en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

彭柔,女,1998年生。硕士研究生,主要从事沉积矿产研究。E-mail:441529278@qq.com。

通讯作者:

杨瑞东,男,1963年生。教授,博导,主要从事沉积矿床、早期后生生物及其演化环境动力学、环境地球化学研究。E-mail:rdyang@gzu.edu.cn。

参考文献
Zaky A H, Brand A, Azmy K, Logan A, Hooper R G, Svavarsson J. 2016. Rare earth elements of shallow-water articulated brachiopods: A bathymetric sensor. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 178~194.
参考文献
Ahmed A H, Aseri A A, Ali K A. 2022. Geological and geochemical evaluation of phosphorite deposits in northwestern Saudi Arabia as a possible source of trace and rare-earth elements. Ore Geology Reviews, 144: 104854.
参考文献
Al-Hobaib A S, Baioumy H M, Al-Ateeq M A. 2013. Geochemistry and origin of the Paleocene phosphorites from the Hazm Al-Jalamid area, northern Saudi Arabia. Journal of Geochemical Exploration, 132: 15~25.
参考文献
Arning E T, Lückge A, Breuer C, Gussone N, Birgel D, Peckmann J. 2009. Genesis of phosphorite crusts off Peru. Marine Geology, 262(1-4): 68~81.
参考文献
Auer G, Reuter M, Hauzenberger C A, Piller W E. 2017. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates. Geochimica et Cosmochimica Acta, 203: 140~156.
参考文献
Bailey J V, Corsetti F A, Greene S E, Crosby C H, Liu Pinghua, Orphan V J. 2013. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: Implications for the role of oxygen and bacteria in phosphogenesis. Geobiology, 11(5): 397~405.
参考文献
Bengtson S. 1976. The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function. Lethaia, 9(2): 185~206.
参考文献
Bengtson S. 1985. Taxonomy of disarticulated fossils. Journal of Paleontology, 59(6): 1350~1358.
参考文献
Cai Yaoping, Xiao Shuhai, Li Guoxiang, Hua Hong. 2019. Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion. Geology, 47(4): 380~384.
参考文献
Chen Menge. 1979. On the fossil Zhijinites from the phosphorus-bearing sequence, early Lower Cambrian, South China. Chinese Journal of Geology, 14(3): 279~281 (in Chinese with English abstract).
参考文献
Chen Menge. 1999. A new observation of the earliest Cambrian Paleoembryos. Chinese Journal of Geology, 34(4): 525~527 (in Chinese with English abstract).
参考文献
Chen Qiying. 1995. Microbiological processes in genesis of phosphorite deposits. Chinese Journal of Geology, 30(2): 153~158 (in Chinese with English abstract).
参考文献
Chen Qiying, Chen Menge, Li Juying. 2000. Microbial-organic effects on formation of the sedimentary apatite. Chinese Journal of Geology, 35(3): 316~324 (in Chinese with English abstract).
参考文献
Chen Weixiang, Zhou Feng, Wang Hongquan, Zhou Sen, Yan Chunjie. 2019. The occurrence states of rare earth elements bearing phosphorite ores and rare earth enrichment through the selective reverse flotation. Minerals, 9(11): 698.
参考文献
Chen Zhe, Bengtson S, Zhou Chuanming, Hua Hong, Yue Zhao. 2008. Tube structure and original composition of Sinoutbulites: Shelly fossils from the Late Neoproterozoic in southern Shaanxi, China. Lethaia, 41(1): 37~45.
参考文献
Compton J S, Bergh E W. 2016. Phosphorite deposits on the Namibian shelf. Marine Geology, 380: 290~314.
参考文献
Conway M S, Chen Menge. 1991. Cambroclaves and paracarinachitids, early skeletal problematica from the Lower Cambrian of South China. Palaeontology, 34(2): 357~397.
参考文献
Cook P J. 1992. Phosphogenesis around the Proterozoic Phanerozoic transition. Journal of the Geological Society, 149(4): 615~620.
参考文献
Cook P J, Shergold J H. 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature, 308(5956): 231~236.
参考文献
Cunningham J A, Thomas C W, Bengtson S, Kearns S L, Xiao Shuhai, Marone F, Stampanoni M, Donoghue P C J. 2012. Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Proceedings of the Royal Society B: Biological Sciences, 279(1737): 2369~2376.
参考文献
Feng Weiming, Sun Weiguo, Qian Yi. 2001. Skeletalization characters, classification and evolutionary significance of Early Cambrian monoplacophoran maikhanellids. Acta Palaeontologica Sinica, 40(2): 195~213 (in Chinese with English abstract).
参考文献
Feng Weiming, Chen Zhe, Sun Weiguo. 2002. The differentiation of bone microstructure in the Late Cambrian and Early Cambrian. Science in China, 32(10): 850~856 (in Chinese with English abstract).
参考文献
Feng Weiming, Sun Weiguo. 2006. Monoplacophoran Igorella-type pore-channel structures from the Lower Cambrian in China. Materials Science and Engineering C, 26(4): 699~702.
参考文献
Ferhaoui S, Kechiched R, Bruguier O, Sinisi R, Kocsis L, Mongelli G, Bosch D, Ameur-zaimeche O, Laouar R. 2022. Rare earth elements plus yttrium (REY) in phosphorites from the Tébessa region (Eastern Algeria): Abundance, geochemical distribution through grain size fractions, and economic significance. Journal of Geochemical Exploration, 241: 107058.
参考文献
Gao Lei. 2019. Analysis of structural characteristics of creatures and their relationship with phosphorus formation in the Cambrian phosphorites, Zhijin, Guizhou. Mater's thesis of Guizhou University (in Chinese with English abstract).
参考文献
Gao Lei, Yang Ruidong, Wu Tong, Luo Chaokun, Xu Hai, Ni Xinran. 2023. Studies on geochemical characteristics and biomineralization of Cambrian phosphorites, Zhijin, Guizhou Province, China. Plos One, 18(2): e0281671.
参考文献
Graul S, Kallaste T, Pajusaar S, Urston K, Gregor A, Moilanen M, Ndiaye M, Hints R. 2023. REE+Y distribution in Tremadocian shelly phosphorites (Toolse, Estonia): Multi-stages enrichment in shallow marine sediments during early diagenesis. Journal of Geochemical Exploration, 254: 107311.
参考文献
Guo Junfeng, Li Yong, Shu Degan. 2010. Fossil macroscopic algae from the Yanjiahe Formation on terreneuvian of the three gorges area, South China. Acta Palaeontologica Sinica, 49(3): 336~342 (in Chinese with English abstract).
参考文献
He Shan. 2022. Geochemical characteristics and the metallogenic mechanism of the REY in the phosphorite-type REY deposits in Zhijin, Guizhou. Doctoral dissertation of Chinese Academy of Sciences (in Chinese with English abstract).
参考文献
Ilyin A V. 1998. Rare-earth geochemistry of ‘old’ phosphorites and probability of syngenetic precipitation and accumulation of phosphate. Chemical Geology, 144(3-4): 243~256.
参考文献
Jaisi D P, Blake R E. 2010. Tracing sources and cycling of phosphorus in Peru Margin sediments using oxygen isotopes in authigenic and detrital phosphates. Geochimica et Cosmochimica Acta, 74(11): 3199~3212.
参考文献
Ji Wenhu, Pang Yanchun, Wen Yuan, Hu Qiang. 2019. Composition and their relationship with surrounding rocks in the terreneuvian series at the Laoheba section in Mabian phosphate deposit area, south Sichuan. Acta Micropala-Eontologica Sinca, 36(4): 309~318 (in Chinese with English abstract).
参考文献
Jiang Shaoyang, Yang Jinghong, Ling Hongfei, Chen Yongquan, Feng Hongzhen, Zhao Kuidong, Ni Pei. 2007. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 217~228.
参考文献
Kouchinsky A V. 1999. Shell microstructures of the Early Cambrian Anabarella and Watsonella as new evidence on the origin of the Rostroconchia. Lethaia, 32(2): 173~180.
参考文献
Kouchinsky A V. 2000a. Shell microstructures in the Early Cambrian mollusks. Acta Paleontologica Polonica, 45(2): 119~150.
参考文献
Kouchinsky A V. 2000b. Skeletal microstructures of hyoliths from the Early Cambrian of Siberia. Alcheringa: An Australasian Journal of Palaeontology, 24(2): 65~81.
参考文献
Liu Xiqiang, Zhang Hui, Tang Yong, Liu Yunlong. 2020. REE geochemical characteristic of apatite: Implications for ore genesis of the Zhijin phosphorite. Minerals, 10(11): 1012.
参考文献
Lou Fangju, Gu Shangyi. 2019. Indication of the Ce anomaly of apatite in phosphorites to the evolution of oxygen in the Earth's atmosphere. Acta Mineralogica Sinica, 39(4): 412~419 (in Chinese with English abstract).
参考文献
Mao Tie. 2015. Analysis of phosphorus forming environment and ore-forming control factors at the bottom of Cambrian in central Guizhou. Doctoral dissertation of Guizhou University (in Chinese with English abstract).
参考文献
Mao Tie, Yang Ruidong. 2013. Micro-structural characteristics and composition of the small shelly fossils in Cambrian phosphorites, Zhijin, Guizhou. Acta Micropalaeontologica Sinca, 30(2): 199~207 (in Chinese with English abstract).
参考文献
Mao Tie, Yang Ruidong, Gao Junbo, Mao Jiaren, 2015. Study of sedimentary feature of Cambrian phosphorite and ore-controlling feature of old karst surface of the Dengying Formation in Zhijin, Guizhou. Acta Geologica Sinca, 89(12): 2374~2388 (in Chinese with English abstract).
参考文献
Mcarthur J M, Walsh J N. 1984. Rare-earth geochemistry of phosphorites. Chemical Geology, 47(3-4): 191~220.
参考文献
Miao Yufei, Yin Zongjun, Wu Ruolin, Li Gupxiang, Zhu Maoyan. 2021. Microstructures and in-situ spectroscopic analyses of Conotheca (Orthothecide) from the Early Cambrian Kuanchuanpu Biota. Acta Palaeontologica Sinica, 60(1): 108~123 (in Chinese with English abstract).
参考文献
Pang Yanchun, Steiner M, Shen Cen, Feng Mingshi, Lin Li, Liu Dingkun. 2017. Shell composition of Terreneuvian tubular fossils from northeast Sichuan, China. Palaenotology, 60(1): 15~26.
参考文献
Planavsky N J, Reinhard C T, Wang Xiangli, Thomson D, Mcgoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyns T W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346(6209): 635~638.
参考文献
Pufahl P K, Groat L A. 2017. Sedimentary and igneous phosphate deposits: Formation and exploration (an invited paper). Economic Geology, 112(3): 483~516.
参考文献
Qian Yi. 1999. Taxonomy and Biostratigraphy of Small Shell Fossils from China. Beijing: Science Press (in Chinese with English abstract).
参考文献
Qian Yi, Yin Gongzheng. 1984a. Zhijinitidae and its stratigraphical significance. Acta Palaeontologica Sinica, 23(2): 213~223 (in Chinese with English abstract).
参考文献
Qian Yi, Yin Gongzheng. 1984b. Small shelly fossils from lowerest Cambrian in Guizhou. In: Yang Zunyi, ed. Stratigraphic Paleotological Collection. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Reynard B, Lécuyer C, Grandjean P. 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology, 155(3-4): 233~241.
参考文献
Runnegar B, Bengtson S. 1990. Origin of hard parts early skeletal fossils. In: Derek E G B, Crowther P R, eds. Major Events in History of Life, Palaeobiology, a Synthesis. Oxford: Blackwell Scientific Publitions: 24~29.
参考文献
Siegmund H. 1997. The Ocruranus-Eohalobia group of small shelly fossils from the Lower Cambrian of Yunnan. Lethaia, 30(4): 285~291.
参考文献
Steiner M, Wallis E, Ertman B D, Zhao Yuanlong, Yang Ruidong. 2001. Submarine hydrothermal exhalative ore layers in black shales from South China and associated fossils insights into Lower Cambrian facies and bio-evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(3-4): 165~169.
参考文献
Sun Weichen, Yin Zongjun, Cunningham J A, Liu Pengju, Zhu Maoyan Donghue P C J. 2020. Nucleus preservation in Early Ediacaran Weng'an embryo-like fossils, experimental taphonomy of nuclei and implications for reading the eukaryote fossil record. Interface Focus, 10(4): 20200015.
参考文献
Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400(6744): 525~531.
参考文献
Wu Xiche, Jiang Zhiwen. 1989. Mineralogical characteristics of the outer lamella of the earliest shelly fossils. Acta Micropalaeontologica Sinca, 6(2): 153~160 (in Chinese with English abstract).
参考文献
Xie Hong, Zhu Lijun. 2012. Existing state and distribution regularity of rare earth elements from Early Cambrian phosphorite in Guizhou. Journal of the Chinese Society of Rare Earths, 30(5): 620~627 (in Chinese with English abstract).
参考文献
Xing Jieqi, Jiang Yuhang, Xian Haiyang, Zhang Zeyang, Yang Yiping, Tan Wei, Liang Xiaoliang, Niu Hecai, He Hongping, Zhu Jianxi. 2021. Hydrothermal activity during the formation of REY-rich phosphorites in the Early Cambrian Gezhongwu Formation, Zhijin, South China: A micro-and nano-scale mineralogical study. Ore Geology Reviews, 136: 104224.
参考文献
Xu Jianbin, Xiao Jiafei, Yang Haiying, Xia Yong, Wu Shengwei, Xie Zhoujun. 2019. The REE enrichment characteristics and constraints of the phophorite in Zhijin, Guizhou: A case study of No. 2204 drilling cores in the Motianchong ore block. Acta Mineral Sinica, 39: 371~379.
参考文献
Xue Yaosong, Zhou Chuanming. 2006. Resedimentation of the Early Cambrian phosphatized small shell fossils and correlation of the Sinian-Cambrian boundary strata in Yangtze region, southern China. Journal of Stratigraphy, 30(1): 64~74(in Chinese with English abstract).
参考文献
Yang Ben, Steiner M, Schiffbauer J D, Selly T, Wu Xuwen, Zhang Cong, Liu Pengju. 2020. Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids. Scientific Reports, 10(1): 535.
参考文献
Yang Ben, Liu Pengju, Shang Xiaodong, Cai Xiyao, Zhou Yuan. 2023. Early Fortunian small shelly fossils from the Aksu area of Xinjiang, China. Acta Geologica Sinica, 97(12): 4044~4051 (in Chinese with English abstract).
参考文献
Yang Haiying. 2020. A comparative study on metallogenic paleo-environments of phoshorites of the Doushantu and Gezhongwu formations in the central Guizhou and their constrains on the enrichment of rare earth elements. Doctoral dissertation of Chinese Academy of Sciences (in Chinese with English abstract).
参考文献
Yang Haiying, Xiao Jiafei, Xia Yong, Xie Zhoujun, Tan Qinping, Xu Jianbin, Guo Haian, He Shan, Wu Shengwei. 2019. Origin of the Ediacaran Weng'an and Kaiyang phosphorite deposits in the Nanhua basin, SW China. Journal of Asian Earth Sciences, 182: 103931.
参考文献
Yang Haiying, Xiao Jiafei, Xia Yong, Xie Zhoujun, Tan Qinping, Xu Jianbin, He Shan, Wu Shengwei, Liu Xiqiang, Gong Xingxiang. 2021. Phosphorite generative processes around the Precambrian-Cambrian boundary in South China: An integrated study of Mo and phosphate O isotopic compositions. Geoscience Frontiers, 12(5): 101187.
参考文献
Yang Haiying, Xiao Jiafei, Zhao Zhifang, Xie Zhoujun, He Shan, Wu Shengwei. 2022. Diagenesis of Ediacaran-Early Cambrian phosphorite: Comparisons with recent phosphate sediments based on LA-ICP-MS and EMPA. Ore Geology Reviews, 144: 104813.
参考文献
Yin Zongjun, Zhao Duoduo, Pan Bing, Zhao Fangchen, Zeng Han, Li Guoxiang, Bottjer D J, Zhu Maoyan. 2018. Early Cambrian animal diapause embryos revealed by X-ray tomography. Geology, 46(5): 387~390.
参考文献
Zhang Jie, Zhu Lei, Zhang Qin. 2006. Biological ore characteristic of ore-bearing REE in Xinhua phosphorite, Zhijin, Guizhou. Chinese Rare Earth, 27(1): 93~94 (in Chinese with English abstract).
参考文献
Zhang Zhiliang, Pour M G, Popov L E, Holmer L E, Chen Feiyang, Chen Yanlong, Brock G A, Zhang Zhifei. 2021. The Oldest Cambrian trilobite-brachiopod association in South China. Gondwana Research, 89: 147~167.
参考文献
Zhu Bi, Jiang Shaoyang, Yang Jinghong, Pi Daohui, Ling Hongfei, Chen Yongquan. 2014. Rare earth element and Sr-Nd isotope geochemistry of phosphate nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 398: 132~43.
参考文献
Zhu Maoyan, Qian Yi, Jiang Zhiwen, He Yangui. 1996. Primary discussion on preserving, composition and micro-structure of small shelly fossil. Acta Micropalaeontologica Sinca, 13(3): 241~254 (in Chinese with English abstract).
参考文献
Zhu Maoyan, Zhang Junming, Yang Aihua. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 7~61.
参考文献
陈孟莪. 1979. 我国寒武纪早期含磷岩系中织金壳属Zhijinites化石的构造和分类. 地质科学, 14(3): 279~281.
参考文献
陈孟莪. 1999. 寒武纪最早期的古胚胎化石新观察. 地质科学, 34(4): 525~527.
参考文献
陈其英. 1995. 磷块岩形成过程中的生物作用. 地质科学, 30(2): 153~158.
参考文献
陈其英, 陈孟莪, 李菊英. 2000. 沉积磷灰石形成中的生物有机质因素. 地质科学, 35(3): 316~324.
参考文献
冯伟民, 孙卫国, 钱逸. 2001. 早寒武世马哈螺类的骨骼化特征、分类和演化意义. 古生物学报, 40(2): 195~213.
参考文献
冯伟民, 陈哲, 孙卫国. 2002. 晚前寒武纪末至早寒武世生物骨骼微细结构的分异. 中国科学, 32(10): 850~856.
参考文献
高磊. 2019. 贵州织金寒武系磷块岩中生物的结构特征及与成磷关系分析. 贵州大学硕士学位论文.
参考文献
郭俊锋, 李勇, 舒德干. 2010. 湖北三峡地区纽芬兰统岩家河组的宏体藻类化石. 古生物学报, 49(3): 336~342.
参考文献
何珊. 2022. 贵州织金磷块岩型稀土矿地球化学特征及稀土成因机制. 中国科学院大学博士学位论文.
参考文献
冀文虎, 庞艳春, 文源, 胡强. 2019. 川南马边老河坝磷矿区麦地坪组中管状化石壳体成分特征及与围岩的关系. 微体古生物学报, 36(4): 309~318.
参考文献
娄方炬, 顾尚义. 2019. 磷块岩中磷灰石铈异常与地球大气氧演化. 矿物学报, 39(4): 412~419.
参考文献
毛铁. 2015. 黔中地区寒武系底部成磷环境及成矿控制因素分析. 贵州大学博士学位论文.
参考文献
毛铁, 杨瑞东. 2013. 贵州织金寒武系磷块岩中的小壳动物化石微结构特征及成分研究. 微体古生物学报, 30(2): 199~207.
参考文献
毛铁, 杨瑞东, 高军波, 毛家仁. 2015. 贵州织金寒武系磷矿沉积特征及灯影组古喀斯特面控矿特征研究. 地质学报, 89(12): 2374~2388.
参考文献
苗雨霏, 殷宗军, 吴若琳, 李国祥, 朱茂炎. 2021. 寒武纪早期宽川铺生物群中圆管螺化石显微结构及显微谱学分析. 古生物学报, 60(1): 108~123.
参考文献
钱逸. 1999. 中国小壳化石分类学与生物地层学. 北京: 科学出版社.
参考文献
钱逸, 尹恭正. 1984a. 试论织金壳科Zhijinitidae的结构、亲缘、分类及其地层意义. 古生物学报, 23(2): 213~223.
参考文献
钱逸, 尹恭正. 1984b. 贵州早寒武世早期小壳动物化石研究. 见: 杨遵仪主编. 地层古生物论文集. 北京: 地质出版社.
参考文献
武希彻, 蒋志文. 1989. 最早带壳动物化石外壳的矿物学特征. 微体古生物学报, 6(2): 153~160.
参考文献
谢宏, 朱立军. 2012. 贵州早寒武世早期磷块岩稀土元素赋存状态及分布规律研究. 中国稀土学报, 30 (5): 620~627.
参考文献
薛耀松, 周传明. 2006. 扬子区早寒武世早期磷质小壳化石的再沉积和地层对比问题. 地层学杂志, 30(1): 64~74.
参考文献
杨犇, 刘鹏举, 尚晓冬, 蔡习尧, 周元. 2023. 新疆阿克苏地区寒武纪幸运期早期小壳化石. 地质学报, 97(12): 4044~4051.
参考文献
杨海英. 2020. 黔中地区陡山沱组和戈仲武组磷块岩成矿古环境对比及其对稀土富集的制约. 中国科学院大学博士学位论文.
参考文献
岳昭. 1991. 早寒武Phyllochition骨片集合体的发现及其与Zhijinitids类的关系. 科学通报, 36(1): 47~50.
参考文献
张杰, 朱雷, 张覃. 2006. 贵州织金含稀土磷块岩矿床生物成矿基本特征. 稀土, 27(1): 93~94.
参考文献
朱茂炎, 钱逸, 蒋志文, 何延贵. 1996. 小壳化石保存、壳壁成分和显微构造初探. 微体古生物学报, 13(3): 241~254.
目录contents

