en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张博扬,男,1997年生。硕士研究生,矿物学、岩石学、矿床学专业。E-mail: 1195968645@qq.com。

通讯作者:

熊发挥,男,1985年生。博士,研究员,主要从事蛇绿岩和铬铁矿及地幔矿物学研究。E-mail: xiongfahui@126.com。

参考文献
Allégre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Schärer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariépy C, Göpel C, Li Tindong, Xiao Xuchang, Chang Chenfa, Li Guangqin, Lin Baoyu, Teng Jiwen, Wang Naiwen, Chen Guoming, Han Tonglin, Wang Xibin, Deng Wanming, Sheng Huaibin, Cao Yougong, Zhou Ji, Qiu Hongrong, Bao Peisheng, Wang Songchan, Wang Bixiang, Zhou Yaoxiu, Xu Ronghua. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17~22.
参考文献
Arai S, Abe N. 1994. Podiform chromitite in the arc mantle: Chromitite xenoliths from the Takashima alkali basalt, southwest Japan arc. Mineralium Deposita, 29(5): 434~438.
参考文献
Arai S, Miura M. 2016. Formation and modification of chromitites in the mantle. Lithos, 264: 277~295.
参考文献
Bai Wenji, Zhou Meifu, Robinson P T. 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Canadian Journal of Earth Sciences, 30(8): 1650~1659.
参考文献
Bai Wenji, Li Hang. 1993. A study on the chemical composition of mineral inclusions in chromite from the hegenshan ophiolite massif, inner Mongolia, China. Acta Mineralogica Sinica, 13(3): 204~213 (in Chinese with English abstract).
参考文献
Bao Peisheng. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites-Questioning about the rock/melt interaction metallogeny. Geological Bulletin of China, 28(12): 1741~1761 (in Chinese with English abstract).
参考文献
Barnes S J. 1998. Chromite in komatiites, 1. magmatic controls on crystallization and composition. Journal of Petrology, 39(10): 1689~1720.
参考文献
Barnes S J, Roeder P L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42(12): 2279~2302.
参考文献
Batanova V G, Suhr G, Sobolev A V. 1998. Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: ion probe study of clinopyroxenes. Geochimica et Cosmochimica Acta, 62(5): 853~866.
参考文献
Bodinier J L, Godard M. 2003. Orogenic, ophiolitic, and abyssal peridotites. Treatise on Geochemistry, 2(568): 103~167.
参考文献
Borisov A, Palme H, Spettel B. 1994. Solubility of palladium in silicate melts: Implications for core formation in the Earth. Geochimica et Cosmochimica Acta, 58(2): 705~716.
参考文献
Cao Chuqi, Yang Jingsui, Yang Shengbiao, Dong Yufei, Chen Xiaojian, Xiong Fahui, Lu Yuxaio. 2022. Characteristics and tectonic setting of Dongqiao lenticular chromite in the middle section of Bangong Hu-Nujiang suture belt, Tibet. Acta Petrologica Sinica, 38(11): 3391~3410(in Chinese with English abstract).
参考文献
Chen Yupeng. 2012. Discussion on ophiolite and its occurrence chromite metallogenic model in Dongqiao area in the middle part of Bangong Hu-Nujiang suture zone. China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Derbyshire E J, O'Driscoll B, Lenaz D, Zanetti A, Gertisser R. 2019. Chromitite petrogenesis in the mantle section of the Ballantrae Ophiolite Complex (Scotland). Lithos, 344-345: 51~67.
参考文献
Dick H J B, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1): 54~76.
参考文献
Dick H J B, Natland J H. 1995. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In Proceedings-Ocean Drilling Program Scientific Results. College station, TX: Ocean Drilling Program, 147: 103~134.
参考文献
Dickey P A. 1975. Possible primary migration of oil from source rock in oil phase: Geologic notes. AAPG Bulletin, 59(2): 337~345.
参考文献
Dilek Y, Newcomb S. 2003. Ophiolite concept and its evolution. Special Papers-Geological Society of America, 373: 1~16.
参考文献
Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(1~4): 387~411.
参考文献
Dobrzhinetskaya L F, Wirth R, Yang Jingsui, Hutcheon I D, Weber P K, Green H W II. 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences of the United States of America, 106(46): 19233~19238.
参考文献
Dong Yufei, Yang Jingsui, Lian Dongyang, Xiong Fahuui, Zhao Hui, Chen Xiaojian, Li Guanlong, Wang Tianze. 2019. Petrogenesis and tectonic environment analysis of Dongqiao mantle peridotite in the middle part of Bangong Hu-Nujiang suture zone, Tibet. Geology in China, 46(1): 87~114(in Chinese with English abstract).
参考文献
Du Dedao, Qu Xiaoming, Wang Genhou, Xin Hongbo, Liu Zhibo. 2011. Bidirectional subduction of the Middle Tethys Ocean basin in the western section of the Bangong Lake-Nujiang suture zone, Tibet: Evidence from zircon U-Pb age and elemental geochemistry of island arc granites. Acta Petrologica Sinica, 27(7): 1993~2002(in Chinese with English abstract).
参考文献
Dymek R F, Brothers S C, Schiffries C M. 1988. Petrogenesis of ultramafic metamorphic rocks from the 3800 Ma Isua supracrustal belt, West Greenland. Journal of Petrology, 29(6): 1353~1397.
参考文献
Fan Jianjun, Zhang Bochuan, Liu Haiyong, Liu Yiming, Yu Yunpeng, Hao Yujie, Awangdanzeng. 2019. Early-Middle Jurassic intra-oceanic subduction of the Bangong-Nujiang oceanic lithosphere: Evidence of the Dong Co ophiolite. Acta Petrologica Sinica, 35(10): 3048~3064 (in Chinese with English abstract).
参考文献
Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K. 2007. A vestige of Earth's oldest ophiolite. Science, 315(5819): 1704~1707.
参考文献
Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131(4): 323~346.
参考文献
Garuti G, Fershtater G, Bea F, Montero P, Pushkarev E V, Zaccarini F. 1997. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals: Preliminary results. Tectonophysics, 276(1~4): 181~194.
参考文献
Godard M, Jousselin D, Bodinier J L. 2000. Relationships between geochemistry and structure beneath a palaeo-spreading centre: A study of the mantle section in the Oman ophiolite. Earth and Planetary Science Letters, 180(1~2): 133~148.
参考文献
González-Jiménez J M, Gervilla F, Kerestedjian T, Proenza J A. 2010. Alteration of platinum-group and base-metal mineral assemblages in ophiolite chromitites from the Dobromirtsi massif, Rhodope Mountains (Bulgaria). Resource Geology, 60(4): 315~334.
参考文献
Grieco G, Diella V, Chaplygina N L, Savelieva G N. 2007. Platinum group elements zoning and mineralogy of chromitites from the cumulate sequence of the Nurali massif (southern Urals, Russia). Ore Geology Reviews, 30(3~4): 257~276.
参考文献
Hou Kejun, Ma Xudong, Li Yanhe, Liu Feng, Han Dan. 2019. Genesis of Huoqiu banded iron formation (BIF), southeastern North China craton, constraints from geochemical and Hf-O-S isotopic characteristics. Journal of Geochemical Exploration, 197: 60~69.
参考文献
Huang Qiangtai, Xia Bin, Li Qiang, Zhong Yun, Hu Xichong, Zheng Hao. 2015. Geochemical signatures and tectonic setting of the basalts from the Dongqiao region, Xizang. Sedimentary Geology and Tethyan Geology, 35(2): 97~103 (in Chinese with English abstract).
参考文献
Irvine T N. 1967. Chromian spinel as a petrogenetic indicator: Part 2. Petrologic applications. Canadian Journal of Earth Sciences, 4(1): 71~103.
参考文献
Jiang Jiuyang, Zhu Yongfeng. 2020. Characterization of the Hegenshan podiform chromitites (Inner Mongolia, China): Sub-solidus cooling and hydrothermal alteration. Ore Geology Reviews, 120: 103413.
参考文献
Kamenetsky V S, Crawford A J, Meffre S. 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42(4): 655~671.
参考文献
Kapp P, Murphy M A, YinAn, Harrison T M, Ding Lin, Guo Jinghu. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 1029~1053.
参考文献
Khedr M Z, Arai S. 2016. Chemical variations of mineral inclusions in Neoproterozoic high-Cr chromitites from Egypt: Evidence of fluids during chromitite genesis. Lithos, 240: 309~326.
参考文献
Leblanc M. 1980. Chromite growth, dissolution and deformation from a morphological view point: SEM investigations. Mineralium Deposita, 15(2): 201~210.
参考文献
Leblanc M, Nicolas A. 1992. Ophiolitic chromitites. International Geology Review, 34(7): 653~686.
参考文献
Lian Dongyang, Yang Jingsui, Xiong Fahui, Liu Fei, Wang Yunpeng, Zhou Wenda, Zhao Yiyu. 2014. Composition and environment analysis of mantle peridotite in the western part of the ophiolite belt of Yarlung Zangbo River. Acta Petrologica Sinica, 30(8): 2164~2184(in Chinese with English abstract).
参考文献
Liu Tong, Zhai Qingguo, Wang Jun, Bao Peisheng, Qiangba Zhaxi, Tang Suohan, Tang Yue. 2016. Tectonic significance of the Dongqiao ophiolite in the north-central Tibetan Plateau: Evidence from zircon dating, petrological, geochemical and Sr-Nd-Hf isotopic characterization. Journal of Asian Earth Sciences, 116: 139~154.
参考文献
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1~2): 34~43.
参考文献
Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535~1546.
参考文献
Litasov K D, Kagi H, Voropaev S A, Hirata T, Ohfuji H, Ishibashi H, Makino Y, Bekker T B, Sevastyanov V S, Afanasiev V P, Pokhilenko N P. 2019. Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: Assessing the role of contamination by synthetic materials. Gondwana Research, 75: 16~27.
参考文献
Litasov K D, Kagi H, Bekker T B. 2019. Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags. Lithos, 340: 181~190.
参考文献
Maier W D, Barnes S J, De Waal S A. 1998. Exploration for magmatic Ni-Cu-PGE sulphide deposits: A review of recent advances in the use of geochemical tools, and their application to some South African ores. South African Journal of Geology, 101(3): 237~253.
参考文献
Matveev S, Ballhaus C. 2002. Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters, 203(1): 235~243.
