上扬子地块雪峰陆内无序冲断构造与陆相湖盆演化
doi: 10.19762/j.cnki.dizhixuebao.2024151
邓宾1 , 徐宏远1 , 李英强2 , 涂国煜1 , 姜磊1 , 李智2 , 刘重江1 , 何泽亮1 , 雍自权1 , 刘树根1
1. 成都理工大学“油气藏地质及开发工程”国家重点实验室,四川成都, 610059
2. 中国石化石油勘探开发研究院,北京, 100083
基金项目: 本文为省科技厅创新团队项目(编号 2022JDRC0001)及国家自然科学基金项目(编号42230310)联合资助的成果
The out-of-sequence deformation in the Xuefeng intracontinental fold and thrust belt and evolution of Paleo-Yangtze lacustrine basin
DENG Bin1 , XU Hongyuan1 , LI Yingqiang2 , TU Guoyu1 , JIANG Lei1 , LI Zhi2 , LIU Chongjiang1 , HE Zeliang1 , YONG Ziquan1 , LIU Shugen1
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, Sichuan 610059 , China
2. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083 , China
摘要
褶皱冲断带-前陆盆地系统普遍受控于浅表构造剥蚀-沉积作用过程及其相关耦合机制,从而具有复杂的三维空间构造变形特征与演化过程。上扬子地块雪峰陆内褶皱冲断带,受板块碰撞的远源效应影响下,形成了无序的冲断构造。本文基于研究区内边界主断裂带构造解析、断层方解石U-Pb年代学以及对地震剖面的构造解释,对雪峰陆内褶皱冲断带的变形过程进行了梳理:① 晚三叠世—早侏罗世(200 Ma),初步发生陆内褶皱冲断变形,慈利-保靖断裂开始活动;② 晚侏罗世—早白垩世(160~120 Ma),多层系滑脱致使冲断变形扩展至鄂渝湘黔地区,此时建始-彭水断裂开始活动;③ 晚白垩世—早古近纪(71~52 Ma),恩施-酉阳、鹤峰-来凤断裂开始活动,进一步发生挤压褶皱冲断变形作用。断层年代学与研究区内变形应力场特征共同揭示雪峰陆内冲断系统印支期前展式冲断扩展变形过程、燕山期背驼式构造变形过程,共同形成了扬子陆块内部低楔顶角角度、宽变形域前陆冲断带结构特征,控制着上扬子地块古扬子陆相湖盆形成演化过程。
Abstract
The fold-thrust belt foreland basin system is generally controlled by the process of shallow tectonic denudation-sedimentation and its related coupling mechanism, so it has complex three-dimensional tectonic deformation characteristics and evolution process. Under the remote effect of plate collision, out-of-sequence structures were formed in Xuefeng intracontinental fold and thrust belt in Upper Yangtze block. Based on the structural analysis of deep and large fault zones in the study area, fault calcite U-Pb chronology and deep structural interpretation of seismic profiles, the deformation process of Xuefeng intracontinental fold and thrust belt is reviewed. ① In the Late Triassic to Early Jurassic (200Ma), the intracontinental fold thrust deformation occurred initially, and the Cili-Baojing fault began to move. ② In the Late Jurassic and Early Cretaceous (160~120 Ma), the multi-layer system slip caused the thrust deformation to extend to the Hubei, Chongqing, Hunan and Guizhou regions, and Jianshi-Pengshui fault began to move. ③ In the Late Cretaceous-Early Palaeo-Modern period (71~52 Ma), the Enshi-Youyang and Hefeng-Laifeng faults began to move, and further extrusion folding and thrust-deformation occurred. The fault chronology and the deformation stress field in the study area jointly reveal the process of the Xuefeng intracontinental thrust system showing overthrust deformation before the Indochinese period and the back-camel structure deformation during the Yanshan period, which together form the structural characteristics of the foreland thrust belt with low wedge top angle and wide deformation area in the Yangtze landmass, and control the formation and evolution of the ancient Yangtze continental lake basin in the Upper Yangtze block.
褶皱冲断带形成演化普遍伴随大规模褶皱冲断与构造变形作用,导致地壳缩短增厚、前陆坳陷或盆地挠曲沉降等,其构造抬升剥蚀-沉积沉降耦合机制控制着褶皱冲断带-前陆盆地系统构造变形样式和演化过程等(Erdo et al.,2015;Butler,2020邓宾等,2022)。因此,褶皱冲断带浅表构造作用过程及其特征研究,对于我们理解大型盆地构造演化过程和基础油气地质条件等具有重要意义。上扬子地块雪峰陆内褶皱冲断带中—新生代经历了滨太平洋构造域和特提斯构造域的动态转换过程(Li Zhenghua and Li Xianhua,2007;张国伟等,2013Li Sanzhong et al.,2017Xu Xianbing,2023)。受控于太平洋板块向华南大陆长距离俯冲作用和雪峰陆内造山作用动力学过程,雪峰基底隆起带西侧形成了上扬子地块川东、鄂、渝、湘、黔地区广阔的陆内褶皱冲断构造变形带,控制着中国华南大陆构造基本几何学结构和油气地质特征等(马力等,2004丁道桂等,2007张国伟等,2013)。
因此,本文以上扬子地块雪峰陆内褶皱冲断构造带为研究目标,以野外构造解析为基础开展地震-地质和断层方解石U-Pb年代学等研究,结合前人研究成果论述雪峰陆内褶皱冲断构造带中—新生代冲断构造演化过程及其对大型陆内盆地形成过程的控制影响作用。
1 区域地质特征
受控于周缘板块联合复合作用下,雪峰陆内构造带或陆内(褶皱)冲断带系统形成于华南板块内部扬子和华夏陆块相互作用,具有多滑脱层系、长距离扩展传播、走向范围广泛等显著特征(马力等,2004Wang Qiang et al.,2005; Li Zhengxiang and Li Xianhua.,2007;汪新伟等,2010张国伟等,2013Xu Xianbing,2023)。其西以华蓥山断裂与川中隆起分隔、南以慈利-保靖断裂与雪峰基底隆起带分隔、西南以紫云-罗甸断裂与川滇构造带衔接(图1)。现今区域构造由一系列指向NW的逆冲构造、复式背斜带和向斜带组成,由南向北表现为NE走向至EW走向的弧形构造系统(图1),由鄂渝湘黔基底穹隆构造带、鄂渝湘黔隔槽式构造带和川东隔档式构造带组成。它们进一步受控于边界断裂,如:齐岳山断裂、建始-彭水断裂、恩施-酉阳断裂和鹤峰-来凤断裂等,可以划分为万县-方斗山-石柱复背斜/向斜带、利川构造带、恩施构造带(即中央背斜带)、宜恩构造带(即花果坪复向斜)、南北镇构造带(即宜都-鹤峰背斜带)和桑植构造带等8个构造亚带(图2)(马力等,2004张国伟等,2013颜丹平等,2018)。
1扬子板块雪峰陆内构造带(陆内褶皱冲断带系统)区域地质特征简图
