-
中亚造山带西起乌拉尔山脉,东到太平洋沿岸,北面为西伯利亚克拉通,南抵塔里木-华北克拉通的北缘,是世界上现存规模最大的显生宙增生型造山带(图1a)。它主要由不同时期的岛弧、蛇绿岩、增生楔、海山和微大陆等组成(Windley et al.,2007;Xiao Wenjiao et al.,2008),其显著特点是发育巨量具有亏损Sr-Nd-Hf等同位素的花岗岩。因此,中亚造山带是研究增生造山作用和陆壳生长的理想对象(Han Baofu et al.,1997; Jahn,2004; Wang Tao et al.,2009)。西准噶尔造山带位于中亚造山带西南部,是中亚造山带古生代发育规模最大、最年轻的地壳增长区(图1b;Yin Jiyuan et al.,2017)。该地区出露有大量的花岗岩(如A型、I型和紫苏花岗岩等),且具有极度亏损的Sr-Nd-Hf同位素组成,接近亏损地幔值(Han Baofu et al.,1997; Chen Bin and Arakawa,2005; Geng Hongyan et al.,2009; Tang Gongjian et al.,2012a; Chen Jiafu et al.,2015)。然而,对于这些花岗岩的岩浆源区一直存在着争议,主要观点有:① 亏损地幔部分熔融形成的基性岩浆的结晶分异(Han Baofu et a1.,1997);② 年轻的玄武质下地壳的部分熔融(Chen Bin and Arakawa,2005; Geng Hongyan et al.,2009);③ 洋壳或洋内弧物质组成的中下地壳的部分熔融 (Tang Gongjian et a1.,2012);④ 循环沉积物参与的新生地壳的部分熔融(Tang Gongjian et al.,2019; Yin Jiyuan et al.,2021)。上述机制和源区均可形成亏损Sr-Nd-Hf同位素组成的花岗岩,但不同成因的花岗岩可能对应着不同的岩浆源区和地球动力学过程。然而,传统的放射性同位素体系不能很好地鉴别其岩浆源区和成因,因此地球化学手段的拓展是解决这一个科学问题的关键。
-
图1 中亚造山带构造简图(a,据Yin Jiyuan et al.,2021)及西准噶尔造山带地质简图(b,据 Yin Jiyuan et al.,2017)
-
Fig.1 Simplified tectonic divisions of the Central Asian Orogenic Belt (CAOB) (a, after Yin Jiyuan et al., 2021) and geological map of the West Junggar orogenic belt, NW China (b, after Yin Jiyuan et al., 2017)
-
锆石是一种高温、难熔的且化学性质稳定的副矿物,不受后期岩浆作用和高级变质作用的影响,可以记录岩浆原岩特征的信息(Valley et al.,1994,2005)。锆石的Hf同位素组成可以区分岩浆来源于年轻地壳还是古老地壳(Kemp et al.,2006; Dhuime et al.,2011),但是Hf同位素组成不容易受到热液蚀变或风化的改变,所以无法识别岩浆源区先前是否遭受了浅表风化过程(Griffin et al.,2000; Harrison et al.,2005)。幔源岩浆结晶出来的锆石通常具有一致的δ18O 值(5.3‰±0.6‰,2σ),且该值受岩浆分异的影响很小,而沉积岩具有较高的δ18O值,变质岩次之,火成岩最低(Bindeman,2008)。壳源岩浆锆石一般具有较高的δ18O 值(δ18O = 6‰~10‰)(Bindeman et al.,2005,2008)。因此,氧同位素数据有助于追踪表壳岩的循环,比如:年轻地壳源岩的风化和侵蚀可以显著改变其δ18O 值,而其Sr-Nd-Hf同位素组成基本不变(McCulloch et al.,1980)。
-
目前,一些学者对西准噶尔造山带南部晚石炭世—早二叠世花岗岩的Hf-O同位素研究发现,这些花岗岩具有非常高的锆石δ18O 值(>8.0‰),并提出这些花岗岩的源区中可能包含有大量的沉积物(达到50%)(Tang Gongjian et al.,2019; Yin Jiyuan et al.,2021)。然而,对于西准噶尔造山带北部晚石炭世—早二叠世花岗岩的锆石O同位素研究则比较缺乏,这些花岗岩的源区是否包含有沉积物,有待于进一步的研究。另外,西准噶尔造山带北部晚石炭世—早二叠世的构造背景仍然没有达成共识,主要观点有:后碰撞背景(Zhou Taofa et al.,2008; Chen Jiafu et al.,2010)、弧后盆地背景(Zhang Xin and Zhang Hui,2014)以及洋中脊俯冲背景(Chen Yichao et al.,2017a)等。因此,本文选取西准噶尔造山带北部谢米斯台山东段的晚古生代花岗岩作为研究对象,通过详细的岩石学、地球化学、以及锆石Hf-O同位素研究,旨在探讨该花岗岩的岩浆源区和岩石成因,揭示其形成的动力学过程,并进一步探讨大陆地壳生长机制。
-
图2 西准噶尔造山带阿尔加提山石英二长岩的野外露头照片
-
Fig.2 Field photos of the representative quartz monzonite of the Aerjiati mountain in the West Junggar orogenic belt
-
(a)、(b)—样品WJ1143;(c)、(d)—样品WJ2005
-
(a) , (b) —sample WJ1143; (c) , (d) —sample WJ2005
-
1 地质背景和样品来源
-
西准噶尔造山带是由一系列古生代弧岩浆和增生杂岩组成,为中亚造山带的重要组成部分(Feng Yimin et al.,1989; Windley et al.,2007; Xiao Wenjiao et al.,2008; Chen Jiafu et al.,2010)。西准噶尔造山带发育了多个蛇绿混杂岩带,其中最老的玛依勒蛇绿岩中辉长岩的锆石U-Pb年龄为572±9 Ma(Yang Gaoxue et al.,2012;杨高学等,2023);最年轻的克拉玛依蛇绿岩体中辉石岩的锆石U-Pb年龄为332±14 Ma(徐新等,2006),显示了该地区经历了长期的,复杂的俯冲、增生过程。构造上,西准噶尔造山带以和什托洛盖山谷为界分为南部和北部(Geng Hongyan et al.,2009)。
-
西准噶尔造山带南部以北东-南西向的左行走滑断层为主,包括自西向东的巴尔克雷、哈图、达尔布特断裂,这些断裂横切过晚石炭世之前的弧增生杂岩(Feng Yimin et al.,1989; Windley et al.,2007; Xiao Wenjiao et al.,2008; Zhao Lei and He Guoqi,2013; Yang Gaoxue et al.,2014)。西准噶尔造山带南部主要经历两期岩浆活动事件,即早寒武世—早奥陶世和晚石炭世—中二叠世(韩宝福等,2006; Geng Hongyan et al.,2009; Xu Zhao et al.,2012)。早寒武世—早奥陶世岩浆岩主要出露于唐巴勒和玛依勒地区以小的岩珠或岩体形式产出。相比而言,西准噶尔造山带南部晚石炭世—早二叠世岩浆岩出露的面积和规模都很大,且种类丰富,如闪长岩、紫苏花岗岩、花岗闪长斑岩、碱长花岗岩和二长花岗岩等(Chen Bin and Arakawa,2005; Geng Hongyan et al.,2009; Tang Gongjian et al.,2010,2012a,2012b)。它们主要以高的、正的εHf(t)值和εNd(t)值以及高的锆石δ18O值为特征(Geng Hongyan et al.,2009; Tang Gongjian et al.,2010,2019; Yin Jiyuan et al.,2021)。
-
图3 西准噶尔造山带阿尔加提山石英二长岩显微镜照片
-
Fig.3 Microscopic photos of the quartz monzonite of the Aerjiati mountain in West Junggar orogenic belt
-
(a)、(b)—样品WJ1143;(c)、(d)—样品WJ2005
-
(a) , (b) —sample WJ1143; (c) , (d) —sample WJ2005
-
西准噶尔造山带北部发育有多条近东西向的断裂,包括萨乌尔、沙尔布尔提和谢米斯台断裂等。西准噶尔造山带北部主要由扎尔玛-萨吾尔火山弧和博什库尔-成吉斯火山弧组成。扎尔玛-萨吾尔火山弧形成于额尔齐斯-斋桑洋晚古生代向南俯冲(Windley et al.,2007; Chen Jiafu et al.,2010),由一系列泥盆纪—早石炭世弧火山岩、早石炭世I型花岗岩和晚石炭世—早二叠世花岗质侵入岩组成(韩宝福等,2006; Zhou Taofa et al.,2008; 陈家富等,2010; Chen Jiafu et al.,2010; 尹继元等,2013)。博什库尔-成吉斯火山弧由志留纪—早石炭世火山岩、晚志留世—早泥盆世侵入岩和晚石炭世—中二叠世侵入岩组成(Chen Jiafu et al.,2010; Shen Ping et al.,2012; 尹继元等,2013; Yin Jiyuan et al.,2015)。这些侵入岩和火山岩都具有亏损的Hf-Nd同位素组成(Zhou Taofa et al.,2008; 陈家富等,2010; Yin Jiyuan et al.,2017)。
