空盆地东部甘蒙省地区,平均厚度为52.6 m。该层在呵叻高原以普潘隆起为界线,在南北两个盆地中广泛分布(图5a,表2)。

  • 对比第一沉积旋回岩盐空间分布特征,可见该岩盐层在沙空那空盆地有向南和向东扩展的趋势,而在呵叻盆地明显呈向西南部聚集的趋势(图4d,5a),岩盐层均厚较第一沉积旋回岩盐薄25.0 m左右。在第一沉积旋回上部的碎屑层基础上,该岩盐层继承了总体的埋深情况,但在横切面中3号至6号点位埋深明显变浅,该岩盐与下伏碎屑层的沉积厚度大体呈此消彼长的关系,推测该阶段海侵范围同样比较广阔(图4o,5b,5c)。

  • 第二沉积旋回碎屑层位于岩盐顶部,其岩性特征与第一沉积旋回碎屑层相似。本文统计的363口钻孔岩芯中该层最大厚度为414.1 m,位于沙空那空盆地万象省地区;最小厚度为0.6 m,位于呵叻盆地西南部呵叻府附近;均厚为61.8 m,比第一沉积旋回碎屑层厚约10.0 m。该层在沙空那空盆地主要分布于西北部,而在呵叻盆地主要分布于其西北和东南部(图5d)。

  • 对比第一沉积旋回碎屑层的空间分布特征,该碎屑层在沙空那空盆地逐渐向西北部聚集,尤其是横切面0号至1号点位之间沉积较厚,在呵叻盆地西北部同样呈现增厚特征(2号点位)(图5e)。该碎屑层沉积厚度和埋深横切面显示在下伏岩盐埋藏很浅的位置(2号点位),碎屑却堆积较厚,这可能与碎屑沉积后构造运动造成的区域隆起有关,也可能与地表河流的搬运能力相关(图5f)。

  • 3.7 第三沉积旋回盐岩与碎屑空间分布特征

  • 第三沉积旋回位于马哈萨拉堪组含盐系地层最上部,本文共统计172口钻孔岩芯,其岩盐层分布最大厚度为120.4 m,位于沙空那空盆地西北部;最小厚度不足0.1 m,位于呵叻盆地西南部,均厚为10.3 m。该岩盐层主要位于呵叻高原的中西部,具体分布于两个盆地的西北部(图5g,表2)。与第一和第二沉积旋回岩盐层对比,可发现第三沉积旋回岩盐在呵叻高原的空间分布面积与厚度均大幅减小,平均厚度较第一与第二沉积旋回岩盐层分别减小了65.0 m与50.0 m左右,表明成盐事件已接近尾声(图5i)。该岩盐层埋深情况与下伏第二沉积旋回碎屑层埋深形态相似(图5h)。

  • 第三沉积旋回碎屑层紧邻地表,统计发现该层最大厚度为590.4 m,位于沙空那空盆地中北部,最小厚度为15.2 m,位于呵叻盆地西南部,均厚为86.6 m。对比第一与第二沉积旋回碎屑层空间展布特征,可以发现沙空那空盆地中北部地区(万象省与廊开府)碎屑沉积逐渐增厚,表明该区域碎屑物源非常充足,推测其邻近物源区或位于碎屑输入终端。呵叻盆地三个旋回碎屑层分布范围由盆地边缘逐渐向盆地中心迁移,具体为从盆地西北和东南部向盆地中部发展(图5j)。此外,第三旋回碎屑层较第一和第二沉积旋回碎屑层分别厚35.0 m和25.0 m。伴随第三沉积旋回碎屑层的沉积,呵叻高原钾盐矿床成盐事件结束。第三旋回碎屑层的海拔呈西北高东南低的格局,但西北部沉积层却较厚,横切面显示该碎屑与下伏盐岩沉积厚度的空间分布规律相似(图5k,l)。

  • 图5 呵叻高原钾盐矿床第二、三沉积旋回各层厚度及埋深空间分布与三个沉积旋回总厚度空间分布特征;(a)~(l)分别是第二和第三沉积旋回中岩盐和碎屑层的厚度、埋深以及横切面;(m)~(o)分别是三个沉积旋回各自厚度的空间展布情况

  • Fig.5 The spatial characteristics of thickness and burial depth of the second and third sedimentary cycles and the total thickness of three sedimentary cycles of potash deposit in the Khorat Plateau; (a) ~ (l) are maps of thickness, burial depth, and cross section of halite and clastics in the second and third sedimentary cycles, respectively; (m) ~ (o) are maps of total thickness of three sedimentary cycles of potash deposit in the Khorat Plateau

  • 表2 呵叻高原钾盐矿床钻孔不同沉积旋回不同盐层与碎屑层的厚度与埋深数据

  • Table2 Data of thickness and burial depth of different salt and clastic layers in three sedimentary cycles in the Khorat Plateau potash deposit

  • 3.8 三个沉积旋回各自总厚度空间展布特征

  • 系统对比呵叻高原钾盐矿床马哈萨拉堪组含盐系地层三个沉积旋回各自的空间展布特征,是该矿床沉积演化过程研究的重要依据。第一沉积旋回由447口钻孔岩芯构建,其最大厚度为602.8 m,位于呵叻盆地中西部;最小厚度为6.1 m,位于沙空那空盆地北部;均厚为149.6 m。第一沉积旋回总厚度空间分布特征与该旋回岩盐层展布规律相似(图5m)。

  • 同理,第二沉积旋回由363口钻孔岩芯构建,其中最大厚度为495.6 m,位于沙空那空盆地北部;最小厚度为4.0 m,位于呵叻盆地西南部;平均厚度为102.3 m,盐岩与碎屑厚度之比为1.00∶1.20。第二沉积旋回在整个呵叻高原广泛分布,除沙空那空盆地西北部沉积较厚,其余地区沉积厚度为150.0 m左右(图5n)。

  • 第三沉积旋回由172口钻孔岩芯重建,其中最大厚度为641.3 m,位于沙空那空盆地北部;最小厚度为21.9 m,位于呵叻盆地西南部;平均厚度为60.6 m,盐岩与碎屑厚度之比为1.00∶8.40。该旋回的空间展布特征与第三沉积旋回碎屑层的厚度分布规律相似,进一步表明每个沉积旋回的总厚度空间分布特征主要由该旋回中厚度最大的岩层决定(图5o)。

  • 三个沉积旋回各自总厚度的空间分布并不完全重合,表明各旋回的物源、构造、沉积环境等均发生了一定变化,如沙空那空盆地第一沉积旋回最厚区域位于盆地的西部和中部;第二旋回沉积最厚区域明显向西边过渡,且位于前次旋回两个最厚区域之间;第三沉积旋回在第二沉积旋回的基础上,其厚度和范围进一步扩大,从泰国廊开府和乌隆府逐渐扩展至老挝万象省。呵叻盆地第一沉积旋回以盆地南部与西南部沉积厚度最大;第二沉积旋回发育较均匀,仅沉积范围向该盆地西北部有所扩大;第三沉积旋回范围明显减缩,最大厚度由原来的NE-SW向转变为NW-SE向(图5i~k)。

  • 4 呵叻高原钾盐矿床空间分布特征的控制因素及成因

  • 呵叻高原钾盐矿床的空间分布特征表明其各盐层、碎屑层及各旋回的沉积厚度与埋深不尽相同,表明其成盐期或成盐后经历的地质作用存在一定差异。构造、物源与气候是钾盐矿床形成的三个关键控制因素(Warren,2010)。其中,构造伴随钾盐成矿乃至钾盐埋藏后的整个动态过程,尤其是成矿中或成矿后的构造作用对钾盐的赋存方式、形态、规模、区位等具有重要的控制作用,如罗布泊构造反转导致钾盐空间异位(刘成林等,2018b),云南勐野井钾盐矿床的盐岩层揉皱现象及二层楼模式(郑绵平等,2014),中欧蔡希斯坦钾盐盆地的盐丘构造(杨谦,2023)等。物源决定钾盐矿床的类型和规模。目前世界超大型钾盐矿床均以海相固体钾盐为主,如加拿大萨斯喀彻温氯化物型和德国蔡希斯坦硫酸盐型钾盐矿床(杨谦,2023)。干燥气候是钾盐形成的有利条件,诸多钾盐矿均形成于副热带高压控制的干旱区内(Warren,2010)。

  • 目前,学界普遍认为呵叻高原钾盐矿的物源以海水为主(Hite et al.,1979Tan Hongbing et al.,2010Zhang Xiying et al.,2013Li Minghui et al.,2018Li Qingkuan et al.,2020Qin Zhanjie et al.,2020Wang Licheng et al.,2023),且从第一沉积旋回岩盐的空间分布特征可知成盐期海水几乎覆盖整个呵叻高原,此外成盐期的气候整体炎热干旱(钟晓勇等,2012秦占杰等,2013Zhang Hua et al.,2015)。因此,造成呵叻高原钾盐矿床不同沉积旋回空间分布差异主要与不同规模的原始构造凹陷及起伏的地形密不可分。此外,区域构造运动和重力差异载荷引发的盐构造变形(盐底辟)也会对盐岩的沉积厚度产生影响。