    摘要

    小壳动物化石微结构及壳体成分的认知对于揭露寒武纪早期小壳动物群的演化具有重要意义,黔中地区早寒武世梅树村期磷块岩中保存了大量的小壳化石,为了获取该时期小壳化石微结构及成分的关键信息,本文利用电子显微镜、扫描电镜对岩石薄片小壳化石个体进行观察、分析,获得了贵州织金熊家场和清镇落夯地区的寒武纪梅树村期磷块岩中小壳动物化石微结构、壳体成分特征。结果显示,织金、清镇地区的磷块岩中小壳化石多样性与其壳体成分表现一致,主要为软舌螺类,其成分为P、Ca、F、O等氟磷灰石组成元素;小壳化石壳体保存有明显的纳米级磷灰石矿化颗粒骨架、多圈层结构、溶蚀多孔隙和管体嵌套的现象。另外,通过电子探针对小壳化石进行原位微区元素面扫描,发现主要元素P、Ca分布在小壳化石及小壳化石碎片中,胶结物几乎不含P元素。综合判断,两个研究区域的寒武纪梅树村期磷块岩小壳动物化石多为异地埋藏保存,且保存过程中,成岩作用等后期磷酸盐化、搬运沉积对小壳化石微结构及其壳体成分产生一定改造影响;基于薄片全玻面扫描推断全岩小壳动物化石(含化石碎片)含量,与磷块岩中磷含量呈正相关关系,认为寒武纪梅树村期小壳动物的繁盛对同期磷块岩的形成具有重要贡献。

    Abstract

    The identification of the microstructure and shell composition of small shelly fossils are of great significance for revealing the evolution of the Early Cambrian small shelly fossils, and a large number of small shelly fossils have been preserved in the Early Cambrian Meishucunian Age's phosphorite rock in central Guizhou, but there were few studies on the microstructure and composition of small shelly fossils in the past. In this paper, the microstructure and shell composition characteristics of small shelly fossils in the Cambrian Meishucunian Age's phosphorite rock from Zhijin Xiongjiachang and Qingzhen Luohang in Guizhou Province were analyzed by electron microscope and scanning electron microscope (SEM-EDS) to observe and test individual small shelly fossils in rock thin sections and acid-treated small shelly fossils. The results showed that the diversity of small shell fossils and their shell composition in the phosphorite rock of Zhijin and Qingzhen were consistent, mainly Hyolitha, and their components were fluoroapatite elements such as P, Ca, F, and O. The small shelly fossils preserves obvious nano-scale apatite mineralized particle skeleton, multi-circle structure, dissolved pores and tube nesting. In addition, the in situ micro-element surface scanning of thesmall shelly fossils was carried out by electron exploration, and it was found that the main elements P and Ca were distributed in the small shelly fossils and their fragments, and the cementation almost did not contain P elements. It is comprehensively concluded that most of small shelly fossils in the Cambrian Meishucunian Age's phosphorite rock were buried and preserved in different places, and the later phosphorylation and transport sedimentation of diagenesis in this process had a certain impact on the microstructure and shell composition of the small shell fossils. At the same time, the content of small shelly fossils (including fossil fragments) in the whole rock was inferred by the help of thin-slice full-glass surface scanning, which was positively correlated with the phosphorus content in the phosphorite rock, and it was believed that the prosperity of small shelly fossils in the Cambrian Meishucunian Age had an important contribution to the formation of phosphorite rock in the same period.