-
本文研究的两个侵入岩体位于西准噶尔造山带北部的阿尔加提山,其位于谢米斯台山东部,紧邻谢米斯台断裂。该地区主要发育泥盆系和石炭系。两个岩体无明显的变质变形,手标本中可见大量肉红色钾长石。样品WJ1143为细粒花岗结构,块状构造,主要由斜长石(18%~20%)、钾长石(53%~55%)、石英(20%~22%)、黑云母和角闪石(5%~7%)构成。副矿物包括磁铁矿、磷灰石、锆石、榍石。样品定名为石英二长岩。样品WJ2005为细粒花岗结构,块状构造,主要由斜长石(20%~25%)、钾长石(50%~55%)、石英(20%~22%)、黑云母和角闪石(3%~5%)构成。副矿物包括磁铁矿、钛铁矿、磷灰石、锆石、榍石、褐帘石。样品定名为石英二长岩。
-
2 分析方法
-
全岩主量和微量元素分析在中国科学院广州地球化学研究所同位素地球化学国家重点实验室和武汉上谱分析科技有限责任公司完成。样品WJ1143主量元素分析应用 Rigaku RIX2000 型荧光光谱仪(XRF),其详细步骤见文献(Yuan Chao et al.,2010)。其微量元素的分析则采用 Perkin-ElmerSciex ELAN 6000型电感耦合等离子体质谱仪(ICP-MS)分析,其详细步骤见文献(Li Xianhua et al.,2002)。样品WJ2005主量元素分析是用波长色散X射线荧光光谱仪ZSXPrimusⅡ分析,其详细步骤见文献(张治国等,2019),其微量元素分析则采用电感耦合等离子体质谱仪Agilent 7700e。锆石U-Pb和Hf同位素分析在香港大学地球科学系和武汉上谱分析科技有限责任公司完成,使用仪器分别为VG PQ Excell ICP-MS及其配套的New Wave UP213激光剥蚀系统和Nu Plasma HR MC-ICP-MS及其配套的193 nm准分子激光剥蚀系统,分析流程见参考文献(Xia Xiaoping et al.,2004;Geng Hongyan et al.,2009)。SIMS锆石O同位素分析在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成,测试仪器为Cameca IMS-1280 HR二次离子质谱仪(SIMS),详细的分析流程见文献(Yang Qing et al.,2018)。
-
3 分析结果
-
3.1 主量和微量元素组分
-
西准噶尔造山带阿尔加提山石英二长岩样品具有较低的烧失量(LOI=0.51%~1.49%),仅一件样品的LOI值大于1%。这些石英二长岩样品具有高的SiO2(67.8%~68.9%)和全碱含量(K2O+Na2O=9.36%~9.89%)显示钾玄质系列岩石特征(图4a)。在(Na2O+K2O)-SiO2图解中,所有样品均落入石英二长岩区域(图4b)。它们具有低钛(TiO2=0.67%~0.74%)、贫钙(CaO=1.10%~1.51%)、高铝(Al2O3=15.24%~15.50%),高铁(TFe2O3=2.61%~2.79%)和低镁(MgO=0.70%~0.75%)特征。此外,这些样品显示较低的铝饱和指数(A/CNK=0.96~1.00,A/NK=1.13~1.18),为准铝质系列岩石(图4c)。
-
续表1
-
西准噶尔造山带阿尔加提山石英二长岩样品显示出相似的稀土分配模式,具有相对高的稀土元素总量(206×10-6~230×10-6),轻稀土富集,(La/Yb)N=8.50~10.2,重稀土相对平坦,(Gd/Yb)N=1.42~1.63,轻稀土分馏程度大于重稀土,显示出弱的负Eu异常(δEu=0.72~0.85)。在微量元素蛛网图中,所有样品具有相似的配分模式,均显示富集大离子亲石元素(Rb、Ba和K等)和轻稀土,亏损高场强元素(如Nb、Ta、Ti)和重稀土。
-
3.2 锆石U-Pb年代学
-
本文对两件样品开展了锆石U-Pb定年,其锆石颗粒为半透明至透明,以半透明为主,主要为长柱状,部分为棱柱状,长度为80~250 μm,长宽比在1.2∶1~3∶1之间。阴极发光图像中观察到的锆石内部结构大多清晰可见,并呈明显的振荡环带(图6)。这些锆石的Th/U比值为0.63~1.47,为典型的岩浆锆石。样品WJ1143的23颗锆石的206Pb/238U年龄介于287~315 Ma之间,所有分析点均位于谐和线上及其附近(图7),其加权206Pb/238U年龄为301.8±1.4 Ma(n=23,MSWD=0.89)。样品WJ2005的24颗锆石206Pb/238U年龄介于315~293 Ma之间,所有分析点均位于谐和线上及其附近(图7),其加权206Pb/238U年龄为303.7±3.1 Ma(n=24,MSWD=3.0)。两件样品的结晶年龄在误差范围内一致,代表了两个岩体的结晶年龄为晚石炭世。
-
3.3 锆石Hf-O同位素特征
-
锆石Hf同位素分析结果见表2。样品WJ1143的10个点的176Hf/177Hf值为0.28293~0.28299,εHf(t)值为+12.32~+14.48,两阶段Hf模式年龄为531~392 Ma。样品WJ2005的10个点的176Hf/177Hf值为0.28290~0.28295,εHf(t)值为+11.21~+12.99,两阶段 Hf模式年龄为604~490 Ma。这些花岗岩具有亏损的锆石Hf同位素组成和年轻的Hf模式年龄,表明源区为年轻的物质组成。另外,样品WJ1143的锆石δ18O值为5.73‰~6.50‰,样品WJ2005的锆石δ18O值为5.73‰~6.51‰,略高于地幔来源的岩浆锆石δ18O值(5.3‰±0.6‰,2σ;Kemp et al.,2007)。
-
图4 西准噶尔造山带阿尔加提山石英二长岩K2O-SiO2图解(a,据Gill,1982)、(K2O+Na2O)-SiO2图解 (b,据Middlemost,1994)、A/NK-A/CNK图解(c,据Maniar,1989)
-
Fig.4 K2O-SiO2 diagram (a, after Gill, 1982) , (K2O+Na2O)-SiO2 diagram (b, after Middlemost, 1994) , A/NK-A/CNK diagram (c, after Maniar, 1989) of the quartz monzonite of the Aerjiati mountain in West Junggar orogenic belt
-
图5 西准噶尔造山带阿尔加提山石英二长岩球粒陨石标准化的稀土元素配分图(a) 及原始地幔标准化蛛网图(b)(标准化值据 Sun and McDonough,1989)
-
Fig.5 Chondrite-normalized rare earth element patterns (a) and primitive mantle normalized trace element diagram (b) of the quartz monzonite in West Junggar orogenic belt (normalization values are from Sun and McDonough, 1989)
-
4 讨论
-
4.1 岩石类型
-
花岗岩通常被分为S型、I型和A型三大类(Collins et al.,1982; Whalen et al.,1987),A型花岗岩为高硅、富碱、贫水的非造山花岗岩,主要形成于高温伸展环境,以含有碱性暗色矿物为特征(如,钠闪石和钠铁闪石等),有高的Ga/Al值和高的TFeO/MgO值(Clemens et al.,1986; Whalen et al.,1987;King et al.,1997)。S型花岗岩以含有富铝矿物为特征,如堇青石、石榴子石和原生的白云母等,通常具有较低的Na2O含量,高的A/CNK(通常大于1.1),且S型花岗岩的SiO2含量和P2O5含量呈现正相关关系(Chappell,1999)。I型花岗岩是一系列准铝-弱过铝质钙碱性花岗岩的总称,常含有角闪石、磁铁矿等矿物,I型花岗岩通常富钠,低A/CNK(<1.1),低δ18O值,有较高的Rb含量(高于270×10-6)和较低的锆石饱和温度(King et al.,1997; 王强等,2000;吴福元等,2017)。
-
图6 西准噶尔造山带阿尔加提山石英二长岩样品代表性锆石颗粒的阴极发光图
-
Fig.6 Cathodoluminescence images of representative zircon grains of the quartz monzonite of the Aerjiati mountain in West Junggar orogenic belt
-