参考文献
Maurel C, Maurel P. 1982. Étude expérimentale de la distribution de l'aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: Teneur en chrome des spinelles. Bulletin De Minéralogie, 105(2): 197~202.
参考文献
McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(1~4): 223~253.
参考文献
Miyashiro A. 1973. The Troodos ophiolitic complex was probably formed in an island arc. Earth and Planetary Science Letters, 19(2): 218~224.
参考文献
Mondal S K, Ripley E M, Li Chusi, Frei R. 2006. The genesis of Archaean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum Craton, India. Precambrian Research, 148(1~2): 45~66.
参考文献
Nicolas A. 1989. The various ophiolites and their oceanic environments of origin. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. 187~201.
参考文献
Nicolas A, Al Azri H. 1991. Chromite-rich and chromite-poor ophiolites: The Oman case. Ophiolite Genesis and Evolution of the Oceanic Lithosphere: Proceedings of the Ophiolite Conference, held in Muscat, Oman, 7~18 January 1990. Dordrecht: Springer Netherlands, 261~274.
参考文献
Niu Yaoling. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12): 2423~2458.
参考文献
Niu Yaoling, Langmuir C H, Kinzler R J. 1997. The origin of abyssal peridotites: A new perspective. Earth and Planetary Science Letters, 152(1): 251~265.
参考文献
Ozawa K. 1994. Melting and melt segregation in the mantle wedge above a subduction zone: Evidence from the chromite-bearing peridotites of the Miyamori ophiolite complex, northeastern Japan. Journal of Petrology, 35(3): 647~678.
参考文献
Pagé P, Barnes S J. 2009. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford mines ophiolite, Qué bec, Canada. Economic Geology, 104(7): 997~1018.
参考文献
Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.
参考文献
Pan Guitang, Wang Liquan, Geng Quanru, Yin Fuguang, Wang Baodi, Wang Dongbing, Peng Zhimin, Ren Fei. 2020. Space-time structure of the Bangonghu-Shuanghu-Nujiang-Changning-Menglian mega-suture zone: A discussion ongeology and evolution of the Tethys Ocean. Sedimentary Geology and Tethyan Geology, 40(3): 1~19(in Chinese with English abstract).
参考文献
Parkinson I J, Pearce J A. 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9): 1577~1618.
参考文献
Pattou L, Lorand J P, Gros M. 1996. Non-chondritic platinum-group element ratios in the Earth's mantle. Nature, 379: 712~715.
参考文献
Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society of London Special Publications, 16(1): 77~94.
参考文献
Pearce J A, Deng Wanming. 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327(1594): 215~238.
参考文献
Prichard H M, Neary C R, Fisher P C, O'Hara M J. 2008. PGE-rich podiform chromitites in the Al'ays ophiolite complex, Saudi Arabia: An example of critical mantle melting to extract and concentrate PGE. Economic Geology, 103(7): 1507~1529.
参考文献
Qiu Tian, Yang Jingsui, Milushi I, Wu Weiwei, Mekshiqi N, Xiong Fahui, Zhang Cong, Shen Tingting. 2018. Petrology and PGE abundances of high-Cr and high-Al podiform chromitites and peridotites from the bulqiza ultramafic massif, eastern Mirdita ophiolite, Albania. Acta Geologica Sinica-English Edition, 92(3): 1063~1081.
参考文献
Qu Xiaoming, Wang Ruijiang, Xin Hongbo, Zhao Yuanyi, Fan Xingtao. 2009. Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arczone, the western Tibetan Plateau. Geochimica, 38(6): 523~535 (in Chinese with English abstract).
参考文献
Rollinson H. 1995. Composition and tectonic settings of chromite deposits through time; discussion. Economic Geology, 90(7): 2091~2092.
参考文献
Rollinson H, Adetunji J. 2013. Mantle podiform chromitites do not form beneath mid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite. Lithos, 177: 314~327.
参考文献
Rui Huichao, Yang Jingsui, Llanes Castro A I, Zheng Jianping, Lian Dongyang, Wu Weiwei, Valdes M Y. 2022. Ti-poor high-Al chromitites of the Moa-Baracoa ophiolitic massif (eastern Cuba) formed in a nascent forearc mantle. Ore Geology Reviews, 144: 104847.
参考文献
Shi Rendeng, Alard O, Zhi Xiachen, O'Reilly S Y, Pearson N J, Griffin W L, Zhang Ming, Chen Xiaoming. 2007. Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru-Os-Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth and Planetary Science Letters, 261(1~2): 33~48.
参考文献
Stowe C W. 1994. Compositions and tectonic settings of chromite deposits through time. Economic Geology, 89(3): 528~546.
参考文献
Su Benxun, Bai Yang, Chen Chen, Liu Xia, Xiao Yan, Tang Dongmei, Liang Zi, Cui Mengmeng, Peng Qingshan. 2018. Petrological and mineralogical investigations on hydrous properties of parental magmas of chromite deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 37(6): 1035~1046 (in Chinese with English abstract).
参考文献
Su Benxun, Robinson P T, Chen Chen, Xiao Yan, Melcher F, Bai Yang, Gu Xiaoyan, Uysal I, Lenaz D. 2020. The occurrence, origin, and fate of water in chromitites in ophiolites. American Mineralogist, 105(6): 894~903.
参考文献
Su Benxun, Liu Xia, Chen Chen, Robinson P T, Xiao Yan, Zhou Meifu, Bai Yang, Uysal I, Zhang Pengfei. 2021. A new model for chromitite formation in ophiolites: Fluid immiscibility. Science China Earth Sciences, 51(2): 250~260(in Chinese).
参考文献
Su Benxun, Pan Qiqi, Xiao Yan, Jing Jiejun, Robinson P T, Uysal I, Liu Xia, Liu Jianguo. 2023. Mantle peridotites of ophiolites rarely preserve reliable records of paleo-oceanic lithospheric mantle. Earth-Science Reviews, 244: 104544.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Societyof London Special Publications, 42(1): 313~345.
参考文献
Thayer T P. 1960. Some critical differences between alpine-type and stratiform peridotite-gabbro complexes. 21st Intern. Geol. Congress, Copenhagen, XIII. 247~259.
参考文献
Thayer T P. 1964. Principal features and origin of podiform chromite deposits, and some observations on the Guelman-Soridag District, Turkey. Economic Geology, 59(8): 1497~1524.
参考文献
Thayer T P. 1970. Chromite segregations as petrogenetic indicators. Geological Society of South Africa Special Publications, 1: 380~390.
参考文献
Tian Yazhou, Yang Jingsui, Robinson P T, Xiong Fahui, Li Yuan, Zhang Zhongming, Liu Zhao, Liu Fei, Niu Xiaolu. 2015. Diamond discovered in high-Al chromitites of the sartohay ophiolite, Xinjiang Province, China. Acta Geologica Sinica-English Edition, 89(2): 332~340.
参考文献
Tian Yazhou, Yang Jingsui, Yang Huashen, Tian Yunlei. 2019. Characteristics of platinum group minerals and sulfides in chromite from Saltuohai, Xinjiang. Acta Geologica Sinica, 93(10): 2639~2655(in Chinese with English abstract).
参考文献
Uysal I, Kapsiotis A, Akmaz R M, Saka S, Seitz H M. 2018. The Guleman ophiolitic chromitites (SE Turkey) and their link to a compositionally evolving mantle source during subduction initiation. Ore Geology Reviews, 93: 98~113.
参考文献
Wang Hengsheng. 1983. Ferrochrome Deposit and Its Origin in China. Beijing: Science Press (in Chinese with English abstract).
参考文献
Wang Weiliang, Aitchison J C, Lo C H, Zeng Qinggao. 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. Journal of Asian Earth Sciences, 33(1~2): 122~138.
参考文献
Wang Xibin, Bao Peisheng, Deng Wanming, Wang Fangguo. 1987. Tectonic Evolution of Himalayan Lithosphere: Tibet Ophiolite. Beijing: Geological Publishing House(in Chinese with English abstract).
参考文献
Xia Bin, Xu Lifeng, Wei Zhenquan, Zhang Yuquan, Wang Ran, Li Jianfeng, Wang Yanbin. 2008. SHRIMP zircon dating of gabbro from the Donqiao ophiolite in Tibet and its geological implications. Acta Geologica Sinica, 82(4): 528~531(in Chinese with English abstract).
参考文献
Xiong Fahui, Yang Jingsui, Liu Zhao. 2013. Multi-stage formation of the podiform chromitite. Geology in China, 40(3): 820~839(in Chinese with English abstract).
参考文献
Xiong Fahui, Yang Jingsui, Robinson P, Xu Xiangzhen, Liu Zhao, Li Yuan, Li Jinyang, Chen Songyong. 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27: 525~542.
参考文献
Xiong Fahui, Yang Jingsui, Schertl H P, Liu Zhao, Xu Xiangzhen. 2020a. Multistage origin of dunite in the Purang ophiolite, southern Tibet, documented by composition, exsolution and Li isotope characteristics of constituent minerals. European Journal of Mineralogy, 32(1): 187~207.
参考文献
Xiong Fahui, Zoheir B, Robinson P T, Yang Jingsui, Xu Xiangzhen, Meng Fancong. 2020b. Genesis of the Ray-Iz chromitite, Polar Urals: Inferences to mantle conditions and recycling processes. Lithos, 374~375: 105699.
参考文献
Xiong Fahui, Zoheir B, Wirth R, Milushi I, Qiu Tian, Yang Jingsui. 2021. Mineralogical and isotopic peculiarities of high-Cr chromitites: Implications for a mantle convection genesis of the Bulqiza ophiolite. Lithos, 398~399: 106305.
参考文献
Xiong Fahui, Xu Xiangzhen, Yang Shengbiao, Yan Jinyu, Zhang Boyang, Cao Chuqi, Sun Yi, Yang Jingsui. 2022. Genesis and significance of different types of mineral inclusions in podiform chromitite. Acta Petrologica et Mineralogica, 41(2): 413~436(in Chinese with English abstract).
参考文献
Xiong Qing, Henry H, Griffin W L, Zheng Jianping, Satsukawa T, Pearson N J, O'Reilly S Y. 2017a. High-and low-Cr chromitite and dunite in a Tibetan ophiolite: Evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 172: 1~22.
参考文献
Xiong Qing, Griffin W L, Zheng Jianping, Pearson N J, O'Reilly S Y. 2017b. Two-layered oceanic lithospheric mantle in a Tibetan ophiolite produced by episodic subduction of Tethyan slabs. Geochemistry, Geophysics, Geosystems, 18(3): 1189~1213.