  • 因构造作用发生具有阶段性特征,即存在构造活跃期与相对稳定期,如呵叻群沉积期构造活动较弱,而其前后分别伴随着印支运动和中白垩世构造事件(Racey,2009)。本文尝试从构造相对稳定和相对活跃模式对该矿床的空间分布特征进行分析。

  • 4.1 构造相对稳定模式

  • 该模式下构造运动较弱,呵叻高原钾盐矿床三个沉积旋回厚度和埋深主要取决于原始构造凹陷规模及其形态。假定图4和5中各盐岩层与碎屑层代表其原始沉积状态,并未受构造扰动和变形影响,而完全受控于水体蒸发浓缩和化学沉积作用。依据海水正常蒸发浓缩的析盐厚度比:碳酸盐0.39 m∶硫酸盐3.79 m∶石盐96.41 m∶钾石盐6.81 m,石盐沉积厚度分别是硫酸盐的25倍和钾石盐的14倍(Garrett,1996),且硫酸盐和石盐沉积越厚的区域,钾镁盐同样越厚。

  • 仅考虑单个点位同一面积情况下,可发现第一沉积旋回盐岩层(基底硬石膏、岩盐、矿层)厚度横切面中,仅1号点位硬石膏符合海水蒸发理论值,0号,2号至7号点位低于理论值,8号点位高于理论值(图6)。呵叻高原钾盐矿床缺失硫酸盐和碳酸盐层,这可能与白垩纪“文石海”海水富Ca贫SO2-4的特点相关(Timofeeff et al.,2006)。同时,矿层横切面除2号,6号至8号点位钾镁盐与石盐厚度比值低于理论值,其余点位均显著高于理论值(图6),显示呵叻高原钾盐异常富集。因第一沉积旋回岩盐厚度横切面统计的部分钻孔并未打穿含盐系地层,从而导致岩盐真实厚度减小。为此,我们进一步分析了打穿含盐系地层的钻孔资料,发现其硬石膏与石盐厚度比值小于理论值,而钾镁盐与石盐厚度比值明显大于理论值,进一步表明了钾盐异常富集的特征(图6)。

  • 该构造稳定环境中钾镁盐局部异常富集可能与盆地内部起伏的地形(隆起,背斜等)相关。面积广阔的呵叻高原在中—晚白垩世成盐期,其盆地基底并非完全平坦,已有地震剖面显示马哈萨拉堪组下伏Khok Kruat组存在多处隆起与低洼相间的地形(Satarugsa et al.,2005)。当海水进入盆地后,海水首先在低洼区域贮藏并开始蒸发浓缩,或者多次海侵直接将整个呵叻高原覆盖,随着水体不断蒸发浓缩,其盐度逐渐增加并达到硫酸盐(石膏)和石盐析出的饱和度,进而在盆地内部和边缘开始沉积盐类矿物。盆地内部隆起和低洼区域均被少量石膏和厚层石盐所覆盖,当水位由于蒸发逐渐下降,水下隆起部位逐渐出露水面,不再接受石盐沉积。但该处石盐却可以保留大量高盐度的晶间卤水,如柴达木盆地察尔汗盐湖不同区段石盐厚度从60.0 m至20.0 m不等,表明其成盐期盆地地形存在一定起伏,且石盐层中赋存着大量晶间卤水(张彭熹,1987)。相比隆起位置,低洼区域则继续被高盐度水体覆盖,进一步的蒸发作用,水位继续下降,最终钾镁盐矿物在该位置沉淀。同时,隆起部位石盐中的晶间卤水由于水位差则会向低洼区域发生迁移,为低洼区域提供了更多的含钾溶质,进而导致低洼区钾镁盐与下部石盐的厚度比值明显高于理论值(图7a,b)。

  • 图6 呵叻高原钾盐矿床第一沉积旋回石盐与硬石膏和钾镁盐矿层厚度比(X轴0~8分别是横切面0号至8号点位盐岩层厚度比,9~11分别是打穿3个、2个和1个沉积旋回的钻孔盐岩层厚度均值比)

  • Fig.6 The thickness ratio of anhydrite/halite and carnallite/ halite of points on the cross section of the first sedimentary cycle (0~8 in the X axis are points of the cross section; 9~11 in the X axis are boreholes of including three cycles, two cycles, and one cycle, respectively)

  • 另一种情况是海水蒸发演化后期,当水体变浅直至进入干盐滩阶段,钾镁盐便在洼陷中心开始沉积。此时,湖盆基本封闭,且干盐滩石盐层中富含大量晶间卤水(方龙等,2024)。呵叻高原海水主要补给通道受阻或者海平面短暂下降导致海侵中断,而盆地周缘陆相水体可能成为主要补给源,如呵叻高原北部早白垩世发育有古湄公河(Wang Licheng et al.,2020),且马哈萨拉堪组每个沉积旋回上部碎屑岩也证明曾有陆源水体输入。干盐滩靠近补给源一侧会形成一定规模的卤水湖,两者并存且卤水湖会溶蚀原有干盐滩的石盐层,降低此处的水位。干盐滩远端的晶间卤水则会在周边潜水的驱动下,向溶蚀区迁移,进而在此处形成富钾镁卤水或钾镁盐沉淀。如现今察尔汗盐湖达布逊湖的北部是干盐湖,而南部靠近格尔木河补给一侧则发育一定规模的卤水湖,湖水溶蚀古石盐岸并逐渐形成现代光卤石层,且光卤石层之下石盐和石膏不发育(袁见齐等,1981)。呵叻高原钾盐异常富集区多分布在盆地边缘,如沙空那空盆地的西北缘和呵叻盆地的西北与西南缘(图4g)。上述两种“卤水迁移聚钾”模式虽然具有一定的合理性,但仍需更多岩石学、岩相学、沉积学和地球化学等方面的证据支持。

  • 4.2 构造相对活跃模式

  • 在呵叻高原,中—晚白垩世马哈萨拉堪组含盐系地层沉积前后发生的构造事件主要是中白垩世构造事件和新生代系列构造运动(Racey,2009)。其中,基底硬石膏与下伏Khok Kruat组的角度不整合接触是中白垩世构造事件的痕迹。该区域的中白垩世构造事件主要是高原西部掸邦地块与西缅地块的碰撞缝合(中特提斯洋闭合),进而导致呵叻高原发生第一次厚皮构造反转,高原内部地形呈长波状结构,为后续马哈萨拉堪组蒸发岩提供了有力的赋存空间(Cooper et al.,1989Lovatt Smith et al.,1997)。同时,碰撞形成的西部高山地貌会形成雨影效应并改变地表径流格局,进而影响该含盐系地层发育期间的气候与水文条件(Wang Licheng et al.,2024)。

  • 古新世初期,呵叻高原内部发生区域性构造隆升,尤其是普潘隆起的形成导致其上覆含盐系地层被大量剥蚀。第三纪高原发生第二次构造反转,主要归因于喜山运动期间印度板块与欧亚板块的碰撞(Lovatt Smith et al.,1997),该事件造成印支地块在新生代向东南逃逸约1500 km并产生了约15°的顺时针旋转,从而奠定了呵叻高原现今的地理位置(Yang et al.,1995)。

  • 此构造格局下,马哈萨拉堪组在发育过程中主要受来自西部及东北方向的双向挤压作用,原始含盐系地层由于岩性差异会逐渐发育成平行普潘隆起的侏罗山式褶皱,老挝万象省类似盐背斜已被证实(梁光河等,2022)。假定呵叻高原成盐期存在多个次级小盆地、盆地内地形起伏不平且钾盐主要赋存于洼陷中心。在褶皱过程中,向斜位置有利于钾盐的汇聚,而盐背斜会使盐岩层凸起,形成透镜状。上部的钾盐若出露地表极易被剥蚀,造成仅在背斜两翼存在薄层钾盐(Hite,1982),因此,该区域大尺度构造作用下同样可以形成局部空间的钾盐增厚(图7c)。

  • 马哈萨拉堪组上覆Phu Tok组在新生代被剥蚀掉约1000 m(Morley,2012),表明该含盐系地层上部曾有巨厚的碎屑沉积。呵叻高原内部地形起伏导致碎屑沉积厚度存在空间差异,进而会对下伏含盐系地层产生重力差异载荷。当盐岩上覆地层埋深超1200 m时,由于盐岩密度小于岩层密度,盐岩会在浮力作用下产生上涌趋势,进而形成盐底辟(李江海等,2015)。第一沉积旋回岩盐埋深最大深度为680.0 m左右,平均埋深225.0 m左右(n=419),加之上覆原有Phu Tok组,已满足岩盐发生底辟作用的条件(图4e)。因此,洼陷中心盐岩(含钾盐)沉积较厚的区域比隆起部位盐岩薄的区域盐底辟作用更为明显,造成隆起部位盐岩海拔相对降低及其上覆碎屑层相对增厚与重力载荷增加,进一步促使隆起部位盐岩向洼陷中心塑性流动,导致洼陷中心钾盐呈透镜状团聚增厚(山发寿等,2018)。如西欧二叠纪蔡希斯坦钾盐矿床发育多种类型的盐构造,尤以盐底辟和盐枕数量居多,其对固体钾盐的空间局部异常富集和贫化具有重要影响(杨谦,2023)(图7d)。