阿尔加提山石英二长岩样品不含碱性暗色矿物,具有低的Ga/Al值(2.27~2.34)、TFeO/MgO值和Rb/Sr值(0.35~0.50),以及弱的负Eu异常,在Y-10000 Ga/Al判别图中,样品全部落入I和S型花岗岩区域,表明其不属于A型花岗岩(图8a)。另外,相比于S型花岗岩,阿尔加提山石英二长岩不含富铝质矿物,具有更低的P2O5(0.12%~0.14%)含量和更高的Na2O(4.77%~5.12%)含量,相对低的A/CNK(<1.1)和δ18O值(5.73‰~6.51‰)。因此,阿尔加提山石英二长岩可能并不属于S型花岗岩。而阿尔加提山石英二长岩含有角闪石单矿物,在Ce-SiO2判别图中落入I型花岗岩区域(图8b)。本文的花岗岩样品的Zr/Hf值为40.3~46.6,介于25~55之间,指示其属于中等分异的花岗岩(吴福元等,2017)。因此,西准噶尔造山带阿尔加提山石英二长岩属于I型花岗岩。
-
4.2 岩石成因
-
长期以来,关于I型花岗岩的岩石成因一直存在争议,主要的成因模式有以下几种:① 幔源岩浆部分熔融与分离结晶(Chen Bin and Arakawa,2005);② 玄武质下地壳部分熔融(Chappell and White,2001);③ 壳幔混合源区(Barbarin,1999)。幔源岩浆部分熔融或者分离结晶作用形成的岩浆通常是基性或者中性岩浆,具有低的SiO2含量和高的Mg#值(Valley et al.,2005)。然而,西准噶尔造山带阿尔加提山I型花岗岩具有高且变化小的SiO2含量(67.8%~68.9%),高的Na2O含量(4.47%~5.12%),低的Mg#(34.0~35.2)值、Cr(1.2×10-6~3×10-6)和Ni(1.05×10-6~1.24×10-6)含量,且岩体周围没有大量基性岩的出露,表明其不可能来自于幔源岩浆部分熔融与分离结晶。另外,在野外观察中阿尔加提山I型花岗岩样品中未见暗色镁铁质包体,镜下也未见到不平衡共生矿物组合,加上其具有低的MgO(0.70%~0.75%)含量(图9b),表明岩浆不可能来自于壳幔混合源区。
-
此外,Chappell and White(2001)认为I型花岗岩可能由玄武质下地壳部分熔融形成。实验研究表明,无论熔融程度如何玄武质下地壳的熔体都具有低Mg#(<40)值的特征(Bonin et al.,2007; Frost and Frost,2011)。这类岩浆的δ18O值等于或略高于地幔岩浆的锆石氧同位素(5.3‰±0.6‰,2σ)。西准噶尔造山带阿尔加提山I型花岗岩具有略高于地幔来源的岩浆的δ18O值(5.73‰~6.51‰;平均值为6.07‰),同时具有高的、正的锆石εHf(t)值(+11.21~+14.48)和年轻的二阶段Hf模式年龄(tDM2=604~392 Ma),以及较高的锆饱和温度(Tzr=854~895℃)。所以阿尔加提山I型花岗岩可能由亏损地幔来源的新生镁铁质下地壳部分熔融而成,另外结合其略高于地幔来源的岩浆的δ18O值,其岩源区可能受到少量沉积物交代作用的影响。
-
图7 西准噶尔造山带阿尔加提山石英二长岩的锆石U-Pb谐和图(a、c)及加权平均年龄图(b、d)
-
Fig.7 Zircon U-Pb concordia (a, c) and weighted average age diagram (b, d) of the quartz monzonite of the Aerjiati mountain in West Junggar orogenic belt
-
本文对阿尔加提山I型花岗岩样品进行了Hf-O同位素两端元混合计算,结果表明,它们的源区中含有5%~15%的沉积物(图10a)。当岩浆在上升侵位时遭受沉积物混染或者沉积物随洋壳俯冲至地幔发生交代作用,都会产生高于地幔来源岩浆的δ18O值(Valley et al.,2005; Cao Mingjian et al.,2016)。阿尔加提山I型花岗岩具有较均一的εHf(t)值(+11.21~+14.48)和年轻的二阶段模式年龄(tDM2=604~392 Ma),δ18O也只在一个较小的范围内变化,综上可知岩浆在上升和侵位期间没有明显的沉积地壳污染,这些I型花岗岩样品源区中的沉积物质可能是随俯冲板块俯冲深处,交代了岩石圈地幔,然后这种地幔的熔融形成的岩浆可能具有比地幔更高的δ18O值。因此,本文推测阿尔加提山I型花岗岩由少量俯冲沉积物交代地幔熔体形成的新生下地壳部分熔融而成。
-
图8 西准噶尔造山带阿尔加提山石英二长岩Y-10000Ga/Al图(a,据Whalen et al.,1987)及 Ce-SiO2图(b,据Collins et al.,1982)
-
Fig.8 Y-10000Ga/Al diagram (a, after Whalen et al., 1987) and Ce-SiO2 discrimination diagram (b, after Collins et al., 1982) of the quartz monzonite of the Aerjiati mountain in West Junggar orogenic belt
-
另外,微量元素也是判断花岗岩源区演化的重要指标,阿尔加提山I型花岗岩在Zr-Zr/Nb图解中Zr/Nb值基本不变(图10b),表明样品受到了岩浆分离结晶作用的影响。张旗(2006)利用花岗岩的Sr/Yb比值和Eu异常作为主要指标和次要指标对花岗岩进行分类,并结合花岗岩的残留相,探讨花岗岩岩浆的形成压力,按照张旗(2006)的分类,本文研究的花岗岩属于低Sr高Yb型(Sr<400×10-6,Yb>2×10-6),样品显示轻微的负 Eu异常,重稀土元素分布模型平坦,按照分类可知其母岩浆来源于浅部低压伸展背景(<0.8或1.0 GPa)。这些花岗岩可能是在30 km左右的地壳厚度下部分熔融形成的,其源区残留有斜长石,但无石榴子石。综上可知,阿尔加提山I型花岗岩来源于沉积物交代地幔来源的,新生镁铁质下地壳在伸展环境下的部分熔融,并且岩浆在演化的过程中发生了一定程度的分离结晶。
-
图9 西准噶尔造山带阿尔加提山I型花岗岩O同位素图解(a)及t-εHf(t)图解(b)
-
Fig.9 t-δ18O diagram (a) and t-εHf (t) diagram (b) for the granites of the I-type granites of the Aerjiati mountain in West Junggar orogenic belt
-
西准噶造山带南部晚石炭世花岗岩和闪长岩数据分别来自Tang Gongjian et al.,2019; Yin Jiyuan et al.,2021
-
Late Carboniferous granites and diorite values in West Junggar orogenic belt are from Tang Gongjian et al., 2019; Yin Jiyuan et al., 2021
-
图10 西准噶尔造山带阿尔加提山I型花岗岩岩浆锆石εHf(t)-δ18O图解(a)及全岩微量元素Zr-Zr/Nb图解(b)
-
Fig.10 Zircon εHf (t) versus zircon δ18O diagram (a) and Zr-Zr/Nb diagram (b) of the I-type granites of Aerjiati mountain in the West Junggar orogenic belt
-
4.3 构造背景及其地质意义
-
前人研究认为西准噶尔造山带北部晚古生代主要发育早石炭世和晚石炭世—早二叠世两期岩浆活动。西准噶尔造山带北部早石炭世主要出露俯冲相关的钙碱性岩浆,大量的研究均表明,这一时期为俯冲相关的岛弧环境(陈家富等,2010;尹继元等,2013)。然而,西准噶尔造山带北部晚石炭世—早二叠世的构造背景一直存在争议,主要观点有:后碰撞环境(Han Baofu et al.,2006; Zhou Taofa et al.,2008; Chen Jiafu et al.,2010)、弧后盆地环境(Shen Ping et al.,2013; Zhang Xin and Zhang Hui,2014)、洋中脊俯冲环境(Tang Gongjan et al.,2010,2012c; Chen Yichao et al.,2017b; Song Shuaihua et al.,2020)。
-
本文通过对西准噶尔造山带北部阿尔加提山晚石炭世I型花岗岩的研究表明,所有样品均富集大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,显示了俯冲相关的岩浆特征。另外,和布克赛尔蛇绿混杂岩中存在具有MORB型地球化学特征的细粒辉长岩(约318 Ma),表明大洋地壳的扩张一直持续到石炭纪晚期(Song Shuaihua et al.,2020)。而对萨吾尔弧含碎屑锆石的浊积岩的锆石U-Pb定年结果表明,其最年轻的碎屑锆石年龄在285~262 Ma之间,表明到二叠纪该地区仍然为深海相—半深海沉积环境(Chen Yichao et al.,2017b)。西准噶尔造山带哈拉阿拉特山的浊积岩和古生物化石研究也表明,该地区在晚石炭世仍处于深海或半深海环境(Jin Huijuan and Li Yuci,1999; 向坤鹏等,2015)。以上结果表明,直到早二叠世准噶尔洋仍然存在,并在发生持续的俯冲作用。