Fig.1Geological map of the Xuefeng intracontinental FTB (fold-and-thrust belt) system in the Yangtze block
川东隔档式构造带属于四川盆地东部褶皱带,具背斜狭窄、向斜宽缓典型滑脱构造变形特征,其背斜带通常为中下三叠统组成呈NE走向的梳状高陡背斜,两翼发育NE走向的近于平行NW向或SE向逆冲断层,断层牵引形成各式背斜、断鼻和断块等潜伏构造,受控于中下三叠统膏岩滑脱层系滑脱构造变形复杂;复向斜则宽缓,以中侏罗统为主,其构造样式相对简单(图3a)。鄂渝湘黔隔槽式构造带呈现为背斜宽、向斜窄典型滑脱箱状特征,其背斜核部多出露寒武系—奥陶系组成宽大箱状高陡背斜带,向斜核部主要为中下三叠统组成的紧闭向斜带,局部构造呈NE走向斜列展布。根据卷入地层构造变形特征差异性,川东隔档式构造带可能受志留系滑脱层构造滑脱变形作用控制,而东部隔槽式构造带可能受控于基底滑脱层控制,它们都属于典型的滑脱褶皱带构造变形样式(颜丹平等,2003汪新伟等,2010柏道远等,2015Yan Danping et al.,2016)。鄂渝湘黔基底穹隆构造带总体上以典型滑脱箱状构造变形特征为主,具典型厚皮构造变形特征,受控于秦岭造山带影响导致NE走向斜列展布构造带发育,如:桑植构造带,发育晚期拉张构造成因的山间小型断陷盆地(来凤盆地等),体现为鄂渝湘黔隔槽式构造带与雪峰基底隆起带的过渡带。
研究区最老层系为出露于鄂渝湘黔基底穹隆构造带的新元古界板溪群,它是一套紫红色与灰绿色层状杂砂岩-板岩组成的浅变质基底层系。区内大面积出露的海相盖层由震旦系—中三叠统碳酸盐岩和碎屑岩层系组成,下古生界主要为黑色页岩、碳酸盐岩和粉砂岩-页岩地层组成,受加里东期构造运动控制影响导致上古生界大多层系发育不全、与下古生界及其下覆层系呈角度不整合接触关系;上三叠统—上白垩统为陆相碎屑岩层系,上三叠统—上侏罗统为秦岭造山带南缘前陆构造变形沉积层系,广泛出露在鄂渝湘黔隔槽式构造带和川东隔档式构造带地区(马力等,2004)。白垩系红层仅局部出现本地区山间小型盆地,如:正阳盆地、来凤盆地、当阳盆地和沅麻盆地等(图2)。受扬子板块雪峰地区陆内印支期—燕山期SE-NW向扩展构造变形过程控制影响,鄂渝湘黔基底穹隆构造带至川东隔档式构造带具有由南东向北西低温热年代学年龄逐渐减小的特征和卷入地层年龄逐渐变小等趋势特征(图2)(胡召齐等,2009金宠等,2009梅廉夫等,2010);同时新生代受印度-亚洲大陆碰撞及青藏高原东向扩展生长影响,川东隔档式构造带等区带早期构造被晚期构造叠加改造,区域发生快速隆升导致至少2~4 km先存地层发生剥露,形成板内渐变型盆山地貌特征(Deng Bin et al.,2013邓宾等,2015Li Chuanxin et al.,2021; Wu Xiancan et al.,2023)。
2上扬子地块雪峰陆内褶皱冲断带地层格架与年代学特征图
Fig.2Diagrammatic cross section of the Xuefeng intracontinental FTB system in the Yangtze block
由南东向北西构造分带性与地层格架分带性具有一定相似性,同时低温年代学具有逐渐减小变化趋势(部分低温热年代学据梅廉夫等,2010Li Chuanxin et al.,2021; Feng Qianqian et al.,2023编制)
The tectonic zoning from southeast to northwest is similar to the stratigraphic framework zoning, and the low temperature chronology has a decreasing trend (part of the low temperature thermochronology data after Mei Lianfu et al., 2010; Li Chuanxin et al., 2021; Feng Qianqian et al., 2023)
3上扬子地块雪峰陆内褶皱冲断系统典型地震剖面特征图
Fig.3Seismic profiles of the Xuefeng intracontinental FTB system in the Yangtze block
(a、 b)—万县—恩施—桑植—来风地区地震解释剖面;(c)—桑植—江垭地震解释剖面
(a,b)-seismic interpretation profile of Wanxian-Enshi-Sangzhi-Laifeng region;(c)-Sangzhi-Jiangya seismic interpretation profile
2 构造变形特征
2.1 断裂构造变形特征
齐岳山断裂位于川东鄂西渝东地区、沿齐岳山呈NE走向展布,由于重力梯度和航磁特征上其两侧具有一定的差异性,传统上把它作为四川盆地与周缘造山带分界断层。但其两侧石柱复向斜和利川构造带构造变形特征大致相似,为由下侏罗统—中上三叠统构成的宽缓复向斜构造样式,齐岳山背斜构造为典型的滑脱冲断背斜构造(图3a),它们共同构成了受控于中浅层滑脱扩展变形作用的隔档式构造变形样式,其主断层带具有明显的反向冲断构造特征,如:齐岳山断层南段马武坝段、彭水断层金溪段、建始断层梭步垭段、恩施断层北段等。因此,建始-彭水断裂分隔上扬子地块鄂渝隔槽式构造带和川东隔档式构造带,可能为早期的盆地构造边界。
建始-彭水断裂沿建始、利川红椿沟、黔江金溪、彭水地区呈NE走向展布近300 km,总体断面NW倾向,向北至建始地区断面高陡,与恩施-咸丰断层逐渐归并(图1)。断层南段彭水—利川地区断层带切割下古生界,导致奥陶系NW向SE逆冲于志留系中薄层黑色砂泥岩层系之上(图4a),下覆层系逆冲伴生构造特征多样,如:牵引褶皱、轴面劈理、擦痕阶步、断层破碎带等,逆断层下盘向斜构造具有明显的不对称牵引变形特征,褶皱枢纽统计具NE-SW走向特征(点位WPT1084;图4g图5),轴面劈理和节理等具有倾向NW和E-W倾向特征(点位WPT1084和WPT2004;图5),揭示NW-SE向挤压逆冲构造变形特征,它们与擦痕阶步等构造应力分析统计所揭示的受控于NW-SE向挤压应力场特征相一致(图5);尤其断层破碎带常发育构造变形方解石脉体(如:样品S180625-2)(图5a)。
恩施-酉阳断裂沿建始南、恩施东、宜恩、咸丰地区呈NE走向展布近300 km,向南与鹤峰-来凤断裂逐渐归并。鹤峰-来凤断裂沿五峰西、鹤峰、来凤、酉阳地区展布近250~300 km,南段断层面倾向SE,呈NE走向展布与恩施-酉阳断裂归并,常常由多条叠瓦状小断层组成(图4b),发育倾向NW或倾向SE高角度伴生劈理、擦痕、方解石脉体等构造(如:样品S180628-1)。揭示SE-NW向挤压逆冲右旋走滑构造特征(WPT981,图5),如:来凤断层下盘吴家寨地区(点位WPT991,图4c图5)。走滑构造通常伴生部分高角度倾伏不对称褶皱与高角度W倾向节理,如:来凤断层上盘茨竹槽地区等(点位WPT1908)(图5)。鹤峰-来凤断裂北段五峰-鹤峰地区呈NEE走向展布,断层SE盘背斜构造常常发育逆冲构造变形伴生褶皱,褶皱枢纽呈NE—NEE走向(点位WPT1104,图5),与平面上断层带弧形展布特征相一致。鹤峰-来凤断裂向南可能与慈利-保靖断裂带相互交切,为宜恩构造带(即花果坪复向斜)和南北镇构造带(即宜都-鹤峰背斜带)分界断裂,其东部较少出露侏罗系红层、但断陷盆地多沉积巨厚的白垩系红层,如:来凤—龙山地区东湖群等。
慈利-保靖断裂沿慈利南山坪、大庸边岩、保靖地区呈NE走向展布,向南与多条分支断层相连呈S形态展布切割分离前寒武系基底层系,如:保靖-秀山断层、松桃-石阡断层和保靖-铜仁断层等,NE-SW走向近500 km与东部雪峰基底隆起带相隔(图3b)。慈利-保靖断裂北段断层倾向SE、常常为多条叠瓦状小断裂构成(图4d、e),断层带发育牵引劈理、透镜体、擦痕阶步和构造方解石脉体等,如:永顺县泽家湖地区(图4e),伴生褶皱枢纽通常呈NE-SW走向或NNE走向、轴面劈理通常倾向NW或SE(点位WPT1127、WPT1108),揭示SE-NW向挤压逆冲左旋走滑构造特征(图5)。断裂南段多分支断裂普遍呈NE—NNE走向,总体上呈现出E-W挤压逆冲构造变形特征,如:凤凰县和平镇地区(图4d)。
2.2 断裂带应力场特征
本文利用节理和擦痕等破裂变形矢量数据反演构造主应力场原理主要基于Wallace-Bott假设(Wallace,1951; Bott,1959),即:① 断面中剪切应力(“τ”)和主应力(“σ”)应该满足Mohr-Coulomb准则;② 断面最大剪切力方向应垂直于破裂面理或平行于破裂变形擦痕线理方向;③ 破裂构造变形以刚体滑动变形为主。基于野外实测数据样本、地层复平校正和构造变形序列分期等(邓宾等,2015),结合“Tensor”软件(Delvaux and Sperner,2003)进行应力场迭代计算反演,迭代计算过程中通过误差角匹配函数控制优化迭代算法,即剪切矢量与野外实际观测得到的滑动矢量间存在最小误差,包括最小化主应力、最大化剪切应力和最小化判定误差角,最终基于综合兼容性评估值(CD,counting deviation)、基本数据样本等评价反演应力场矢量的优劣性,一般而言当CD值<30 %,n>10~20被认为可接受的反演应力场矢量(CD值越小、有效矢量数据占总数据40%~80%且n 越多认为反演应力场矢量数据越好)(Delvaux and Sperner,2003)。