  • 此外,由于呵叻高原新生代经历了约15°的右旋走滑构造运动,而光卤石、泥岩、石盐的抗压强度分别为5 MPa、3 MPa和15 MPa,因此,抗压强度较小的光卤石和泥岩会围绕石盐同步发生构造旋转,进而造成钾盐在空间上的叠置增厚和石盐与钾盐厚度比值异常(梁光河等,2022)。该成因模式结合了区域大尺度构造运动与小尺度地层岩性差异的相互作用关系,但该模式在整个呵叻高原马哈萨拉堪组中的作用范围并不清楚。钾盐塑性叠置的岩石学和岩相学特征亦比较缺乏,尤其在该含盐系地层中并未见到盐岩变形的肠状构造,而仍以层状构造为主,表明区内盐岩塑性流动与变形可能主要发生在大尺度空间内。

  • 图7 呵叻高原钾盐矿床异常富集成因模式图

  • Fig.7 Models of abnormal enrichment of potash in the Khorat Plateau

  • 综上所述,呵叻高原钾盐矿床在印支运动和喜山运动加持的构造背景下,在原有盆地构造基础上,既经历了海水正常蒸发浓缩演化过程和盆地内晶间卤水迁移掺杂过程,又经历了外部区域构造横向挤压和沉积物重力垂向压实的变形过程。多个过程的发生存在逻辑时间关系,但区域构造作用可能伴随整个成盐阶段。构造的相对稳定期和活跃期并非完全割裂,多个过程的叠加可能是造成呵叻高原钾盐矿床空间分布特征以及钾盐异常富集的根本原因。

  • 5 呵叻高原钾盐矿床异常富集辨析

  • 5.1 呵叻高原钾盐矿床的异常特征

  • 围绕呵叻高原钾盐矿床本身,其异常主要表现在岩层与矿物组合特征、特殊矿物成因、钾镁盐沉积演化模式、钾镁盐矿层比石盐层厚,具体为:①该钾盐矿床的盐岩主要由石盐、光卤石和少量硬石膏组成,缺失碳酸盐和硫酸盐,这与白垩纪“方解石”海富Ca贫SO2-4的海水性质相关(Timofeeff et al.,2006)。同时代非洲刚果盆地和南美巴西塞尔希培盆地海相钾盐矿床却发育有层状碳酸盐,表明海水进入呵叻高原之前可能发生了次级盆地的预蒸发沉积作用(马海州等,2019),然而预蒸发沉淀的碳酸盐和硫酸盐地层目前尚未发现;②第一沉积旋回盐岩中存在方硼石等硼酸盐矿物和极易溶的层状溢晶石,两者均是海水正常蒸发浓缩无法形成的(El Tabakh et al.,1999)。已有研究表明深部热液可提供足量的B、Ca元素与热量,但呵叻高原内部并未发现有大型断裂构造。深部热液的存在与否、迁移循环方式、混合掺杂过程等至今仍无法合理解释,亦或上述两种矿物有其他成因途径;③该矿床钾盐沉积模式目前尚不清楚,钾盐沉积较厚的区域与盆地沉积中心并不吻合,盐岩的空间分布规律与目前得出的物源迁移模式并不匹配,导致经典的牛眼式和泪滴式成钾模式在该区域并不完全适用;④钻孔中钾镁盐矿层与石盐厚度比例失调,如呵叻盆地呵叻府地区个别钻孔钾镁盐矿层与下伏石盐厚度比为0.3∶1,远大于理论值(0.07∶1),且与含矿钻孔相距1 km左右的钻孔完全不含矿,矿体空间分布不均匀,钾镁盐矿层局部异常富集成因至今不明晰。

  • 5.2 呵叻高原钾盐矿床异常富集的本质及其意义

  • 本文利用Surfer软件尝试对沙空那空盆地和呵叻盆地中419口钻孔第一沉积旋回岩盐体积和383口含矿钻孔矿层体积分别进行网格计算。两盆地边界分别从统计钻孔中选取圈定,体积分别由岩盐和矿层埋深的顶底板进行辛普森积分计算(图8),得到矿层和岩盐的体积分别为1675.5 km3和7302.4 km3,二者体积比为0.23∶1。由于呵叻高原钾盐矿床矿层由光卤石和大量石盐伴生而成,且光卤石通常占比40%左右(Suwanich,1986),因此矿层中光卤石层的体积为670.2 km3,光卤石层与岩盐层体积比为0.09∶1,折合钾石盐层(KCl)的体积为179.6 km3,钾石盐层与岩盐层体积比为0.02∶1。钾石盐层与岩盐层的体积比明显低于海水正常蒸发沉积两者之比(0.07∶1)(Garrett,1996)。Suwanich(1986)基于呵叻高原近200口钻孔岩芯对该钾盐矿床第一沉积旋回不同盐岩体积同样进行了初步计算,其中岩盐层体积为6234.7 km3,矿层的体积为608.3 km3,矿层与岩盐体积比为0.1∶1;矿层中光卤石层体积为243.3 km3,光卤石层与岩盐层体积比为0.04∶1;折合钾石盐层(KCl)的体积为65.2 km3,钾石盐层与岩盐层体积比为0.01∶1,同样低于理论比值。

  • 图8 呵叻高原钾盐矿床第一沉积旋回矿层与岩盐体积计算示意图

  • Fig.8 Schematic map of rock salts and potash salts volumes calculation of the first sedimentary cycle in potash deposit of the Khorat Plateau

  • (a)—矿层体积计算;(b)—岩盐体积计算

  • (a) —volumes calculation of potash salts; (b) —volumes calculation of rock salts

  • 因此,呵叻高原钾盐矿床沉积规模或体量符合海水蒸发浓缩过程中不同盐类矿物的析出比例,钾镁盐沉积规模远小于石盐,从而表明该钾盐矿床异常富集并非钾镁盐绝对体量上的增加,而是局部空间内钾盐与石盐体量的比例失衡(图4),这是呵叻高原钾盐矿床异常富集的核心之一,是对以往该矿床异常富集笼统认识的一次重要进展。本文基于钾盐矿床沉积特征与外部地质应力对该矿床局部空间矿层明显增厚进行了初步解释,但构造作用、重力差异载荷、盐岩自身浮力、盆地凹陷特征、盐岩原始沉积状态等影响钾盐空间赋存规律的因素及其相互作用关系,仍需进一步开展详细的沉积学、地球化学、地球物理,尤其是盐构造的物理模拟实验研究,进而揭示固体钾盐动态演化增厚过程及其控制机制。

  • 呵叻高原钾盐矿床矿层的空间分布特征及其局部空间异常富集,将为该矿床后续的勘探开发提供重要的方向性指导,同时对采矿方式优化、资源量精准评估、地灾治理和尾矿综合利用等提供了重要的参考。

  • 6 结论

  • (1)呵叻高原钾盐矿床三个沉积旋回以第一旋回沉积覆盖范围最广,第二旋回次之,第三旋回最小,且空间上呈由东向西不断缩减的趋势;沉积旋回之间与同一旋回内各盐层和碎屑层的对应空间沉积厚度并非完全同步,同一沉积旋回中盐岩和碎屑层的埋深趋势较相似;钾镁盐矿层和溢晶石主要集中分布在呵叻高原的西部,具体为沙空那空盆地的西北万象地区和甘蒙地区,呵叻盆地的西部孔敬地区和西南部的猜也蓬与呵叻地区,局部空间矿层异常富集。

  • (2)呵叻高原钾盐矿床局部空间钾镁盐矿层异常增厚与盆地原始构造形态、晶间卤水迁移聚钾、区域构造作用、沉积后重力差异载荷、盐岩自身浮力等控制因素及其相互作用过程密切相关。

  • (3)从钾盐资源体积角度着手,局部空间钾镁盐矿层异常富集是该矿床异常的本质,而非钾镁盐矿绝对体量的增加,该异常对钾盐资源储量评估、勘探模式优选、钾盐资源风险投资等提出了更多的机遇和挑战。

  • 致谢:对参加野外工作和室内资料整理的中国科学院青海盐湖研究所方龙、朱登贤、都永生、袁秦、王明祥、魏海成、樊启顺同志;提供大量宝贵资料的老挝开元矿业有限公司、中寮矿业钾盐有限公司等相关矿业公司及工作人员;提供岩芯样品的核工业二○三研究所惠争卜工程师、泰国国际石油集团陈杰克主席和青海晶诚地矿有限责任公司黄卫东高工;提供专业技术指导的中国科学院山发寿研究员、青海老挝工程技术有限公司石国成总经理及相关技术人员;提出建设性意见和建议的评审专家以及对文章编排提供大量帮助的期刊编辑部老师,在此一并衷心感谢。

  • 注释

  • ❶ 青海省核工业地质局.2009. 老挝甘蒙省他曲-沙湾拿吉省赛布里钾盐矿普查报告.