参考文献
Xiong Qing, Xu Yong, González-Jiménez J M, Liu Jingao, Alard O, Zheng Jianping, Griffin W L, O'Reilly, S Y. 2020. Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective. Earth and Planetary Science Letters, 531: 115969.
参考文献
Xu Rongke, Zheng Youye, Zhao Pingjia, Shan Ling, Zhang Yulian, Cao Ling, Qi Jianhong, Zhang Gangyang, Dai Fanghua. 2007. Definition and geological significance of the Gacangjian volcanic arc north of Dongqiao, Tibet. Geology in China, 34(5): 768~777(in Chinese with English abstract).
参考文献
Xu Xiangzhen, Xiong Fahui, Zhang Chengjie, Chen Jian, Zhang Ran, Yan Jinyu, Yang Jingsui. 2021. Genesis of Dingqing mantle peridotite in the eastern segment of the Bangong-Nujiang suture zone: Evidence from mineralogy and geochemistry of mantle peridotite from borehole ZK02. Acta Petrologica Sinica, 37(10): 2944~2970(in Chinese with English abstract).
参考文献
Yang Jingsui, Dobrzhinetskaya L, Bai Wenji, Fang Qingsong, Robinson P T, Zhang Junfeng, Green II H W. 2007. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35(10): 875~878.
参考文献
Yang Jingsui, Bai Wenji, Fang Qingsong, Rong He. 2008. Ultra-high pressure minerals and new minerals from the Luobusa ophiolitic chromitites in Tibet: A review. Acta Geoscientica Sinica, 29(3): 263~274(in Chinese with English abstract).
参考文献
Yang Jingsui, Xiong Fahui, Guo Guolin, Liu Fei, Liang Fenghua, Chen Songyong, Li Zhaoli, Zhang Liwen. 2011. Dongbo ultramafic pluton: A mantle peridotite with high chromite prospect in the western part of the Yarlong Zangbo suture zone, Tibet. Acta Geoscientica Sinica, 27(11): 3207~3222(in Chinese with English abstract).
参考文献
Yang Jingsui, Xu Xiangzhen, Zhang Zhongming, Rong He, Li Yuan, Xiong Fahui, Liang Fenghua, Liu Zhao, Liu Fei, Li Jinyang, Li Zhaoli, Chen Songyong, Guo Guolin, Robinson P T. 2013. Ophiolite-type diamond and deep genesis of chromitite. Acta Geoscientica Sinica, 34(6): 643~653 (in Chinese with English abstract).
参考文献
Yang Jingsui, Robinson P T, Dilek Y. 2014. Diamonds in ophiolites. Elements, 10(2): 127~130.
参考文献
Yang Jingsui, Simakov S K, Moe K, Scribano V, Lian Dongyang, Wu Weiwei. 2020. Comment on “Comparison of enigmatic diamonds from the tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: Assessing the role of contamination by synthetic materials”. Gondwana Research, 79: 301~303.
参考文献
Yang Jingsui, Lian Dongyang, Wu Weiwei, Yang Yu, Cai Pengjie, Rui Huichao, Shi Rendeng, Xiong Fahui. 2022. Chromitites in ophiolites: Questions and thoughts. Acta Geologica Sinica, 96(5): 1608~1634 (in Chines with English abstract).
参考文献
Yang Shengbiao, Li Yuan, Yang Jingsui, Ba Dengzhu, Bo Rongzhong, Li Ruibao, Liu Chengjun, Xiong Fahui, Cao Chuqi. 2022. Genesis and tectonic implications ofpodiform chromitite from the Renbu ophiolite in central Yarlung Zangbo Suture Zone, Tibet. Acta Geologica Sinica, 96(2): 533~553(in Chinese with English abstract).
参考文献
Yang Yiheng, Zeng Le, Deng Fan, Hu Jianzhong. 2018. Potential analysis and prospecting direction of chromite resources in China. Earth Frontier, 25(3): 138~147(in Chinese with English abstract).
参考文献
Ye Peisheng, Wu Zhenhan, Hu Daogong, Jiang Wan, Liu Qisheng, Yang Xinde. 2004. Geochemical characteristics and tectonic setting of ophiolite of Dongqiao, Tibet. Geoscience, 18(3): 309~315(in Chinese with English abstract).
参考文献
Yu Shimian, Ma Xudong, Hu Yanchun, Chen Wei, Liu Qingping, Song Yang, Tang Juxing. 2022. Post-subdution evolution of the Northern Lhasa Terrane, Tibet: Constraints from geochemical anomalies, chronology and petrogeochemistry. China Geology, 5(1): 84~95.
参考文献
Zaccarini F, Garuti G, Proenza J A, Campos L, Thalhammer O A, Aiglsperger T, Lewis J F. 2011. Chromite and platinum group elements mineralization in the Santa Elena Ultramafic Nappe (CostaRica): Geodynamic implications. Geologica Acta: an international earth science journal, 9(3~4): 407~423.
参考文献
Zhang Qi, Zhou Guoqing. 2001. Ophiolites of China. Beijing: Science Press, 85~89(in Chinese with English abstract).
参考文献
Zhang Qizhi, Ba Dengzhu, Xiong Fahui, Yang Jingsui. 2017. Deep prospecting breakthrough and genetic model discussion of Luobsa podded chromite deposit in Tibet. Geology in China, 44(2): 224~241(in Chinese with English abstract).
参考文献
Zhong Yun, Hu Xichong, Liu Weiliang, Xia Bin, Zhang Xiao, Huang Wei, Fu Yuanbin, Wang Yuguang. 2018. Age and nature of the Jurassic-Early Cretaceous mafic and ultramafic rocks from the Yilashan area, Bangong-Nujiang suture zone, central Tibet: Implications for petrogenesis and tectonic evolution. International Geology Review, 60(10): 1244~1266.
参考文献
Zhou Meifu, Robinson P T. 1994. High-Cr and high-Al podiform chromitites, western China: Relationship to partial melting and melt/rock reaction in the upper mantle. International Geology Review, 36(7): 678~686.
参考文献
Zhou Meifu, Bai Wenji. 1994. Understanding of genesis of podiform chromite deposit. Deposit Geology, 13(3): 242~249(in Chinese with English abstract).
参考文献
Zhou Meifu, Robinson P T, Malpas J, Li Zijin. 1996. Podiform chromitites in the luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1): 3~21.
参考文献
Zhou Meifu, Sun Min, Keays R R, Kerrich R W. 1998. Controls on platinum-group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62(4): 677~688.
参考文献
Zhou Meifu, Robinson P T, Malpas J, Edwards S J, Qi Liang. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. Journal of Petrology, 46(3): 615~639.
参考文献
Zhou Meifu, Robinson P T, Su Benxun, Gao Jianfeng, Li Jianwei, Yang Jingsui, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1): 262~283.
参考文献
Zhu Dicheng, Pan Guitang, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Liao Zhongli, Geng Quanru, Dong Guochen. 2006. Identification for the Mesozoic OIB-type basalts inCentral Qinghai-Tibetan Plateau: Geochronology, geochemistry and their tectonic setting. Acta Geologica Sinica, 80(9): 1312~1328(in Chinese with English abstract).
参考文献
Zhu Dicheng, Li Shimin, Cawood P A, Wang Qing, Zhao Zhidan, Liu Shengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7~17.
参考文献
白文吉, 李行. 1993. 内蒙古贺根山蛇绿岩型铬铁矿中固体包裹体矿物化学成分研究. 矿物学报, 13(3): 204~213.
参考文献
鲍佩声. 2009. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说. 地质通报, 28(12): 1741~1761.
参考文献
曹楚奇, 杨经绥, 杨胜标, 董玉飞, 陈晓坚, 熊发挥, 卢雨潇. 2022. 西藏班公湖-怒江缝合带中段东巧豆荚状铬铁矿特征及构造背景. 岩石学报, 38(11): 3391~3410.
参考文献
陈宇鹏. 2012. 班公湖-怒江缝合带中段东巧地区蛇绿岩及其赋存的铬铁矿成矿模式探讨. 中国地质大学(北京).
参考文献
董玉飞, 杨经绥, 连东洋, 熊发挥, 赵慧, 陈晓坚, 李观龙, 王天泽. 2019. 西藏班公湖-怒江缝合带中段东巧地幔橄榄岩岩石成因及构造环境分析. 中国地质, 46(1): 87~114.
参考文献
杜德道, 曲晓明, 王根厚, 辛洪波, 刘治博. 2011. 西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲: 来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据. 岩石学报, 27(7): 1993~2002.
参考文献
范建军, 张博川, 刘海永, 刘一鸣, 于云鹏, 郝宇杰, 阿旺旦增. 2019. 班公湖-怒江洋早-中侏罗世洋内俯冲: 来自洞错蛇绿岩的证据. 岩石学报, 35(10): 3048~3064.
参考文献
黄强太, 夏斌, 李强, 钟云, 胡西冲, 郑浩. 2015. 西藏东巧地区玄武岩地球化学特征及构造环境分析. 沉积与特提斯地质, 35(2): 97~103.
参考文献
连东洋, 杨经绥, 熊发挥, 刘飞, 王云鹏, 周文达, 赵一钰. 2014. 雅鲁藏布江蛇绿岩带西段达机翁地幔橄榄岩组成特征及其形成环境分析. 岩石学报, 30(8): 2164~2184.
参考文献
潘桂棠, 王立全, 耿全如, 尹福光, 王保弟, 王冬兵, 彭志敏, 任飞. 2020. 班公湖-双湖-怒江-昌宁-孟连对接带时空结构——特提斯大洋地质及演化问题. 沉积与特提斯地质, 40(3): 1~19.
参考文献
曲晓明, 王瑞江, 辛洪波, 赵元艺, 樊兴涛. 2009. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学. 地球化学, 38(6): 523~535.
参考文献
苏本勋, 白洋, 陈晨, 刘霞, 肖燕, 唐冬梅, 梁子, 崔梦萌, 彭青山. 2018. 铬铁矿床母岩浆含水性的岩石矿物学探讨. 矿物岩石地球化学通报, 37(6): 1035~1046.
参考文献
苏本勋, 刘霞, 陈晨, Robinson P T, 肖燕, 周美夫, 白洋, Uysal I, 张鹏飞. 2021. 蛇绿岩铬铁矿成矿新模型: 流体不混溶作用. 中国科学: 地球科学, 51(2): 250~260.
参考文献
田亚洲, 杨经绥, 杨华燊, 田云雷. 2019. 新疆萨尔托海铬铁矿中铂族矿物及硫化物特征. 地质学报, 93(10): 2639~2655.
参考文献
王恒升. 1983. 中国铬铁矿床及成因. 科学出版社.
参考文献
王希斌, 鲍佩声, 邓万明, 王方国. 1987. 喜马拉雅岩石圈构造演化——西藏蛇绿岩. 北京: 地质出版社.
参考文献
夏斌, 徐力峰, 韦振权, 张玉泉, 王冉, 李建峰, 王彦斌. 2008. 西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义. 地质学报, 82(4): 528~531.
参考文献
熊发挥, 杨经绥, 刘钊. 2013. 豆荚状铬铁矿多阶段形成过程的讨论. 中国地质, 40(3): 820~839.
参考文献
熊发挥, 徐向珍, 杨胜标, 闫金禹, 张博杨, 曹楚奇, 孙怡, 杨经绥. 2022. 豆荚状铬铁矿中不同类型矿物包裹体成因及指示意义. 岩石矿物学杂志, 41(2): 413~436.
参考文献
许荣科, 郑有业, 赵平甲, 陕亮, 张雨莲, 曹亮, 齐建宏, 张刚阳, 代芳华. 2007. 西藏东巧北尕苍见岛弧的厘定及地质意义. 中国地质, 34(5): 768~777.
参考文献
徐向珍, 熊发挥, 张承杰, 陈建, 张然, 闫金禹, 杨经绥. 2021. 班公湖-怒江缝合带东段丁青地幔橄榄岩成因: 来自钻孔ZK02地幔橄榄岩矿物学及地球化学特征约束. 岩石学报, 37(10): 2944~2970.
参考文献
杨经绥, 张仲明, 李天福, 李兆丽, 任玉峰, 徐向珍, 巴登珠, 白文吉, 方青松, 陈松永, 戎合. 2008. 西藏罗布莎铬铁矿体围岩方辉橄榄岩中的异常矿物. 岩石学报, 24(7): 1445~1452.
参考文献
杨经绥, 熊发挥, 郭国林, 刘飞, 梁凤华, 陈松永, 李兆丽, 张隶文. 2011. 东波超镁铁岩体: 西藏雅鲁藏布江缝合带西段一个甚具铬铁矿前景的地幔橄榄岩体. 岩石学报, 27(11): 3207~3222.
参考文献
杨经绥, 徐向珍, 张仲明, 戎合, 李源, 熊发挥, 梁风华, 刘钊, 刘飞, 李金阳, 李兆丽, 陈松永, 郭国林, Robinson P T. 2013. 蛇绿岩型金刚石和铬铁矿深部成因. 地球学报, 34(6): 643~653.
参考文献
杨经绥, 连东洋, 吴魏伟, 杨彧, 蔡鹏捷, 芮会超, 史仁灯, 熊发挥. 2022. 蛇绿岩中铬铁矿研究的问题与思考. 地质学报, 96(5): 1608~1634.
参考文献
杨胜标, 李源, 杨经绥, 巴登珠, 薄容众, 李瑞保, 刘成军, 熊发挥, 曹楚奇. 2022. 西藏雅鲁藏布江缝合带中段仁布豆荚状铬铁矿成因及构造意义. 地质学报, 96(2): 533~553.
参考文献
杨毅恒, 曾乐, 邓凡, 胡建中. 2018. 中国铬铁矿资源潜力分析及找矿方向. 地学前缘, 25(3): 138~147.
参考文献
叶培盛, 吴珍汉, 胡道功, 江万, 刘琦胜, 杨欣德. 2004. 西藏东巧蛇绿岩的地球化学特征及其形成的构造环境. 现代地质, 18(3): 309~315.
参考文献
张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社, 85~89.
参考文献
章奇志, 巴登珠, 熊发挥, 杨经绥. 2017. 西藏罗布莎豆荚状铬铁矿床深部找矿突破与成因模式讨论. 中国地质, 44(2): 224~241.
参考文献
周美夫, 白文吉. 1994. 对豆荚状铬铁矿床成因的认识. 矿床地质, 13(3): 242~249.
参考文献
朱弟成, 潘桂棠, 莫宣学, 王立全, 赵志丹, 廖忠礼, 耿全如, 董国臣. 2006. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、地球化学及其构造环境. 地质学报, 80(9): 1312~1328.
目录contents