4扬子板块雪峰陆内褶皱冲断带断层带构造变形特征图(位置见图1)
Fig.4Deformation of the faults in the Xuefeng intracontinental FTB system in the Yangtze block
(a)—黔江县SW金溪镇地区下奥陶统与下志留统中薄层灰黑色砂泥岩断层接触(点位WPT2007),断层擦痕、牵引褶皱和轴面劈理等构造特征揭示NW-SE向逆冲构造变形特征;(b)—来凤县SE冼落镇地区中上寒武统中厚层白云岩发育叠瓦状逆冲断层(点位WPT981),断层透镜体及其伴生擦痕和劈理等构造揭示NW-SE向右旋走滑逆冲构造特征;(c)—永顺县W吴家寨地区采石场中奥陶统中厚层生物灰岩发育断层镜面结构(点位WPT1127或WPT991),断层擦痕及阶步具有低角度线理特征揭示NW-SE向右旋走滑逆冲构造变形特征;(d)—凤凰县NW和平镇地区上寒武统中薄层钙质粉砂岩与泥岩层系发育叠瓦状逆断层(点位WPT1208),断层NW—NWW倾向,且断层牵引劈理及其透镜体等特征揭示NW—NWW向逆冲构造变形特征;(e)—永顺县SW泽家湖地区下奥陶统中厚层灰色灰岩层系发育大型走滑逆冲断层(点位 WPT1194),断层面擦痕及其阶步发育揭示SN向至NNE向左旋走滑逆冲构造变形特征;(f)—桐梓县NE罗漆坪地区中上寒武统娄山关组与下奥陶统断层接触(点位WPT375),断面发育低角度至水平擦痕与阶步,揭示南川-遵义断层左旋走滑构造变形特征;(g)—建始-彭水断裂带中下三叠统滑脱构造变形NE-SW走向褶皱变形特征;(h)—来凤县E部地区中下三叠统褶皱变形与断层伴生结构,其褶皱枢纽NE-SW走向,揭示鹤峰-来凤断层带NW-SE向挤压褶皱冲断变形特征
(a) —the fault contact (spot WPT2007) between the Lower Ordovician Series and the Lower Silurian Series in Jinxizhen area, SW, Qianjiang County; the fault scratches, traction folds and axial plane cleavage reveal the deformation characteristics of the NW-SE compressive thrust structure; (b) —the imbircate thrust fault (WPT981) is developed in the middle and thick layer dolomite of the Upper Cambrian in SE Xianluo Town, Laifeng County; the fault lens and its associated scratches and cleavages reveal the right-lateral strike-slip structure characteristics of the NW-SE compressional thrust; (c) —the fault mirror structure (spot WPT1127 or WPT991) is developed in the middle thick Ordovician biolimestone in the Wujiazhai area of Yongshun County; the low angle lineation features of the fault scratches and steps reveal the right-lateral strike-slip tectonic deformation characteristics of the NW-SE compressive thrust; (d) —imbricate reverse faults (spot WPT1208) are developed in the middle thin calc siltstone and mudstone series of Upper Cambrian in NW Heping Town, Fenghuang County, with NW-NWW tendency, and the features of fault traction cleavage and lens reveal the NW-NWW compressive thrust tectonic deformation; (e) —large strike-slip thrust faults (spot WPT1194) developed in the Lower Ordovician middle-thick grey limestone strata in Zejiahu area, SW, Yongshun County; the strike-plane scratches and their step development reveal the SN-NNE compression sinistral strike-slip thrust tectonic deformation characteristics; (f) —the fault contact between the Middle and Upper Cambrian Loushanguan Formation and the Lower Ordovician Series (spot WPT375) in the Neluo-Chiaping area, Tongzi County, and the cross section development of low angle to horizontal scratches and steps reveal the left-lateral strike-slip deformation characteristics of the Nanchuan-Zunyi fault; (g) —NE-SW striking folds in the low-to-middle Triassic, indicating of NE-SW comprssion and thrusting of the Jianshi-Penshui fault; (h) —NE-SW striking folds in the low-to-middle Triassic, indicating of NE-SW comprssion and thrusting of the Hefeng-Laifeng fault, eastern Laifeng County
基于约20处野外典型露头总300余组断层、擦痕和共轭节理等破裂变形矢量数据样本,迭代反演揭示雪峰陆内褶皱冲断带断裂带应力场特征(图5),其最大主应力轴方向近水平(σ1),最小主应力轴(σ3)近水平展布(即走滑破裂)或垂直展布(即逆冲破裂),综合兼容性评估值(CD值为15%~30%)和基本矢量数据量(n主要为20~40)说明反演应力场矢量具有较高的可信性。研究区断裂带具有明显多向挤压主应力场特征,主要为NW-SE向主应力场、近E-W向主应力场和近WNW—NE(即近S-N)向主应力场。第一期NW-SE向挤压主应力场,即最大水平主应力(σ1)115°~138°、最小主应力轴近垂直(σ3)、中间主应力轴普遍近水平(σ2)200°~250°方位特征,如:华蓥山断裂带重庆地区(点位WPT11)、来凤断裂南段来凤地区(点位WPT981)、慈利-保靖断裂永顺地区(点位WPT991)。它们揭示早期挤压逆冲构造变形主应力场特征,与露头点位地区褶皱变形枢纽、轴面劈理等展布特征相一致。第二期为近E-W向挤压主应力场,即最大水平主应力(σ1)80°~115°、中间主应力轴普遍近垂直(σ2)、最小主应力轴普遍近水平(σ3)150°~200°。如:南川-遵义断裂上的正安地区、慈利-保靖断裂上的张家界和永顺地区(点位WPT1127和点位WPT1134等)。它们揭示后期逆冲走滑构造变形主应力场特征,与露头地区高角度倾伏褶皱枢纽、断层带走滑斜列透镜体等展布特征相一致。
需要指出的是,近S-N向(即WNW—NE向)挤压主应力场,即最大水平主应力(σ1)345°~15°、中间主应力轴高角度倾伏(σ2)、最小主应力轴低角度倾伏(σ3)250°~300°方位特征,如:南川-遵义断裂上的正安—遵义地区、华蓥山断裂上的重庆地区、建始-彭水断裂上的黔江地区、永顺断裂保靖地区等,揭示走滑逆冲构造变形主应力场特征,推测其可能为第一期挤压构造变形过程中伴随周缘构造带影响或先存构造影响的局部应力扰动(胡召齐等,2010覃作鹏等,2013柏道远等,2015邓宾等,2015)。
2.3 断层方解石脉体U-Pb定年