  • ❷ 青海省核工业地质局.2011. 老挝甘蒙省龙湖矿区西段钾镁盐矿勘探报告.

  • ❸ 泰国国际石油集团.2019. 泰国呵叻府暖颂县钾盐矿勘探报告.

  • ❹ 云南省地质调查院.2003. 万象平原钾镁盐矿勘查地质报告.

  • ❺ 中国科学院青海盐湖研究所.2009. 老挝万象第三纪钾石盐资源勘查与评价报告.

  • 参考文献

    • Booth J, Sattayarak N. 2011. Subsurface Carboniferous-Cretaceous geology of NE Thailand. In: Ridd, M F, Barber A J, Crow M J. (Eds. ), The Geology of Thailand. Geological Society London, 184~222.

    • Carter A, Bristow C S. 2003. Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: A study of the Khorat Plateau basin, eastern Thailand. Basin Research, 15(2): 271~285.

    • Carter A, Moss S J. 1999. Combined detrital-zircon fission-track and U-Pb dating: A new approach to understanding hinterland evolution. Geology, 27(3): 235~238.

    • Cooper M A, Herbert R, Hel G S. 1989. The structural evolution of Triassic intermontane basins in Northeastern Thailand. In: Thanasuthipitak T, Ounchanum P (Eds. ), Proc. of International Symposium on Intermontane Basins: Geology and Resources, Chiang Mai: 231~242.

    • El Tabakh M, Utha-Aroon C, Schreiber B C. 1999. Sedimentology of the Cretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand. Sedimentary Geology, 123(1-2): 31~62.

    • Fang Long, Qin Zhanjie, Shi Guocheng, Li Qingkuan, Zhu Dengxian, Li Qiang, Du Yongsheng, Yuan Qin, Zhang Xiying, Shan Fashou. 2024. Characteristics and origin of coarse halite in the first sedimentary cycle of the potash deposit, Non Sung district, Nakhon Ratchasima province, Thailand. Journal of Salt Lake Research, 32(1): 107~119 (in Chinese with English abstract).

    • Garrett D E. 1996. Potash Deposits, Processing, Properties and Uses. London: Chapman & Hall, 1~734.

    • Han Yuanhong, Ma Haizhou, Zhang Xiying, Wang Qi, Luo Houyong, Li Jiansen, Liao Peng, Zhu Jun. 2015. Carbon and oxygen isotopic constraint on the sedimentary environment and formation mechanism of the Longhu Potash Deposit, Laos. Geotectonica et Metallogenia, 39(2): 334~343 (in Chinese with English abstract).

    • Hansen B T, Wemmer K, Eckhardt M, Putthapiban P, Assavapatchara S. 2016. Isotope dating of the potash and rock salt deposit at Bamnet Narong, NE-Thailand. Open Journal of Geology, 6(8): 875~894.

    • Hara H, Kon Y, Usuki T, Lan C Y, Kamata Y, Hisada K I, Ueno K, Charoentitirat T, Charusiri P. 2013. U-Pb ages of detrital zircons within the Inthanon Zone of the Paleo-Tethyan subduction zone, northern Thailand: New constraints on accretionary age and arc activity. Journal of Asian Earth Sciences, 74, 50~61.

    • Harris R W. 1977. Paleontology of the Phu Horm-1 Well. In: Open File Report by Harris R W. of ESSO. Bangkok: Department of Mineral Resources.

    • Hite R J. 1982. Progress report on the potash deposits of theKhorat Plateau, Thailand. In: United States Department of the Interior Geological Survey. Project Report Thailand Investigation (IR) TH-25, 1~70.

    • Hite R J, Japakasetr T. 1979. Potash deposits of the Khorat Plateau, Thailand and Laos. Economic Geology, 74(2): 448~458.

    • Li Jianghai, Wang Honghao, Zhou Xiaobei, Li Honglin, Ma Liya, Li Weibo, Liu Zhonglan, Zhang Huatian, Xu Li. 2015. Salt Tectonics, Beijing: Science Press, 1~264 (in Chinese).

    • Li Minghui, Yan Maodu, Fang Xiaomin, Zhang Zengjie, Wang Zhengrong, Sun Shurui, Li Jiao, Liu Xiaoming. 2018. Origins of the Mid-Cretaceous evaporite deposits of the Sakhon Nakhon basin in Laos: Evidence from the stable isotopes of halite. Journal of Geochemical Exploration, 184: 209~222.

    • Li Qingkuan, Zhang Xiangru, Fan Qishun, Qin Zhanjie, Wang Jianping, Shan Fashou. 2020. Influence of non-marine fluid inputs on potash deposits in northeastern Thailand: Evidence from δ37Cl value and Br/Cl ratio of halite. Carbonates and Evaporites, 35(11): 11.

    • Liang Guanghe, Xu Xingwang. 2022. Potash deformation and enrichment modes in Vientiane Sag, Laos. Earth Science, 47(1): 136~148 (in Chinese with English abstract).

    • Liu Chenglin, Wang Licheng, Yan Maodu, Zhao Yanjun, Cao Yangtong, Fang Xiaomin, Shen Lijian, Wu Chihua, Lv Fenglin, Ding Ting. 2018a. The Mesozoic-Cenozoic tectonic settings, paleogeography and evaporitic sedimentation of Tethyan blocks within China: Implications for potash formation. Ore Geology Reviews, 102: 406~425.

    • Liu Chenglin, Jiao Pengcheng, Sun Xiaohong, Lv Fenglin, Zhang Hua. 2018b. Research on potash forming and exploration progress in potash deposits in the Lop Nur Salt Lake. Acta Geologica Sinica, 92(8): 1551~1570 (in Chinese with English abstract).

    • Lovatt Smith P F, Stokes R B. 1997. Geology and petroleum potential of theKhorat Plateau basin in the Vientiane area of Lao P. D. R. Journal of Petroleum Geology, 20(1): 27~49.

    • Luo Ting, Zhang Yongqing, Zheng Minggui, Dong Juan. 2022. Security assessment and early warning of potash resources in China. Advances in Earth Science, 37(6): 575~587 (in Chinese with English abstract).

    • Ma Haizhou, Li Yongshou, Cheng Huaide, Qin Xiwei, Zhang Xiying, Miao Weiliang, Xu Jianxin, Li Binkai, Hai Qingyu. 2019. Metallogenic model and process of the Ctetaceous potassium-bearing evaporites involving Changdu, Lanping-Simao and Khorat basin. Journal of Salt Lake Research, 27(1): 1~11 (in Chinese with English abstract).

    • Metcalfe I. 2011. Tectonic framework and Phanerozoic evolution ofSundaland. Gondwana Research, 19(1): 3~21.

    • Morley C K. 2012. Late Cretaceous-EarlyPalaeogene tectonic development of SE Asia. Earth-Science Reviews, 115(1-2): 37~75.

    • Pisutha A V, Chiba H, Yumuang S. 1986. A preliminary sulphur and oxygen isotope study of the Maha Sarakham evaporitic anhydrite from Bamnet Narong Area of NE Thailand.

    • Bulleit of the Geological Souiety of Malaysia, 19: 209~222.

    • Qian Ziqiang, Qu Yihua, Liu Qun. 1994. Potash Deposits. Beijing: Geological Publishing House, 1~273 (in Chinese).

    • Qin Zhanjie. 2019. Geochemical research on the provenance and sedimentary characteristics of potash deposits in the Khorat Plateau. Doctov degree thesis of University of Chinese Academy of Sciences (in Chinese with English abstract).

    • Qin Zhanjie, Yuan Qin, Wei Haicheng, Sheng Shurong, Shan Fashou. 2013. Sporo-pollen assemblages of the Late Cretaceous Nong Bok formation in Khammouane, Laos, and their environmental significance for salt formation. Acta Geoscientica Sinica, 34(5): 638~642 (in Chinese with English abstract).

    • Qin Zhanjie, Li Qingkuan, Zhang Xiangru, Fan Qishun, Wang Jianping, Du Yongsheng, Ma Yunqi, Wei Haicheng, Yuan Qin, Shan Fashou. 2020. Origin and recharge model of the Late Cretaceous evaporites in the Khorat Plateau. Ore Geology Reviews, 116: 103226.

    • Qin Zhanjie, Li Qingkuan, Yuan Qin, Li Qiang, He Haifang, Du Yongsheng, Wang Jianping, Shan Fashou, Xue Chaoping. 2023. Discussion on research status and prospects of the Khorat Plateau potash deposit on the basis of the metallogenic system theory. Acta Geologica Sinica, 97(2): 596~612 (in Chinese with English abstract).

    • Qu Yihua. 1982. Deep brines-A new origin of potash deposits. Mineralogy and Petrology, 2(1): 7~14 (in Chinese with English abstract).

    • Racey A. 2009. Mesozoic red bed sequences from SE Asia and the significance of theKhorat Group of NE Thailand. Geological Society of London Special Publications, 315(1), 41~67.