    摘要

    东巧蛇绿岩位于班公湖-怒江缝合带中段北部,岩石组合为方辉橄榄岩、纯橄岩、铬铁岩、辉长岩、辉石岩、玄武岩和少量的硅质岩。东巧铬铁矿石的铬尖晶石化学成分表明岩体内同时存在高铬型铬铁矿(Cr#值为60.7~79.8,Mg#值为57.2~68.1)和高铝型铬铁矿(Cr#值为56.4~59.6,Mg#值为67.2~72.7)。高铬型铬铁矿体多呈稠密浸染状,部分为致密块状,而高铝型铬铁矿体规模较小,兼具稠密浸染状和稀疏浸染状。两种铬铁矿矿体的围岩都是纯橄岩,并且矿体以透镜状分布于方辉橄榄岩中。从纯橄岩包壳到条带浸染状铬铁矿石的过渡带中,铬尖晶石呈Cr#值增加(67.2~68.5),Mg#值降低(57.4~74.6)的特点,表明东巧地幔橄榄岩及其铬铁矿可能经历了一定程度的熔-岩反应。方辉橄榄岩中橄榄石Fo值为91.2~92.3,铬尖晶石Cr#值为70.2~75.1;纯橄岩橄榄石Fo值为92.7~92.9,铬尖晶石Cr#值为75.4~76.6,与班公湖-怒江缝合带上丁青、切里湖、依拉山等岩体较为相似,表明东巧地幔橄榄岩形成条件可能与其相近。东巧地幔橄榄岩具有弧前地幔橄榄岩稀土元素特征,微量元素配分模式与Izu-Bonin-Mariana具有极高相似性,指示东巧蛇绿岩可能形成于板块俯冲消减带上盘海底扩张环境。铬铁矿的铂族元素(PGE)配分模式与罗布莎高铬铬铁矿相似,具有富集IPGE、亏损PPGE的特点。对东巧地幔橄榄岩及其铬铁矿平衡熔体进行分析,高铬型铬铁矿形成于俯冲带上岛弧环境(SSZ型)的弧前盆地,高铝型铬铁矿形成于洋中脊型环境(MOR型),并对比班-怒带毗邻岩体,指示东巧地幔橄榄岩及其铬铁矿经历了MOR→SSZ的多期次演化过程。

    Abstract

    The Dongqiao ophiolite, located in the northern part of the middle segment of the Bangong-Nujiang suture zone, comprises a suite of lithologies, including harzburgites, dunites, chromitites, gabbros, pyroxenites, basalts, and minor silicitic units. The high-chromium chromitites are mostly densely impregnated, with some occurrences as dense blocks, while the high-aluminum chromitites are smaller in size and exhibit both dense and sparsely impregnated. Both chromitite types are enveloped by dunites and are distributed in lenticular forms within the harzburgites. Chemical analyses of chromium spinel from the Dongqiao chromitite reveal the presence of both high-chromium (Cr# values ranging from 60.7 to 79.8, Mg# values from 57.2 to 68.1) and high-aluminum varieties (Cr# values from 56.4 to 59.6, Mg# values from 67.2 to 72.7). In the transition zone between dunite cladding and banded disseminated chromitite, an increase in Cr# values (67.2~68.5) and a decrease in Mg# values (57.4~74.6) are observed. This suggests that the mantle peridotite and its associated chromitite have undergone varying degrees of melt-rock interaction. The olivine Fo values in harzburgites range from 91.2 to 92.3, with corresponding chromium spinel Cr# values of 70.2 to 75.1. In dunites, the olivine Fo values range from 92.7 to 92.9 and the chromium spinel Cr# values range from 75.4 to 76.6. These values are broadly consistent with those observed in the Dingqing, Qielihu, and Yilashan massifs in the Banong-Nujiang suture zone, indicating similar formation conditions for the Dongqiao mantle peridotite. The Dongqiao mantle peridotite exhibits rare earth element characteristics typical of pre-arc mantle peridotite, with trace element compositions closely resemblingthose found in the Izu-Bonin-Mariana. This suggests that the Dongqiao ophiolite may have formed in an ocean floor-spreading environment above a subduction zone. The platinum group element (PGE) patterns of the chromite display a strong affinity to those observed in Luobusa chromitites, characterized by enrichment of IPGE and depletion of PPGE. Equilibrium melt analysis of the Dongqiao mantle peridotite and chromite suggests that the high-chromium chromitite formed in a subduction zone island arc (SSZ) forearc basin environment, while the high-aluminum chromitite may have formed in a mid-ocean ridge (MOR) environment. The juxtaposition of these lithologies within the Bangong-Nujiang suture zone provides compelling evidence for a multi-stage MOR-to-SSZ evolutionary process that affected the Dongqiao mantle peridotite and its associated chromitites.

  • 原生铬铁矿床分为层状铬铁矿和豆荚状铬铁矿(Stowe,1994)。层状铬铁矿占全球铬铁矿储量的70%左右(杨毅恒等,2018Su Benxun et al.,2020),具有岩浆堆晶层理,矿层之间互相平行,且矿体延伸较远,通常位于前寒武纪稳定大陆的层状镁铁质-超镁铁质岩浆侵入体的底部(Thayer,1960)。与之相对应的是产于蛇绿岩上地幔橄榄岩单元中的豆荚状铬铁矿,矿体延伸有限,厚度较小,且形状不规则,可呈透镜状、脉状等,主要赋存于显生宙的造山带中(Nicolas,1989Nicolas et al.,1991Leblanc et al.,1992)。迄今为止,国内未发现层状铬铁矿,现已探明的西藏地区蛇绿岩带所赋存的豆荚状铬铁矿占全国总储量的90%以上(章奇志等,2017)。学者普遍认为层状铬铁矿是由岩浆结晶分异作用形成的,但对豆荚状铬铁矿的成因却一直存在争议,包括以下几种模式:① 幔源岩浆结晶分异作用,又经重力分选作用最终形成于上地幔的观点(Thayer,1964Dickey,1975王恒升,1983);② 玻安质熔体或玄武质熔体上涌,与板块俯冲消减带上残存的亏损方辉橄榄岩发生反应而形成(周美夫等,1994Arai et al.,19942016; Zhou Meifu et al.,19962005);③ 地幔最高度的熔融残余模式(Dick et al.,1984鲍佩声,2009);④ 来源于流体不混溶作用(Matveev et al.,2002苏本勋等,20182021Su Benxun et al.,2020)。

  • 对于豆荚状铬铁矿的形成环境,也同样存在争议。现阶段,多数学者认为板块俯冲消减带上的岛弧环境(SSZ型)最有利于豆荚状铬铁矿的形成(Leblanc et al.,1992Zhou Meifu et al.,19962014),部分学者则认为豆荚状铬铁矿可以形成于大洋扩张脊环境(MOR型)(Rollinson et al.,2013)。豆荚状铬铁矿矿床可分为高铬型和高铝型,两类矿床在矿物组合、矿石结构、构造等方面基本相同,但矿物化学特征却存在较大差异(Thayer,1970)。高铬型铬铁矿石中铬尖晶石Cr#值为60~80,高铝型铬铁矿石中铬尖晶石Cr#值为20~60(Dick et al.,1984)。单一蛇绿岩体中,通常只存在着高铬型或高铝型铬铁矿,少数则为两者兼具,例如阿尔巴尼亚东米尔迪塔蛇绿岩Bulqiza岩体和古巴Mayarí-Cristal超基性岩,揭示了铬铁矿形成环境的不唯一性(González-Jiménez et al.,2010Qiu Tian et al.,2018)。西藏普兰岩体和泽当岩体并存高铬型和高铝型铬铁矿的发现,表明铬铁矿可能经历了由MOR→SSZ型环境的多期次演化过程(Xiong Qing et al.,2017aXiong Fahui et al.,2020a)。而且近年来,铬铁矿石中一系列超高压矿物的发现,表明豆荚状铬铁矿不仅可能形成于上地幔浅部环境(MOR和SSZ型环境),还可能来源于地幔过渡带和下地幔深部环境(Yang Jingsui et al.,200720142020Dobrzhinetskaya et al.,2009杨经绥等,20132022Litasov et al.,2019熊发挥等,2022)。

  • 班公湖-怒江缝合带是一条位于青藏高原北部的板块构造缝合带,是南羌塘地块和拉萨地块的拼贴“枢纽”,记录着班公湖-怒江洋经历扩张、俯冲消减和地体拼合的演化过程(Wang Weiliang et al.,2008范建军等,2019)。前人对班公湖-怒江洋进行了详尽的研究,但在其成因和演化模式等方面还存在争议。例如,关于班公湖-怒江洋盆的俯冲方向,有学者认为它是向羌塘地块之下俯冲(Pearce et al.,1988Kapp et al.,2003曲晓明等,2009);有学者则认为其是向拉萨地块下俯冲(朱弟成等,2006Zhong Yun et al.,2018;潘桂堂,2020;Yu Shimian et al.,2022);亦有学者认为其为南北双向俯冲(许荣科等,2007;杜道德等,2011;Pan Guitang et al.,2012)。Shi Rendeng et al.(2007)对东巧铬铁矿中Ru-Os-Ir合金进行了主量元素、铂族元素(platinum group elements,PGE)与Re-Os同位素等研究,根据PGE配分模式和187Os/188Os范围,推测软流圈地幔和古大陆岩石圈地幔的相互作用导致了铬铁矿的形成。曹楚奇等(2022)通过分析东巧岩体的野外特征,指出多数出露的铬铁岩的纯橄岩包壳较薄,方辉橄榄岩体规模较大,具有着良好的铬铁矿找矿前景。然而,东巧铬铁矿的成因、演化模式及构造环境至今尚不明确。

  • 本次工作对东巧岩体地幔橄榄岩和铬铁矿的野外特征、全岩地球化学和矿物地球化学进行研究,并结合前人对雅江带东段罗布莎岩体及班-怒带其他岩体的研究成果,分析东巧蛇绿岩中铬铁矿床的成因及构造背景。

  • 1 地质背景

  • 东巧岩体位于班公湖-怒江缝合带中段北部,北邻南羌塘板块,南接拉萨板块,西起自班公湖改则蛇绿岩带,东邻索县-丁青-嘉玉桥蛇绿岩带(图1a;Pan Guitang et al.,2012Zhu Dicheng et al.,2016)。该区蛇绿岩出露面积与雅鲁藏布江缝合带罗布莎岩体面积相当,约65 km2杨经绥等,2008),岩石组合较为齐全,其中地幔橄榄岩以大规模块状、透镜状、狭长带状、楔状等断续分布,是班公湖-怒江缝合带蛇绿岩的典型代表。