断裂、矿脉和断层等脆性构造记录了浅部地壳的构造运动历史,脆性构造为流体提供运移的通道,受流体压力降低或不同来源流体混合影响,导致裂缝或断裂通道内发生矿物沉淀,形成拉伸状或显微状方解石矿物。通常片状或块状拉伸晶型方解石矿物也可能为稍微晚期或等同于断裂活动期沉淀矿物(Cruset et al.,2020)。因此,断层带方解石脉体U-Pb定年能够有效记录断层活动时期。在断裂构造与方解石脉体宏观特征研究基础上,结合方解石脉体薄片显微特征选区环氧树脂靶片有效方解石矿物开展U-Pb年代学定年(图6a、b),以镶嵌片状中—粗晶方解石为主(图6c)。方解石U-Pb定年在昆士兰大学放射性同位素实验室完成。实验室采用搭载ASI Resolution 激光剥蚀系统的Thermo iCap-RQ ICP-MS和Nu PlasmaⅡMC-ICPMS 质谱仪系统完成测试分析。该系统激光束斑直径为100 μm或200 μm、激光能量3 J/cm2、剥蚀频率为10 Hz,单点剥蚀时间为15~25 s。定年测试使用NIST614为元素标样,WC-1为外标样、AHX-1D和PTKD-2A为年龄标样,其中WC-1为主标,其他为监控标样。为获得较一致谐和年龄,通常单个样品进行50~90个数据点进行激光原位剥蚀,获取U、 Pb和Ca等元素成分,随后原始数据通过Iolite3.6软件处理,采用“截距法”和“数学模型法”对Pb/U比值进行元素分馏效应等校正(邓宾等,2023),最后利用Isoplot 3.0软件编制Tera-Wasserburg反谐和图(图6d),获得断层带方解石矿物U-Pb年龄揭示其构造变形事件。
5扬子板块雪峰陆内褶皱冲断带挤压变形反演古应力场特征图
Fig.5Fault-slip data and paleo-stress axes of compression across the Xuefeng intracontinental FTB system in the Yangtze block
蓝色五角星为断层方解石脉体样品,其年龄值为方解石U-Pb年龄值,详见图5;紫色五角星为野外关键构造点位置(WPT为点号);赤平投影为施密特下半圆投影,细黑线和箭头分别表示破裂面和线理,黑色实心圈为褶皱轴面极点投影、空心圆圈为褶皱枢纽线理;右侧柱状图为反演擦痕数据Misfit角统计图;红色五星、黄色四星和蓝色三星分别表示反演擦痕古应力三轴(σ1、σ2、σ3);Count Dev. 表示数据统计兼容评估值
The purple five-pointed star is the location of the key structural points in the field (WPT is the dot number) ; the vertical projection is Schmidt's lower semicircular projection, the thin black line and arrow represent the fracture plane and linings respectively, the black solid circle is the pole projection of the axial plane of the fold, and the hollow circle is the hinge linings of the fold; the bar graph on the right is a Misfit angle statistical graph for inversion of scratch data; red five stars, yellow four stars and blue three stars represent the three axes of the ancient stress of inversion scratches (σ1, σ2, and σ3) ; Count. Dev. indicates the statistical compatibility evaluation value
6雪峰陆内褶皱冲断带主断层方解石脉体U-Pb年代学定年特征图(采样位置见图5)
Fig.6Calcite U-Pb dating of the fault veins in the Xuefeng intracontinental FTB system (see the sample locations in the Fig.5)
(a)—不同主断层带断层岩采样特征,黄色圆圈示方解石脉体采样位置,S180624-2为彭水断裂样品、S180625-2为黔江断裂样品、S180628-1和S180629-1为来凤断裂样品、S180630-1和S180702-2为慈利-保靖断裂样品;(b、c)—方解石脉体靶样及其测试点位(红色线段标注);(d)—方解石U-Pb的T-W谐和图(Tera-Wasserburg diagrams)及其年龄值,黄色线段示激光剥蚀主要位置区域
(a) —samples of different main fault zones; yellow circles indicate the sampling locations of calcite veins. S180624-2 is the Pengshui fault sample, S180625-2 is the Qianjiang fault sample, S180628-1 and S180629-1 is the Laifeng fault sample, S180630-1 and S180702-2 is the Cili-Baojing fault sample; (b, c) —target sample of calcite vein body and test point (marked by red line segment) ; (d) —Tera-Wasserburg diagrams of calcite U-Pb and their age values; the yellow lines show the main location area of laser denudation
建始-彭水断裂带方解石样品S180624-2分析54个实测点数据,Tera-Wasserburg反谐和图下交点年龄为159±17 Ma,上交点初始207Pb/206Pb值为0.67(MSWD=4.5);恩施-黔江断裂带方解石样品S180625-2分析59个实测点数据,Tera-Wasserburg反谐和图下交点年龄为119±41 Ma,上交点初始207Pb/206Pb值为0.84(MSWD=1.6)。以上共同揭示燕山期晚侏罗世—早白垩世构造变形事件。分别对来凤断裂上盘和下盘的三件样品的构造方解石脉体样品进行U-Pb年代学测试分析,即S180628-1、S180628-2和S180629-1。样品S180628-1分析58个实测点数据,Tera-Wasserburg反谐和图下交点年龄为91±16 Ma,上交点初始207Pb/206Pb值为0.71(MSWD=2.0);样品S180628-2分析63个实测点数据,Tera-Wasserburg反谐和图下交点年龄为71±11 Ma,上交点初始207Pb/206Pb值为0.83(MSWD=1.2);样品S180629-1分析53个实测点数据,Tera-Wasserburg反谐和图下交点年龄为52±6.6 Ma,上交点初始207Pb/206Pb值为0.72(MSWD=1.8)。共同揭示来凤断裂晚白垩世—古近纪构造变形事件。对两件慈利-保靖断裂中方解石脉体样品S180630-1和S180702-2进行U-Pb年代学测试分析。样品S180630-1分析98个实测点数据,Tera-Wasserburg反谐和图下交点年龄为206±16 Ma,上交点初始207Pb/206Pb值为0.87(MSWD=2.2);样品S180702-2分析51个实测点数据,Tera-Wasserburg反谐和图下交点年龄为190±47 Ma,上交点初始207Pb/206Pb值为0.83(MSWD=1.7)。揭示慈利-保靖断裂晚三叠世末期约200 Ma构造变形事件。
3 讨论
3.1 雪峰陆内褶皱冲断带背驮式构造变形过程
自从Davis et al.(1983)Dahlen and Suppe(1988)提出临界库伦楔理论用于诠释褶皱冲断带系统构造变形过程以来,褶皱冲断带通常被认为地壳尺度上的挤压增生楔形体构造(图7a),其构造变形过程普遍符合库伦临界楔理论的自相似性生长过程。上扬子地块雪峰陆内褶皱冲断带中—新生代经历了滨太平洋构造域和特提斯构造域的动态转换过程(Li Zhengxiang and Li Xianhua,2007;张岳桥等,2012张国伟等,2013; Li Sanzhong et al.,2018)。受控于中生代太平洋板块向华南大陆长距离俯冲作用和雪峰陆内造山作用,雪峰基底隆起带两侧呈不对称扇状向NW方向和SE方向穿时褶皱冲断扩展变形,类似于造山带双向挤压楔形体模型,如:亚平宁褶皱冲断带、西阿尔卑斯褶皱冲断带和台湾褶皱冲断带(Beaumont et al.,1992; Willett et al.,1993),尤其是西侧上扬子地块鄂渝湘黔褶皱冲断带(图7b)。它受盖层内部(如:下寒武统泥岩、下志留统黑色泥岩、下三叠统膏岩层系等)和盖层与基底之间的多个软弱岩性滑脱层系控制,形成了上扬子地块广阔的陆内褶皱冲断构造变形带,控制着中国南方大陆浅部构造基本几何学结构和构造格局(马力等,2004丁道桂等,2007张国伟等,2013)。印支期末陆内造山作用导致雪峰基底隆起带发生初步褶皱冲断构造变形,区域性发育上三叠统与下覆层系构造不整合,如:芷江、靖州和慈利—鹤峰地区等(金宠等,2009胡召齐等,2009张国伟等,2013),同时慈利-保靖断裂带方解石脉体U-Pb年代学年龄揭示晚三叠世—早侏罗世发生冲断构造变形。晚侏罗世—早白垩世,多层系滑脱冲断扩展变形过程穿时扩展至鄂渝湘黔隔槽式构造变形带,建始-彭水断裂带方解石脉体U-Pb年代学年龄揭示160~120 Ma构造变形事件,区域上白垩统与下覆层系构造不整合面逐渐扩展至齐岳山断裂带以东区域,如:石门、利川、桐梓和遵义地区等。早白垩世晚期雪峰隆起带及其以东区域受控于拉张动力学作用控制(Li Zhengxiang and Li Xianhua,2007;张岳桥等,2012),发育白垩纪断陷盆地沉积,如:沅麻盆地、江汉盆地等,由于鄂渝湘黔地区局部发育小型山间盆地,如:正阳盆地、当阳盆地等,推测上扬子地块鄂渝湘黔褶皱冲断带可能也发生局部拉张构造反转。晚白垩世以来,太平洋板块发生相对于中国南方大陆低速度、高角度NNW向俯冲转变,印-亚大陆碰撞远距离效应扩展至青藏高原东缘上扬子地块,导致上扬子地块鄂渝湘黔褶皱冲断带晚白垩世—早古近纪进一步发生挤压褶皱冲断变形作用过程。恩施-酉阳断裂、鹤峰-来凤断裂方解石U-Pb年龄分别记录了91 Ma、71 Ma和52 Ma构造变形事件,它们具有由NW向南东逐渐减小的年龄特征,反映出鄂渝湘黔隔槽式构造带-基底穹隆构造带区域燕山期背驼式/背伏式冲断构造活动(图7b)。因此,雪峰陆内褶皱冲断带背驼式冲断构造活动是太平洋板块俯冲和青藏高原东向扩展复合联合作用下,扬子陆块与华夏陆块间印支末期和燕山期陆内冲断造山作用结果。