    • Racey A, Goodall J G. 2009. Palynology and stratigraphy of the Mesozoic Khorat Group red bed sequences from Thailand. Geological Society of London Special Publications, 315(1): 69~83.

    • Ratanajaruraks P. 1990. Formation of the potash deposits, Khorat Plateau, Thailand. New South Wales: University of New South Wales, 1~258.

    • Satarugsa P, Youngmee W, Meesawat S. 2005. New regional boundary of Maha Sarakham Formation in the northeastern Thailand: Results from 2D seismic mapping. International Conference on Geology, Geotechnology and Mineral Resources of Indochina, Khon Kaen, 212~220.

    • Shan Fashou, Qin Zhanjie, Fan Qishun, Du Yongsheng, Shan Chengbin, Wang Mingxiang, Wei Haicheng, Li Jiansen, Li Qingkuan. 2018. The “Concave, Mouth and Convex” metallogenic model and prospecting method of potassium salt. Journal of Salt Lake Research, 26(1): 1~6, 31 (in Chinese with English abstract).

    • Shen Lijian, Siritongkham N. 2020. The characteristics, formation and exploration progress of the potash deposits on the Khorat Plateau, Thailand and Laos, Southeast Asia. China Geology, 3(1): 67~82.

    • Shi Guocheng, Lu Yaozu, Xu Xinwen, Kong Xun. 2010. Investigation on the relationship between salt anticline and solid potash deposits: Taking potash deposits of Nongbo basin in Laos as an example. Journal of Qinghai University (Nature Science), 28(6): 69~72, 84 (in Chinese with English abstract).

    • Suwanich P. 1983. Potash and rock salt in Thailand. In: Conference on Geology and Mineral Resources of Thailand. Bangkok, 1~10.

    • Suwanich P. 1986. Potash and rock salt in Thailand. In: Nonmetallic Minerals Bulletin No. 2. Bangkok: Economic Geology Division Department of Mineral Resources, 1~362.

    • Suwanich P, Ratanajaruraks P. 1982. Sequences of rock salt and potash in Thailand. In: Nonmetallic minerals bulletin No. 1. Bangkok: Economic Geology Division Department of Mineral Resources, 1~76.

    • Tan Hongbing, Ma Haizhou, Li Binkai, Zhang Xiying, Xiao Yingkai. 2010. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos. Chinese Science Bulletin, 55(27-28): 3181~3188.

    • Tang Qiliang, Zhang Xiying, Miao Weiliang, Li Yongshou, Li Wenxia, Yuan Xiaolong. 2021. Correlatiion of water-insoluble minerals in different potash forming areas of the Vientiane basin and its indicative significance. Acta Geologica Sinica, 95(7): 2214~2224 (in Chinese with English abstract).

    • Timofeeff M N, Lowenstein T K, da Silva M A M, Harris N B. 2006. Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites. Geochimica et Cosmochimica Acta, 70(8): 1977~1994.

    • Wang Licheng, Liu Chenglin, Shen Lijian, Bo Ying. 2018. Research advances in potash forming of the Simao Basin, eastern Tethyan realm. Acta Geologica Sinica, 92(8): 1707~1723 (in Chinese with English abstract).

    • Wang Licheng, Shen Lijian, Liu Chenglin, Ding Lin. 2020. Evolution of the paleo-Mekong River in the Early Cretaceous: Insights from the provenance of sandstones in the Vientiane basin, central Laos. Palaeogeography, Palaeoclimatology, Palaeoecology, 545: 109651.

    • Wang Licheng, Shen Lijian, Liu Chenglin, Chen Ke, Ding Lin, Wang Chengshan. 2021. The Late Cretaceous source-to-sink system at the eastern margin of the Tibetan Plateau: Insights from the provenance of the Lanping basin. Geoscience Frontiers, 12(3): 101102.

    • Wang Licheng, Ding Lin, Garzanti E, Shen Lijian, Nulay P, Siritongkham N. 2022. Mid-Cretaceous drainage reorganization and exorheic to endorheic transition in Southeast Tibet. Sedimentary Geology, 439: 106221.

    • Wang Licheng, Shen Lijian, Liu Chenglin, Siritongkham N. 2023. Formation of marine sylvite on the Khorat Plateau, Southeast Asia: Evidence from B isotopes, trace elements, and petrography. Sedimentary Geology, 444: 106315.

    • Wang Licheng, Garzanti E, Cai Fulong, Zhang Jian, Shen Lijian, Nulay P, Siritongkham N, Ding Lin, Wang Chengshan. 2024. The underestimated role of tectonics in the Mid-Late Cretaceous desertification in SE Asia. The Geological Society of America, 136(1-2): 418~432.

    • Warren J K. 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews, 98(3-4): 217~268.

    • Yan Maodu, Zhang Dawen, Li Minghui. 2021. Research progress and new views on the potash deposits in the Simao and Khorat basins. Earth Science Frontiers, 28(6): 10~28 (in Chinese with English abstract).

    • Yang Qian. 2023. Potash Salt Resources of the World. Kunming: Yunnan Science and Technology Press, 1~736 (in Chinese).

    • Yang Zhenyu, Besse J, Sutheetorn V, Bassoullet J P, Fontaine H, Buffetaut E. 1995. Lower-Middle Jurassic paleomagnetic data from the Mae Sot area (Thailand): Paleogeographic evolution and deformation history of southeastern Asia. Earth and Planetary Science Letters, 136(3-4): 325~341.

    • Yuan Jianqi, Huo Chengyu. 1981. Genesis of the sylvinite deposits in the Charhan Saline Lake, Qinghai Province. Earth Science, (1): 207~213 (in Chinese with English abstract).

    • Yumuang S. 1983. On the Origin of Evaporate Deposits in the Maha Sarakham Formation in Bamnet Narong area, Changwat Chaiyaphum. Bangkok: Chulalongkorn University, 1~308.

    • Zhang Dawen, Yan Maodu, Fang Xiaomin, Yang Yibo, Zhang Tao, Zan Jinbo, Zhang Weilin, Liu Chenglin, Yang Qian. 2018. Magnetostratigraphic study of the potash-bearing strata from drilling core ZK2893 in the Sakhon Nakhon basin, eastern Khorat Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 489: 40~51.

    • Zhang Hua, Liu Chenglin, Zhao Yanjun, Mischke S, Fang Xiaomin, Ding Ting. 2015. Quantitative temperature records of mid Cretaceous hothouse: Evidence from halite fluid inclusions. Palaeogeography, Palaeoclimatology, Palaeoecology, 437: 33~41.

    • Zhang Pengxi. 1987. Salt Lake in Qaidam Basin. Beijing: Science Press, 1~235 (in Chinese).

    • Zhang Xiying. 2012. Constraints of the insoluble minerals on formation of tachyhydrite and evolution of brine in potash deposits of Vientiane basin, Laos. Doctor degree thesis of Chinese Academy of Sciences (in Chinese with English abstract).

    • Zhang Xiying, Ma Haizhou, Tang Qiliang, Li Binkai, Li Tingwei, Li Yongshou, Yuan Xiaolong. 2010. Primary research on origin of tachyhydrite in the Khorat Plateau potash deposit. Mineral Deposits, 29(S1): 397~398 (in Chinese with English abstract).

    • Zhang Xiying, Ma Haizhou, Ma Yunqi, Tang Qiliang, Yuan Xiaolong. 2013. Origin of the Late Cretaceous potash-bearing evaporites in the Vientiane basin of Laos: δ11B evidence from borates. Journal of Asian Earth Sciences, 62: 812~818.

    • Zhang Xiying, Cheng Huaide, Tan Hongbing, Yuan Xiaolong, Li Yongshou, Miao Weiliang, Li Tingwei, Ma Haizhou. 2015. Late Cretaceous potash evaporites in Savannakhet basin of middle Laos: Geochemical evidence of non-marine inputs. Acta Petrologica Sinica, 31(9): 2783~2793 (in Chinese with English abstract).

    • Zheng Mianping, Zhang Zhen, Yin Hongwei, Tan Xiaohong, Yu Changqing, Shi Linfeng, Zhang Xuefei, Yang Jianxu, Jiao Jian, Wu Guopeng. 2014. A new viewpoint concerning the formation of the Mengyejing potash deposit in Jiangcheng, Yunnan. Acta Geoscientica Sinica, 35(1): 11~24 (in Chinese with English abstract).

    • Zhong Xiaoyong, Yuan Qin, QinZhanjie, Wei Haicheng, Shan Fashou. 2012. The sporo-pollen analyses and ore-forming age of Nong Bok Formation in Khammouane, Laos. Acta Geoscientica Sinica, 33(3): 323~330 (in Chinese with English abstract).

    • 方龙, 秦占杰, 石国成, 李庆宽, 朱登贤, 李强, 都永生, 袁秦, 张西营, 山发寿. 2024. 泰国暖颂钾盐矿床粗粒岩盐沉积特征及其成因研究. 盐湖研究, 32(1): 107~119.