    关键词

    微结构小壳化石磷块岩梅树村期黔中

  • 寒武纪早期是全球小壳动物化石大幅射和成磷事件发生的关键时期,对于揭露寒武纪早期小壳动物群的演化及生物成磷作用分析具有重要意义。寒武纪小壳化石常见于生物碎屑磷块岩、白云质磷块岩、磷质白云岩、灰岩以及泥岩和粉砂岩层中,尤其在华南地区寒武纪梅树村期形成了大量与小壳动物有关的磷矿(冀文虎等,2019; Chen Weixiang et al.,2019; Xu Jianbin et al.,2019; Liu Xiqiang et al.,2020; Xing Jieqi et al.,2021; Yang Haiying et al.,2021; Zhang Zhiliang et al.,2021)。前人对不同地区小壳动物化石的研究多局限于对其外观形态的描述(Bengtson,19761985; 陈孟莪,19791999; 钱逸和尹恭正,1984a1984b; Runnegar and Bengtson,1990; Conway and Chen Menge,1991; 岳昭,1991; Kouchinsky,19992000a2000b; 钱逸等,2000; 冯伟民等,20012002; Feng Weiming and Sun Weiguo,2006; Chen Zhe et al.,2008),对其微观结构及壳体成分缺乏较为系统的对比研究。

  • 前人对小壳化石壳体微结构研究认为管体有多级嵌套模式、多层壳壁见壳体同心或偏心环状结构等多种微结构特征,外层壳体保存磷化管,见由垂直壳壁生长的柱晶磷灰石组成的柱纤结构,内层磷灰石晶体呈纤维状平行壳壁,发育层纤结构(郭俊锋等,2010; Compton et al.,2016; 高磊,2019; 苗雨菲等,2021)。同时也发现小壳动物化石在泥质、粉砂质岩层中以印模化石与磷质内核化石的保存形式为主的(朱茂炎等,1996; 钱逸,1999; 冯伟民等,2002; 毛铁和杨瑞东,2013; 高磊,2019),含磷岩系中小壳动物化石以单层壳和多层壳两种保存类型为主(高磊,2019)。小壳动物化石壳体所保存的微结构及壳体成分与小壳动物化石的埋藏过程以及后期成岩改造作用密切相关(朱茂炎等,1996; 钱逸,1999; 薛耀松等,2006; 高磊,2019; 杨犇等,2023)。

  • 关于小壳化石壳体成分研究主要包括以下两个方面。保存成分:①含磷碳酸盐地层中小壳化石保存成分主要由磷质构成(武希彻和蒋志文,1989; 朱茂炎等,1996; 高磊,2019);②未经醋酸处理磷质灰岩小壳化石的保存成分主要为碳酸钙质,少量为磷酸钙质和硅质(Pang Yanchun et al.,2017);③磷块岩中未经醋酸处理的小壳化石壳体保存成分为碳氟磷灰石(毛铁和杨瑞东,2013; 高磊,2019)。原始成分:①粒状灰岩中小壳化石原生壳质成分主要由胶磷矿构成(武希彻和蒋志文,1989);②小壳化石原始骨骼成分是由多种物质构成,包括磷质、碳酸钙和硅质物质(朱茂炎等,1996; 冀文虎等,2019);③磷质灰岩中小壳化石原始壳体矿物成分主要为碳酸钙质,少量为磷酸钙质壳(Pang Yanchun et al.,2017; 杨犇等,2023)。与此同时,以往研究认为磷块岩的生物成矿作用包括:①生物直接参与成磷作用,生物吸收海洋中的磷作为生长所需,伴随着生物死亡埋藏将丰富的磷固定在沉积物中,而后磷质生物壳体密集堆积形成磷块岩(陈其英,1995; 张杰等,2006; 郭俊锋等,2010; 何珊,2022);②生物体间接参与成磷作用,在其生命活动中对“散态磷”汲取浓缩,伴随生物有机体降解所释放的磷(Bailey et al.,2013; Pufahl and Groat,2017; Yang Ben et al.,2020),有机磷转化为无机磷(Jaisi and Blake,2010),细菌捕获磷至孔隙水,改变海底地球化学微环境,形成有利于磷酸岩沉积的物化条件,从而导致磷的沉积成矿(陈其英等,2000; Arning et al.,2009; Bailey et al.,2013; Pufahl and Groat,2016)。

  • 以上资料显示,前人对磷块岩中小壳化石微结构、壳体成分及其在磷矿中的生物成矿机制的研究已经取得一定进展,但缺乏对不同地区中小壳动物化石微结构、丰度和小壳化石聚磷作用的分析研究。笔者在黔中织金、清镇调查时发现,寒武纪梅树村期磷块岩中含有丰富的小壳化石,且有显著的数量、大小差异。基于此,本文以织金、清镇磷矿区梅树村期中小壳化石为研究对象,通过大量岩石薄片及化石个体观察、测试、对比,联接其间小壳动物化石的埋藏作用,总结不同地区磷块岩中小壳化石微结构及壳体成分特征,并分析小壳动物与生物成磷作用之间的制约关系。

  • 1 地质背景

  • 织金、清镇磷矿区皆位于扬子地块西南端(图1),华南寒武纪地层由西北向东南的浅水台地相、过渡相、深水斜坡相和盆地相组成(Steiner et al.,2001; Jiang Shaoyang et al.,2007; Zhu Maoyan et al.,2007)。织金磷矿处于台地内,保存浅水碳酸盐岩沉积;清镇磷矿则处于较深水的盆地相(Yang Haiying et al.,2019)。织金磷矿区出露地层主要为震旦系灯影组、寒武系戈仲伍组和牛蹄塘组,含磷地层戈仲伍组由硅质岩、生物碎屑磷块岩、硅质磷块岩、白云岩构成;清镇磷矿区出露地层主要为寒武系桃子冲组和牛蹄塘组,含磷地层桃子冲组由硅质岩、生物碎屑磷块岩、角砾状磷块岩、硅质磷块岩构成(图2b)。

  • 不同的沉积环境为生物生长提供了不同的生存环境。在华南地区早寒武世梅树村期,由于海侵和上升流的作用,早寒武世的地层普遍发生了磷化作用(Cook and Shergold,1984; Cook,1992),同时小壳动物群呈多样化生长发育(Siegmund,1997; Cai Yaoping et al.,2019),织金、清镇地区形成了大规模与生物有关的含磷岩系。受沉积相控制可分为潮间低能成磷带、潮下—潮间高能成磷带和潮上浅滩成磷带,织金熊家场位于潮上带,为生物浅滩,小壳化石个体大、保存完整;清镇落夯位于潮下带(图2a),小壳化石个体小,数量丰富,由西到东沉积水体由浅到深不断变化以及生物富集存在差异(谢宏等,2012; 毛铁等,2015; 高磊,2019; Yang Haiying et al.,20192021)。

  • 2 材料和方法

  • 本文所研究的样品均采自贵州织金熊家场、清镇落夯磷矿区(图2),野外采集的磷块岩样品在室内进行了包括酸泡、切片等一系列预处理。将磷块岩岩石样品破碎成6 cm左右的小块,用尼龙网兜分装,泡在浓度近5%的醋酸溶液中,每隔48 h更换醋酸溶液,并清洗取出不溶砂样,砂样自然晾干后,在双目显微镜下进行人工挑选。经酸处理获得的化石标本,采用体视显微镜观察生物实体特征,扫描电镜观察其壳层微结构成像。将生物结构明显的磷块岩样品制成3 mm厚度的薄片进行壳体主要成分分析测试:利用电子显微镜对薄片进行观察,在全玻面扫面模式下对化石多样性及其含量进行判断;对薄片喷碳;利用二次电子(SE)、背散射电子(BSE)以及能谱仪(EDS)进行样品中化石微结构观察成像及元素分析;借助场发射电子探针(EPMA)对化石壳体成分进行定量检测分析;运用对比标样排除误差,保存分析方法有效可靠数据,并及时获取岩石薄片中小壳化石微结构和成分特征的相应图片资料。

  • 图1 扬子板块早寒武世岩相古地理图(据毛铁等,2015

  • Fig.1 Early Cambrian lithofacies paleogeography of the Yangtze plate (after Mao Tie et al., 2015)

  • 3 小壳动物化石的微结构特征

  • 研究区内小壳化石以软舌螺类为主,织金地区的磷块岩中小壳化石个体大小差别较大,最大的化石个体长可达12 mm,多数化石个体长约6 mm左右;清镇地区的磷块岩中小壳化石较织金地区而言,完整化石体数量较少,并且个体较小,最长5 mm。本文重点对研究区的圆管螺目Conotheca subcurvata苗雨霏等,2021)和直管螺目Loculitheca zhijinensis高磊,2019)进行生物微结构剖析。

  • 3.1 Conotheca subcurvata微结构

  • Conotheca subcurvata化石个体较大,织金熊家场磷块岩中化石个体一般长为0.3~7 mm,口径为0.5~10 mm;清镇落夯磷块岩中化石个体长约0.2~5 mm,口径约0.2~8 mm(图3、图4),属于圆管螺目。Conotheca subcurvata化石的壳体由多层管壁构成,横切面上多层管壁往往呈近似同心环状或偏心环状,大多形态近圆形,而部分形态更接近椭圆(图3a~c)。观察管壁厚度可以发现,单层管壁厚度几乎分布在2~10 μm之间且较为稳定(图3b、d),同时可见多层管壁之间并非都是相互独立的分离状态,部分管壁之间发生了明显重叠甚至愈合在一起,两层管壁愈合或重叠部分的厚度基本上是单层管壁厚度的两倍(图3c、c1),这种现象表明发生局部融合的两层或多层管壁很有可能与生物体原生结构相关,即埋藏过程中原碳酸钙质壳体可能被磷酸盐交代形成(钱逸,1999; 冯伟民等,2002; 薛耀松等,2006; 毛铁和杨瑞东,2013; 冀文虎等,2019; 高磊,2019; 苗雨菲等,2021; 杨犇等,2023),从而导致管壁在局部表现为分层现象,表现为由一层厚管壁分裂为两层甚至多层薄的管壁,在切面上呈分叉状或者趋近层尖灭(图3a箭头、图3a1虚线和图3d箭头处)。小壳化石每层之间有一定间距且由磷灰石、石英、有机质层充填(图3a~c、a1~c1),起到黏合矿化管壁的作用,埋藏过程中,有机质降解殆尽后多层管壁相互脱离,部分管壁在后期发生局部贴合而被磷酸盐胶结在一起保存,造成分层的假象(苗雨霏等,2021)。

  • 图2 黔中地区早寒武世梅树村期古地理分带图(a)(据Gao Lei et al.,2023)和地层岩性柱状图(b)(据毛铁等,2015

  • Fig.2 Paleogeographic zonation map (a) (after Gao Lei et al., 2023) and stratigraphic lithological histogram (b) (after Mao Tie et al., 2015) of the Early Cambrian Meishucunian Age in central Guizhou

  • 化石Conotheca subcurvata在管体横切面方向上表现由垂直管壁生长的纳米级磷灰石晶体组成,具有柱纤结构(图3b1,图4a、a2);同时,纳米级磷灰石颗粒形成了管壁圈层及化石体核部物质(图4b~b4);化石体核部腔体内部结构表现为磷灰石颗粒矿化骨架(图3a2、d1)。从化石横截面内部拓扑结构的扫描电镜图像中可以看出,管体发生多级嵌套,锥管状壳体的嵌套现象与现代龙介虫相似(Auer et al.,2017),其单元层的数量也可能与其生长年龄有关(高磊,2019)。单一同心或偏心环嵌套的管体结构简单(图3),内部多层管壁之间往往充填了大量磷酸盐颗粒(图3b1,图4b3、b4),其他空间则有石英、黄铁矿、金红石等矿物分布(图3a1、d),少数内部无任何磷灰石质碎屑(图3c1)。同时,化石体核心腔体两侧都布满了在埋藏沉积过程中破损的磷灰石质壳体,由此我们可以推测在以往研究中被定为碎屑状的大量的磷灰石或胶磷矿,其本质是与生物成因的磷灰石即丰富的小壳化石破碎体(图3a1、c1),在波浪和风暴浪的作用下打碎,并在盆地内短距离搬运,搬运过程中往返波浪的反复改造导致磷质碎屑尺寸越来越小,壳体破损程度也出现了较大的离散度。

  • 图3 贵州织金、清镇地区Conotheca subcurvata微结构

  • Fig.3 The microstructure of Conotheca subcurvata from Zhijin and Qingzhen, Guizhou

  • (a、b)—织金熊家场磷块岩中Conotheca subcurvata化石横切面显微镜图;(c)—清镇落夯磷块岩中Conotheca subcurvata化石横切面显微镜图;(a1)—织金熊家场磷块岩中Conotheca subcurvata化石横切面扫描电镜图;(c1、d)—清镇落夯磷块岩中Conotheca subcurvata化石横切面扫描电镜图;(b1、a2)—织金熊家场磷块岩中Conotheca subcurvata化石结构微区图;(d1)—清镇落夯磷块岩中Conotheca subcurvata化石结构微区图; Qtz—石英; Py—黄铁矿; Rt—金红石