  • 以强玛镇为中心,东西两侧岩体相距8.5 km,东巧东岩体由方辉橄榄岩、纯橄岩和玄武岩组成,面积约20 km2,其南侧与泥盆系灰岩呈断层构造接触,北侧被白垩纪地层覆盖,指示超基性岩形成于白垩纪之前。东巧西岩体岩石组合为方辉橄榄岩、纯橄岩、玄武岩、辉石岩、辉长岩和硅质岩,面积约45 km2。该岩体南侧与泥盆系灰岩呈断层接触,北侧构造侵位于侏罗系地层中,在超基性岩中见有小面积白垩系地层呈不整合覆盖(图1b)。

  • 东巧铬铁矿赋存于东巧-安多蛇绿岩带地幔橄榄岩单元中,其矿床规模较大且具有较高的工业价值(陈宇鹏,2012)。不同于罗布莎铬铁矿,东巧铬铁矿地表矿化分布极不均一,有成带分布、成群出现的特点,且赋矿围岩延伸较远(曹楚奇等,2022)。

  • 图1 西藏班公湖-怒江缝合带中蛇绿岩分布简图(a,据Bai Wenji et al.,1993)及班公湖-怒江缝合带中段东巧蛇绿岩地质简图(b,据曹楚奇等,2022

  • Fig.1 Geologic sketch map of the Bangonglake-Nujiang suture zone(a, after Bai Wenji et al.,1993) and Dongqiao ophiolite in Tibet (b, after Cao Chuqi et al.,2022

  • 2 岩相学特征

  • 东巧岩体地幔橄榄岩单元主要为方辉橄榄岩和纯橄岩,方辉橄榄岩多经历变质变形和后期构造破碎作用;纯橄岩大多发生强烈的蚀变作用。铬铁矿矿体多呈透镜状、条带状、似脉状等不规则形状产出。本次工作采样点如图1b所示。

  • 2.1 方辉橄榄岩

  • 东巧岩体方辉橄榄岩占地幔橄榄岩总面积的80%以上,经历较强的风化作用和强烈的蛇纹石化(图3a、b),且后期构造破碎作用明显(图2a)。受风化的方辉橄榄岩表面通常呈土黄色、灰黄色及黄褐色,可见粒径较大的斜方辉石颗粒(图2a、b)。新鲜的方辉橄榄岩为粒状结构,块状构造,主要矿物为橄榄石(70%)、斜方辉石(25%)和单斜辉石(1%~3%),副矿物为铬尖晶石(1%~2%)(图3a、b)。橄榄石呈半自形—他形粒状,颗粒之间或颗粒内部裂隙通常发生蛇纹石化而呈网格状结构,粒径为0.1~1 mm(图3a、b)。斜方辉石呈半自形—自形粒状或短柱状结构,粒径通常为1~5 mm,其颗粒边缘或内部裂隙通常发育细小的橄榄石,还可见铬尖晶石及单斜辉石(图3b)。

  • 图2 东巧地区地幔橄榄岩和铬铁矿野外照片

  • Fig.2 Field photographs of mantle peridotites and chromitites of the Dongqiao ophiolite

  • (a)—变形破碎的方辉橄榄岩;(b)—较为新鲜的方辉橄榄岩;(c)—风化严重的纯橄岩;(d)—浸染状铬铁矿与纯橄岩相伴生;(e)—铬铁矿野外露头;(f)—铬铁矿野外露头;(g)—致密状铬铁矿;(h)—含纯橄岩脉的方辉橄榄岩;(i)—条带浸染状铬铁矿

  • (a) —deformed and broken harzburgite; (b) —harzburgitite; (c) —severely weathered dunite; (d) —dunite containing dip chromitite; (e) —chromitite exposure; (f) —chromitite exposure; (g) —dense massive chromitite; (h) —harzburgite with dunite dike; (i) —strip-dip chromitite

  • 2.2 纯橄岩

  • 野外观察纯橄岩呈土黄色或黄绿色(图2c、d),98%以上的橄榄石蚀变为蛇纹石,镜下为空间网格状结构,极少量未蚀变橄榄石充填其中(图3d)。新鲜的纯橄岩呈墨绿色或绿黑色(图2e、f),造岩矿物主要为橄榄石(>95%),含少量铬尖晶石(1%~4%)和单斜辉石(<1%)(图3c、d)。橄榄石呈半自形—他形,粒状,粒径通常为0.1~0.4 mm,颗粒中裂隙发育(图3c、d);单斜辉石呈他形,粒径通常<0.5 mm(图3c);铬尖晶石呈半自形—他形,粒径为0.1~0.5 mm,呈星点状分布(图3d)。纯橄岩在野外多以透镜体的形式呈延伸较远的脉状、条带状等不规则形状产出于方辉橄榄岩中(图2h),纯橄岩带厚度可达几十厘米到几十米不等,常发育浸染状—条带浸染状铬铁矿矿石(图2e、f)。

  • 2.3 铬铁岩

  • 东巧铬铁矿体常与纯橄岩相伴生,分为高铬型和高铝型。二者在野外无共生关系,且矿体的规模存在较大差异,其中高铬型铬铁矿体规模较大,多见稠密浸染状(图2e、i),极少数呈致密块状(图2g);高铝型铬铁矿体则规模较小,具有稠密浸染状(图2f)和稀疏浸染状(图2d)。铬铁岩中尖晶石颗粒通常呈半自形—自形结构,粒径为0.2~1.5 mm(图3f);通过电镜详细观察,可见铬尖晶石中含硅酸盐矿物、铂族元素矿物(platinum group minerals,PGM)及其硫化物和贱金属矿物及其硫化物包裹体,硅酸盐类矿物包裹体包括单斜辉石、斜方辉石和橄榄石,均为半自形—他形结构,粒径为3~100 μm不等(图4a~c),其中单斜辉石最多,斜方辉石次之,橄榄石最少。PGM矿物包裹体分为PGM合金(Os-Ir-Ru合金、Os-Ir合金;图4d、e)和PGM硫化物(硫钌锇矿,图4f)。贱金属矿物包裹体包括Ni-Fe合金、Ni-Cu-Zn合金、针镍矿、砷镍矿、锑硫镍矿、方铅矿等(图4g~i),铂族矿物和硫化物及贱金属矿物包裹体通常呈他形浑圆状或条带状等不规则形状存在于铬尖晶石颗粒之间或铬尖晶石边缘,少数存在于铬尖晶石内部(图4d、e)。

  • 图3 东巧蛇绿岩显微特征

  • Fig.3 Photomicrographs of the Dongqiao ophiolite

  • (a)、(b)—方辉橄榄岩;(c)、(d)—纯橄岩;(e)—蚀变严重的纯橄岩;(f)—浸染状铬铁矿中铬尖晶石;Srp—蛇纹石;Spl—铬尖晶石;Opx—斜方辉石;Cpx—单斜辉石;Ol—橄榄石;(a)~(e)为正交偏光镜下特征;(f)为单偏光镜下特征

  • (a) , (b) —harzburgite; (c) , (d) —dunite; (e) —severely altered dunite; (f) —Spl in chromitite; Srp—serpentine; Spl—spinel; Opx—orthopyroxene; Cpx—clinopyxene; Ol—olivine; (a) ~ (e) show characteristics under orthogonal polarizer; (f) shows characteristics under a single polarizer

  • 3 分析方法

  • 对东巧岩体采集的岩矿石样品进行薄片磨制,开展了细致的岩石偏光显微镜观察,对其岩相学、矿相学、地球化学等方面进行了详细的分析。选出18件铬铁岩、4件纯橄岩、2件方辉橄榄岩和2件具有纯橄岩包壳的铬铁岩复合型样品进行电子探针矿物成分分析,相关分析在中国地质科学院自然资源部深地动力学重点实验室完成。测试仪器为JEOL JXA-8100型、INCA能谱仪,工作电压15.0 kV,探针激发电流20 nA,电子束斑直径1~5 μm,测试时间100 s,ZAF修正。

  • 对其中的2件铬铁岩样品进行铬尖晶石的原位微量元素测试,在中国地质科学院矿产资源研究所MC-ICP-MS实验室利用LA-Q-ICP-MS完成。激光剥蚀系统为RESOlution S-155型193 nm准分子激光,ICP-MS为Bruker M90。工作条件:激光剥蚀直径30 μm,剥蚀频率5 Hz,能量密度6 J/cm2,以氦气作载气,氩气为补偿气,两种气体混合使用。采用多外标-内标法对原位微量元素含量进行计算(Liu Yongsheng et al.,2008),分析数据离线处理使用软件ICP MS Data Cal8.0(Liu Yongsheng et al.,2010)完成。详细实验仪器操作方法和实验数据处理方法参照Hou Kejun et al.(2019)

  • 选取6件纯橄岩和7件方辉橄榄岩进行了全岩主微量元素测试,相关分析在武汉上谱分析科技有限责任公司完成。全岩主量元素测试采用熔片X射线荧光光谱法(XRF)测定,α系数校正,并采用等离子光谱和化学法测定进行互相检验。微量元素和稀土元素采用等离子体质谱法(ICP-MS)测定,同时分析实验的2个标准参考物(GSR3和GSR5)和3个平行样品,与推荐值较吻合。具体分析条件和测试方法参考Liu Yongsheng et al.(2008)

  • 在国家地质测试实验中心完成8件纯橄岩、8件方辉橄榄岩和5件铬铁岩样品的铂族元素的测试分析,采用锍镍火试金-碲共沉淀方法。分析流程为:10 g样品与2 g Ni2O3、1.5 g硫磺粉、15 g Na2CO3、20 g Na2B4O7、1 g SiO2及1 g面粉均匀混合,放入容器后加入适量的190Os稀释剂(美国橡树岭国家实验室出品)。将容器置于1200℃的试金炉中加热熔融1.5 h,而后将熔融体转入特制铁模具中,冷却后取出锍镍扣,将其粉碎后溶解于浓HCl中。加入碲共沉淀剂,加热使其凝聚后转入Teflon密闭溶样器中,加入1 mL王水,于100℃加热溶解1 h。最后加H2O稀释,并采用ICP-MS(TJAPQ-EXCELL)法测定。本文测试结果为测定值扣除全流程空白后的结果,同时对本次实验的标准参考物(GPT24和GPT27)进行测试分析,以保证测试分析质量。

  • 图4 东巧铬铁矿中矿物包裹体电子显微镜照片

  • Fig.4 Electron microscope images of chromite mineral inclusions in Dongqiao chromitite

  • (a)—单斜辉石包裹体;(b)—斜方辉石包裹体;(c)—橄榄石包裹体;(d)—Os-Ir-Ru合金;(e)—Os-Ir合金;(f)—硫钌锇矿;(g)—斜方辉石包裹针镍矿;(h)—Ni-Cu-Zn合金;(i)—砷镍矿与Fe-Ni合金;Chr—铬铁矿;Cpx—单斜辉石;Opx—斜方辉石;Ol—橄榄石;Os-Ir-Ru—锇铱钌合金;Os-Ir—锇铱合金;Fe-Ni—铁镍合金;Ni-Cu-Zn—镍铜锌合金;Lrt—硫钌锇矿;Mlr—针镍矿;Mcr—砷镍矿

  • (a) —clinopyxene inclusions in chromite; (b) —orthopyroxene inclusions in chromite; (c) —olivine inclusions in chromite; (d) —osmium-iridium-ruthenium alloy inside chromite; (e) —osmium-iridium alloy inside chromite; (f) —iron-nickel alloy inside chromite; (g) —orthopyroxene in chromite is coated with millerite; (h) —nickel-copper-zinc alloy inside chromite; (i) —maucherite and iron-nickel alloy inside chromite; Chr—chromite; Cpx—clinopyxene; Opx—orthopyroxene; Os-Ir-Ru—osmium-iridium-ruthenium alloy; Os-Ir—osmium-iridium alloy; Fe-Ni—iron-nickel alloy; Ni-Cu-Zn—nickel-copper-zinc alloy; Lrt—laurite; Mlr—millerite; Mcr—maucherite