    • 韩元红, 马海州, 张西营, 王琪, 罗厚勇, 李建森, 廖朋, 朱军. 2015. 老挝龙湖钾盐矿床沉积碳酸盐碳、氧同位素组成及其对成钾环境的初步指示. 大地构造与成矿学, 39(2): 334~343.

    • 李江海, 王洪浩, 周肖贝, 李洪林, 马丽亚, 李维波, 刘仲兰, 张华添, 许丽. 2015. 盐构造. 北京: 科学出版社, 1~264.

    • 梁光河, 徐兴旺. 2022. 老挝万象凹陷钾盐矿床变形改造富集模式. 地球科学, 47(1): 136~148.

    • 刘成林, 焦鹏程, 孙小虹, 吕凤琳, 张华. 2018b. 罗布泊盐湖成钾规律研究与找矿进展. 地质学报, 92(8): 1551~1570.

    • 罗婷, 张永庆, 郑明贵, 董娟. 2022. 中国钾盐资源安全评估与预警研究. 地球科学进展, 37(6): 575~587.

    • 马海州, 李永寿, 程怀德, 秦西伟, 张西营, 苗卫良, 许建新, 李斌凯, 海擎宇. 2019. 昌都-兰坪-呵叻成盐带白垩纪成盐成钾过程. 盐湖研究, 27(1): 1~11.

    • 钱自强, 曲懿华, 刘群. 1994. 钾盐矿床. 北京: 地质出版社, 1~273.

    • 秦占杰. 2019. 呵叻高原钾盐矿床物源及其沉积演化的地球化学研究. 中国科学院大学博士学位论文, 1~172.

    • 秦占杰, 袁秦, 魏海成, 盛淑蓉, 山发寿. 2013. 老挝甘蒙省晚白垩世农波组孢粉组合及其对成盐环境的指示意义. 地球学报, 34(5): 638~642.

    • 秦占杰, 李庆宽, 袁秦, 李强, 何海芳, 都永生, 王建萍, 山发寿, 薛超平. 2023. 成矿系统理论视角下的呵叻高原钾盐矿床研究现状及展望. 地质学报, 97(2): 596~612.

    • 曲懿华. 1982. 钾盐矿床母液来源的新途径——深卤补给. 矿物岩石, 2(1): 7~14.

    • 山发寿, 秦占杰, 樊启顺, 都永生, 山成彬, 王明祥, 魏海成, 李建森, 李庆宽. 2018. “凹口凸”钾盐成矿模式与找钾方法. 盐湖研究, 26(1): 1~6.

    • 石国成, 路耀祖, 徐新文, 孔逊. 2010. 试探盐背斜与固体钾盐矿的关系——以老挝农波盆地钾盐矿为例. 青海大学学报(自然科学版), 28(6): 69~72, 84.

    • 唐启亮, 张西营, 苗卫良, 李永寿, 李雯霞, 袁小龙. 2021. 万象盆地不同成钾区的水不溶矿物对比及其指示意义. 地质学报, 95(7): 2214~2224.

    • 王立成, 刘成林, 沈立建, 伯英. 2018. 东特提斯域思茅盆地钾盐成矿研究进展. 地质学报, 92(8): 1707~1723.

    • 颜茂都, 张大文, 李明慧. 2021. 思茅和呵叻盆地钾盐矿研究新进展和新认识. 地学前缘(中国地质大学(北京);北京大学), 28(6): 10~28.

    • 杨谦. 2023. 世界钾盐资源. 昆明: 云南科技出版社, 1~736.

    • 袁见齐, 霍承禹. 1981. 青海察尔汗盐湖钾盐矿床成因的若干问题. 地球科学, 6(1): 207~213.

    • 张彭熹. 1987. 柴达木盆地盐湖. 北京: 科学出版社, 1~235.

    • 张西营. 2012. 老挝万象盆地钾盐矿床水不溶物对溢晶石形成和卤水演化的制约. 中国科学院博士学位论文, 1~107.

    • 张西营, 马海州, 唐启亮, 李斌凯, 李廷伟, 李永寿, 袁小龙. 2010. 呵叻高原钾盐矿床溢晶石成因初步研究. 矿床地质, 29(S1): 397~398.

    • 张西营, 程怀德, 谭红兵, 袁小龙, 李永寿, 苗卫良, 李廷伟, 马海州. 2015. 老挝中部沙湾拿吉盆地晚白垩世钾盐蒸发岩: 非海相输入的地球化学证据. 岩石学报, 31(9): 2783~2793.

    • 郑绵平, 张震, 尹宏伟, 谭筱虹, 于常青, 施林峰, 张雪飞, 杨尖絮, 焦建, 武国朋. 2014. 云南江城勐野井钾盐成矿新认识. 地球学报, 35(1): 11~24.

    • 钟晓勇, 袁秦, 秦占杰, 魏海成, 山发寿. 2012. 老挝甘蒙省晚白垩世农波组下段孢粉分析及成钾时代. 地球学报, 33(3): 323~330.

  • 参考文献

    • Booth J, Sattayarak N. 2011. Subsurface Carboniferous-Cretaceous geology of NE Thailand. In: Ridd, M F, Barber A J, Crow M J. (Eds. ), The Geology of Thailand. Geological Society London, 184~222.

    • Carter A, Bristow C S. 2003. Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: A study of the Khorat Plateau basin, eastern Thailand. Basin Research, 15(2): 271~285.

    • Carter A, Moss S J. 1999. Combined detrital-zircon fission-track and U-Pb dating: A new approach to understanding hinterland evolution. Geology, 27(3): 235~238.

    • Cooper M A, Herbert R, Hel G S. 1989. The structural evolution of Triassic intermontane basins in Northeastern Thailand. In: Thanasuthipitak T, Ounchanum P (Eds. ), Proc. of International Symposium on Intermontane Basins: Geology and Resources, Chiang Mai: 231~242.

    • El Tabakh M, Utha-Aroon C, Schreiber B C. 1999. Sedimentology of the Cretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand. Sedimentary Geology, 123(1-2): 31~62.

    • Fang Long, Qin Zhanjie, Shi Guocheng, Li Qingkuan, Zhu Dengxian, Li Qiang, Du Yongsheng, Yuan Qin, Zhang Xiying, Shan Fashou. 2024. Characteristics and origin of coarse halite in the first sedimentary cycle of the potash deposit, Non Sung district, Nakhon Ratchasima province, Thailand. Journal of Salt Lake Research, 32(1): 107~119 (in Chinese with English abstract).

    • Garrett D E. 1996. Potash Deposits, Processing, Properties and Uses. London: Chapman & Hall, 1~734.

    • Han Yuanhong, Ma Haizhou, Zhang Xiying, Wang Qi, Luo Houyong, Li Jiansen, Liao Peng, Zhu Jun. 2015. Carbon and oxygen isotopic constraint on the sedimentary environment and formation mechanism of the Longhu Potash Deposit, Laos. Geotectonica et Metallogenia, 39(2): 334~343 (in Chinese with English abstract).

    • Hansen B T, Wemmer K, Eckhardt M, Putthapiban P, Assavapatchara S. 2016. Isotope dating of the potash and rock salt deposit at Bamnet Narong, NE-Thailand. Open Journal of Geology, 6(8): 875~894.

    • Hara H, Kon Y, Usuki T, Lan C Y, Kamata Y, Hisada K I, Ueno K, Charoentitirat T, Charusiri P. 2013. U-Pb ages of detrital zircons within the Inthanon Zone of the Paleo-Tethyan subduction zone, northern Thailand: New constraints on accretionary age and arc activity. Journal of Asian Earth Sciences, 74, 50~61.

    • Harris R W. 1977. Paleontology of the Phu Horm-1 Well. In: Open File Report by Harris R W. of ESSO. Bangkok: Department of Mineral Resources.

    • Hite R J. 1982. Progress report on the potash deposits of theKhorat Plateau, Thailand. In: United States Department of the Interior Geological Survey. Project Report Thailand Investigation (IR) TH-25, 1~70.

    • Hite R J, Japakasetr T. 1979. Potash deposits of the Khorat Plateau, Thailand and Laos. Economic Geology, 74(2): 448~458.

    • Li Jianghai, Wang Honghao, Zhou Xiaobei, Li Honglin, Ma Liya, Li Weibo, Liu Zhonglan, Zhang Huatian, Xu Li. 2015. Salt Tectonics, Beijing: Science Press, 1~264 (in Chinese).

    • Li Minghui, Yan Maodu, Fang Xiaomin, Zhang Zengjie, Wang Zhengrong, Sun Shurui, Li Jiao, Liu Xiaoming. 2018. Origins of the Mid-Cretaceous evaporite deposits of the Sakhon Nakhon basin in Laos: Evidence from the stable isotopes of halite. Journal of Geochemical Exploration, 184: 209~222.

    • Li Qingkuan, Zhang Xiangru, Fan Qishun, Qin Zhanjie, Wang Jianping, Shan Fashou. 2020. Influence of non-marine fluid inputs on potash deposits in northeastern Thailand: Evidence from δ37Cl value and Br/Cl ratio of halite. Carbonates and Evaporites, 35(11): 11.