临界库伦楔理论强调褶皱冲断带受控于内部地层能干性和基底(滑脱)冲断层摩擦系数/或强度,临界稳态平衡状态促使楔形体自相似性生长,即楔顶角和基底坡角之和保持恒定、稳态扩展生长(图7a);冲断带楔形体通过褶皱冲断变形作用,调节其几何形态特征,即保持临界稳态平衡状态(Davis et al.,1983; Dahlen and Suppe,1988)。雪峰陆内褶皱冲断带超过400~500 km宽,具有低地貌坡角和基底冲断层倾角特征,结合华蓥山-雪峰山地貌高程变化及其距离可以得到冲断带楔形体地表地貌坡角介于0.14°~0.22°,约0.2°;基底滑脱断层在雪峰基底隆起带和鄂渝湘黔隔槽式构造带分别发生“断坡式”构造抬升,导致从SE向NW逐渐变浅,其基底断层坡角介于1.3°~1.6°,约1.5°,因此雪峰陆内褶皱冲断带楔形体几何学与世界上基底滑脱层系控制的典型褶皱冲断带具有相似性,如:中东Zagros褶皱冲断带、巴基斯坦Potwar和Sulaiman冲断带等(图7a)。
基于上述结构几何学特征,利用库伦临界楔理论函数关系(Dahlen and Suppe,1988Hubbard et al.,2010),结合上扬子地块典型岩石学力学条件和冲断带物理参数,如:楔形体岩石内聚力 10 MPa和岩石摩擦系数0.85、基底滑脱层系内聚力0.2 MPa等(颜丹平等,2008Hubbard et al.,2010),模拟计算雪峰陆内褶皱冲断带地表地貌剖面特征(图7b)。雪峰陆内褶皱冲断带廊带地表地貌特征与模拟计算地貌高程具有较好的一致性,楔形体内摩擦系数(即μb值,受控于楔形体岩石学强度)0.09~0.13之间,尤其是μb=0.1,揭示出雪峰陆内褶皱冲断带受控于盖层内多滑脱层系具有较低的能干性强度,从而形成上扬子地块内部广阔的陆内褶皱冲断变形带,川东褶皱带多滑脱层系砂箱物理模拟实验结果也揭示出相似的低楔顶角角度、宽变形域冲断结构构造变形特征(He Wanggang et al.,2020; Feng Qianqian et al.,2023)。
7雪峰陆内褶皱冲断带地貌特征及其滑脱冲断带演化过程
Fig.7Wedge models of the Xuefeng intracontinental FTB system in the Yangtze block
(a)—褶皱冲断带楔形体模型及其基底和地表地貌坡度关系特征(修改自Dahlen and Suppe,1988Allen and Allen,2013),其中蓝色五星代表雪峰陆内褶皱冲断带基底断层坡角和地貌坡度关系;(b)—雪峰陆内褶皱冲断带20 km宽度廊带地貌特征及其临界楔形体模拟地貌参数值(据Hubbard et al.,2010);(c)—雪峰陆内褶皱冲断带结构模型及其平衡剖面恢复图
(a) —the wedge model of fold thrust belt and its relationship between basement and surface landform slope (modified from Dahlen and Suppe, 1988; Allen and Allen, 2013) , where the blue five stars represent the relationship between slope angle of basement fault and geomorphic slope of Xuefeng intracontinental thrust belt; (b) —geomorphic characteristics of the 20 km wide corridor of the Xuefeng intracontinental fold thrust belt and their critical wedge simulation geomorphic parameters (according to Hubbard et al., 2010) ; (c) —structure model of Xuefeng intracontinental fold thrust belt and restored balance profile
需要指出的是,廊带地貌高程上齐岳山断裂-彭水断裂间地貌海拔明显相对于模型模拟计算海拔高程较大,可能受控于基底滑脱断层断坡结构变化影响控制,如:龙门山山前带地区(Hubbard et al.,2010;Lu Renqi et al.,2020)、Zagros冲断带山麓(Mouthereau et al.,2006)等。鄂渝湘黔基底穹隆构造带-雪峰基底隆起带区域(即武陵山南东区域)地表地貌高程与坡角明显低于冲断带楔顶角高程拟合曲线(图7b),可能与白垩纪拉张动力学作用控制下形成的断陷盆地相关,导致其地貌高程偏低、冲断带楔形体进入亚稳态状态。因此,在晚期挤压冲断褶皱变形过程中,为保持冲断带楔形体自相似性生长扩展过程,雪峰基底隆起带会率先发生褶皱冲断变形构造过程,导致冲断带楔形体高程逐渐增大(即楔顶角增大)、冲断带楔形体进入临界稳态平衡状态,促使其自相似性生长扩展变形。
3.2 上扬子地块陆相湖盆演化过程
晚三叠世—早侏罗世开始雪峰陆内褶皱冲断带由SE向NW的冲断扩展变形构造活动控制了上扬子地块构造变形格架与板内大型陆相盆地演化过程(图8)。晚三叠世,上扬子地块西昌-楚雄盆地普遍发育含煤湖沼相与河流相陆源碎屑岩(如:丙南组、大荞地组与下白果湾组),它们与四川盆地须家河组具有相似的岩性特征和生物组合特征,但与湖北荆门、当阳地区沉积相和生物群落特征具有较大差异(张仁杰,1981夏宗实,1982)。至早侏罗世,四川盆地、西昌-楚雄盆地与鄂中荆门-当阳盆地连通,构成了早侏罗世上扬子地块中—新生代最大的陆相沉积盆地-古扬子陆相湖盆(郭正吾等,1996;Deng Bin et al.,2018)。四川盆地下侏罗统自流井组沉积期发育东岳庙段和大安寨段两个主要湖侵期,以陆相淡水湖泊沉积为主、且发育大套生物灰岩(即大安寨灰岩、东岳庙灰岩),尤其东岳庙段泥岩遍布四川盆地、黔北、黔中及湘西北地区(图8a),它们区域可对比性强,厚度稳定在300~600 m(即三个沉积中心),揭示出扬子板块内大型湖盆构造动力学沉积环境。
晚侏罗世—早白垩世,雪峰陆内褶皱冲断带NW向多层次滑脱冲断扩展变形,其前缘逆断层建始-彭水断裂发生NW-SE向挤压主应力场的冲断构造变形,南川-遵义断裂可能与紫云-罗甸断裂早期活动性相关(图8b),它们和北缘神农架-黄陵古隆起带近S-N向断裂有效地调节北西向扩展冲断变形构造活动的不同步或非均一性变形,导致断层带区域应力场发生一定程度扰动。此时,古扬子陆相湖盆向西至四川盆地—西昌盆地—楚雄盆地区域,以稳定浅水湖相沉积的鲜红色泥岩、粉砂岩夹中细粒砂岩为主要特征广泛分布于整个盆地内(如:遂宁组等),含较多的介形类、轮藻、叶肢介等,保持早期“北低西南高”地形地势格局,但受盆地东缘和北缘冲断带活动影响,雪峰陆内褶皱冲断带前缘和川北米仓山前缘地区发育沉积中心、其厚度大于1200~1500 m,陆相湖盆边缘逐渐发育河流相及冲积扇相沉积、逐渐沉积分异(图8b);此时,推测鄂渝湘黔基底穹隆构造带可能作为背驼式楔顶盆地发生一定沉积,但沉积厚度相对于冲断带前缘较薄。
晚白垩世—古近纪雪峰陆内褶皱冲断带后缘断裂带发生背驼式冲断构造变形过程,紫云-罗甸断裂发生强烈左旋走滑构造运动,它和华蓥山断裂西南段可能发生不同剪切性质走滑运动有效地调节NW向扩展变形过程,形成上扬子地块大娄山-乌蒙山构造带(Wang Erchie et al.,2014邓宾等,2015)。此时,古扬子陆相湖盆范围北西向逐渐萎缩至昭通—遵义一线以北现今四川盆地南缘区域,西昌-楚雄盆地沉积中心厚度超过1000~1400 m(图8c)。古新世末期,四川盆地现今盆地与西昌-楚雄盆地逐渐分开,盆地由早期外流盆地转变为后期内流盆地或封闭的内陆盐盆,川西南地区的古近系名山群膏盐岩沉积(郭正吾等,1996),如:双流、名山等地区,现今不同盆地沉积形成局限盐湖盆地、其沉积中心厚度普遍超过50~80 m(图8d)。伴随晚新生代青藏高原地壳物质向东扩展,鲜水河-安宁河-小江断裂系发生大规模左旋走滑,奠定青藏高原东缘大凉山构造带与川南、滇东和黔北地区大型陆内构造转换调节带格架(Burchfiel and Wang,2003王二七等,2009; Deng Bin et al.,2018),最终导致古扬子陆相湖盆完全萎缩、分隔成现今四川盆地、西昌盆地和楚雄盆地。