-
西准噶尔造山带北部晚石炭世不仅发育I型花岗岩,还广泛发育A1和A2型花岗岩(Zhou Taofa et al.,2008; Chen Jiafu et al.,2010)。前人研究发现,西准噶尔造山带北部的I型花岗岩主要侵位于早石炭世—晚石炭世,而A型花岗岩主要侵位于晚石炭世—中二叠世,I型花岗岩的侵位时间早于A型花岗岩的侵位时间(袁峰等,2006;范裕等,2007; Zhou Taofa et al.,2008; 陈家富等,2010)。早石炭世I型花岗岩主要出露于扎尔玛-萨吾尔火山弧内(Chen Jiafu et al.,2010)。晚石炭世的I型花岗岩在西准噶尔造山带北部只是零星出露,而晚石炭世—中二叠世的A型花岗岩在西准噶尔造山带北部则比较普遍出露(韩宝福等,2006; Zhou Taofa et al.,2008; Chen Jiafu et al.,2010)。西准噶尔造山带北部出露的I型花岗岩和A型花岗岩具有相似的Nd-Sr-Hf同位素特征,但稀土元素和微量元素特征不同,这种现象可能是它们形成的时间和熔融的温压环境差异所致(Zhou Taofa et al.,2008)。A型花岗岩通常形成于高温伸展背景,而本文研究的的I型花岗岩也具有较高的锆饱和温度(Tzr=854~895℃)。所以正常的俯冲体系并不能达到上述岩石形成的温压条件。如前人研究所述,弧后盆地和洋中脊俯冲都可以形成这种特殊高温伸展背景。Zhang Xin and Zhang Hui(2014)提出,西准噶尔造山带北部白杨河A1型花岗岩(313 Ma)形成于弧后盆地环境,是额尔齐斯-斋桑洋向南俯冲的产物。本文阿尔加提山I型花岗岩也形成于高温伸展环境,但是其构造背景是弧后盆地还是洋中脊俯冲环境还需要进一步的进行讨论。
-
事实上,除了高温的I型和A1和A2型花岗岩,西准噶尔造山带北部晚石炭世还报道了埃达克质岩墙(311 Ma;Borbugulov et al.,2020)。这些岩石组合与西准噶尔造山带南部的特殊岩石组合类似,可能为洋中脊俯冲作用的产物。在晚石炭世,扩张洋脊俯冲到西准噶尔造山带北部区域下,形成板片窗,从而导致上覆岩石圈的强烈伸展,俯冲洋壳、地幔和新生下地壳的广泛熔融,从而形成各种特殊岩石组合。因此,阿尔加提山I型花岗岩是在洋中脊俯冲背景下,软流圈通过板片窗上涌,引发新生镁铁质下地壳的部分熔融而成。
-
4.4 对中亚造山带地壳增长的意义
-
中亚造山带是地球上显生宇最大的增生造山带之一,与其他造山带相比拥有最大体积的新生地壳,发育巨量的、具有亏损同位素组分的花岗岩(Han Baofu et al.,1997; Jahn,2004; Wang Tao et al.,2009; Wang Tao et al.,2022)。这些花岗岩能够指示地壳的生长方式,通过对中亚造山带的花岗岩的源区进行分类研究,能够系统地揭示中亚造山带的地壳增长(Wang Tao et al.,2009; Tang Gongjian et al.,2017; Tao Zaili et al.,2022; Wang Tao et al.,2023)。对于中亚造山带的增长模式,不同的学者存在不同的认识。Jahn et al.(2000)认为中亚造山带大量年轻的花岗质岩来源于新生下地壳重熔或幔源岩浆分异,结合其亏损的Sr-Nd同位素组成,认为中亚造山带经历了显著的地壳生长。而Kröner et al.(2014)认为,中亚造山带地壳演化过程中并没有发生显著的地壳生长,与其他典型造山带类似,主要来源于古老地壳的重熔。有学者对中亚造山带内的花岗岩进行了大量详细的Nd-Hf同位素研究,发现中亚造山带内地壳生长速率存在强烈的不均一性。它们的Nd-Hf同位素值在阿尔泰、准噶尔和天山造山带存在差异。准噶尔造山带相较于阿尔泰造山带和天山,有相对高的、正的εNd(t)和εHf(t)值,其花岗岩源区主要为新生物质,明显缺乏前寒武纪大陆基底(Jahn et al.,2000; Tang Gongjian et al.,2017)。前人研究表明,西准噶尔造山带的古生代为典型的洋内弧系统(Xiao Wenjiao et al.,2008; Zhang Ji'en et al.,2011)。本文收集了部分前人发表的西准噶尔造山带、天山和阿尔泰等地区晚石炭世—早二叠世花岗岩Hf-Nd同位素数据显示,天山和阿尔泰地区的Nd、Hf同位素比值相对较低,Nd、Hf同位素相对变化较大,说明有古老基底岩石的加入(图11)。相比而言,西准噶尔造山带晚石炭世—早二叠世花岗岩具有一致的、亏损的Nd同位素组成,此外,它们具有正的锆石εHf(t)值和年轻的二阶段Hf模式年龄,表明西准噶尔造山带花岗岩源区主要为新生物质,没有古老地壳物质的加入。西准噶尔造山带岩浆岩的两阶段Hf模式年龄主要集中在早古生代,表明西准噶尔造山带在这一时期经历了显著的地壳生长。
-
图11 阿尔泰、准噶尔和天山造山带花岗岩的锆石Hf同位素数据(a)和全岩Nd同位素数据(b)
-
Fig.11 Zircon Hf isotopic (a) and whole rock Nd values (b) of granitic rocks from the Altai, Junggar and Chinese Tianshan orogenic belts
-
其他花岗岩数据来源于: Chen Jiangfeng et al.,2000; Chen Bin and Arakawa,2005; 刘志强等,2005;Zhou Taofa et al.,2008; Tang Gongjian et al.,2010; Xu Xueyi et al.,2010; 陈家富等,2010;黄河等,2011;Cai Keda et al.,2011; Shen Xiaoming et al.,2011; Cai Keda et al.,2012; Tang Gongjian et al.,2012; Gao Jianfeng and Zhou Meifu,2013; 陈超等,2013;Zhang Xin and Zhang Hui,2014; 陶再礼等,2019;Tang Gongjian et al.,2019; Yin Jiyuan et al.,2021; 王嘉玮等,2022
-
Previous granite data are from: Chen Jiangfeng et al., 2000; Chen Bin and Arakawa, 2005; Liu Zhiqiang et al.,2005; Zhou Taofa et al., 2008; Tang Gongjian et al., 2010; Xu Xueyi et al., 2010; Chen Jiafu et al.,2010;Huang He et al., 2011;Cai Keda et al., 2011; Shen Xiaoming et al., 2011; Cai Keda et al., 2012; Tang Gongjian et al., 2012; Gao Jianfeng and Zhou Meifu, 2013; Chen Chao et al.,2013;Zhang Xin and Zhang Hui, 2014; Tang Gongjian et al., 2019; Tao Zaili et al.,2019; Yin Jiyuan et al., 2021; Wang Jiawei et al.,2022
-
5 结论
-
(1)西准噶尔造山带阿尔加提山石英二长岩LA-ICP-MS锆石U-Pb定年为301.8±1.4 Ma和303.7±3.1 Ma,表明其形成于晚石炭世。
-
(2)西准噶尔造山带阿尔加提山石英二长岩含有角闪石单矿物,具有低的Ga/Al值、TFeO/MgO值和Rb/Sr值,以及弱的负Eu异常,为准铝质I型花岗岩,显示出岛弧岩浆的特征。形成于洋脊俯冲-板片窗的构造背景中,在高温低压的条件下,软流圈通过板片窗上涌,引发新生镁铁质下地壳的部分熔融形成I型花岗岩。
-
(3)西准噶尔造山带北部晚古生代花岗岩主要来源于新生物质,表明其经历了显著的地壳增长。
-
参考文献
-
Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605~626.
-
Bindeman I N. 2008. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Zhetf Pisma Redaktsiiu, 69(1): 445~478.
-
Bindeman I N, Eiler J M, Yogodzinski G M, Tatsumi Y, Stern C R, Grove T L, Portnyagin M, Hoernle K, Danyushevsky LV. 2005. Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth and Planetary Science Letters, 235(3~4): 480~496.
-
Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1~2): 1~29.