  • 此外对东巧铬铁矿中的包裹体进行能谱分析,在中国地质科学院地质研究所自然资源部深地动力学重点实验室完成,仪器为美国FEI公司的热场发射扫描电镜(NanoSEM450),能谱仪为英国牛津仪器公司的电制冷能谱仪系统(INCA X-Max50 EDS)。工作电压为20.0 kV,激发电流为20 nA,电子束斑直径为5 μm。

  • 4 分析结果

  • 4.1 矿物地球化学特征

  • 4.1.1 铬尖晶石

  • 东巧岩体高铬型铬尖晶石Cr#值为60.7~79.8,Mg#值为57.2~68.1, TiO2含量为0.01%~0.14%,Al2O3含量介于9.06%~20.9%;高铝型铬尖晶石Cr#值为56.4~59.6,Mg#值为67.2~72.7,TiO2值介于0.07%~0.22%,Al2O3值为21.1%~24.4%(表1)。

  • 东巧方辉橄榄岩中铬尖晶石Cr#值为70.2~75.1,Mg#值为45.5~63.1,TiO2含量极低,Al2O3含量为9.80%~11.9%。纯橄岩中铬尖晶石Cr#值为75.44~76.60,Mg#值为65.9~68.1,TiO2含量高于方辉橄榄岩,介于0.06%~0.09%之间,Al2O3含量为11.8%~12.4%(图5a、b)。

  • 高铬型铬铁矿中铬尖晶石,微量元素V、Mn、Ni、Zn含量变化范围较大,V的含量为1681×10-6~1884×10-6,Mn的含量为1826×10-6~2438×10-6,Ni的含量为2193×10-6~2676×10-6,Zn的含量为706×10-6~1105×10-6。高铝型铬尖晶石中,微量元素V、Mn、Co、Zn的含量明显低于高铬型铬尖晶石,Sc、Ti、Ni、Ga的含量则与高铬型铬尖晶石相近(表2)。在微量元素分配模式图中,两种铬尖晶石成分与MORB型铬尖晶石相比较,均亏损Ti、Ga,富集Sc、V、Mn、Co、Ni和Zn(图6)。

  • 4.1.2 橄榄石

  • 方辉橄榄岩中橄榄石Fo值介于91.2~92.3,MnO含量介于0.08%~0.14%,NiO含量介于0.23%~0.45%,Cr2O3含量较低,介于0~0.05%。纯橄岩中橄榄石Fo值为92.7~92.9,略高于方辉橄榄岩;MnO含量为0.06%~0.10%,NiO含量为0.26%~0.30%,Cr2O3含量为0~0.04%(表3)。地幔橄榄岩中橄榄石Fo值与其橄榄石的NiO含量呈现较弱的正相关连续变化,与MnO含量则呈现较为明显负相关变化(图5c、d)。

  • 表1 东巧地幔橄榄岩和铬铁矿中铬尖晶石电子探针分析结果(%)

  • Table1 Representative microprobe analyses (%) of spinel from Dongqiao mantle peridotites and chromitites

  • 4.2 地幔橄榄岩全岩地球化学特征

  • 4.2.1 主量元素

  • 东巧岩体地幔橄榄岩普遍经历了蛇纹石化,烧失量较高,介于10.2%~15.7%,由于对主量元素数据进行了归一化处理,烧失量对主量元素的比值影响相对较小,因此本文中所讨论的主量元素数据是消除烧失量影响后的归一化数据。微量元素和稀土元素主要分布在少量的辉石矿物中,受蛇纹石化的影响较小,而PGE则几乎不受影响(Grieco et al.,2007Xiong Qing et al.,2020)。方辉橄榄岩的烧失量(LOI)介于10.2%~15.4%,SiO2含量为40.2%~45.5%;Al2O3含量为0.18%~0.80%,CaO含量为0.17%~0.45%,TFe2O3含量为8.21%~9.50%,FeO含量为1.69%~3.18%,MgO含量为45.1%~49.3%。

  • 图5 东巧地幔橄榄岩及铬铁岩(a、b)中铬尖晶石和地幔橄榄岩中橄榄石(c、d)成分图解

  • Fig.5 Composition diagrams of chrome-spinel in mantle peridotite and chromite (a, b) and olivine in mantle peridotite (c, d) from Dongqiao

  • 部分熔融趋势据Ozawa,1994; 罗布莎岩体数据据Xiong Fahui et al.,2015; 丁青岩体数据据徐向珍等,2021

  • Melting trends after Ozawa, 1994; Luobusa peridotites data after Xiong Fahui et al., 2015; Dingqing peridotites data after Xu Xiangzhen et al., 2021

  • 纯橄岩的烧失量(LOI)为11.9%~15.7%,SiO2含量为40.6%~46.1%,Al2O3含量为0.08%~1.28%,CaO含量为0.08%~1.12%,TFe2O3含量为7.58%~9.06%,FeO含量为0.36%~2.01%,MgO含量为43.26%~51.05%(表4)。

  • 方辉橄榄岩CaO含量较高,表明其含有单斜辉石等其他硅酸盐矿物多于纯橄岩;在地幔橄榄岩全岩主量元素哈克图解中(图7),从方辉橄榄岩到纯橄岩,岩石中MgO的含量和Al2O3的含量呈负相关性,即随着MgO的增加,Al2O3的含量不断降低,表明了亏损程度的增强(杨胜标等,2022),均位于SSZ型地幔橄榄岩区域及其附近。

  • 表2 东巧铬铁矿代表性样品中的铬尖晶石微量元素分析计算结果(×10-6

  • Table2 Trace element contents (×10-6) of Cr-spinels in representative samples for the Dongqiao chromitite

  • 表3 东巧地幔橄榄岩中橄榄石代表性电子探针分析结果(%)

  • Table3 Representative microprobe analyses (%) of olivines from Dongqiao mantle peridotites

  • 图6 东巧高铬型铬铁矿和高铝型铬铁矿中铬尖晶石微量元素MORB标准化分配模式图 (玻安岩和MORB铬尖晶石数据据Pagé et al.,2009

  • Fig.6 Chromite MORB normalized trace element distribution of the Dongqiao high-Cr chromitites and high-Al chromitites (boninite and MORB data after Pagé et al.,2009

  • 图7 东巧地幔橄榄岩Harker图解(深海地幔橄榄岩数据据Niu Yaoling,2004;俯冲型地幔橄榄岩数据据Parkinson et al.,1998;罗布莎岩体数据据Xiong Fahui et al.,2015

  • Fig.7 Harker diagrams of the peridotites in Dongqiao (abyssal peridotite fields are after Niu Yaoling, 2004; forearc peridotite fields are after Parkinson et al., 1998; Luobusa peridotite data are after Xiong Fahui et al., 2015

  • 4.2.2 稀土元素

  • 东巧地幔橄榄岩样品稀土元素总丰度(ΣREE)极低,为0.06×10-6~0.23×10-6,远低于原始地幔含量(7.43×10-6)(Sun et al.,1989),表明地幔可能经历了极高程度的部分熔融(图8a)。方辉橄榄岩中LREE/HREE为1.11~7.39,(La/Yb)N为0.42~4.37,(La/Sm)N为1.62~12.7,δEu为0.14~1.71。纯橄岩中LREE/HREE为2.43~7.57,(La/Yb)N为1.27~4.67,(La/Sm)N为2.44~10.5,δEu为0.03~0.80(表4)。

  • 表4 东巧地幔橄榄岩全岩地球化学分析数据(主量元素:%;微量元素:×10-6

  • Table4 Whole-rock composition of Dongqiao mantle peridotites (major elements: %; trace elements:×10-6

  • 续表4

  • 图8 东巧地幔橄榄岩稀土元素分配模式图(a,原始地幔标准化值据Sun et al.,1989)和微量元素分配模式图(b,原始地幔标准化值据Sun et al.,1989

  • Fig.8 Primitive mantle-normalized rare-earth element patterns of the mantle peridotite in Dongqiao (a, normalization values after Sun and McDonough, 1989) and primitive mantle-normalized trace element patterns (b, normalization values after Sun and McDonough,1989

  • 弧前地幔橄榄岩和深海地幔橄榄岩数值据Niu Yaoling(2004)Bodinier et al.(2003);IBM数值据Parkinson et al.(1998);阿曼地幔橄榄岩数值据Godard et al.(2000)

  • The average composition of abyssal peridotites (black line)is from Niu Yaoling (2004) and Bodinier et al.(2003); the compositions of IBM are from Parkinson et al.(1998) ; the compositions of mantle peridotites sampled in the Oman are from Godard et al.(2000)

  • 4.2.3 微量元素

  • 原始地幔标准化微量元素蛛网图中,东巧地幔橄榄岩整体呈右倾分布,富集大离子亲石元素(LILE)Rb、Sr、Ba、U等,高场强元素(HFSE)中Ta、Nd、Nb等相对亏损,而U、Ce、Zr、Hf等元素则相对富集(表4;图8b)。主量与微量元素含量关系图中,大多数地幔橄榄岩样品位于俯冲型地幔橄榄岩及其附近区域(图9)。

  • 4.2.4 铂族元素

  • 东巧高铬型铬铁岩的PGE总量为114×10-9~819×10-9,Pd/Ir=0.01~0.06,Pt/Pd=2.07~16.6,纯橄岩的PGE总量除样品786-1 较高为61.0×10-9,其他为6.17×10-9~19.4×10-9,Pd/Ir=0.10~2.33,Pt/Pd=0.70~10.8,方辉橄榄岩的PGE总量为5.96×10-9~22.4×10-9,Pd/Ir=0.09~6.74,Pt/Pd=0.23~11.2(表5)。

  • 高铬型铬铁岩样品的PGE总量均高于原始地幔(图10d),且相较于地幔橄榄岩,富集Ir元素(图10a),Pd/Ir、Pt/Pd之间具有负相关性(图10c)。其Pt元素含量近似于原始地幔,Pd元素含量则稍低于原始地幔(图10b)。相对于IPGE,高铬型铬铬铁岩一致显示出显著的PPGE亏损,总体呈陡峭的右倾特征,分布在显生宙蛇绿岩中高铬型铬铁矿床的全球PGE模式区域中(图11a)。

  • 东巧地幔橄榄岩PGE总量除纯橄岩样品786-1外,其他样品均低于原始地幔(图12d),Pd/Ir与Pt/Pd之间关系同高铬型铬铁岩,呈负相关性,少数高于原始地幔(图10c)。地幔橄榄岩铂族元素球粒陨石配分模式与罗布莎地幔橄榄岩相近,二者可能具有相似的成因特征,此外,东巧地幔橄榄岩还显示出Os和Ru相对于Ir的弱正异常(图11b)。

  • 图9 东巧地幔橄榄岩MgO-Y(a)、MgO-Co(b)、MgO-V(c)、MgO-Yb(d)图(据Xiong Fahui et al.,2015

  • Fig.9 Variation diagrams of MgO-Y (a) , MgO-Co (b) , MgO-V (c) , MgO-Yb (d) in peridotites of the Dongqiao ophiolite (after Xiong Fahui et al.,2015)

  • 深海地幔橄榄岩和俯冲型地幔橄榄岩数据分别来自Niu Yaoling et al.(1997)Parkinson et al.(1998)

  • Abyssal and SSZ peridotite fields are after Niu Yaoling et al.(1997)and Parkinson et al.(1998)