    • Liang Guanghe, Xu Xingwang. 2022. Potash deformation and enrichment modes in Vientiane Sag, Laos. Earth Science, 47(1): 136~148 (in Chinese with English abstract).

    • Liu Chenglin, Wang Licheng, Yan Maodu, Zhao Yanjun, Cao Yangtong, Fang Xiaomin, Shen Lijian, Wu Chihua, Lv Fenglin, Ding Ting. 2018a. The Mesozoic-Cenozoic tectonic settings, paleogeography and evaporitic sedimentation of Tethyan blocks within China: Implications for potash formation. Ore Geology Reviews, 102: 406~425.

    • Liu Chenglin, Jiao Pengcheng, Sun Xiaohong, Lv Fenglin, Zhang Hua. 2018b. Research on potash forming and exploration progress in potash deposits in the Lop Nur Salt Lake. Acta Geologica Sinica, 92(8): 1551~1570 (in Chinese with English abstract).

    • Lovatt Smith P F, Stokes R B. 1997. Geology and petroleum potential of theKhorat Plateau basin in the Vientiane area of Lao P. D. R. Journal of Petroleum Geology, 20(1): 27~49.

    • Luo Ting, Zhang Yongqing, Zheng Minggui, Dong Juan. 2022. Security assessment and early warning of potash resources in China. Advances in Earth Science, 37(6): 575~587 (in Chinese with English abstract).

    • Ma Haizhou, Li Yongshou, Cheng Huaide, Qin Xiwei, Zhang Xiying, Miao Weiliang, Xu Jianxin, Li Binkai, Hai Qingyu. 2019. Metallogenic model and process of the Ctetaceous potassium-bearing evaporites involving Changdu, Lanping-Simao and Khorat basin. Journal of Salt Lake Research, 27(1): 1~11 (in Chinese with English abstract).

    • Metcalfe I. 2011. Tectonic framework and Phanerozoic evolution ofSundaland. Gondwana Research, 19(1): 3~21.

    • Morley C K. 2012. Late Cretaceous-EarlyPalaeogene tectonic development of SE Asia. Earth-Science Reviews, 115(1-2): 37~75.

    • Pisutha A V, Chiba H, Yumuang S. 1986. A preliminary sulphur and oxygen isotope study of the Maha Sarakham evaporitic anhydrite from Bamnet Narong Area of NE Thailand.

    • Bulleit of the Geological Souiety of Malaysia, 19: 209~222.

    • Qian Ziqiang, Qu Yihua, Liu Qun. 1994. Potash Deposits. Beijing: Geological Publishing House, 1~273 (in Chinese).

    • Qin Zhanjie. 2019. Geochemical research on the provenance and sedimentary characteristics of potash deposits in the Khorat Plateau. Doctov degree thesis of University of Chinese Academy of Sciences (in Chinese with English abstract).

    • Qin Zhanjie, Yuan Qin, Wei Haicheng, Sheng Shurong, Shan Fashou. 2013. Sporo-pollen assemblages of the Late Cretaceous Nong Bok formation in Khammouane, Laos, and their environmental significance for salt formation. Acta Geoscientica Sinica, 34(5): 638~642 (in Chinese with English abstract).

    • Qin Zhanjie, Li Qingkuan, Zhang Xiangru, Fan Qishun, Wang Jianping, Du Yongsheng, Ma Yunqi, Wei Haicheng, Yuan Qin, Shan Fashou. 2020. Origin and recharge model of the Late Cretaceous evaporites in the Khorat Plateau. Ore Geology Reviews, 116: 103226.

    • Qin Zhanjie, Li Qingkuan, Yuan Qin, Li Qiang, He Haifang, Du Yongsheng, Wang Jianping, Shan Fashou, Xue Chaoping. 2023. Discussion on research status and prospects of the Khorat Plateau potash deposit on the basis of the metallogenic system theory. Acta Geologica Sinica, 97(2): 596~612 (in Chinese with English abstract).

    • Qu Yihua. 1982. Deep brines-A new origin of potash deposits. Mineralogy and Petrology, 2(1): 7~14 (in Chinese with English abstract).

    • Racey A. 2009. Mesozoic red bed sequences from SE Asia and the significance of theKhorat Group of NE Thailand. Geological Society of London Special Publications, 315(1), 41~67.

    • Racey A, Goodall J G. 2009. Palynology and stratigraphy of the Mesozoic Khorat Group red bed sequences from Thailand. Geological Society of London Special Publications, 315(1): 69~83.

    • Ratanajaruraks P. 1990. Formation of the potash deposits, Khorat Plateau, Thailand. New South Wales: University of New South Wales, 1~258.

    • Satarugsa P, Youngmee W, Meesawat S. 2005. New regional boundary of Maha Sarakham Formation in the northeastern Thailand: Results from 2D seismic mapping. International Conference on Geology, Geotechnology and Mineral Resources of Indochina, Khon Kaen, 212~220.

    • Shan Fashou, Qin Zhanjie, Fan Qishun, Du Yongsheng, Shan Chengbin, Wang Mingxiang, Wei Haicheng, Li Jiansen, Li Qingkuan. 2018. The “Concave, Mouth and Convex” metallogenic model and prospecting method of potassium salt. Journal of Salt Lake Research, 26(1): 1~6, 31 (in Chinese with English abstract).

    • Shen Lijian, Siritongkham N. 2020. The characteristics, formation and exploration progress of the potash deposits on the Khorat Plateau, Thailand and Laos, Southeast Asia. China Geology, 3(1): 67~82.

    • Shi Guocheng, Lu Yaozu, Xu Xinwen, Kong Xun. 2010. Investigation on the relationship between salt anticline and solid potash deposits: Taking potash deposits of Nongbo basin in Laos as an example. Journal of Qinghai University (Nature Science), 28(6): 69~72, 84 (in Chinese with English abstract).

    • Suwanich P. 1983. Potash and rock salt in Thailand. In: Conference on Geology and Mineral Resources of Thailand. Bangkok, 1~10.

    • Suwanich P. 1986. Potash and rock salt in Thailand. In: Nonmetallic Minerals Bulletin No. 2. Bangkok: Economic Geology Division Department of Mineral Resources, 1~362.

    • Suwanich P, Ratanajaruraks P. 1982. Sequences of rock salt and potash in Thailand. In: Nonmetallic minerals bulletin No. 1. Bangkok: Economic Geology Division Department of Mineral Resources, 1~76.

    • Tan Hongbing, Ma Haizhou, Li Binkai, Zhang Xiying, Xiao Yingkai. 2010. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos. Chinese Science Bulletin, 55(27-28): 3181~3188.

    • Tang Qiliang, Zhang Xiying, Miao Weiliang, Li Yongshou, Li Wenxia, Yuan Xiaolong. 2021. Correlatiion of water-insoluble minerals in different potash forming areas of the Vientiane basin and its indicative significance. Acta Geologica Sinica, 95(7): 2214~2224 (in Chinese with English abstract).

    • Timofeeff M N, Lowenstein T K, da Silva M A M, Harris N B. 2006. Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites. Geochimica et Cosmochimica Acta, 70(8): 1977~1994.

    • Wang Licheng, Liu Chenglin, Shen Lijian, Bo Ying. 2018. Research advances in potash forming of the Simao Basin, eastern Tethyan realm. Acta Geologica Sinica, 92(8): 1707~1723 (in Chinese with English abstract).

    • Wang Licheng, Shen Lijian, Liu Chenglin, Ding Lin. 2020. Evolution of the paleo-Mekong River in the Early Cretaceous: Insights from the provenance of sandstones in the Vientiane basin, central Laos. Palaeogeography, Palaeoclimatology, Palaeoecology, 545: 109651.

    • Wang Licheng, Shen Lijian, Liu Chenglin, Chen Ke, Ding Lin, Wang Chengshan. 2021. The Late Cretaceous source-to-sink system at the eastern margin of the Tibetan Plateau: Insights from the provenance of the Lanping basin. Geoscience Frontiers, 12(3): 101102.

    • Wang Licheng, Ding Lin, Garzanti E, Shen Lijian, Nulay P, Siritongkham N. 2022. Mid-Cretaceous drainage reorganization and exorheic to endorheic transition in Southeast Tibet. Sedimentary Geology, 439: 106221.

    • Wang Licheng, Shen Lijian, Liu Chenglin, Siritongkham N. 2023. Formation of marine sylvite on the Khorat Plateau, Southeast Asia: Evidence from B isotopes, trace elements, and petrography. Sedimentary Geology, 444: 106315.

    • Wang Licheng, Garzanti E, Cai Fulong, Zhang Jian, Shen Lijian, Nulay P, Siritongkham N, Ding Lin, Wang Chengshan. 2024. The underestimated role of tectonics in the Mid-Late Cretaceous desertification in SE Asia. The Geological Society of America, 136(1-2): 418~432.

    • Warren J K. 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews, 98(3-4): 217~268.

    • Yan Maodu, Zhang Dawen, Li Minghui. 2021. Research progress and new views on the potash deposits in the Simao and Khorat basins. Earth Science Frontiers, 28(6): 10~28 (in Chinese with English abstract).