-
Borbugulov E, Chen Yichao, Xiao Wenjiao, Windley B F, Schulmann K, Zhang Ji'en, Zhang Zhiyong, Song Shuaihua, Li Rui, Sang Miao. 2020. Late Carboniferous southward migration of Tarbagatay subduction—Accretion complex by slab retreat and break-off in West Junggar, (NW) China. Geological Journal, 55(1): 11~30.
-
Cai Keda, Sun Min, Yuan Chao, Zhao Guochun, Xiao Wenjiao, Long Xiaoping, Wu Fuyuan. 2011. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences, 42(5): 949~968.
-
Cai Keda, Sun Min, Yuan Chao, Xiao Wenjiao, Zhao Guochun, Long Xiaoping, Wu Fuyuan. 2012. Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: Implications for geodynamic change of the accretionary orogenic belt. Gondwana Research, 22(2): 681~698.
-
Cao Mingjian, Qin Kezhang, Li Guangming, Evans N J, Hollings P, Jin Luying. 2016. Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW China. Lithos, 246: 13~30.
-
Chappell B W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535~551.
-
Chappell B W, White A J R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489~499.
-
Chen Bin, Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the western Junggar fold belt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta, 69(5): 1307~1320.
-
Chen Chao, Lv Xinbiao, Cao Xiaofeng, Wu Chunming, Zhu Jiang. 2013. Geochronology, geochemistry and geological significance of Late Carboniferous-Early Permian granites in Kumishi area, Xinjiang. Earth Science: Journal of China University of Geosciences, 38(2): 218~232 (in Chinese with English abstract).
-
Chen Jiafu, Han Baofu, Ji Jianqing, Zhang Lei, Xu Zhao, He Guoqi, Wang Tao. 2010. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos, 115: 137~152.
-
Chen Jiafu, Han Baofu, Zhang Lei. 2010. Geochemistry, Sr-Nd isotopes and tectonic implications of two generations of Late Paleozoic plutons in northern West Junggar, Northwest China. Acta Petrologica Sinica, 26(8): 2317~2335 (in Chinese with English abstract).
-
Chen Jiafu, Han Baofu, Zhang Lei, Xu Zhao, Liu Junlai, Qu Wenjun, Li Chao, Yang Jinhui, Yang Yueheng. 2015. Middle Paleozoic initial amalgamation and crustal growth in the West Junggar (NW China): Constraints from geochronology, geochemistry and Sr-Nd-Hf-Os isotopes of calc-alkaline and alkaline intrusions in the Xiemisitai-Saier mountains. Journal of Asian Earth Sciences, 113: 90~109.
-
Chen Jiangfeng, Zhou Taixi, Xie Zhi, Zhang Xun, Guo Xinsheng. 2000. Formation of positive εNd(t) granitoids from the Alataw Mountains, Xinjiang, China, by mixing and fractional crystallization: Implication for Phanerozoic crustal growth. Tectonophysics, 328(1): 53~67.
-
Chen Yichao, Xiao Wenjiao, Windley B F, Zhang Jien, Sang Miao, Li Rui, Song Shuaihua, Zhou Kefa. 2017a. Late Devonian-Early Permian subduction-accretion of the Zharma-Saur oceanic arc, NW China: Insights from field geology, geochemistry and geochronology. Journal of Asian Earth Sciences, 145: 424~445.
-
Chen Yichao, Xiao Wenjiao, Windley B F, Zhang Jien, Zhou Kefa, Sang Miao. 2017b. Structures and detrital zircon ages of the Devonian-Permian Tarbagatay accretionary complex in West Junggar, China: Imbricated ocean plate stratigraphy and implications for amalgamation of the CAOB. International Geology Review, 59(9): 1097~1115.
-
Clemens J D, Holloway J R, White A J R. 1986. Origin of an A-type granite: Experimental constraints. American Mineralogist, 71: 317~324.
-
Collins W J, Beams S, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189~200.
-
Cr-Nlrnns J D. 1986. Origin of an A-type granite: Experimental constraints. American Mineralogist, 71(3): 317~324.
-
Dhuime B, Hawkesworth C, Cawood P. 2011. When continents formed. Science, 331: 154~155.
-
Feng Yimin, Coleman R G, Tilton G, Xiao Xuchang. 1989. Tectonic evolution of the West Junggar region, Xinjiang, China. Tectonics, 8(4): 729~752.
-
Frost C D, Frost B R. 2011. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. Journal of Petrology, 52(1): 39~53.