  • (a, b) —cross-section microscograph of Conotheca subcurvata in phosphorites from Xiongjiachang, Zijin; (c) —cross-section microscograph of Conotheca subcurvata in phosphorites from Luohang, Qingzhen; (a1) —cross-section scanning electron micrograph of Conotheca subcurvata in phosphorites from Xiongjiachang, Zhijin; (c1, d) —cross-section scanning electron micrograph of Conotheca subcurvata in phosphorites from Luohang, Qingzhen; (b1, a2) —microregion map of Conotheca subcurvata's structure in phosphorites from Xiongjiachang, Zhijin; (d1) —microregion map of Conotheca subcurvata's structure in phosphorites from Luohang, Qingzhen; Qtz—quartz; Py—pyrite; Rt—rutile

  • 3.2 Loculitheca zhijinensis微结构

  • Loculitheca zhijinensis个体较大,属于直管螺目,是小壳化石中个体较大的动物化石之一,织金熊家场磷块岩中化石个体长可达12 mm,一般为5~8 mm,口径一般0.8~1.5 mm;清镇落夯磷块岩中化石个体长约0.2~3 mm,口径0.5~8 mm(图5)。化石呈扁圆锥形、微弯曲,横切面呈圆或椭圆形(图5a、b、d、e),壳面未见纹饰,较为光滑,具有单层壳壁且不同小壳化石体的壳壁厚度大小变化较大,厚至400 μm,薄可见20 μm(图5c~e)。化石核部磷灰石质物质多孔隙(图5a),核部腔体具被溶蚀的磷灰石质现象(图5a1),推测其可能是在浅水盆地内被波浪等水流在小尺度范围内反复搬运、改造的结果。在埋藏沉积的过程中,外层壳壁被损坏,破碎的壳体在短距离的搬运过程中,大多聚集在原化石体四周不远处,最终剩下被溶蚀的磷灰石质核部腔体;部分形态相对较小的化石体也会伴随着埋藏过程破碎或填充进入更大的小壳化石中心腔体内部(图5b箭头处; 图6c)。

  • 化石体的纵切面显示化石体核心腔体两侧都布满了破损的磷灰石质壳体(图5c)。通过高精度扫描电镜,放大中心腔体、管体内部物质,壳体外部可见明显的纳米级磷质颗粒状矿化骨架,磷灰石颗粒呈圆形—次圆形,形状从近球形—椭球状不等(图5c1、c2,图6a~a2)。后期,个体较小的化石填充至个体较大的化石体内部,其间胶结物也由球状磷灰石颗粒固定保存下来(图6c、c1),同时外侧管体见由球状磷灰石颗粒密集排列形成的规则孔洞(图6a~a2);核部腔体内部填充磷灰石微形貌为放射状集合体(图5d1)、褶皱状结构(图6b、b1);化石体中间部分多见鳞片状结构(图5e1)。其嵌套模式也与Conotheca subcurvata有所不同,一级管体内嵌套了两个直径相异的二极管体(图5e),且只可见二级管体所遗留下来的印记。

  • 图4 贵州织金、清镇地区Conotheca subcurvata壳体微形貌

  • Fig.4 Micromorphology of Conotheca subcurvata shell from Zhijin and Qingzhen, Guizhou

  • (a)—织金熊家场磷块岩中Conotheca subcurvata化石整体形态图;(b)—清镇落夯磷块岩中Conotheca subcurvata化石整体形态图;(a1、a2)—织金熊家场磷块岩中Conotheca subcurvata化石壳体微区图;(b1~b4)—清镇落夯磷块岩中Conotheca subcurvata化石壳体微区图

  • (a) —overall morphology map of Conotheca subcurvata in phosphorites from Xiongjiachang, Zhijin; (b) —overall morphology map of Conotheca subcurvata in phosphorites from Luohang, Qingzhen; (a1, a2) —microregion map of Conotheca subcurvata's shell in phosphorites from Xiongjiachang, Zhijin; (b1~b4) —microregion map of Conotheca subcurvata's shell in phosphorites from Luohang, Qingzhen

  • 4 小壳化石壳体成分分析

  • 对织金熊家场、清镇落夯的代表性小壳化石进行单体扫描电镜结合能谱仪(SEM-EDS)分析和电子探针(EPMA)原位微区测试,发现两地区小壳动物化石虽然在化石数量、个体大小方面差异很大,但在其壳体主要矿物组成上表现出一致性。

  • 4.1 壳体电镜能谱点分析

  • 化石壳体电镜能谱点分析结果如图7和表1所示,可以看出熊家场、落夯磷块岩中小壳化石组成壳体的主要元素是Ca、P、O、F,说明其主要化学成分为P2O5、CaO、F2O等,其中P的质量百分比为17.4%~18.5%,平均18.0%,Ca的质量百分比为42.6%~45.4%,平均43.9%,F的质量百分比为4.5%~5.1%,平均4.8%。说明研究区小壳化石壳体成分均匀,其矿物成分主要为氟磷灰石。

  • 表1 贵州织金、清镇地区小壳化石壳体成分能谱分析结果(%)

  • Table1 Composition (%) of small shelly fossils from Zhijin and Qingzhen, Guizhou

  • 4.2 壳体电子探针微区元素面扫描特征

  • 选取织金地区椭圆环状Conotheca subcurvata化石体(图8)和清镇地区粒径较大的偏心圆环状Conotheca subcurvata化石体(图9)进行定量元素面扫描。结果表明主要元素 Ca、P、F分布在小壳化石和外围小壳化石碎片中,胶结物主要为石英、白云石、黏土矿物等物质元素,且胶结物含P元素很少。通过对小壳化石磷酸盐矿物成分进行电子探针打点分析,处理后共获得48个有效点数据(表2),其中1~24号点为织金熊家场磷块岩中小壳化石数据,Ca含量51.39%~57.28%(平均54.07%),P含量37.41%~40.89%(平均39.19%),F含量 2.29%~4.23%(平均3.26%),Al平均含量为0.09%,Mg平均含量为0.05%;25~48号点为清镇落夯磷块岩中小壳化石数据,Ca含量47.47%~57.28%(平均53.42%),P含量35.28%~40.89%(平均37.56%),F含量 2.62%~4.33%(平均3.63%),Al平均含量为0.12%,Mg平均含量为0.06%,结果表明两地区小壳化石中主要元素含量变化范围大致相同。图8为经后期流体溶蚀、风化作用改造形成的Conotheca subcurvata化石,其可见Ca、P元素在化石体中从壳体核心内腔部分至管体外层明显呈富集程度逐步递减的趋势,Ca含量与P含量呈正相关协调变化。针对这一变化规律,推测生物体可能在存活时,吸收Ca、P以保证自身营养需求,死亡后在埋藏过程中,水动力的反复改造作用下,伴随海水侵蚀发生磷酸盐化作用,使壳体内的原钙质被磷质取代,形成新矿物充填,造成磷富集,从而形成稳定的磷灰石颗粒状矿化骨骼。除此之外,就暴露于孔隙水的时间而言,核部腔体和外部圈层之间可能存在差异,在生物不同生长时期死亡埋藏形成化石体后,软体组织消失,其核部中空或叠加了磷质、钙质物质或其他矿物相,且与周围流体接触导致Ca、P从孔隙水进入(Ilyin,1998; Zhu Bi et al.,2014),而外部与海水接触被后期流体改造,元素可能从薄弱边缘流失,可能造成化石壳体Ca、P等元素含量内部高、外部低的情况。

  • 图5 贵州织金、清镇地区Loculitheca zhijinensis微结构

  • Fig.5 The microstructure of Loculitheca zhijinensis from Zhijin and Qingzhen, Guizhou

  • (a)—织金熊家场磷块岩中Loculitheca zhijinensis化石横切面显微镜图;(a1、e)—织金熊家场磷块岩中Loculitheca zhijinensis化石横切面显微镜图;(b、d)—清镇落夯磷块岩中Loculitheca zhijinensis化石横切面扫描电镜图;(c)—清镇落夯磷块岩中Loculitheca zhijinensis化石纵切面扫描电镜图;(c1~d1)—清镇落夯磷块岩中Loculitheca zhijinensis化石结构微区图;(e1)—织金熊家场磷块岩中Loculitheca zhijinensis化石结构微区图

  • (a) —cross-section microscograph of Loculitheca zhijinensis in phosphorites from Xiongjiachang, Zhijin; (a1, e) —cross-section scanning electron micrograph of Loculitheca zhijinensis in phosphorites from Xiongjiachang, Zhijin; (b, d) —cross-section scanning electron micrograph of Loculitheca zhijinensis in phosphorites from Luohang, Qingzhen; (c) —longitudinal section scanning electron micrograph of Loculitheca zhijinensis in phosphorites from Luohang, Qingzhen; (c1~d1) —mcroregion map of Loculitheca zhijinensis's structure in phosphorites from Luohang, Qingzhen; (e1) —microregion map of Loculitheca zhijinensis's structure in phosphorites from Xiongjiachang, Zhijin

  • 图6 贵州织金、清镇地区Loculitheca zhijinensis壳体微形貌

  • Fig.6 Micromorphology of Loculitheca zhijinensis shell from Zhijin and Qingzhen, Guizhou

  • (a、b)—织金熊家场磷块岩中Loculitheca zhijinensis化石整体形态图;(c)—清镇落夯磷块岩中Loculitheca zhijinensis化石整体形态图;(a1~b1)—织金熊家场磷块岩中Loculitheca zhijinensis化石壳体微区图;(c1)—清镇落夯磷块岩中Loculitheca zhijinensis化石壳体微区图

  • (a, b) —overall morphology map of Loculitheca zhijinensis in phosphorites from Xiongjiachang, Zhijin; (c) —overall morphology map of Loculitheca zhijinensis in phosphorites from Luohang, Qingzhen; (a1~b1) —microregion map of Loculitheca zhijinensis's shell in phosphorites from Xiongjiachang, Zhijin; (c1) —microregion map of Loculitheca zhijinensis's shell in phosphorites from Luohang, Qingzhen

  • 5 生物成磷探讨

  • 磷通常被认为是地质时间尺度上的最终限制营养物,可影响生物生长速率和菌体产量,因此,也是控制初级生产力、有机碳埋藏以及由此产氧的关键因素(Tyrrell et al.,1999; Planavsky et al.,2014)。磷矿中P2O5可以多种形式出现,如骨骼化石、结节、结壳或生物碳酸盐和磷酸盐,同时也记录了不同地质环境之间磷富集成矿模式的不一致性和深时的明显变化(Al-Hobaib et al.,2013; Zaky et al.,2016; Ahmed et al.,2022; Ferhaoui et al.,2022; Yang Haiying et al.,2022; Graul et al.,2023)。生物对磷块岩的形成发挥着富集和运输磷的媒介作用,海水中生物可溶解无机磷(包括PO43-、HPO42-、H2PO-3)获得生长所需(Yang Haiying et al.,2021),在生物体内发生富集,随着生物的死亡或者沉淀后形成磷块岩。近几年的研究也表明小壳化石具有生物矿化骨骼(Cunningham et al.,2012; Yin Zongjun et al.,2018; Sun Weichen et al.,2020),纳米级磷灰石颗粒的高密度比可以导致磷富集(McArthur et al.,1984; Reynard et al.,1999; Auer et al.,2017; Zhang Zhiliang et al.,2021)。结合本次研究在小壳化石体中所发现的紧密排列纳米级磷灰石颗粒高密度矿化骨骼结构(图4b2、图7a2、c1),认为不同的生物体结构影响着磷的迁移与埋藏;同时高密度的颗粒矿化骨骼也表明小壳动物存活在磷质充足的富营养环境,对生物体死亡后沉积形成磷矿有关键控制作用。

  • 图7 贵州织金、清镇地区小壳化石壳体电镜能谱点分析图

  • Fig.7 Electron microscopic spectral point analysis of small shelly fossils from Zhijin and Qingzhen, Guizhou

  • (a)—织金熊家场磷块岩中Conotheca subcurvata化石体;(b)—织金熊家场磷块岩中Loculitheca zhijinensis化石体;(c)—清镇落夯磷块岩中Conotheca subcurvata化石体;(d)—清镇落夯磷块岩中Loculitheca zhijinensis化石体

  • (a) —Conotheca subcurvata fossil body in phosphorites from Xiongjiachang, Zhijin; (b) —Loculitheca zhijinensis fossil body in phosphorites from Xiongjiachang, Zhijin; (c) —Conotheca subcurvata fossil body in phosphorites from Luohang, Qingzhen; (d) —Loculitheca zhijinensis fossil body in phosphorites from Luohang, Qingzhen