    • Yang Qian. 2023. Potash Salt Resources of the World. Kunming: Yunnan Science and Technology Press, 1~736 (in Chinese).

    • Yang Zhenyu, Besse J, Sutheetorn V, Bassoullet J P, Fontaine H, Buffetaut E. 1995. Lower-Middle Jurassic paleomagnetic data from the Mae Sot area (Thailand): Paleogeographic evolution and deformation history of southeastern Asia. Earth and Planetary Science Letters, 136(3-4): 325~341.

    • Yuan Jianqi, Huo Chengyu. 1981. Genesis of the sylvinite deposits in the Charhan Saline Lake, Qinghai Province. Earth Science, (1): 207~213 (in Chinese with English abstract).

    • Yumuang S. 1983. On the Origin of Evaporate Deposits in the Maha Sarakham Formation in Bamnet Narong area, Changwat Chaiyaphum. Bangkok: Chulalongkorn University, 1~308.

    • Zhang Dawen, Yan Maodu, Fang Xiaomin, Yang Yibo, Zhang Tao, Zan Jinbo, Zhang Weilin, Liu Chenglin, Yang Qian. 2018. Magnetostratigraphic study of the potash-bearing strata from drilling core ZK2893 in the Sakhon Nakhon basin, eastern Khorat Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 489: 40~51.

    • Zhang Hua, Liu Chenglin, Zhao Yanjun, Mischke S, Fang Xiaomin, Ding Ting. 2015. Quantitative temperature records of mid Cretaceous hothouse: Evidence from halite fluid inclusions. Palaeogeography, Palaeoclimatology, Palaeoecology, 437: 33~41.

    • Zhang Pengxi. 1987. Salt Lake in Qaidam Basin. Beijing: Science Press, 1~235 (in Chinese).

    • Zhang Xiying. 2012. Constraints of the insoluble minerals on formation of tachyhydrite and evolution of brine in potash deposits of Vientiane basin, Laos. Doctor degree thesis of Chinese Academy of Sciences (in Chinese with English abstract).

    • Zhang Xiying, Ma Haizhou, Tang Qiliang, Li Binkai, Li Tingwei, Li Yongshou, Yuan Xiaolong. 2010. Primary research on origin of tachyhydrite in the Khorat Plateau potash deposit. Mineral Deposits, 29(S1): 397~398 (in Chinese with English abstract).

    • Zhang Xiying, Ma Haizhou, Ma Yunqi, Tang Qiliang, Yuan Xiaolong. 2013. Origin of the Late Cretaceous potash-bearing evaporites in the Vientiane basin of Laos: δ11B evidence from borates. Journal of Asian Earth Sciences, 62: 812~818.

    • Zhang Xiying, Cheng Huaide, Tan Hongbing, Yuan Xiaolong, Li Yongshou, Miao Weiliang, Li Tingwei, Ma Haizhou. 2015. Late Cretaceous potash evaporites in Savannakhet basin of middle Laos: Geochemical evidence of non-marine inputs. Acta Petrologica Sinica, 31(9): 2783~2793 (in Chinese with English abstract).

    • Zheng Mianping, Zhang Zhen, Yin Hongwei, Tan Xiaohong, Yu Changqing, Shi Linfeng, Zhang Xuefei, Yang Jianxu, Jiao Jian, Wu Guopeng. 2014. A new viewpoint concerning the formation of the Mengyejing potash deposit in Jiangcheng, Yunnan. Acta Geoscientica Sinica, 35(1): 11~24 (in Chinese with English abstract).

    • Zhong Xiaoyong, Yuan Qin, QinZhanjie, Wei Haicheng, Shan Fashou. 2012. The sporo-pollen analyses and ore-forming age of Nong Bok Formation in Khammouane, Laos. Acta Geoscientica Sinica, 33(3): 323~330 (in Chinese with English abstract).

    • 方龙, 秦占杰, 石国成, 李庆宽, 朱登贤, 李强, 都永生, 袁秦, 张西营, 山发寿. 2024. 泰国暖颂钾盐矿床粗粒岩盐沉积特征及其成因研究. 盐湖研究, 32(1): 107~119.

    • 韩元红, 马海州, 张西营, 王琪, 罗厚勇, 李建森, 廖朋, 朱军. 2015. 老挝龙湖钾盐矿床沉积碳酸盐碳、氧同位素组成及其对成钾环境的初步指示. 大地构造与成矿学, 39(2): 334~343.

    • 李江海, 王洪浩, 周肖贝, 李洪林, 马丽亚, 李维波, 刘仲兰, 张华添, 许丽. 2015. 盐构造. 北京: 科学出版社, 1~264.

    • 梁光河, 徐兴旺. 2022. 老挝万象凹陷钾盐矿床变形改造富集模式. 地球科学, 47(1): 136~148.

    • 刘成林, 焦鹏程, 孙小虹, 吕凤琳, 张华. 2018b. 罗布泊盐湖成钾规律研究与找矿进展. 地质学报, 92(8): 1551~1570.

    • 罗婷, 张永庆, 郑明贵, 董娟. 2022. 中国钾盐资源安全评估与预警研究. 地球科学进展, 37(6): 575~587.

    • 马海州, 李永寿, 程怀德, 秦西伟, 张西营, 苗卫良, 许建新, 李斌凯, 海擎宇. 2019. 昌都-兰坪-呵叻成盐带白垩纪成盐成钾过程. 盐湖研究, 27(1): 1~11.

    • 钱自强, 曲懿华, 刘群. 1994. 钾盐矿床. 北京: 地质出版社, 1~273.

    • 秦占杰. 2019. 呵叻高原钾盐矿床物源及其沉积演化的地球化学研究. 中国科学院大学博士学位论文, 1~172.

    • 秦占杰, 袁秦, 魏海成, 盛淑蓉, 山发寿. 2013. 老挝甘蒙省晚白垩世农波组孢粉组合及其对成盐环境的指示意义. 地球学报, 34(5): 638~642.

    • 秦占杰, 李庆宽, 袁秦, 李强, 何海芳, 都永生, 王建萍, 山发寿, 薛超平. 2023. 成矿系统理论视角下的呵叻高原钾盐矿床研究现状及展望. 地质学报, 97(2): 596~612.

    • 曲懿华. 1982. 钾盐矿床母液来源的新途径——深卤补给. 矿物岩石, 2(1): 7~14.

    • 山发寿, 秦占杰, 樊启顺, 都永生, 山成彬, 王明祥, 魏海成, 李建森, 李庆宽. 2018. “凹口凸”钾盐成矿模式与找钾方法. 盐湖研究, 26(1): 1~6.

    • 石国成, 路耀祖, 徐新文, 孔逊. 2010. 试探盐背斜与固体钾盐矿的关系——以老挝农波盆地钾盐矿为例. 青海大学学报(自然科学版), 28(6): 69~72, 84.

    • 唐启亮, 张西营, 苗卫良, 李永寿, 李雯霞, 袁小龙. 2021. 万象盆地不同成钾区的水不溶矿物对比及其指示意义. 地质学报, 95(7): 2214~2224.

    • 王立成, 刘成林, 沈立建, 伯英. 2018. 东特提斯域思茅盆地钾盐成矿研究进展. 地质学报, 92(8): 1707~1723.

    • 颜茂都, 张大文, 李明慧. 2021. 思茅和呵叻盆地钾盐矿研究新进展和新认识. 地学前缘(中国地质大学(北京);北京大学), 28(6): 10~28.

    • 杨谦. 2023. 世界钾盐资源. 昆明: 云南科技出版社, 1~736.

    • 袁见齐, 霍承禹. 1981. 青海察尔汗盐湖钾盐矿床成因的若干问题. 地球科学, 6(1): 207~213.

    • 张彭熹. 1987. 柴达木盆地盐湖. 北京: 科学出版社, 1~235.

    • 张西营. 2012. 老挝万象盆地钾盐矿床水不溶物对溢晶石形成和卤水演化的制约. 中国科学院博士学位论文, 1~107.

    • 张西营, 马海州, 唐启亮, 李斌凯, 李廷伟, 李永寿, 袁小龙. 2010. 呵叻高原钾盐矿床溢晶石成因初步研究. 矿床地质, 29(S1): 397~398.

    • 张西营, 程怀德, 谭红兵, 袁小龙, 李永寿, 苗卫良, 李廷伟, 马海州. 2015. 老挝中部沙湾拿吉盆地晚白垩世钾盐蒸发岩: 非海相输入的地球化学证据. 岩石学报, 31(9): 2783~2793.

    • 郑绵平, 张震, 尹宏伟, 谭筱虹, 于常青, 施林峰, 张雪飞, 杨尖絮, 焦建, 武国朋. 2014. 云南江城勐野井钾盐成矿新认识. 地球学报, 35(1): 11~24.

    • 钟晓勇, 袁秦, 秦占杰, 魏海成, 山发寿. 2012. 老挝甘蒙省晚白垩世农波组下段孢粉分析及成钾时代. 地球学报, 33(3): 323~330.