  • 图10 东巧地幔橄榄岩及铬铁矿铂族元素图(原始地幔值据McDonough et al.,1995

  • Fig.10 Platinum group element diagram of the peridotite and the chromitite in Dongqiao (primitive mantle value after McDonough et al.,1995

  • 表5 东巧地幔橄榄岩及铬铁岩PGE化学分析数据(×10-9

  • Table5 PGE chemical composition of Dongqiao mantle peridotites and chromitites (×10-9)

  • 5 讨论

  • 5.1 东巧铬铁矿的成因

  • 同地区高铬型铬铁岩中铬尖晶石TiO2含量一般低于高铝型铬铁岩中铬尖晶石TiO2含量(周美夫等,1994鲍佩声,2009Xiong Fahui et al.,2020a),如新疆萨尔托海、内蒙古贺根山、西藏普兰、东波和泽当岩体的铬铁矿矿床中高铬型铬铁矿中TiO2含量明显低于高铝型铬铁矿中TiO2含量(杨经绥等,2011Xiong Qing et al.,2017a田亚洲等,2019Jiang Jiuyang et al.,2020Xiong Fahui et al.,2020a)。东巧铬铁矿可分为高铬型铬铁矿(Cr#为60.7~79.8)和高铝型铬铁矿(Cr#为56.4~59.6),高铝型铬铁矿中TiO2含量高于高铬型铬铁矿。尖晶石的Cr#-TiO2成分图解显示,东巧高铬型铬铁矿、高铝型铬铁矿及地幔橄榄岩中铬尖晶石的Cr#和TiO2含量并非呈负相关,而是呈正相关关系,表明地幔橄榄岩和铬铁岩中铬尖晶石可能并不是来源于熔融残余(Xiong Qing et al.,2017bSu Benxun et al.,2023)。东巧高铬型铬铁岩和含有铬尖晶石的纯橄岩均属于玻安岩范围(图5a),表明东巧方辉橄榄岩与玻安质熔体发生了反应(Zhou Meifu et al.,1998),也有可能为高温熔体与地幔发生交代作用(Batanova et al.,1998)。

  • 图11 东巧铬铁矿与地幔橄榄岩的铂族元素球粒陨石标准化配分模式图(球粒陨石值据McDonough et al.,1995; 罗布莎铬铁矿值据Xiong Fahui et al.,2015;罗布莎纯橄岩值据Xiong Fahui et al.,2015;显生宙蛇绿岩中高铬型铬铁矿值据Rui Huichao et al.,2022

  • Fig.11 Chondrite-normalized distribution pattern of platinum group elements between chromitite and mantle peridotite in Dongqiao (chondrite value after McDonough et al.,1995; Luobusa chromitite value after Xiong Fahui et al.,2015; Luobusa dunite value after Xiong Fahui et al.,2015; global PGE value of high-Cr podiform chromitites hosted in Phanerozoic ophiolites after Rui Huichao et al.,2022

  • 铬铁矿化学性质的主要控制因素之一是母质熔体的化学成分,在不同的构造环境下,母质熔体成分亦各不相同,因此铬铁矿是母岩浆构造环境的良好指示物(Irvine,1967Kamenetsky et al.,2001)。但铬铁岩在亚固态冷却和变质过程中,其铬尖晶石的化学成分会发生改变(Rollinson et al.,1995Su Benxun et al.,2023)。因此,需要利用东巧原生铬铁岩中铬尖晶石的化学成分推导其平衡熔体化学组成,从而反映东巧地幔橄榄岩母岩浆性质并推断东巧铬铁矿构造背景(Mondal et al.,2006Khedr et al.,2016)。铬铁矿平衡熔体Al2O3、TiO2及FeO/MgO比值计算公式如下(Maurel et al.,1982Mondal et al.,2006Zaccarini et al.,2011):

  • Al2O3 =4.1386×lnAl2O3 +2.2828
    (1)
  • TiO2熔体 =1.0897×TiO2 +0.0892
    (2)
  • ln(FeO/MgO) =0.47-1.07×Y Al+0.64×Y Fe3++ln(FeO/MgO)
    (3)
  • 其中,Y Al=Al/(Al+Cr+Fe3+),Y Fe3+=Fe3+/(Al+Cr+Fe3+),MgO和FeO值以重量百分比表示。

  • 计算结果见表6,高铬型铬铁矿熔体(Al2O3熔体含量为11.1%~14.5%,(TiO2熔体含量为0.09%~0.26%,(FeO/MgO)熔体比值为0.74~1.13;高铝型铬铁矿熔体(Al2O3熔体含量则为15.0%~15.6%,(TiO2熔体含量为0.17%~0.31%,(FeO/MgO)熔体比值为0.66~0.77。

  • 与东巧高铝型铬铁岩相比,东巧高铬型铬铁岩的铬尖晶石中(TiO2铬尖晶石含量及其母岩浆熔体中(TiO2熔体含量均较低,Cr#值较高,这一特征与萨尔托海、贺根山、鲸鱼铬铁矿床较为相似(图5a,图12a;白文吉等,1993Tian Yazhou et al.,2015),暗示高铝型铬铁矿可能来源于贫PGE且富铝的熔体即拉斑玄武质熔体,而高铬型铬铁矿来源于玻安质熔体(图12b、c;Zhou Meifu et al.,19942014)。

  • PGE是高度亲铁、亲硫元素,在铁金属和硅酸盐熔体之间的分配系数较高(Borisov et al.,1994)。IPGE具有难熔和相容性,高温条件下形成合金或寄存于尖晶石等矿物相中,在部分熔融过程中大部分残留于地幔;PPGE常赋存于金属硫化物中,熔融过程主要表现为不相容性,即优先进入硅酸盐熔体中(Pattou et al.,1996Barnes,1998Maier et al.,1998Zhou Meifu et al.,2005)。因此,PGE常被用来研究豆荚状铬铁矿的成因及其地幔橄榄岩的地质演化过程。

  • 表6 东巧地幔橄榄岩和铬铁矿的母岩浆成分计算结果

  • Table6 Representative calculated compositions of parental magmas for the Dongqiao mantle peridotite and chromitite

  • 续表6

  • 东巧岩体中铬铁岩的PGE曲线呈右倾型,地幔橄榄岩的PGE丰度与罗布莎岩体较为相似(图11b),指示铬铁矿的成因可能为熔-岩反应(Prichard et al.,2008)。铬铁岩中Pd/Ir与Pt/Pt*之间关系不明确(图13),表示形成铬铁矿的熔体来源不唯一,可能经历了地幔多阶段熔融过程(Uysal et al.,2018)。结合铬铁矿平衡熔体推算及图解(图12b、c),可进一步佐证高铬型铬铁矿来源于玻安质熔体与板块俯冲消减带上残存的方辉橄榄岩发生的反应,而高铝型铬铁矿则来源于玄武质熔体上涌,与岩石发生反应。

  • 在两件发育纯橄岩包壳的铬铁岩样品中(图14a1、b1),从纯橄岩到铬铁岩,铬尖晶石的Cr#值均有所增加,Mg#值则显著减少(图14a2、a3、b2、b3),与中国罗布莎、俄罗斯和阿尔巴尼亚铬铁岩及其纯橄岩包壳中铬尖晶石演变趋势相似(Zhou et al.,1996;Xiong Fahui et al.,2020b2021)。东巧纯橄岩和铬铁岩中铬尖晶石Cr#值和Mg#值的演化,反映了形成铬铁矿的过程中,存在着不同程度的岩石-熔体相互作用(Dick et al.,1984Zhou Meifu et al.,1996)。

  • 5.2 东巧铬铁矿的构造意义

  • 蛇绿岩代表着大陆造山带中古大洋岩石圈残片,记录着大洋岩石圈的岩浆演化、变质作用、构造过程,提供了古洋盆形成、发展和消亡等方面的重要信息,是重建古洋最直接的证据(张旗等,2001Dilek et al.,2003)。蛇绿岩具有豆荚状铬铁矿的成矿专属性,认识蛇绿岩的形成环境对探讨豆荚状铬铁矿的成因机制及构造背景有着重要意义(Allegre,1984;熊发挥等,2013Xiong Fahui et al.,2020a)。目前学者普遍认为蛇绿岩形成环境主要为两种,一种是MOR型,形成于大洋扩张脊,最终下沉到地幔;另一种为SSZ型,形成于板块俯冲消减带及大陆边缘小洋盆等构造环境,且SSZ型蛇绿岩中常赋存着大型的豆荚状铬铁矿矿床(Pearce et al.,1984Furnes et al.,2007Dilek et al.,2011)。

  • 东巧岩体属于班-怒带中段的东巧-伦波蛇绿岩亚带,蛇绿岩单元较为完整,在形成时代、构造环境和演化过程等方面已有一定程度的研究。对于东巧岩体的形成年龄,已进行了大量的研究。王希斌等(1987)通过橄榄岩热变质晕角闪石K-Ar测年,测得东巧岩体侵位时热变质年龄为179 Ma;夏斌等(2008)对东巧岩体中堆晶辉长岩进行了SHRIMP Ⅱ 锆石U-Pb定年,测得其形成于187.8±3.7 Ma;Liu Tong et al.(2016)对东巧岩体存在的堆晶辉长岩和角闪辉长岩进行了锆石U-Pb定年,测得形成年龄分别为188±1 Ma(堆晶辉长岩)和181±1 Ma(角闪辉长岩)。由此可见,前人所测得东巧蛇绿岩年龄基本在190~180 Ma之间,证明其形成于早侏罗世晚期。

  • 图12 东巧铬铁岩与地幔橄榄岩中铬尖晶石及其母岩浆成分图解

  • Fig.12 Diagrams of Cr-spine and its parent magma composition of chromitites and mantle peridotite in Dongqiao

  • (a)—铬尖晶石TiO2-Al2O3成分图解(据Kamenetsky et al.,2001);(b)—熔体FeO/MgO-Al2O3图解(据Barnes et al.,2001);(c)—熔体Al2O3-铬尖晶石Al2O3图解(据Derbyshire et al.,2019

  • (a) —comparison diagram of TiO2 and Al2O3 in chromium spinel (after Kamenetsky et al., 2001); (b) —comparison diagram of FeO/MgO and Al2O3 in melt (after Barnes et al.,2001); (c) —comparison diagram of Al2O3 in melt and Al2O3 in chromium spinel (after Derbyshire et al.,2019

  • 图13 东巧蛇绿岩PGE的Pd/Ir-Pt/Pt*图解 (据Garuti et al.,1997

  • Fig.13 Pd/Ir vs. Pt/Pt* diagram (after Garuti et al., 1997) of the Dongqiao ophiolite

  • 王希斌等(1987)对藏北东巧岩体中火山岩的地球化学特征进行分析,发现枕状熔岩与弧后盆地玄武岩的特征相似,并结合岩体与相邻地体的接触关系,指出其构造环境为小规模的弧后盆地;叶培盛等(2004)对东巧蛇绿岩中基性熔岩进行了全岩地球化学分析,推测玄武岩为洋中脊拉斑玄武岩,形成于洋脊扩张环境,产于新特提斯北洋盆海底扩张阶段,且后期经历了洋盆俯冲-消减作用;Liu et al.(2016)通过野外调查,发现东巧蛇绿岩中壳层上部岩体规模较小,洋壳发育极不成熟,结合玄武岩与地幔橄榄岩的地球化学特征,认为其构造环境可能为俯冲带上的初始小洋盆(弧前盆地);黄强太等(2015)发现东巧蛇绿岩中的枕状熔岩单元为典型的洋岛玄武岩,对比相邻地体构造环境,认为其形成于大洋板内岩石圈上隆减压的洋岛环境。