  • 图8 贵州织金地区Conotheca subcurvata化石体元素面扫描

  • Fig.8 Elemental mapping of the Conotheca subcurvata fossil body from Zhijin, Guizhou

  • (a)—织金熊家场磷块岩中椭圆状Conotheca subcurvata化石体;(b~f)—Ca、P、F、Al、Mg元素分别在Conotheca subcurvata化石体中的分布情况

  • (a) —elliptic Conotheca subcurvata fossil body in phosphorites from Xiongjiachang, Zhijin; (b~f) —distribution of Ca, P, F, Al and Mg in Conotheca subcurvata fossil

  • 图9 贵州清镇地区Conotheca subcurvata化石体元素面扫描

  • Fig.9 Elemental mapping of the Conotheca subcurvata fossil body from Qingzhen, Guizhou

  • (a)—清镇落夯磷块岩中圆环状Conotheca subcurvata化石体;(b~f)—Ca、P、F、Al、Mg元素分别在Conotheca subcurvata化石体中的分布情况

  • (a) —toroidal Conotheca subcurvata fossil body in phosphorites from Luohang, Qingzhen; (b~f) —distribution of Ca, P, F, Al and Mg in Conotheca subcurvata fossil

  • 寒武纪早期的小壳动物化石大部分为异地埋藏,且绝大多数原始壳体以钙质保存,小壳化石主要保存单层壳和多层壳两种类型(朱茂炎等,1996; 钱逸,1999; 薛耀松等,2006; 毛铁,2015; 高磊,2019)。多数研究认为早寒武世小壳动物化石的埋藏过程主要经历3阶段:① 自然堆积阶段,该阶段壳体仍是原钙质成分且未经受破坏、溶蚀作用,腔体还未被磷质充填;② 后期初改造阶段,大部分壳体受到外力搬运作用至异地堆积形成化石层,同时在海水侵蚀下发生磷酸盐化,使得原钙质壳体形成磷质保存,壳体内部多被磷质矿物充填,造成磷富集,同时形成化石嵌套多圈层、次生溶蚀圈层结构;③ 堆积成岩阶段,小壳动物磷质化石层堆积后受到水动力的机械破碎、分选等重复改造作用使磷质颗粒再次沉积下来,压实固结形成化石堆积层(朱茂炎等,1996; 钱逸,1999; 高磊,2019)。对织金、清镇磷矿区的小壳动物化石进行观察得到的结果也支持上述过程。即观察发现两地小壳化石在埋藏过程中受到了不同程度的破损(图3、图5),同时原位面扫描结果表明化石体周围胶结物含磷程度极弱(图8、图9),因此认为两磷矿区的小壳化石也属于异地埋藏。这也说明在小壳动物死亡后,壳体未进行固结压实作用,而是在海水的作用下发生了水动力的簸选和搬运,使壳体在成岩过程中发生了不同程度的破碎、分选,而后重新堆积成层。并且小壳动物死亡堆积的壳体可能在海水侵蚀下发生磷酸盐化作用,使壳体内的原钙质被磷质取代。结合前文分析认为构成小壳化石壳体的主要矿物成分是氟磷灰石,并在研究区发现的小壳动物壳体也出现磷酸盐化溶蚀现象、管壁分层假象、多级嵌套圈层结构等,皆说明海水后期的磷酸盐化改造作用对原壳体成分有一定影响。

  • 表2 贵州织金、清镇地区小壳化石电子探针点数据(%)

  • Table2 EPMA point data (%) of small shelly fossils from Zhijin and Qingzhen, Guizhou

  • 注:1~24号为织金熊家场磷块岩中小壳化石电子探针点数据,25~48号为清镇落夯磷块岩中小壳化石电子探针点数据。

  • 本次研究利用薄片全玻面扫描结合镜下鉴定对两地磷块岩样品中的小壳化石及其化石碎片含量进行统计(图10),表明织金地区磷块岩中完整小壳化石个体发育较好,数量远高于清镇地区,且个体明显大于清镇落夯磷块岩中小壳化石;但不同的是选取同样范围大小(9 mm×6 mm)的区域在扫描电镜下进行化石碎片含量推算(图10c、d),发现清镇磷块岩中小壳化石碎片堆积聚集程度较高,破碎颗粒密集,而织金磷块岩中小壳化石碎片堆积程度较低,大多为完整个体的胶结聚集,同时见有石英填充于化石壳体内部;由此推测清镇磷块岩全岩含小壳化石及其碎片总含量高于织金地区,且全岩测试磷的含量却呈现出相对应的减少趋势,为明显的正相关关系(图11),说明磷块岩中小壳动物化石(含化石碎片)含量对磷块岩富磷品位占有主要贡献。在寒武纪梅树村期,织金磷矿位于浅水台地内(毛铁等,2015; 高磊,2019),营养物质和光合作用充足,为小壳动物的发育和繁衍提供了适宜的环境条件和丰富的物质来源,使得小壳动物化石大量聚集埋藏且个体发育较大,在潮上高能带中水动力较强,潮汐较频繁,使壳体发生了不同程度的破碎、分选;清镇磷矿处于水体较深的潮下高能环境(毛铁等,2015; 娄方炬等,2019; 杨海英等,2020),小壳动物化石个体小,很少保存个体大的小壳化石,化石改造强烈,呈碎屑颗粒状保存。织金熊家场的动荡沉积环境,分选作用强烈,使大个体的小壳化石聚集,但个体间充填大量的细小的白云石、石英等。总体上,熊家场磷块岩小壳化石个体大,但化石体间充填物(白云石、石英等)含量高,磷块岩P2O5含量较低,清镇落夯磷块岩中小壳化石个体小,但小壳化石碎屑颗粒多,化石和化石颗粒间充填物含量少,磷块岩P2O5含量高,因此可见,磷块岩中小壳化石及化石碎屑颗粒含量决定了磷块岩的品位,生物对磷块岩形成具有重要的贡献。

  • 图10 织金熊家场、清镇落夯磷块岩中小壳化石多样性及丰度统计

  • Fig.10 Statistics of the diversity and abundance of small shelly fossils in phosphorites from Xiongjiachang, Zhijin and Luohang, Qingzhen

  • 图11 织金熊家场、清镇落夯磷块岩中小壳化石(含化石碎片)全岩占比与P2O5含量关系

  • Fig.11 Relationship between the proportion of small shelly fossils (including fossil fragments) and P2O5 content in phosphorites from Xiongjiachang, Zhijin and Luohang, Qingzhen

  • 此外,根据电子探针元素面扫描结果(图8、图9),磷在小壳化石多圈层壳壁中呈均匀分布,也可见磷块岩中小壳化石核部后期填充磷质矿物(氟磷灰石),使得化石体核部至壳体边缘呈现出递减变化,推测在成岩过程中,磷质生物壳中有机磷转化为无机磷释放进入孔隙水中,而后孔隙水进入化石腔体中空处,在核部叠加了磷质,且外部圈层与周围流体接触导致后期改造流失,致使海水中的酸碱度改变,形成有利于磷质沉淀的物化条件,从而导致磷质的叠加沉积。

  • 6 结论

  • (1)织金熊家场、清镇落夯寒武纪梅树村期磷块岩中小壳动物化石皆以软舌螺类为主,其化石体主要的矿物成分均表现为氟磷灰石,但两地的完整小壳化石数量与个体大小有明显差异,熊家场的小壳化石个体远大于落夯地区;同时小壳化石Conotheca subcurvataLoculitheca zhijinensis保存了多种微结构:纳米级磷灰石颗粒组成的矿化骨骼结构、管体嵌套结构、多圈层同心或偏心环状结构及溶蚀多孔隙结构;同时可见Loculitheca zhijinensis化石体的微结构变化:内部见磷灰石的放射状集合体、褶皱状结构,中部为鳞片状结构、外部多为球状磷灰石颗粒;化石体微结构及其壳体成分变化与生物异地埋藏过程中后期成岩改造作用密切相关,且生物体高密度矿化骨骼等不同结构对磷、钙元素的迁移与富集埋藏有关键的控制作用。

  • (2)对黔中织金、清镇地区代表性小壳化石及其化石碎片进行统计,发现磷块岩中小壳化石及碎片总含量与全岩P2O5呈正相关,织金熊家场磷块岩小壳化石及其化石碎片含量对比清镇落夯磷块岩中及其化石碎片含量而言较少,P2O5含量也相对较低;结合微区原位电子探针分析,发现寒武纪梅树村期磷块岩中高磷含量与同期小壳动物大爆发有关,小壳动物不断吸收海水中的磷质构成自身壳体是控制磷块岩形成的前提条件,而后沉积环境的改变使得海水中含磷物质不断进入壳内充填,发生磷富集或流失,并改变了海水中的酸碱度,形成有利于磷质沉淀的物化条件,从而导致壳体磷质不断叠加沉积,证明小壳动物化石对成磷成矿作用具有重要贡献。

  • 参考文献

    • Zaky A H, Brand A, Azmy K, Logan A, Hooper R G, Svavarsson J. 2016. Rare earth elements of shallow-water articulated brachiopods: A bathymetric sensor. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 178~194.

    • Ahmed A H, Aseri A A, Ali K A. 2022. Geological and geochemical evaluation of phosphorite deposits in northwestern Saudi Arabia as a possible source of trace and rare-earth elements. Ore Geology Reviews, 144: 104854.

    • Al-Hobaib A S, Baioumy H M, Al-Ateeq M A. 2013. Geochemistry and origin of the Paleocene phosphorites from the Hazm Al-Jalamid area, northern Saudi Arabia. Journal of Geochemical Exploration, 132: 15~25.

    • Arning E T, Lückge A, Breuer C, Gussone N, Birgel D, Peckmann J. 2009. Genesis of phosphorite crusts off Peru. Marine Geology, 262(1-4): 68~81.

    • Auer G, Reuter M, Hauzenberger C A, Piller W E. 2017. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates. Geochimica et Cosmochimica Acta, 203: 140~156.

    • Bailey J V, Corsetti F A, Greene S E, Crosby C H, Liu Pinghua, Orphan V J. 2013. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: Implications for the role of oxygen and bacteria in phosphogenesis. Geobiology, 11(5): 397~405.

    • Bengtson S. 1976. The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function. Lethaia, 9(2): 185~206.

    • Bengtson S. 1985. Taxonomy of disarticulated fossils. Journal of Paleontology, 59(6): 1350~1358.

    • Cai Yaoping, Xiao Shuhai, Li Guoxiang, Hua Hong. 2019. Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion. Geology, 47(4): 380~384.

    • Chen Menge. 1979. On the fossil Zhijinites from the phosphorus-bearing sequence, early Lower Cambrian, South China. Chinese Journal of Geology, 14(3): 279~281 (in Chinese with English abstract).

    • Chen Menge. 1999. A new observation of the earliest Cambrian Paleoembryos. Chinese Journal of Geology, 34(4): 525~527 (in Chinese with English abstract).

    • Chen Qiying. 1995. Microbiological processes in genesis of phosphorite deposits. Chinese Journal of Geology, 30(2): 153~158 (in Chinese with English abstract).

    • Chen Qiying, Chen Menge, Li Juying. 2000. Microbial-organic effects on formation of the sedimentary apatite. Chinese Journal of Geology, 35(3): 316~324 (in Chinese with English abstract).

    • Chen Weixiang, Zhou Feng, Wang Hongquan, Zhou Sen, Yan Chunjie. 2019. The occurrence states of rare earth elements bearing phosphorite ores and rare earth enrichment through the selective reverse flotation. Minerals, 9(11): 698.

    • Chen Zhe, Bengtson S, Zhou Chuanming, Hua Hong, Yue Zhao. 2008. Tube structure and original composition of Sinoutbulites: Shelly fossils from the Late Neoproterozoic in southern Shaanxi, China. Lethaia, 41(1): 37~45.

    • Compton J S, Bergh E W. 2016. Phosphorite deposits on the Namibian shelf. Marine Geology, 380: 290~314.

    • Conway M S, Chen Menge. 1991. Cambroclaves and paracarinachitids, early skeletal problematica from the Lower Cambrian of South China. Palaeontology, 34(2): 357~397.

    • Cook P J. 1992. Phosphogenesis around the Proterozoic Phanerozoic transition. Journal of the Geological Society, 149(4): 615~620.

    • Cook P J, Shergold J H. 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature, 308(5956): 231~236.

    • Cunningham J A, Thomas C W, Bengtson S, Kearns S L, Xiao Shuhai, Marone F, Stampanoni M, Donoghue P C J. 2012. Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Proceedings of the Royal Society B: Biological Sciences, 279(1737): 2369~2376.