8雪峰陆内褶皱冲断带与上扬子盆地演化模式图
Fig.8Evolution model of the Xuefeng intracontinental FTB system during Meso-Cenozoic
(a)—晚三叠世—早侏罗世;(b)—晚侏罗世—早白垩世;(c)—晚白垩世—古近纪;(d)—晚新生代;SC—四川盆地;XC—西昌盆地;CX—楚雄盆地;ZG—秭归-巴东盆地;DY—当阳盆地;伴随雪峰陆内褶皱冲断带由SE向NW的冲断扩展变形构造活动,早侏罗世古扬子陆相湖盆逐渐分异演化为现今的四川盆地、江汉盆地、西昌盆地和楚雄盆地(地层厚度等值线据夏宗实,1982;郭正吾等,1996修编)
(a) —Late Triassic-early Jurassic; (b) —Late Jurassic-Early Cretaceous; (c) —Late Cretaceous-Paleogene; (d) —Late Cenozoic; Sc—Sichuan basin, XC—Xichang basin; CX—Chuxiong basin; ZG—Zigi-Badong basin; DY—Dangyang basin; with the tectonic activity of the thrust-spreading and deformation of the Xuefeng intracontinental fold and thrust belt from SE to NW, the Early Jurassic Paleo-Yangtze continental lacustrine basin gradually diverged and evolved into the present Sichuan basin, Jianghan basin, Xichang basin and Chuxiong basin (according to Xia Zongshi, 1982; Guo Zhengwu et al., 1996)
4 结论
(1)研究区内构造及多条断裂均呈NE走向,断裂倾向自西向东由NW逐渐转变为SE向;伴生构造揭示雪峰陆内褶皱冲断带的两期构造运动及构造变形应力场,分别为挤压逆冲构造变形,最大挤压主应力为NW-SE向,和近E-W方向挤压逆冲走滑构造变形,最大主应力为水平。
(2)断层年代学揭示研究区内三次逆冲构造变形,最早由慈利-保靖断裂于印支期晚三叠世(200 Ma)率先开始活动,之后为四川原型盆地边界的彭水断裂于燕山期晚侏罗世—早白垩世(159~119 Ma)开始活动,最后位于中部的鹤峰-来凤断裂于喜山期晚白垩世—古近纪(71~52 Ma)活动顺序。
(3)雪峰陆内褶皱冲断带的形成受控于周缘板块活动和雪峰陆内造山,其在基底与盖层之间多层系滑脱层的影响下,构造变形有着由雪峰基底隆起前慈利-保靖断层发生构造变形后,逐渐扩展至鄂渝湘黔隔槽式构造变形带再扩展至川东隔档式构造变形带的变形过程。
(4)雪峰陆内无序冲断构造活动控制着古扬子陆相湖盆演化过程,早侏罗世四川盆地、西昌-楚雄盆地与鄂中荆门-当阳盆地连通形成古扬子陆相湖盆,晚侏罗世—早白垩世川东地区发育前缘坳陷和背驼式楔顶盆地,随后晚白垩世以来古扬子陆相湖盆逐渐肢解消亡。
1扬子板块雪峰陆内构造带(陆内褶皱冲断带系统)区域地质特征简图
Fig.1Geological map of the Xuefeng intracontinental FTB (fold-and-thrust belt) system in the Yangtze block
2上扬子地块雪峰陆内褶皱冲断带地层格架与年代学特征图
Fig.2Diagrammatic cross section of the Xuefeng intracontinental FTB system in the Yangtze block
3上扬子地块雪峰陆内褶皱冲断系统典型地震剖面特征图
Fig.3Seismic profiles of the Xuefeng intracontinental FTB system in the Yangtze block
4扬子板块雪峰陆内褶皱冲断带断层带构造变形特征图(位置见图1)
Fig.4Deformation of the faults in the Xuefeng intracontinental FTB system in the Yangtze block
5扬子板块雪峰陆内褶皱冲断带挤压变形反演古应力场特征图
Fig.5Fault-slip data and paleo-stress axes of compression across the Xuefeng intracontinental FTB system in the Yangtze block
6雪峰陆内褶皱冲断带主断层方解石脉体U-Pb年代学定年特征图(采样位置见图5)
Fig.6Calcite U-Pb dating of the fault veins in the Xuefeng intracontinental FTB system (see the sample locations in the Fig.5)
7雪峰陆内褶皱冲断带地貌特征及其滑脱冲断带演化过程
Fig.7Wedge models of the Xuefeng intracontinental FTB system in the Yangtze block
8雪峰陆内褶皱冲断带与上扬子盆地演化模式图
Fig.8Evolution model of the Xuefeng intracontinental FTB system during Meso-Cenozoic
Allen P A, Allen J R. 2013. Basin Analysis: Principles and Application to Petroleum Play Assessment. 3rd ed. Chichester: Wiley-Blackwell.
Bai Daoyuan, Jiang Wen, Xiong Xiong, Zhong Xiang. 2015. Control of tectonic evolution and tectonic framework on the hydrocarbon accumulation in the western side of the Xuefeng Mountain. Geology and Mineral Resources of South China, 31(2): 199~209 (in Chinese with English abstract).
Beaumont C, Fullsack P, Hamilton J. 1992. Erosional control of active compressional orogens. In: McClay K R, ed. Thrust Tectonics. Dordrecht: Springer Netherlands: 1~18.
Deng Bin, Liu Shugen, Li Zhiwu, Jansa L F, Liu Shun, Wang Guozhi, Sun Wei. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics, 591: 98~115.
Deng Bin, Chew D, Jiang Lei, Mark C, Cogné N, Wang Zijian, Liu Shugen. 2018. Heavy mineral analysis and detrital U-Pb ages of the intracontinental Paleo-Yangzte basin: Implications for a transcontinental source-to-sink system during Late Cretaceous time. GSA Bulletin, 130(11~12): 2087~2109.
Bott M H P. 1959. The use of electronic digital computors for the evaluation of gravimetric terrain corrections. Geophysical Prospecting, 7(1): 45~54.
Burchfiel B C, Wang E. 2003. Northwest-trending, middle Cenozoic, left-lateral faults in southern Yunnan, China, and their tectonic significance. Journal of Structural Geology, 25(5): 781~792.
Butler R W H. 2020. Syn-kinematic strata influence the structural evolution of emergent fold-thrust belts. Geological Society, London, Special Publications, 490(1): 57~78.