-
Gao Jianfeng, Zhou Meifu. 2013. Magma mixing in the genesis of the Kalatongke dioritic intrusion: Implications for the tectonic switch from subduction to post-collision, Chinese Altay, NW China. Lithos, 162: 236~250.
-
Geng Hongyan, Sun Min, Yuan Chao, Xiao Wenjiao, Xian Weisheng, Zhao Guochun, Zhang Lifei, Wong Kenny, Wu Fuyuan. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction. Chemical Geology, 66: 364~389.
-
Gill T B. 1982. Orogenic andesite and plate tectonics. Chemical Geology, (3~4): 353~354.
-
Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133~147.
-
Han Baofu, Wang Shiguang, Jahn B M, Hong Dawei, Kagami H, Sun Yuanlin. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology, 138(3): 135~160.
-
Han Baofu, Ji Jianqing, Song Biao, Chen Lihui, Zhang Lei. 2006. Late Paleozoic vertical growth of continental crust around the Junggar basin, Xinjiang, China (Part I): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077~1086 (in Chinese with English abstract).
-
Harrison T M, Blichert-Toft J, Müller W, Albarede F, Holden P, Mojzsis S J. 2005. Heterogeneous hadean hafnium: Evidence of continental crust at 4. 4 to 4. 5 Ga. Science, 310: 1947~1950.
-
Huang He, Zhang Zhaochong, Zhang Dongyang, Du Hongxing, Ma Letian, Kang Jianli, Xue Chunji. 2011. Petrogenesis of Late Carboniferous to Early Permiangranitoid plutons in the Chinese South Tianshan: Implications for crustal accretion. Acta Geologica Sinica, 85(8): 1305~1333(in Chinese with English abstract).
-
Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Aspects of the Tectonic Evolution of China, 226(1): 73~100.
-
Jahn B M, Wu Fuyuan, Chen Bin. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Special Paper of the Geological Society of America, 350: 181~193.
-
Jahn B M, Windley B, Natal'In B, Dobretsov N. 2004. Phanerozoic continental growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599~603.
-
Jin Huijuan, Li Yuci. 1999. Carboniferous biogenic sedimentary structures on the northwestern margin of Junggar basin. Chinese Science Bulletin, 44(4): 368~372.
-
Kemp A I, HawkesworthC J, Paterson B A, Kinny P D. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439: 580~583.
-
Kemp A I S, Hawkesworth C J, Foster G L, Paterson B A, Woodhead J D, Hergt J M, Gray C M, Whitehouse M J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980~983.
-
King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of Petrology, 38(3): 371~391.
-
Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann J E, Wong J. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103~125.
-
Li Xianhua, Li Zhengxiang, Zhou Hanwen, Liu Ying, Peter D K. 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia. Precambrian Research, 113(1~2): 135~154.
-
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.
-
Mcculloch M T, Gregory R T, Wasserburg G J, Jr H P T. 1980. A neodymium, strontium, and oxygen isotopic study of theCretaceous samail ophiolite and implications for the petrogenesis and seawater-hydrothermal alteration of oceanic crust. Earth and Planetary Science Letters, 46(2): 201~211.
-
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3~4): 215~224.
-
Shen Ping, Shen Yuanchao, Li Xianhua, Pan Hongdi, Zhu Heping, Lei Meng, Dai Huawu. 2012. Northwestern Junggar Basin, Xiemisitai mountains, China: A geochemical and geochronological approach. Lithos, 140: 103~118.
-
Shen Ping, Pan Hongdi, Xiao Wenjiao. 2013. Early Carboniferous intra-oceanic arc and back-arc basin system in the West Junggar, NW China. International Geology Review, 55(16): 1991~2007.
-
Shen Xiaoming, Zhang Haixiang, Wang Qiang, Wyman D A, Yang Yueheng. 2011. Late Devonian-Early Permian A-type granites in the Southern Altay range, Northwest China: Petrogenesis and implications for tectonic setting of “A2-type” granites. Journal of Asian Earth Sciences, 42(5): 986~1007.
-
Song Shuaihua, Xiao Wenjiao, Windley B F, Collins A S, Chen Yichao, Zhang Jien, Schulmann K, Han Chunming, Wan Bo, Ao Songjian, Zhang Zhiyong, Song Dongfang, Li Rui. 2020. Late Paleozoic Chingiz and Saurarc amalgamation in West Junggar (NW China): Implications for accretionary tectonics in the southern Altaids. Tectonics, 39(7): e2019TC005781.
-
Sun Weidong, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Magmatism in the ocean basins. Geological Society, Special Publications, 42(1): 313~345.
-
Tang Gongjian, Wang Qiang, Wyman D A, Li Zhengxiang, Zhao Zhenhua, Jia Xiaohui, Zhang Ziqi. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the Western Junggar Region, Northern Xinjiang (West China). Chemical Geology, 277: 281~300.
-
Tang Gongjian, Wang Qiang, Wyman D A, Li Zhengxiang, Xu Yigang, Zhao Zhenhua. 2012a. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hf isotope evidence from granitoids in the western Junggar region, NW China. Lithos, 128~131(9): 73~83.
-
Tang Gongjian, Wang Qiang, Wyman D A, Li Zhengxiang, Zhao Zhenhua, Yang Yueheng. 2012b. Late Carboniferous high εNd(t)-εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth. Lithos, 140~141(1): 86~102.
-
Tang Gongjian, Wyman D A, Wang Qiang, Li Jie, Li Zhengxiang, Zhao Zhenhua, Sun Weidong. 2012c. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth and Planetary Science Letters, 329(1): 84~96.
-
Tang Gongjian, Chung Sunlin, Hawkesworth, Cawood P A, Wang Qiang, Wyman D A, Xu Yigang, Zhao Zhenhua. 2017. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464: 142~154.
-
Tang Gongjian, Wang Qiang, Wyman D A, Dan Wei. 2019. Crustal maturation through chemical weathering and crustal recycling revealed by Hf-O-B isotopes. Earth and Planetary Science Letters, 524: 115709.
-
Tao Zaili, Yin Jiyuan, Chen Wen, Li Dapeng, Xu Zhihua, Du Qiuyi. 2019. Sr-Nd-Hf isotopic characteristics of Early Permian I-type granites in southern Tianshan: Petrogenesis and implications for continental crustal growth. Earth Science, 44(10): 3565~3582 (in Chinese with English abstract).
-
Tao Zaili, Yin Jiyuan, Chen Wen, Chen Yuelong, Sun Jingbo, Xu Zhihua. 2022. Zircon U-Pb ages and tectonic implications of Late Paleozoic volcanic rocks in the western Tianshan, North Xinjiang, China. Journal of Earth Science, 33(3): 736~752.
-
Valley J W, Chiarenzelli J R, McLelland J M. 1994. Oxygen isotope geochemistry of zircon. Earth and Planetary Science Letters, 126(4): 187~206.
-
Valley J W, Lackey J S, Cavosie A J, Clechenko C C, Spicuzza M J, Basei M A S, Bindeman I N, Ferreira V P, Sial A N, King E M, Peck W H, Sinha A K, Wei C S. 2005. 4. 4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150(6): 561~580.
-
Wang Qiang, Zhao Zhenhua, Xiong Xiaolin. 2000. The ascertainment of Late-Yanshanian A-type granite in Tongbai-Dabie orogenic belt. Acta Petrologica et Mineralogica, 19(4): 297~306 (in Chinese with English abstract).
-
Wang Tao, Jahn B M, Kovach V P, Tong Ying, Hong Dawei, Han Baofu. 2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos, 110(1~4): 359~372.
-
Wang Tao, Huang He, Zhang Jianjun, Wang Chaoyang, Cao Guangyue, Xiao Wenjiao, Yang Qidi, Bao Xuewei. 2022. Voluminous continental growth of the Altaids and its control on metallogeny. National Science Review, 10(2): 69~84.