    • Feng Weiming, Sun Weiguo, Qian Yi. 2001. Skeletalization characters, classification and evolutionary significance of Early Cambrian monoplacophoran maikhanellids. Acta Palaeontologica Sinica, 40(2): 195~213 (in Chinese with English abstract).

    • Feng Weiming, Chen Zhe, Sun Weiguo. 2002. The differentiation of bone microstructure in the Late Cambrian and Early Cambrian. Science in China, 32(10): 850~856 (in Chinese with English abstract).

    • Feng Weiming, Sun Weiguo. 2006. Monoplacophoran Igorella-type pore-channel structures from the Lower Cambrian in China. Materials Science and Engineering C, 26(4): 699~702.

    • Ferhaoui S, Kechiched R, Bruguier O, Sinisi R, Kocsis L, Mongelli G, Bosch D, Ameur-zaimeche O, Laouar R. 2022. Rare earth elements plus yttrium (REY) in phosphorites from the Tébessa region (Eastern Algeria): Abundance, geochemical distribution through grain size fractions, and economic significance. Journal of Geochemical Exploration, 241: 107058.

    • Gao Lei. 2019. Analysis of structural characteristics of creatures and their relationship with phosphorus formation in the Cambrian phosphorites, Zhijin, Guizhou. Mater's thesis of Guizhou University (in Chinese with English abstract).

    • Gao Lei, Yang Ruidong, Wu Tong, Luo Chaokun, Xu Hai, Ni Xinran. 2023. Studies on geochemical characteristics and biomineralization of Cambrian phosphorites, Zhijin, Guizhou Province, China. Plos One, 18(2): e0281671.

    • Graul S, Kallaste T, Pajusaar S, Urston K, Gregor A, Moilanen M, Ndiaye M, Hints R. 2023. REE+Y distribution in Tremadocian shelly phosphorites (Toolse, Estonia): Multi-stages enrichment in shallow marine sediments during early diagenesis. Journal of Geochemical Exploration, 254: 107311.

    • Guo Junfeng, Li Yong, Shu Degan. 2010. Fossil macroscopic algae from the Yanjiahe Formation on terreneuvian of the three gorges area, South China. Acta Palaeontologica Sinica, 49(3): 336~342 (in Chinese with English abstract).

    • He Shan. 2022. Geochemical characteristics and the metallogenic mechanism of the REY in the phosphorite-type REY deposits in Zhijin, Guizhou. Doctoral dissertation of Chinese Academy of Sciences (in Chinese with English abstract).

    • Ilyin A V. 1998. Rare-earth geochemistry of ‘old’ phosphorites and probability of syngenetic precipitation and accumulation of phosphate. Chemical Geology, 144(3-4): 243~256.

    • Jaisi D P, Blake R E. 2010. Tracing sources and cycling of phosphorus in Peru Margin sediments using oxygen isotopes in authigenic and detrital phosphates. Geochimica et Cosmochimica Acta, 74(11): 3199~3212.

    • Ji Wenhu, Pang Yanchun, Wen Yuan, Hu Qiang. 2019. Composition and their relationship with surrounding rocks in the terreneuvian series at the Laoheba section in Mabian phosphate deposit area, south Sichuan. Acta Micropala-Eontologica Sinca, 36(4): 309~318 (in Chinese with English abstract).

    • Jiang Shaoyang, Yang Jinghong, Ling Hongfei, Chen Yongquan, Feng Hongzhen, Zhao Kuidong, Ni Pei. 2007. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 217~228.

    • Kouchinsky A V. 1999. Shell microstructures of the Early Cambrian Anabarella and Watsonella as new evidence on the origin of the Rostroconchia. Lethaia, 32(2): 173~180.

    • Kouchinsky A V. 2000a. Shell microstructures in the Early Cambrian mollusks. Acta Paleontologica Polonica, 45(2): 119~150.

    • Kouchinsky A V. 2000b. Skeletal microstructures of hyoliths from the Early Cambrian of Siberia. Alcheringa: An Australasian Journal of Palaeontology, 24(2): 65~81.

    • Liu Xiqiang, Zhang Hui, Tang Yong, Liu Yunlong. 2020. REE geochemical characteristic of apatite: Implications for ore genesis of the Zhijin phosphorite. Minerals, 10(11): 1012.

    • Lou Fangju, Gu Shangyi. 2019. Indication of the Ce anomaly of apatite in phosphorites to the evolution of oxygen in the Earth's atmosphere. Acta Mineralogica Sinica, 39(4): 412~419 (in Chinese with English abstract).

    • Mao Tie. 2015. Analysis of phosphorus forming environment and ore-forming control factors at the bottom of Cambrian in central Guizhou. Doctoral dissertation of Guizhou University (in Chinese with English abstract).

    • Mao Tie, Yang Ruidong. 2013. Micro-structural characteristics and composition of the small shelly fossils in Cambrian phosphorites, Zhijin, Guizhou. Acta Micropalaeontologica Sinca, 30(2): 199~207 (in Chinese with English abstract).

    • Mao Tie, Yang Ruidong, Gao Junbo, Mao Jiaren, 2015. Study of sedimentary feature of Cambrian phosphorite and ore-controlling feature of old karst surface of the Dengying Formation in Zhijin, Guizhou. Acta Geologica Sinca, 89(12): 2374~2388 (in Chinese with English abstract).

    • Mcarthur J M, Walsh J N. 1984. Rare-earth geochemistry of phosphorites. Chemical Geology, 47(3-4): 191~220.

    • Miao Yufei, Yin Zongjun, Wu Ruolin, Li Gupxiang, Zhu Maoyan. 2021. Microstructures and in-situ spectroscopic analyses of Conotheca (Orthothecide) from the Early Cambrian Kuanchuanpu Biota. Acta Palaeontologica Sinica, 60(1): 108~123 (in Chinese with English abstract).

    • Pang Yanchun, Steiner M, Shen Cen, Feng Mingshi, Lin Li, Liu Dingkun. 2017. Shell composition of Terreneuvian tubular fossils from northeast Sichuan, China. Palaenotology, 60(1): 15~26.

    • Planavsky N J, Reinhard C T, Wang Xiangli, Thomson D, Mcgoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyns T W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346(6209): 635~638.

    • Pufahl P K, Groat L A. 2017. Sedimentary and igneous phosphate deposits: Formation and exploration (an invited paper). Economic Geology, 112(3): 483~516.

    • Qian Yi. 1999. Taxonomy and Biostratigraphy of Small Shell Fossils from China. Beijing: Science Press (in Chinese with English abstract).

    • Qian Yi, Yin Gongzheng. 1984a. Zhijinitidae and its stratigraphical significance. Acta Palaeontologica Sinica, 23(2): 213~223 (in Chinese with English abstract).

    • Qian Yi, Yin Gongzheng. 1984b. Small shelly fossils from lowerest Cambrian in Guizhou. In: Yang Zunyi, ed. Stratigraphic Paleotological Collection. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Reynard B, Lécuyer C, Grandjean P. 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology, 155(3-4): 233~241.

    • Runnegar B, Bengtson S. 1990. Origin of hard parts early skeletal fossils. In: Derek E G B, Crowther P R, eds. Major Events in History of Life, Palaeobiology, a Synthesis. Oxford: Blackwell Scientific Publitions: 24~29.

    • Siegmund H. 1997. The Ocruranus-Eohalobia group of small shelly fossils from the Lower Cambrian of Yunnan. Lethaia, 30(4): 285~291.

    • Steiner M, Wallis E, Ertman B D, Zhao Yuanlong, Yang Ruidong. 2001. Submarine hydrothermal exhalative ore layers in black shales from South China and associated fossils insights into Lower Cambrian facies and bio-evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(3-4): 165~169.

    • Sun Weichen, Yin Zongjun, Cunningham J A, Liu Pengju, Zhu Maoyan Donghue P C J. 2020. Nucleus preservation in Early Ediacaran Weng'an embryo-like fossils, experimental taphonomy of nuclei and implications for reading the eukaryote fossil record. Interface Focus, 10(4): 20200015.

    • Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400(6744): 525~531.

    • Wu Xiche, Jiang Zhiwen. 1989. Mineralogical characteristics of the outer lamella of the earliest shelly fossils. Acta Micropalaeontologica Sinca, 6(2): 153~160 (in Chinese with English abstract).

    • Xie Hong, Zhu Lijun. 2012. Existing state and distribution regularity of rare earth elements from Early Cambrian phosphorite in Guizhou. Journal of the Chinese Society of Rare Earths, 30(5): 620~627 (in Chinese with English abstract).

    • Xing Jieqi, Jiang Yuhang, Xian Haiyang, Zhang Zeyang, Yang Yiping, Tan Wei, Liang Xiaoliang, Niu Hecai, He Hongping, Zhu Jianxi. 2021. Hydrothermal activity during the formation of REY-rich phosphorites in the Early Cambrian Gezhongwu Formation, Zhijin, South China: A micro-and nano-scale mineralogical study. Ore Geology Reviews, 136: 104224.

    • Xu Jianbin, Xiao Jiafei, Yang Haiying, Xia Yong, Wu Shengwei, Xie Zhoujun. 2019. The REE enrichment characteristics and constraints of the phophorite in Zhijin, Guizhou: A case study of No. 2204 drilling cores in the Motianchong ore block. Acta Mineral Sinica, 39: 371~379.

    • Xue Yaosong, Zhou Chuanming. 2006. Resedimentation of the Early Cambrian phosphatized small shell fossils and correlation of the Sinian-Cambrian boundary strata in Yangtze region, southern China. Journal of Stratigraphy, 30(1): 64~74(in Chinese with English abstract).

    • Yang Ben, Steiner M, Schiffbauer J D, Selly T, Wu Xuwen, Zhang Cong, Liu Pengju. 2020. Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids. Scientific Reports, 10(1): 535.

    • Yang Ben, Liu Pengju, Shang Xiaodong, Cai Xiyao, Zhou Yuan. 2023. Early Fortunian small shelly fossils from the Aksu area of Xinjiang, China. Acta Geologica Sinica, 97(12): 4044~4051 (in Chinese with English abstract).

    • Yang Haiying. 2020. A comparative study on metallogenic paleo-environments of phoshorites of the Doushantu and Gezhongwu formations in the central Guizhou and their constrains on the enrichment of rare earth elements. Doctoral dissertation of Chinese Academy of Sciences (in Chinese with English abstract).

    • Yang Haiying, Xiao Jiafei, Xia Yong, Xie Zhoujun, Tan Qinping, Xu Jianbin, Guo Haian, He Shan, Wu Shengwei. 2019. Origin of the Ediacaran Weng'an and Kaiyang phosphorite deposits in the Nanhua basin, SW China. Journal of Asian Earth Sciences, 182: 103931.

    • Yang Haiying, Xiao Jiafei, Xia Yong, Xie Zhoujun, Tan Qinping, Xu Jianbin, He Shan, Wu Shengwei, Liu Xiqiang, Gong Xingxiang. 2021. Phosphorite generative processes around the Precambrian-Cambrian boundary in South China: An integrated study of Mo and phosphate O isotopic compositions. Geoscience Frontiers, 12(5): 101187.

    • Yang Haiying, Xiao Jiafei, Zhao Zhifang, Xie Zhoujun, He Shan, Wu Shengwei. 2022. Diagenesis of Ediacaran-Early Cambrian phosphorite: Comparisons with recent phosphate sediments based on LA-ICP-MS and EMPA. Ore Geology Reviews, 144: 104813.

    • Yin Zongjun, Zhao Duoduo, Pan Bing, Zhao Fangchen, Zeng Han, Li Guoxiang, Bottjer D J, Zhu Maoyan. 2018. Early Cambrian animal diapause embryos revealed by X-ray tomography. Geology, 46(5): 387~390.

    • Zhang Jie, Zhu Lei, Zhang Qin. 2006. Biological ore characteristic of ore-bearing REE in Xinhua phosphorite, Zhijin, Guizhou. Chinese Rare Earth, 27(1): 93~94 (in Chinese with English abstract).

    • Zhang Zhiliang, Pour M G, Popov L E, Holmer L E, Chen Feiyang, Chen Yanlong, Brock G A, Zhang Zhifei. 2021. The Oldest Cambrian trilobite-brachiopod association in South China. Gondwana Research, 89: 147~167.

    • Zhu Bi, Jiang Shaoyang, Yang Jinghong, Pi Daohui, Ling Hongfei, Chen Yongquan. 2014. Rare earth element and Sr-Nd isotope geochemistry of phosphate nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 398: 132~43.

    • Zhu Maoyan, Qian Yi, Jiang Zhiwen, He Yangui. 1996. Primary discussion on preserving, composition and micro-structure of small shelly fossil. Acta Micropalaeontologica Sinca, 13(3): 241~254 (in Chinese with English abstract).