Cruset S D, Cantarero A I, Benedicto E A. 2020. From hydroplastic to brittle deformation: Controls on fluid flow in fold and thrust belts. Marine and Petroleum Geology, 120: 104517.
Dahlen F A, Suppe J. 1988. Mechanics, growth, and erosion of mountain belts. Special Paper of the Geological Society of America, 218: 161~178.
Davis D, Suppe J, Dahlen F A. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research: Solid Earth, 88(B2): 1153~1172.
Delvaux D, Sperner B. 2003. New aspects of tectonic stress inversion with reference to the TENSOR program. Geological Society, London, Special Publications, 212(1): 75~100.
Deng Bin, Liu Shugen, Qin Zuopeng, Li Zhiwu, Luo Chao, Li Jinxi, Li Yuwei, Gou Qiaoxin. 2015. Mutli-stage structural evolution of intracontinental Daloushan basin-mountain system, Upper Yangtze block: Implications for a coupling of deformation events across South China plate and its periphery. Geotectonica et Metallogenia, 39(6): 973~991 (in Chinese with English abstract).
Deng Bin, Guo Hongbing, Luo Qiang, Huang Jiaqiang, Yang Rongjun, Zhang Jing, Lu Pengda, Tang Xiaodong, He Yu, Liu Shugen. 2022. Along-strike erosion processes at the Longmenshan fold-and-thrust belt, evidence from analogue experiments. Acta Geologica Sinica, 96(3): 840~853 (in Chinese).
Deng Bin, Wu Juan, Li Wenzheng, Lu Pengda, Tian Tengzhen, Jiang Hua, Yang Rongjun, Wang Heng, Liu Shugen. 2023. U-Pb dating and trapped hydrocarbon inclusions in carbonate for petroleum accumulation: Case study from the Sinian Dengying Formation in the central Sichuan basin. Natural Gas Geoscience, 34(11): 1887~1898 (in Chinese with English abstract).
Ding Daogui, Liu Guangxiang, Chen Yuhua, Pan Wenlei, Zhai Changbo, Rao Dan. 2007. Hydrocarbon accumulation and source rock comparison at the Jiangnan-Xuefengshan front: Tectonic issues in southern China (Part 3). Petroleum Geology & Experiment, (4): 345~354(in Chinese with English abstract).
Erdös Z, Huismans R S, vander Beek P. 2015. First-order control of syntectonic sedimentation on crustal-scale structure of mountain belts. Journal of Geophysical Research: Solid Earth, 120(7): 5362~5377.
Feng Qianqian, Qiu Nansheng, Wu Hang, Koyi H. 2023. Thermo-kinematic constraints on restoration of the eastern Sichuan fold-and-thrust belt, South China. Tectonics, 42(9): e2022TC007630.
Guo Zhengwu. 1995. Problems tobe noted in the study of oil and gas exploration in marine strata of southern China. South China Oil & Gas Geology, (2): 3~5(in Chinese with English abstract).
He Wengang, Zhou Jianxun, Yuan Kang. 2018. Deformation evolution of eastern Sichuan-Xuefeng fold-thrust belt in South China: Insights from analogue modelling. Journal of Structural Geology, 109: 74~85.
Hu Zhaoqi, Zhu Guang, Liu Guosheng, Zhang Bilong. 2009. Formation Time of the“Jurassic Mountain Style” fold belt in eastern Sichuan: Evidence from the unconformity surface. Geological Review, 55(1): 32~42(in Chinese with English abstract).
Hu Zhaoqi, Zhu Guang, Zhang Bilong, Zhang Li. 2010. K-Ar geochronology of the Caledonian event in the northern part of Xuefeng uplift. Geological Review, 56(4): 490~500 (in Chinese with English abstract).
Hubbard S M, Fildani A, Romans B W, Covault J A, McHargue T R. 2010. High-relief slope clinoform development: Insights from outcrop, Magallanes basin, Chile. Journal of Sedimentary Research, 80(5): 357~375.
Jin Chong, Li Sanzhong, Wang Yuejun, Zhang Guowei, Liu Liping, Wang Jian. 2009. Diachronous and progressive deformation during the Indosinian-Yanshanian movements of the Xuefeng Mountain intracontinental composite tectonic system. Oil & Gas Geology, 30(5): 598~607 (in Chinese with English abstract).
Li Chuanxin, He Dengfa, Lu Guo, Wen Kai, Simon A, Sun Yanpeng. 2021. Multiple thrust detachments and their implications for hydrocarbon accumulation in the northeastern Sichuan basin, southwestern China. Bulletin of the American Association of Petroleum Geologists, 105(2): 357~390.
Li Sanzhong, Li Tao, Zhao Shujuan, Li Xiyao, Liu Xin, Guo Lingli, Yu Shengyao, Li Shaojun. 2017. Proto-Tethys ocean in East Asia (V): Attribute of contientnal margin and microcontinental assembly in the west segment of the northern Proto-Tethys tectonic domain. Acta Petrologica Sinica, 33(6): 1633~1652 (in Chinese with English abstract).
Liu Shugen, Luo Zhili, Zhao Xikui, Xu Guoqiang, Liu Shun, Wang Guozhi, Xu Guosheng, Yong Ziquan, Li Zhiwu, Sun Wei. 2005. Discussion on essential characteristics of intracontinental-subduction type foreland basins in western China. Oil & Gas Geology, 26(1): 37~48, 56 (in Chinese with English abstract).
Lu Renqi, Liu Yiduo, Xu Xiwei, Tan Xibin, He Dengfa, Yu Guihua, Cai Minggang, Wu Xiyan. 2019. Three-dimensional model of the lithospheric structure under the eastern Tibetan Plateau: Implications for the active tectonics and seismic hazards. Tectonics, 38(4): 1292~1307.
Ma Li. 2004. Tectonics and Marine Oil-Gas Geology of Southern China. Beijing: Geological Publishing House (in Chinese with English abstract).
Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoic intro-continental progressive deformation in western Hunan-Hubei-eastern Sichuan provinces of China: Evidence from apatite fission track and balanced cross-section. Earth Science-Journal China University of Geosciences, 35(2): 161~174.
Mouthereau F, Lacombe O, Meyer B. 2006. The Zagros folded belt (fars, Iran): Constraints from topography and critical wedge modelling. Geophysical Journal International, 165(1): 336~356.
Qin Zuopeng, Liu Shugen, Deng Bin, Li Zhiwu, Sun Wei. 2013. Multiphase structural features and evolution of Southeast Sichuan tectonic belt in China. Journal of Chengdu University of Technology (Science & Technology Edition), 40(6): 703~711 (in Chinese with English abstract).
Shen Chuanbo, Mei Lianfu, Xu Sihuang. 2009. Fission track dating of Mesozoic sandstones and its tectonic siignicance in the eastern Sichuan basin, China. Radiation Measurements, 44: 945~949.
Wallace R E. 1951. Geometry of shearing stress and relation to faulting. Journal of Geology, 59(2): 118~130.
Wang Erqi, Su Zhe, Xu Guang. 2009. Lateral extrusion structures in some orogenic belts in China. Chinese Journal of Geology, 44(4): 1266~1288 (in Chinese with English abstract).
Wang Erchie, Meng Kai, Su Z hen, Men Qingren, Chu J J, Chen Zhiliang, Wang Gang, Shi Xuhua, Liang Xinquan. 2014. Block rotation: Tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang fault. Tectonics, 33(5~6): 686~718.
Wang Qiang, Li Jianwei, Jian Ping, Zhao Zhenhua, Xiong Xiaolin, Bao Zhiwei, Xu Jifeng, Li Chaofeng, Ma Jinlong. 2005. Alkaline syenites in eastern Cathaysia (South China): Link to Permian-Triassic transtension. Earth and Planetary Science Letters, 230(3~4): 339~354.
Wang Xinwei, Wo Yujin, Zhou Yan, Ma Feng. 2010. Kinematics of the fold and thrust belt in the upper Yangtze region. Earth Science Frontiers, 17(3): 200~212 (in Chinese with English abstract).
Willett S, Beaumont C, Fullsack P. 1993. Mechanical model for the tectonics of doubly vergent compressional orogens. Geology, 21(4): 371.
Wu Genyao, Ma Li. 2004. Methodology of studying coupling and decoupling of“basin” and“range”. Oil & Gas Geology, 25(3): 239~246 (in Chinese with English abstract).