-
Wang Tao, Tong Ying, Huang He, Zhang Hongrui, Guo Lei, Li Zhengxiang, Wang Xiaoxia, Eglington B, Li Shan, Zhang Jianjun, Donskaya T V, Petrov O, Zhang Lei, Song Peng, Zhang Xiaowei, Wang Chaoyang. 2023. Granitic record of the assembly of the Asian continent. Earth-Science Reviews, 237: 104298.
-
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics. Contributions to Mineralogy and Petrology, 95: 420~436.
-
Windley B F, Alexeiev D, Xiao Wenjiao, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31~47.
-
Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 47(7): 745~765 (in Chinese with English abstract).
-
Xia Xiaoping, Sun Min, Zhao Guochun, Li Huimin, Zhou Meifu. 2004. Spot zircon U-Pb isotope analysis by ICP-MS coupled with a frequency quintupled (213 nm) Nd-YAG laser system. Geochemical Journal, 38(2): 191~200.
-
Xiang Kunpeng, Li Yongjun, Li Zhao, Wang Ran, Yang Gaoxue, Duan Fenghao, Li Ganyu. 2015. LA ICP-MS zircon age and geochemistry of the Aiadeyikesai Formation volcanic rocks in the Halaalate mountain of West Junggar, Xinjiang, and their tectonic significance. Acta Geologica Sinica, 89(5): 834~855 (in Chinese with English abstract).
-
Xiao Wenjiao, Han Chunming, Yuan Chao, Sun Min, Lin Shoufa, Chen Hanlin, Li Zilong, Li Jiliang, Sun Shu. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia. Journal of Asian Earth Sciences, 32(2~4): 102~117.
-
Xu Xin, He Guoqi, Li Huaqin, Ding Tianfu, Liu Xingyi, Mei Shaowu. 2006. Basic characteristics of the Karamay ophiolitic mélange, Xinjiang, and its zircon SHRIMP dating. Geology in China, 33(3): 470~475 (in Chinese with English abstract).
-
Xu Xueyi, Wang Hongliang, Ma Guolin, Li Ping, Chen Junlu, Li Ting. 2010. Geochronology and Hf isotope characteristics of the Paleozoic granite in Nalati area, West Tianshan Mountains. Acta Petrologica Et Mineralogica, 29(6): 691~706.
-
Xu Zhao, Han Baofu, Ren Rong, Zhou Yinzhang, Zhang Lei, Chen Jiafu, Su Li, Li Xianhua, Liu Dunyi. 2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile mountain, West Junggar, China: Implications for Paleozoic intra-oceanic subduction—Accretion process. Lithos, 132: 141~161.
-
Yang Gaoxue, Li Yongjun, Santosh M, Gu Pingyang, Yang Baokai, Zhang Bing, Wang Haibo, Zhong Xing, Tong Lili. 2012. A Neoproterozoic seamount in the Paleoasian Ocean: Evidence from zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar, NW China. Lithos, 140: 53~65.
-
Yang Gaoxue, Li Yongjun, Yan Jing, Tong Lili, Han Xin, Wang Yabing. 2014. Geochronological and geochemical constraints on the origin of the 304±5 Ma Karamay A-type granites from West Junggar, Northwest China: Implications for understanding the Central Asian Orogenic Belt. International Geology Review, 56(4): 393~407.
-
Yang Qing, Xia Xiaoping, Zhang Wanfeng, Zhang Yanqiang, Xiong Boqin, Xu Yigang. 2018. An evaluation of precision and accuracy of SIMS oxygen isotope analysis. Solid Earth Sciences, 3: 81~86.
-
Yin Jiyuan, Chen Wen, Yuan Chao, Zhang Yunying, Long Xiaoping, Yu Shun, Zhang Yan, Li Jie, Sun Jingbo. 2013. Ages and tectonic implication of Late Paleozoic plutons in the West Junggar, North Xinjiang: Evidence from LA-ICP-MS zircon geochronology. Geochimica, 42(5): 414~429 (in Chinese with English abstract).
-
Yin Jiyuan, Chen Wen, Yuan Chao, Xiao Wenjiao, Long Xiaoping, Cai Keda. 2015. Petrogenesis andtectonic implication of Early Carboniferous basaltic andesite in the eastern part of Xiemisitai mountain, northern West Junggar. Geotectonica et Metallogenia, 39(5): 876~888 (in Chinese with English abstract).
-
Yin Jiyuan, Chen Wen, Yuan Chao, Yu Shun, Xiao Wenjiao, Long Xiaoping, Li Jie, Sun Jingbo. 2015. Petrogenesis of Early Carboniferous adakitic dikes, Sawur region, northern West Junggar, NW China: Implications for geodynamic evolution. Gondwana Research, 27(4): 1630~1645.
-
Yin Jiyuan, Chen Wen, Xiao Wenjiao, Yuan Chao, Yu Shun, Sun Jingbo, Cai Keda, Long Xiaoping. 2017. The source and tectonic implications of Late Carboniferous-Early Permian A-type granites and dikes from the eastern Alataw mountains, Xinjiang: Geochemical and Sr-Nd-Hf isotopic constraints. International Geology Review, 59(10): 1310~1323.
-
Yin Jiyuan, Xiao Wenjiao, Spencer C J, Sun Min, Chen Wen, Huang Huiqing, Yuan Chao, Zhang Yunying, Huang He, Xia Xiaoping, Tao Zaili. 2021. The role and significance of juvenile sediments in the formation of A-type granites, West Junggar oceanic arc (NW China): Zircon Hf-O isotopic perspectives. Geological Society of America Bulletin, 133: 1560~1574.
-
Yuan Chao, Sun Min, Wilde S, Xiao Wenjiao, Xu Yigang, Long Xiaoping, Zhao Guochun. 2010. Post-collisional plutons in the Balikun area, east Chinese Tianshan: Evolving magmatism in response to extension and slab break-off. Lithos, 119(3~4): 269~288.
-
Zhang Ji'en, Xiao Wenjiao, Han Chunming, Ao Songjian, Yuan Chao, Sun Min, Geng Hongyan, Zhao Guochun, Guo Qianqian, Ma Chong. 2011. Kinematics and age constraints of deformation in a Late Carboniferous accretionary complex in western Junggar, NW China. Gondwana Research, 19(4): 958~974.
-
Zhang Qi, Wang Yan, Li Chengdong, Wang Yuanlong, Jin Weijun, Jia Xiuqin. 2006. Granite classification on the basis of Sr and Yb contents and its implications. Acta Petrologica Sinica, (9): 2249~2269 (in Chinese with English abstract).
-
Zhang Xin, Zhang Hui. 2014. Geochronological, geochemical, and Sr-Nd-Hf isotopic studies of the Baiyanghe A-type granite porphyry in the western Junggar: Implications for its petrogenesis and tectonic setting. Gondwana Research, 25(4): 1554~1569.
-
Zhang Zhiguo, Liu Lei, Liu Xijun, Hu Rongguo, Gong Xiaohan, Tan Zhenjiang, Wang Mengchao, Li Rui. 2019. Geochronology, geochemistry and geological significance of volcanic rocks from Hamtus area in western Junggar. Xinjiang. Journal of Guilin University of Technology, 39(2): 258~269 (in Chinese with English abstract).
-
Zhao Lei, He Guoqi. 2013. Tectonic entities connection between West Junggar (NW China) and East Kazakhstan. Journal of Asian Earth Sciences, 72(10): 25~32.
-
Zhou Taofa, Yuan Feng, Fan Yu, Zhang Dayu, Cooke D, Zhao Guochun. 2008. Granites in the Sawuer region of the West Junggar, Xinjiang Province, China: Geochronological and geochemical characteristics and their geodynamic significance. Lithos, 106(3~4): 191~206.
-
陈超, 吕新彪, 曹晓峰, 吴春明, 朱江. 2013. 新疆库米什地区晚石炭世—早二叠世花岗岩年代学, 地球化学及其地质意义. 地球科学: 中国地质大学学报, 38(2): 218~232.