    • Zhu Maoyan, Zhang Junming, Yang Aihua. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 7~61.

    • 陈孟莪. 1979. 我国寒武纪早期含磷岩系中织金壳属Zhijinites化石的构造和分类. 地质科学, 14(3): 279~281.

    • 陈孟莪. 1999. 寒武纪最早期的古胚胎化石新观察. 地质科学, 34(4): 525~527.

    • 陈其英. 1995. 磷块岩形成过程中的生物作用. 地质科学, 30(2): 153~158.

    • 陈其英, 陈孟莪, 李菊英. 2000. 沉积磷灰石形成中的生物有机质因素. 地质科学, 35(3): 316~324.

    • 冯伟民, 孙卫国, 钱逸. 2001. 早寒武世马哈螺类的骨骼化特征、分类和演化意义. 古生物学报, 40(2): 195~213.

    • 冯伟民, 陈哲, 孙卫国. 2002. 晚前寒武纪末至早寒武世生物骨骼微细结构的分异. 中国科学, 32(10): 850~856.

    • 高磊. 2019. 贵州织金寒武系磷块岩中生物的结构特征及与成磷关系分析. 贵州大学硕士学位论文.

    • 郭俊锋, 李勇, 舒德干. 2010. 湖北三峡地区纽芬兰统岩家河组的宏体藻类化石. 古生物学报, 49(3): 336~342.

    • 何珊. 2022. 贵州织金磷块岩型稀土矿地球化学特征及稀土成因机制. 中国科学院大学博士学位论文.

    • 冀文虎, 庞艳春, 文源, 胡强. 2019. 川南马边老河坝磷矿区麦地坪组中管状化石壳体成分特征及与围岩的关系. 微体古生物学报, 36(4): 309~318.

    • 娄方炬, 顾尚义. 2019. 磷块岩中磷灰石铈异常与地球大气氧演化. 矿物学报, 39(4): 412~419.

    • 毛铁. 2015. 黔中地区寒武系底部成磷环境及成矿控制因素分析. 贵州大学博士学位论文.

    • 毛铁, 杨瑞东. 2013. 贵州织金寒武系磷块岩中的小壳动物化石微结构特征及成分研究. 微体古生物学报, 30(2): 199~207.

    • 毛铁, 杨瑞东, 高军波, 毛家仁. 2015. 贵州织金寒武系磷矿沉积特征及灯影组古喀斯特面控矿特征研究. 地质学报, 89(12): 2374~2388.

    • 苗雨霏, 殷宗军, 吴若琳, 李国祥, 朱茂炎. 2021. 寒武纪早期宽川铺生物群中圆管螺化石显微结构及显微谱学分析. 古生物学报, 60(1): 108~123.

    • 钱逸. 1999. 中国小壳化石分类学与生物地层学. 北京: 科学出版社.

    • 钱逸, 尹恭正. 1984a. 试论织金壳科Zhijinitidae的结构、亲缘、分类及其地层意义. 古生物学报, 23(2): 213~223.

    • 钱逸, 尹恭正. 1984b. 贵州早寒武世早期小壳动物化石研究. 见: 杨遵仪主编. 地层古生物论文集. 北京: 地质出版社.

    • 武希彻, 蒋志文. 1989. 最早带壳动物化石外壳的矿物学特征. 微体古生物学报, 6(2): 153~160.

    • 谢宏, 朱立军. 2012. 贵州早寒武世早期磷块岩稀土元素赋存状态及分布规律研究. 中国稀土学报, 30 (5): 620~627.

    • 薛耀松, 周传明. 2006. 扬子区早寒武世早期磷质小壳化石的再沉积和地层对比问题. 地层学杂志, 30(1): 64~74.

    • 杨犇, 刘鹏举, 尚晓冬, 蔡习尧, 周元. 2023. 新疆阿克苏地区寒武纪幸运期早期小壳化石. 地质学报, 97(12): 4044~4051.

    • 杨海英. 2020. 黔中地区陡山沱组和戈仲武组磷块岩成矿古环境对比及其对稀土富集的制约. 中国科学院大学博士学位论文.

    • 岳昭. 1991. 早寒武Phyllochition骨片集合体的发现及其与Zhijinitids类的关系. 科学通报, 36(1): 47~50.

    • 张杰, 朱雷, 张覃. 2006. 贵州织金含稀土磷块岩矿床生物成矿基本特征. 稀土, 27(1): 93~94.

    • 朱茂炎, 钱逸, 蒋志文, 何延贵. 1996. 小壳化石保存、壳壁成分和显微构造初探. 微体古生物学报, 13(3): 241~254.

  • 参考文献

    • Zaky A H, Brand A, Azmy K, Logan A, Hooper R G, Svavarsson J. 2016. Rare earth elements of shallow-water articulated brachiopods: A bathymetric sensor. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 178~194.

    • Ahmed A H, Aseri A A, Ali K A. 2022. Geological and geochemical evaluation of phosphorite deposits in northwestern Saudi Arabia as a possible source of trace and rare-earth elements. Ore Geology Reviews, 144: 104854.

    • Al-Hobaib A S, Baioumy H M, Al-Ateeq M A. 2013. Geochemistry and origin of the Paleocene phosphorites from the Hazm Al-Jalamid area, northern Saudi Arabia. Journal of Geochemical Exploration, 132: 15~25.

    • Arning E T, Lückge A, Breuer C, Gussone N, Birgel D, Peckmann J. 2009. Genesis of phosphorite crusts off Peru. Marine Geology, 262(1-4): 68~81.

    • Auer G, Reuter M, Hauzenberger C A, Piller W E. 2017. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates. Geochimica et Cosmochimica Acta, 203: 140~156.

    • Bailey J V, Corsetti F A, Greene S E, Crosby C H, Liu Pinghua, Orphan V J. 2013. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: Implications for the role of oxygen and bacteria in phosphogenesis. Geobiology, 11(5): 397~405.

    • Bengtson S. 1976. The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function. Lethaia, 9(2): 185~206.

    • Bengtson S. 1985. Taxonomy of disarticulated fossils. Journal of Paleontology, 59(6): 1350~1358.

    • Cai Yaoping, Xiao Shuhai, Li Guoxiang, Hua Hong. 2019. Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion. Geology, 47(4): 380~384.

    • Chen Menge. 1979. On the fossil Zhijinites from the phosphorus-bearing sequence, early Lower Cambrian, South China. Chinese Journal of Geology, 14(3): 279~281 (in Chinese with English abstract).

    • Chen Menge. 1999. A new observation of the earliest Cambrian Paleoembryos. Chinese Journal of Geology, 34(4): 525~527 (in Chinese with English abstract).

    • Chen Qiying. 1995. Microbiological processes in genesis of phosphorite deposits. Chinese Journal of Geology, 30(2): 153~158 (in Chinese with English abstract).

    • Chen Qiying, Chen Menge, Li Juying. 2000. Microbial-organic effects on formation of the sedimentary apatite. Chinese Journal of Geology, 35(3): 316~324 (in Chinese with English abstract).

    • Chen Weixiang, Zhou Feng, Wang Hongquan, Zhou Sen, Yan Chunjie. 2019. The occurrence states of rare earth elements bearing phosphorite ores and rare earth enrichment through the selective reverse flotation. Minerals, 9(11): 698.

    • Chen Zhe, Bengtson S, Zhou Chuanming, Hua Hong, Yue Zhao. 2008. Tube structure and original composition of Sinoutbulites: Shelly fossils from the Late Neoproterozoic in southern Shaanxi, China. Lethaia, 41(1): 37~45.

    • Compton J S, Bergh E W. 2016. Phosphorite deposits on the Namibian shelf. Marine Geology, 380: 290~314.

    • Conway M S, Chen Menge. 1991. Cambroclaves and paracarinachitids, early skeletal problematica from the Lower Cambrian of South China. Palaeontology, 34(2): 357~397.

    • Cook P J. 1992. Phosphogenesis around the Proterozoic Phanerozoic transition. Journal of the Geological Society, 149(4): 615~620.

    • Cook P J, Shergold J H. 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature, 308(5956): 231~236.

    • Cunningham J A, Thomas C W, Bengtson S, Kearns S L, Xiao Shuhai, Marone F, Stampanoni M, Donoghue P C J. 2012. Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Proceedings of the Royal Society B: Biological Sciences, 279(1737): 2369~2376.

    • Feng Weiming, Sun Weiguo, Qian Yi. 2001. Skeletalization characters, classification and evolutionary significance of Early Cambrian monoplacophoran maikhanellids. Acta Palaeontologica Sinica, 40(2): 195~213 (in Chinese with English abstract).

    • Feng Weiming, Chen Zhe, Sun Weiguo. 2002. The differentiation of bone microstructure in the Late Cambrian and Early Cambrian. Science in China, 32(10): 850~856 (in Chinese with English abstract).

    • Feng Weiming, Sun Weiguo. 2006. Monoplacophoran Igorella-type pore-channel structures from the Lower Cambrian in China. Materials Science and Engineering C, 26(4): 699~702.

    • Ferhaoui S, Kechiched R, Bruguier O, Sinisi R, Kocsis L, Mongelli G, Bosch D, Ameur-zaimeche O, Laouar R. 2022. Rare earth elements plus yttrium (REY) in phosphorites from the Tébessa region (Eastern Algeria): Abundance, geochemical distribution through grain size fractions, and economic significance. Journal of Geochemical Exploration, 241: 107058.

    • Gao Lei. 2019. Analysis of structural characteristics of creatures and their relationship with phosphorus formation in the Cambrian phosphorites, Zhijin, Guizhou. Mater's thesis of Guizhou University (in Chinese with English abstract).

    • Gao Lei, Yang Ruidong, Wu Tong, Luo Chaokun, Xu Hai, Ni Xinran. 2023. Studies on geochemical characteristics and biomineralization of Cambrian phosphorites, Zhijin, Guizhou Province, China. Plos One, 18(2): e0281671.

    • Graul S, Kallaste T, Pajusaar S, Urston K, Gregor A, Moilanen M, Ndiaye M, Hints R. 2023. REE+Y distribution in Tremadocian shelly phosphorites (Toolse, Estonia): Multi-stages enrichment in shallow marine sediments during early diagenesis. Journal of Geochemical Exploration, 254: 107311.

    • Guo Junfeng, Li Yong, Shu Degan. 2010. Fossil macroscopic algae from the Yanjiahe Formation on terreneuvian of the three gorges area, South China. Acta Palaeontologica Sinica, 49(3): 336~342 (in Chinese with English abstract).

    • He Shan. 2022. Geochemical characteristics and the metallogenic mechanism of the REY in the phosphorite-type REY deposits in Zhijin, Guizhou. Doctoral dissertation of Chinese Academy of Sciences (in Chinese with English abstract).

    • Ilyin A V. 1998. Rare-earth geochemistry of ‘old’ phosphorites and probability of syngenetic precipitation and accumulation of phosphate. Chemical Geology, 144(3-4): 243~256.

    • Jaisi D P, Blake R E. 2010. Tracing sources and cycling of phosphorus in Peru Margin sediments using oxygen isotopes in authigenic and detrital phosphates. Geochimica et Cosmochimica Acta, 74(11): 3199~3212.

    • Ji Wenhu, Pang Yanchun, Wen Yuan, Hu Qiang. 2019. Composition and their relationship with surrounding rocks in the terreneuvian series at the Laoheba section in Mabian phosphate deposit area, south Sichuan. Acta Micropala-Eontologica Sinca, 36(4): 309~318 (in Chinese with English abstract).

    • Jiang Shaoyang, Yang Jinghong, Ling Hongfei, Chen Yongquan, Feng Hongzhen, Zhao Kuidong, Ni Pei. 2007. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 217~228.

    • Kouchinsky A V. 1999. Shell microstructures of the Early Cambrian Anabarella and Watsonella as new evidence on the origin of the Rostroconchia. Lethaia, 32(2): 173~180.

    • Kouchinsky A V. 2000a. Shell microstructures in the Early Cambrian mollusks. Acta Paleontologica Polonica, 45(2): 119~150.

    • Kouchinsky A V. 2000b. Skeletal microstructures of hyoliths from the Early Cambrian of Siberia. Alcheringa: An Australasian Journal of Palaeontology, 24(2): 65~81.

    • Liu Xiqiang, Zhang Hui, Tang Yong, Liu Yunlong. 2020. REE geochemical characteristic of apatite: Implications for ore genesis of the Zhijin phosphorite. Minerals, 10(11): 1012.

    • Lou Fangju, Gu Shangyi. 2019. Indication of the Ce anomaly of apatite in phosphorites to the evolution of oxygen in the Earth's atmosphere. Acta Mineralogica Sinica, 39(4): 412~419 (in Chinese with English abstract).