Wu Xiancan, Li Zhigang, Yang Xue, Sun Chuang, Wang Weitao, Almeida R, Dai Xiangming, Zhang Yipeng, Xu Binbin, Liang Hao, Hui Gege, Lv Liangwei, Long Weiwang. 2023. Quantifying and modeling curved thrust fault-propagation folds at different scales. Journal of Structural Geology, 172: 104888.
Xia Zongshi, Liu Xiaohu, Zeng Liankai, Zhou Pingqing, Li Runing. 1982. Stratigraphic division of Late Triassic-Early Tertiary continental deposits in the Sichuan basin, with a discussion on sedimentation and tectonic history. Journal of Sichuan Geology, 3(2): 71 (in Chinese with English abstract).
Xu Xianbing. 2023. Late Triassic to Middle Jurassic tectonic evolution of the South China Block: Geodynamic transition from the paleo-Tethys to the paleo-Pacific regimes. Earth-Science Reviews, 241: 104404.
Xu Xianbing, Xia Yuan, Chen Jiaju, Liang Chenghua, Xu Yadong. 2021. Late Triassic foreland basin and Early Palaeozoic basement in the eastern Yidun Micro-block and its tectonic implications for the eastern Palaeo-Tethys. Geological Journal, 56(11): 5821~5838.
Yan Danping, Tian Chonglu, Meng Lingbo, Zhang Jianzeng, Zhou Meifu. 2003. Balanced geological section for extensional tectonic basin and its implication: An example from southern Songliao basin. Earth Science, 28(3): 275~280 (in Chinese with English abstract).
Yan Danping, Jin Zhelong, Zhang Weichen, Liu Shaofeng. 2008. Rock mechanical characteristics of the multi-layer detachment fault system and their controls on the structural deformation style of the Sichuan-Chongqing-Hunan-Hubei thin-skinned belt, South China. Geological Bulletin of China, 27(10): 1687~1697 (in Chinese with English abstract).
Yan Danping, Xu Yanbo, Dong Zhoubin, Qiu Liang, Zhang Sen, Wells M. 2016. Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling. Journal of Geophysical Research: Solid Earth, 121(3): 2087~2111.
Yan Danping, Qiu Liang, Chen Feng, Li Lin, Zhao Lei, Yang Wenxin, Zhang Yixi. 2018. Structural style and kinematics of the Mesozoic Xuefengshan intraplate orogenic belt. Earth Science Frontiers, 25(1): 1~13 (in Chinese with English abstract).
Zhang Guowei, Guo Anlin, Wang Yuejun, Li Sanzhong, Dong Yunpeng. 2013. Tectonics and problems of South China continent. Science China: Earth Sciences, 43(10): 1553~1582 (in Chinese with English abstract).
Zhang Renjie. 1981. Discovery of the Upper Triassic marine strata in the Jingdang basin, Hubei Province. Journal of Stratigraphy, 5(4): 308~312+324(in Chinese with English abstract).
Zhang Yueqiao, Dong Shuwen, Li Jianhua, Cui Jianjun, Shi Wei, Su Jinbao, Li Yong. 2012. The new progress in the study of Mesozoic tectonics of South China. Acta Geoscientica Sinica, 33(3): 257~279 (in Chinese with English abstract).
柏道远, 姜文, 熊雄, 钟响. 2015. 雪峰山西侧构造演化和构造格局对区域油气成藏条件的控制. 华南地质与矿产, 31(2): 199~209.
邓宾, 刘树根, 覃作鹏, 李智武, 罗超, 李金玺, 李煜伟, 苟乔欣. 2015. 扬子板内大娄山渐变型盆-山结构带多期构造特征及其对板内-板缘构造的响应. 大地构造与成矿学, 39(6): 973~991.
邓宾, 郭虹兵, 罗强, 黄家强, 杨荣军, 张静, 鲁鹏达, 唐晓东, 何宇, 刘树根. 2022. 龙门山褶皱冲断带沿走向差异剥蚀作用: 砂箱物理模型的启示. 地质学报, 96(3): 840~853.
邓宾, 吴娟, 李文正, 鲁鹏达, 田腾振, 姜华, 杨荣军, 王恒, 刘树根. 2023. 烃类包裹体赋存碳酸盐矿物U-Pb定年及其在油气成藏期次研究中的应用: 以川中震旦系灯影组为例. 天然气地球科学, 34(11): 1887~1898.
丁道桂, 刘光祥, 陈玉华, 潘文蕾, 瞿常博, 饶丹. 2007. 江南-雪峰山前缘油气聚集及烃源对比: 南方构造问题之三. 石油实验地质, 29(4): 345~354.
郭正吾. 1995. 南方海相地层油气勘探研究中应注意的几个问题. 南方油气地质, (2): 3~5.
胡召齐, 朱光, 刘国生, 张必龙. 2009. 川东“侏罗山式” 褶皱带形成时代: 不整合面的证据. 地质论评, 55(1): 32~42.
胡召齐, 朱光, 张必龙, 张力. 2010. 雪峰隆起北部加里东事件的K-Ar年代学研究. 地质论评, 56(4): 490~500.
金宠, 李三忠, 王岳军, 张国伟, 刘丽萍, 王建. 2009. 雪峰山陆内复合构造系统印支—燕山期构造穿时递进特征. 石油与天然气地质, 30(5): 598~607.
刘树根, 罗志立, 赵锡奎, 徐国强, 刘顺, 王国芝, 徐国盛, 雍自权, 李智武, 孙玮. 2005. 试论中国西部陆内俯冲型前陆盆地的基本特征. 石油与天然气地质, 26(1): 37~48+56.
李三忠, 李涛, 赵淑娟, 李玺瑶, 刘鑫, 郭玲莉, 于胜尧, 李少俊. 2017. 东亚原特提斯洋(Ⅴ): 北界西段陆缘属性及微陆块拼合. 岩石学报, 33(6): 1633~1652.
马力, 陈焕疆, 甘克文, 徐克定, 许效松, 吴根耀. 2004. 中国南方大地构造和海相油气地质. 北京: 地质出版社, 1~867.
梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学: 中国地质大学学报, 35(2): 161~174.
覃作鹏, 刘树根, 邓宾, 李智武, 孙玮. 2013. 川东南构造带中新生代多期构造特征及演化. 成都理工大学学报(自然科学版), 40(6): 703~711.
王二七, 苏哲, 许光. 2009. 我国的一些造山带的侧向挤出构造. 地质科学, 44(4): 1266~1288.
汪新伟, 沃玉进, 周雁, 张荣强, 李双建. 2010. 上扬子地区褶皱-冲断带的运动学特征. 地学前缘, 17(3): 200~212.
吴根耀, 马力. 2004. 试论“盆”“山” 耦合和脱耦研究的方法学. 石油与天然气地质, 25(3): 239~246.
夏宗实, 刘啸虎, 曾良鍷, 周萍清, 李汝宁. 1982. 四川盆地晚三迭世: 老第三纪陆相地层的划分, 兼论沉积: 构造史. 四川地质学报, 2(2): 71.
颜丹平, 田崇鲁, 孟令波, 张建增, 周美夫. 2003. 伸展构造盆地的平衡剖面及其构造意义: 以松辽盆地南部为例. 地球科学, 28(3): 275~280.
颜丹平, 金哲龙, 张维宸, 刘少峰. 2008. 川渝湘鄂薄皮构造带多层拆离滑脱系的岩石力学性质及其对构造变形样式的控制. 地质通报, 27(10): 1687~1697.
颜丹平, 邱亮, 陈峰, 李林, 赵磊, 杨文心, 张翼西. 2018. 华南地块雪峰山中生代板内造山带构造样式及其形成机制. 地学前缘, 25(1): 1~13.
张国伟, 郭安林, 王岳军, 李三忠, 董云鹏. 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553~1582.
张仁杰. 1981. 湖北荆当盆地海相上三迭统之发现. 地层学杂志, 5(4): 308~312+324.
张岳桥, 董树文, 李建华, 崔建军, 施炜, 苏金宝, 李勇. 2012. 华南中生代大地构造研究新进展. 地球学报, 33(3): 257~279.