-
陈家富, 韩宝福, 张磊. 2010. 西准噶尔北部晚古生代两期侵入岩的地球化学、Sr-Nd同位素特征及其地质意义. 岩石学报, 26(8): 2317~2335.
-
范裕, 周涛发, 袁峰, 谭绿贵, David C, Sebastien M, 杨文平, 何立新. 2007. 新疆西准噶尔地区塔斯特岩体锆石LA-ICPMS年龄及其意义. 岩石学报, 23(8): 1901~1908.
-
韩宝福, 季建清, 宋彪, 陈立辉, 张磊. 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077~1086.
-
黄河, 张招崇, 张东阳, 杜红星, 马乐天, 康建丽, 薛春纪. 2011. 中国南天山晚石炭世一早二叠世花岗质侵入岩的岩石成因与地壳增生. 地质学报, 85(8): 1305~1333.
-
刘志强, 韩宝福, 季建清, 李宗怀. 2005. 新疆阿拉套山东部后碰撞岩浆活动的时代、地球化学性质及其对陆壳垂向增长的意义. 岩石学报, 21(3): 623~639.
-
陶再礼, 尹继元, 陈文, 李大鹏, 徐志华, 杜秋怡. 2019. 南天山早二叠世Ⅰ型花岗岩Sr-Nd-Hf同位素特征: 岩石成因和大陆地壳增长的意义. 地球科学44(10): 3565~3582.
-
王嘉玮, 王义天, 胡乔青, 魏然, 陈俊, 陈贵民. 2022. 东天山阿奇山-雅满苏构造带小东山火山岩的成因和意义: 年代学、主微量元素及Sr-Nd-Hf同位素地球化学约束. 地球科学, 47(9): 3229~3243.
-
王强, 赵振华, 熊小林. 2000. 桐柏-大别造山带燕山晚期A型花岗岩的厘定. 岩石矿物学杂志, 19(4): 297~306.
-
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745~765.
-
向坤鹏, 李永军, 李钊, 王冉, 杨高学, 段丰浩, 李甘雨. 2015. 新疆西准噶尔哈拉阿拉特山火山岩LA-ICP-MS锆石U-Pb年龄, 地球化学特征及意义. 地质学报, 89(5): 843~855.
-
徐新, 何国琦, 李华芹, 丁天府, 刘兴义, 梅绍武. 2006. 克拉玛依蛇绿混杂岩带的基本特征和锆石SHRIMP年龄信息. 中国地质, 33(3): 470~475.
-
杨高学, 朱钊, 刘晓宇, 李海, 佟丽莉. 2023. 西准噶尔蛇绿岩: 古大洋俯冲增生过程的记录. 地质学报, 97(6): 2054~2066.
-
尹继元, 陈文, 袁, 张运迎, 龙晓平, 喻顺, 张彦, 李洁, 孙敬博. 2013. 新疆西准噶尔晚古生代侵入岩的年龄和构造意义: 来自锆石LA-ICP-MS定年的证据. 地球化学, 42(5): 414~429.
-
尹继元, 陈文, 袁超, 肖文交, 龙晓平, 蔡克大. 2015. 西准噶尔谢米斯台山东段早石炭世玄武安山岩的成因及意义. 大地构造与成矿学, 39(5): 876~888.
-
袁峰, 周涛发, 谭绿贵, 范裕, 杨文平, 何立新, 岳书仓. 2006. 西准噶尔萨吾尔地区Ⅰ型花岗岩同位素精确定年及其意义. 岩石学报, 22(5): 1238~1248.
-
张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006. 花岗岩的Sr-Yb分类及其地质意义. 岩石学报, 22(9): 2249~2269.
-
张治国, 刘磊, 刘希军, 胡荣国, 龚小晗, 谭震江, 王梦超, 李锐. 2019. 新疆西准噶尔哈姆图斯火山岩年代学、地球化学特征及地质意义. 桂林理工大学学报, 39(2): 258~269.
-
摘要
新疆西准噶尔造山带发育大量的晚古生代侵入岩,但它们的岩浆源区和形成的构造背景仍然存在较大争议。本文对西准噶尔造山带北部阿尔加提山石英二长岩进行了详细的岩石学、地球化学、锆石Hf-O同位素研究,旨在揭示其岩石成因和构造背景,探讨其与地壳生长的关系。两件样品的锆石U-Pb定年结果分别为301.8±1.4 Ma和303.7±3.1 Ma,形成于晚石炭世。阿尔加提山石英二长岩样品含有角闪石,高硅(SiO2=67.8%~68.9%)、富碱(K2O+Na2O=9.36%~9.89%)、具有低的铝饱和指数(A/CNK=0.96~1.00),伴有低的Ga/Al值(2.27~2.34),Rb/Sr值(0.35~0.50),显示出I型花岗岩的特征。同时,这些样品均富集大离子亲石元素和轻稀土,亏损高场强元素(如Nb、Ta和Ti等),和负的Eu异常(δEu=0.72~0.85),类似于典型俯冲相关的岛弧岩浆特征。这些I型花岗岩具有高的、正的锆石εHf(t)值(+11.2~+14.5)和年轻的二阶段Hf模式年龄(tDM2=604~392 Ma),以及比地幔值略高的锆石δ18O 值(5.73‰~6.51‰)和高的锆石饱和封闭温度(Tzr=854~895℃),可能是新生下地壳在高温背景下部分熔融的产物。结合前人在西准噶尔造山带北部发现的晚石炭世早二叠世A1和A2型花岗岩和埃达克质岩墙,本文认为这些高温岩石组合的形成可能与晚石炭世的洋中脊俯冲及其相关板片窗作用有关。在洋脊俯冲背景下,软流圈地幔上涌加热新生下地壳,促使其发生部分熔融形成I和A1和A2型花岗岩。西准噶尔造山带大多数下地壳主要形成于早古生代,表明该地区在显生宙发生了显著的地壳增长。
Abstract
Numerous late Paleozoic granitic intrusions occur in the West Junggar region, however, the petrogenesis of these granites and their tectonic setting remain subjects of debate. In this study, we present new petrology, geochemistry and zircon Hf-O isotopic compositions of the quartz monzonite found in the Aerjiati mountain, located in the northern Western Junggar. Our objective is to elucidate the origin and tectonic setting of these granites and explore their relationship with juvenile crustal growth. Zircon U-Pb dating of two samples indicates that these quartz monzonite formed during the late Carboniferous, with ages of 301.8±1.4 Ma and 303.7±3.1 Ma. These samples contain hornblende and are characterized by high Si (SiO2=67.8%~68.9%), Al (K2O+Na2O=9.36%~9.89%) contents, but low A/CNK ratios (0.96~1.00), Ga/Al (2.27~2.34) and Rb/Sr (0.35~0.50) contents, consistent with the geochemical features of I-type granites. They are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), depleted in high field strength elements (HFSEs)(e.g., Nb, Ta, Ti), with negative Eu (δEu=0.72~0.85), akin to typical subduction-related island arc magmas. These I-type granites exhibit high and positive εHf(t) values and young tDM2 (604~392 Ma). Their δ18O (5.73‰~6.51‰) values are slightly higher than those of the mantle. They also display high Zr contents and zircon saturation temperatures (Tzr=854~895℃), implying that they originated from partial melting of juvenile lower crust in a high temperature geological setting. Previous studies have indicated the presence of high temperature I-and A-type granites and adakitic dikes in the northern West Junggar. Combined with previous findings, we propose that these high-temperature rock associations were likely generated by ridge subduction and the formation of a slab window. The ridge subduction led to the upwelling of hot asthenospheric mantle, triggering partial melting of the juvenile lower crust formation of I- and A-type granites. Most of the lower crust was formed in the early Paleozoic, suggesting a significant contribution of juvenile crustal growth during the Phanerozoic in the West Junggar.