    • Mao Tie. 2015. Analysis of phosphorus forming environment and ore-forming control factors at the bottom of Cambrian in central Guizhou. Doctoral dissertation of Guizhou University (in Chinese with English abstract).

    • Mao Tie, Yang Ruidong. 2013. Micro-structural characteristics and composition of the small shelly fossils in Cambrian phosphorites, Zhijin, Guizhou. Acta Micropalaeontologica Sinca, 30(2): 199~207 (in Chinese with English abstract).

    • Mao Tie, Yang Ruidong, Gao Junbo, Mao Jiaren, 2015. Study of sedimentary feature of Cambrian phosphorite and ore-controlling feature of old karst surface of the Dengying Formation in Zhijin, Guizhou. Acta Geologica Sinca, 89(12): 2374~2388 (in Chinese with English abstract).

    • Mcarthur J M, Walsh J N. 1984. Rare-earth geochemistry of phosphorites. Chemical Geology, 47(3-4): 191~220.

    • Miao Yufei, Yin Zongjun, Wu Ruolin, Li Gupxiang, Zhu Maoyan. 2021. Microstructures and in-situ spectroscopic analyses of Conotheca (Orthothecide) from the Early Cambrian Kuanchuanpu Biota. Acta Palaeontologica Sinica, 60(1): 108~123 (in Chinese with English abstract).

    • Pang Yanchun, Steiner M, Shen Cen, Feng Mingshi, Lin Li, Liu Dingkun. 2017. Shell composition of Terreneuvian tubular fossils from northeast Sichuan, China. Palaenotology, 60(1): 15~26.

    • Planavsky N J, Reinhard C T, Wang Xiangli, Thomson D, Mcgoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyns T W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346(6209): 635~638.

    • Pufahl P K, Groat L A. 2017. Sedimentary and igneous phosphate deposits: Formation and exploration (an invited paper). Economic Geology, 112(3): 483~516.

    • Qian Yi. 1999. Taxonomy and Biostratigraphy of Small Shell Fossils from China. Beijing: Science Press (in Chinese with English abstract).

    • Qian Yi, Yin Gongzheng. 1984a. Zhijinitidae and its stratigraphical significance. Acta Palaeontologica Sinica, 23(2): 213~223 (in Chinese with English abstract).

    • Qian Yi, Yin Gongzheng. 1984b. Small shelly fossils from lowerest Cambrian in Guizhou. In: Yang Zunyi, ed. Stratigraphic Paleotological Collection. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Reynard B, Lécuyer C, Grandjean P. 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology, 155(3-4): 233~241.

    • Runnegar B, Bengtson S. 1990. Origin of hard parts early skeletal fossils. In: Derek E G B, Crowther P R, eds. Major Events in History of Life, Palaeobiology, a Synthesis. Oxford: Blackwell Scientific Publitions: 24~29.

    • Siegmund H. 1997. The Ocruranus-Eohalobia group of small shelly fossils from the Lower Cambrian of Yunnan. Lethaia, 30(4): 285~291.

    • Steiner M, Wallis E, Ertman B D, Zhao Yuanlong, Yang Ruidong. 2001. Submarine hydrothermal exhalative ore layers in black shales from South China and associated fossils insights into Lower Cambrian facies and bio-evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(3-4): 165~169.

    • Sun Weichen, Yin Zongjun, Cunningham J A, Liu Pengju, Zhu Maoyan Donghue P C J. 2020. Nucleus preservation in Early Ediacaran Weng'an embryo-like fossils, experimental taphonomy of nuclei and implications for reading the eukaryote fossil record. Interface Focus, 10(4): 20200015.

    • Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400(6744): 525~531.

    • Wu Xiche, Jiang Zhiwen. 1989. Mineralogical characteristics of the outer lamella of the earliest shelly fossils. Acta Micropalaeontologica Sinca, 6(2): 153~160 (in Chinese with English abstract).

    • Xie Hong, Zhu Lijun. 2012. Existing state and distribution regularity of rare earth elements from Early Cambrian phosphorite in Guizhou. Journal of the Chinese Society of Rare Earths, 30(5): 620~627 (in Chinese with English abstract).

    • Xing Jieqi, Jiang Yuhang, Xian Haiyang, Zhang Zeyang, Yang Yiping, Tan Wei, Liang Xiaoliang, Niu Hecai, He Hongping, Zhu Jianxi. 2021. Hydrothermal activity during the formation of REY-rich phosphorites in the Early Cambrian Gezhongwu Formation, Zhijin, South China: A micro-and nano-scale mineralogical study. Ore Geology Reviews, 136: 104224.

    • Xu Jianbin, Xiao Jiafei, Yang Haiying, Xia Yong, Wu Shengwei, Xie Zhoujun. 2019. The REE enrichment characteristics and constraints of the phophorite in Zhijin, Guizhou: A case study of No. 2204 drilling cores in the Motianchong ore block. Acta Mineral Sinica, 39: 371~379.

    • Xue Yaosong, Zhou Chuanming. 2006. Resedimentation of the Early Cambrian phosphatized small shell fossils and correlation of the Sinian-Cambrian boundary strata in Yangtze region, southern China. Journal of Stratigraphy, 30(1): 64~74(in Chinese with English abstract).

    • Yang Ben, Steiner M, Schiffbauer J D, Selly T, Wu Xuwen, Zhang Cong, Liu Pengju. 2020. Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids. Scientific Reports, 10(1): 535.

    • Yang Ben, Liu Pengju, Shang Xiaodong, Cai Xiyao, Zhou Yuan. 2023. Early Fortunian small shelly fossils from the Aksu area of Xinjiang, China. Acta Geologica Sinica, 97(12): 4044~4051 (in Chinese with English abstract).

    • Yang Haiying. 2020. A comparative study on metallogenic paleo-environments of phoshorites of the Doushantu and Gezhongwu formations in the central Guizhou and their constrains on the enrichment of rare earth elements. Doctoral dissertation of Chinese Academy of Sciences (in Chinese with English abstract).

    • Yang Haiying, Xiao Jiafei, Xia Yong, Xie Zhoujun, Tan Qinping, Xu Jianbin, Guo Haian, He Shan, Wu Shengwei. 2019. Origin of the Ediacaran Weng'an and Kaiyang phosphorite deposits in the Nanhua basin, SW China. Journal of Asian Earth Sciences, 182: 103931.

    • Yang Haiying, Xiao Jiafei, Xia Yong, Xie Zhoujun, Tan Qinping, Xu Jianbin, He Shan, Wu Shengwei, Liu Xiqiang, Gong Xingxiang. 2021. Phosphorite generative processes around the Precambrian-Cambrian boundary in South China: An integrated study of Mo and phosphate O isotopic compositions. Geoscience Frontiers, 12(5): 101187.

    • Yang Haiying, Xiao Jiafei, Zhao Zhifang, Xie Zhoujun, He Shan, Wu Shengwei. 2022. Diagenesis of Ediacaran-Early Cambrian phosphorite: Comparisons with recent phosphate sediments based on LA-ICP-MS and EMPA. Ore Geology Reviews, 144: 104813.

    • Yin Zongjun, Zhao Duoduo, Pan Bing, Zhao Fangchen, Zeng Han, Li Guoxiang, Bottjer D J, Zhu Maoyan. 2018. Early Cambrian animal diapause embryos revealed by X-ray tomography. Geology, 46(5): 387~390.

    • Zhang Jie, Zhu Lei, Zhang Qin. 2006. Biological ore characteristic of ore-bearing REE in Xinhua phosphorite, Zhijin, Guizhou. Chinese Rare Earth, 27(1): 93~94 (in Chinese with English abstract).

    • Zhang Zhiliang, Pour M G, Popov L E, Holmer L E, Chen Feiyang, Chen Yanlong, Brock G A, Zhang Zhifei. 2021. The Oldest Cambrian trilobite-brachiopod association in South China. Gondwana Research, 89: 147~167.

    • Zhu Bi, Jiang Shaoyang, Yang Jinghong, Pi Daohui, Ling Hongfei, Chen Yongquan. 2014. Rare earth element and Sr-Nd isotope geochemistry of phosphate nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 398: 132~43.

    • Zhu Maoyan, Qian Yi, Jiang Zhiwen, He Yangui. 1996. Primary discussion on preserving, composition and micro-structure of small shelly fossil. Acta Micropalaeontologica Sinca, 13(3): 241~254 (in Chinese with English abstract).

    • Zhu Maoyan, Zhang Junming, Yang Aihua. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 7~61.

    • 陈孟莪. 1979. 我国寒武纪早期含磷岩系中织金壳属Zhijinites化石的构造和分类. 地质科学, 14(3): 279~281.

    • 陈孟莪. 1999. 寒武纪最早期的古胚胎化石新观察. 地质科学, 34(4): 525~527.

    • 陈其英. 1995. 磷块岩形成过程中的生物作用. 地质科学, 30(2): 153~158.

    • 陈其英, 陈孟莪, 李菊英. 2000. 沉积磷灰石形成中的生物有机质因素. 地质科学, 35(3): 316~324.

    • 冯伟民, 孙卫国, 钱逸. 2001. 早寒武世马哈螺类的骨骼化特征、分类和演化意义. 古生物学报, 40(2): 195~213.

    • 冯伟民, 陈哲, 孙卫国. 2002. 晚前寒武纪末至早寒武世生物骨骼微细结构的分异. 中国科学, 32(10): 850~856.

    • 高磊. 2019. 贵州织金寒武系磷块岩中生物的结构特征及与成磷关系分析. 贵州大学硕士学位论文.

    • 郭俊锋, 李勇, 舒德干. 2010. 湖北三峡地区纽芬兰统岩家河组的宏体藻类化石. 古生物学报, 49(3): 336~342.

    • 何珊. 2022. 贵州织金磷块岩型稀土矿地球化学特征及稀土成因机制. 中国科学院大学博士学位论文.

    • 冀文虎, 庞艳春, 文源, 胡强. 2019. 川南马边老河坝磷矿区麦地坪组中管状化石壳体成分特征及与围岩的关系. 微体古生物学报, 36(4): 309~318.

    • 娄方炬, 顾尚义. 2019. 磷块岩中磷灰石铈异常与地球大气氧演化. 矿物学报, 39(4): 412~419.

    • 毛铁. 2015. 黔中地区寒武系底部成磷环境及成矿控制因素分析. 贵州大学博士学位论文.

    • 毛铁, 杨瑞东. 2013. 贵州织金寒武系磷块岩中的小壳动物化石微结构特征及成分研究. 微体古生物学报, 30(2): 199~207.

    • 毛铁, 杨瑞东, 高军波, 毛家仁. 2015. 贵州织金寒武系磷矿沉积特征及灯影组古喀斯特面控矿特征研究. 地质学报, 89(12): 2374~2388.

    • 苗雨霏, 殷宗军, 吴若琳, 李国祥, 朱茂炎. 2021. 寒武纪早期宽川铺生物群中圆管螺化石显微结构及显微谱学分析. 古生物学报, 60(1): 108~123.

    • 钱逸. 1999. 中国小壳化石分类学与生物地层学. 北京: 科学出版社.

    • 钱逸, 尹恭正. 1984a. 试论织金壳科Zhijinitidae的结构、亲缘、分类及其地层意义. 古生物学报, 23(2): 213~223.

    • 钱逸, 尹恭正. 1984b. 贵州早寒武世早期小壳动物化石研究. 见: 杨遵仪主编. 地层古生物论文集. 北京: 地质出版社.

    • 武希彻, 蒋志文. 1989. 最早带壳动物化石外壳的矿物学特征. 微体古生物学报, 6(2): 153~160.

    • 谢宏, 朱立军. 2012. 贵州早寒武世早期磷块岩稀土元素赋存状态及分布规律研究. 中国稀土学报, 30 (5): 620~627.

    • 薛耀松, 周传明. 2006. 扬子区早寒武世早期磷质小壳化石的再沉积和地层对比问题. 地层学杂志, 30(1): 64~74.

    • 杨犇, 刘鹏举, 尚晓冬, 蔡习尧, 周元. 2023. 新疆阿克苏地区寒武纪幸运期早期小壳化石. 地质学报, 97(12): 4044~4051.

    • 杨海英. 2020. 黔中地区陡山沱组和戈仲武组磷块岩成矿古环境对比及其对稀土富集的制约. 中国科学院大学博士学位论文.

    • 岳昭. 1991. 早寒武Phyllochition骨片集合体的发现及其与Zhijinitids类的关系. 科学通报, 36(1): 47~50.

    • 张杰, 朱雷, 张覃. 2006. 贵州织金含稀土磷块岩矿床生物成矿基本特征. 稀土, 27(1): 93~94.

    • 朱茂炎, 钱逸, 蒋志文, 何延贵. 1996. 小壳化石保存、壳壁成分和显微构造初探. 微体古生物学报, 13(3): 241~254.