  • 董玉飞等(2019)综合东巧地幔橄榄岩的矿物地球化学及全岩地球化学特征,认为东巧地幔橄榄岩形成于MOR型环境,后期经历洋内俯冲作用,导致地幔橄榄岩与熔体相互作用;曹楚奇等(2022)认为东巧蛇绿岩地幔橄榄岩单元先后经历中高程度的熔体抽取和玻安质熔体的富集及其交代作用,指出地幔橄榄岩形成于SSZ型弧前盆地。

  • 图14 东巧纯橄岩-铬铁矿石剖面样品19-1(a)与样品19-2(b)薄片(a1、b1),铬尖晶石中的Cr#值(a2、b2),铬尖晶石中的Mg#值(a3、b3)

  • Fig.14 Polished slabs (a1, b1) showing dunite-chromitite sections in samples 19-1 (a) and 19-2 (b) ; Cr# in chromian spinel (a2, b2) ; Mg# in chromian spinel (a3, b3)

  • Chr—铬铁矿; Dun—纯橄岩; Spinel—尖晶石

  • Chr—chromitite; Dun—dunite

  • 根据Mondal et al.(2006)研究,玻安质熔体具有较高的Cr2O3含量,并且其含水量较高,可以促进尖晶石先于富铬辉石结晶,形成大量的铬尖晶石。在铬铁矿平衡熔体Al2O3-FeO/MgO组分关系图解中,大多数东巧地幔橄榄岩及其高铬型铬铁岩落在玻安岩范围内,少量的高铬型铬铁岩则位于洋中脊玄武岩与玻安岩相结合的位置,而高铝型铬铁岩则位于洋中脊玄武岩范围内(图12b),铬尖晶石Al2O3含量-熔体Al2O3含量关系图解中,高铝型铬铁岩位于深海地幔橄榄岩范围内,高铬型铬铁岩位于弧前地幔橄榄岩范围内(图12c),这与图6和图12a解释相一致。结合铬铁岩的PGE特征,表明东巧铬铁矿经历了MOR→SSZ型多期次的演化阶段。

  • 东巧地幔橄榄岩的主量元素哈克图解、微量元素和稀土元素配分模式图,均指示东巧地幔橄榄岩来源于SSZ型弧前环境(图7~9)。地幔橄榄岩原始地幔稀土元素配分模型接近“U”型或“V”型分布(图8a),较为富集LREE,与LREE亏损型的阿尔卑斯地幔橄榄岩稀土配分模式有着较大差别,表明其后期经历俯冲洋壳流体改造或地幔交代作用(Dymek et al.,1988)。

  • 东巧地幔橄榄岩微量元素曲线分布趋势(图8b)近似于Izu-Bonin-Mariana,可能与SSZ型环境的地幔熔融(20%~25%的部分熔融)有关(Parkinson et al.,1998)。微量元素配分特征表明东巧地幔橄榄岩具有亏损地幔源区的特征,且同样表明其遭受过不同程度的俯冲带流体交代作用(熊发挥等,2013Xiong Fahui et al.,2021)。

  • 地幔橄榄岩中橄榄石Fo值是地幔橄榄岩部分熔融程度的灵敏指标(Dick et al.,1995Gaetani et al.,1998)。东巧地幔橄榄岩中橄榄石Fo值与雅江带罗布莎蛇绿岩岩体和班-怒带东段的丁青蛇绿岩体中地幔橄榄岩的橄榄石Fo值相近,且MnO与NiO含量在二者间分布差异性较小,说明其形成条件可能较为相近(图5c、d;Xiong Fahui et al.,2015徐向珍等,2021)。

  • Cr#值对地幔亏损程度或部分熔融程度,以及地幔橄榄岩结晶压力具有指示意义(Dick et al.,1984)。MORB型地幔橄榄岩的部分熔融程度通常为10%~22%(连东洋等,2014),东巧地幔橄榄岩的铬尖晶石的Cr#值为70.2~76.6,为高铬型铬尖晶石,表明其部分熔融程度较高,均在25%以上,且具有着弧前地幔橄榄岩的特征(图5a、b)。铬尖晶石的Cr#-Mg#图解中,东巧岩体及铬铁矿石中铬尖晶石的Cr#值与Mg#值均为负相关关系,表明其具有与全球大多数阿尔卑斯型超镁铁质岩共有的特征,即Cr#值随着Mg#值升高而降低(Leblanc,1980),部分东巧地幔橄榄岩样品位于玻安岩与弧前地幔橄榄岩之间,其他橄榄岩则分别只位于玻安质岩石或弧前地幔橄榄岩区域,表明东巧地幔橄榄岩经历了多期次的演化阶段(图6b)。

  • 6 结论

  • (1)东巧岩体地幔橄榄岩主要为方辉橄榄岩,含有少量纯橄岩,未发现二辉橄榄岩。东巧铬铁矿分为高铬型铬铁矿(Cr#为60.7~79.8)和高铝型铬铁矿(Cr#为56.4~59.6),高铬型铬铁矿体规模较大,多呈稠密浸染状,高铝型铬铁矿体则规模较小,兼具稠密浸染状和稀疏浸染状。铬铁矿石常具有纯橄岩包壳,铬铁矿石和围岩-纯橄岩过渡带中矿物地球化学演化特征和铬铁矿石及地幔橄榄岩中铬尖晶石地球化学特征表明铬铁矿来源于熔-岩反应。

  • (2)东巧地幔橄榄岩PGE特征与罗布莎岩体具有较高相似度,铬铁岩PGE曲线呈陡峭的右倾特征,说明东巧铬铁矿可能来源于熔-岩反应,且铬铁岩中Pd/Ir与Pt/Pt*之间关系不确定,结合铬铁矿平衡熔体分析,证明其经历了地幔多阶段熔融,高铬型铬铁矿可能是由玻安质熔体与板块俯冲消减带上的方辉橄榄岩反应而成,高铝型铬铁矿则来源于玄武质熔体,具有MORB型环境特征。

  • (3)东巧地幔橄榄岩的全岩地球化学分析表明,其具有弧前地幔橄榄岩特征。且主量元素特征表明部分地幔橄榄岩具有着MOR-SSZ的过渡特征,微量元素表明后期经历了俯冲改造过程。对比班公湖-怒江缝合带其他岩体以及雅鲁藏布江缝合带的普兰、泽当岩体,表明东巧岩体有着多期次构造演化特征。

  • 致谢:中国地质科学院地质研究所自然资源部深地动力学重点实验室的毛小红老师辅助完成了电子探针实验,中国地质科学院矿产资源研究所MC-ICP-MS实验室候可军老师协助完成了原位微量元素测试实验;数据处理过程,闫金禹提供了帮助;论文撰写过程,杨胜标、武亚威提供了珍贵建议,一并致以诚挚的谢意!另外,感谢苏本勋研究员和郑建平教授为本文提供宝贵意见。

  • 参考文献

    • Allégre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Schärer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariépy C, Göpel C, Li Tindong, Xiao Xuchang, Chang Chenfa, Li Guangqin, Lin Baoyu, Teng Jiwen, Wang Naiwen, Chen Guoming, Han Tonglin, Wang Xibin, Deng Wanming, Sheng Huaibin, Cao Yougong, Zhou Ji, Qiu Hongrong, Bao Peisheng, Wang Songchan, Wang Bixiang, Zhou Yaoxiu, Xu Ronghua. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17~22.

    • Arai S, Abe N. 1994. Podiform chromitite in the arc mantle: Chromitite xenoliths from the Takashima alkali basalt, southwest Japan arc. Mineralium Deposita, 29(5): 434~438.

    • Arai S, Miura M. 2016. Formation and modification of chromitites in the mantle. Lithos, 264: 277~295.

    • Bai Wenji, Zhou Meifu, Robinson P T. 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Canadian Journal of Earth Sciences, 30(8): 1650~1659.

    • Bai Wenji, Li Hang. 1993. A study on the chemical composition of mineral inclusions in chromite from the hegenshan ophiolite massif, inner Mongolia, China. Acta Mineralogica Sinica, 13(3): 204~213 (in Chinese with English abstract).

    • Bao Peisheng. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites-Questioning about the rock/melt interaction metallogeny. Geological Bulletin of China, 28(12): 1741~1761 (in Chinese with English abstract).

    • Barnes S J. 1998. Chromite in komatiites, 1. magmatic controls on crystallization and composition. Journal of Petrology, 39(10): 1689~1720.

    • Barnes S J, Roeder P L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42(12): 2279~2302.

    • Batanova V G, Suhr G, Sobolev A V. 1998. Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: ion probe study of clinopyroxenes. Geochimica et Cosmochimica Acta, 62(5): 853~866.

    • Bodinier J L, Godard M. 2003. Orogenic, ophiolitic, and abyssal peridotites. Treatise on Geochemistry, 2(568): 103~167.

    • Borisov A, Palme H, Spettel B. 1994. Solubility of palladium in silicate melts: Implications for core formation in the Earth. Geochimica et Cosmochimica Acta, 58(2): 705~716.

    • Cao Chuqi, Yang Jingsui, Yang Shengbiao, Dong Yufei, Chen Xiaojian, Xiong Fahui, Lu Yuxaio. 2022. Characteristics and tectonic setting of Dongqiao lenticular chromite in the middle section of Bangong Hu-Nujiang suture belt, Tibet. Acta Petrologica Sinica, 38(11): 3391~3410(in Chinese with English abstract).

    • Chen Yupeng. 2012. Discussion on ophiolite and its occurrence chromite metallogenic model in Dongqiao area in the middle part of Bangong Hu-Nujiang suture zone. China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Derbyshire E J, O'Driscoll B, Lenaz D, Zanetti A, Gertisser R. 2019. Chromitite petrogenesis in the mantle section of the Ballantrae Ophiolite Complex (Scotland). Lithos, 344-345: 51~67.

    • Dick H J B, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1): 54~76.

    • Dick H J B, Natland J H. 1995. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In Proceedings-Ocean Drilling Program Scientific Results. College station, TX: Ocean Drilling Program, 147: 103~134.

    • Dickey P A. 1975. Possible primary migration of oil from source rock in oil phase: Geologic notes. AAPG Bulletin, 59(2): 337~345.

    • Dilek Y, Newcomb S. 2003. Ophiolite concept and its evolution. Special Papers-Geological Society of America, 373: 1~16.

    • Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(1~4): 387~411.

    • Dobrzhinetskaya L F, Wirth R, Yang Jingsui, Hutcheon I D, Weber P K, Green H W II. 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences of the United States of America, 106(46): 19233~19238.

    • Dong Yufei, Yang Jingsui, Lian Dongyang, Xiong Fahuui, Zhao Hui, Chen Xiaojian, Li Guanlong, Wang Tianze. 2019. Petrogenesis and tectonic environment analysis of Dongqiao mantle peridotite in the middle part of Bangong Hu-Nujiang suture zone, Tibet. Geology in China, 46(1): 87~114(in Chinese with English abstract).

    • Du Dedao, Qu Xiaoming, Wang Genhou, Xin Hongbo, Liu Zhibo. 2011. Bidirectional subduction of the Middle Tethys Ocean basin in the western section of the Bangong Lake-Nujiang suture zone, Tibet: Evidence from zircon U-Pb age and elemental geochemistry of island arc granites. Acta Petrologica Sinica, 27(7): 1993~2002(in Chinese with English abstract).

    • Dymek R F, Brothers S C, Schiffries C M. 1988. Petrogenesis of ultramafic metamorphic rocks from the 3800 Ma Isua supracrustal belt, West Greenland. Journal of Petrology, 29(6): 1353~1397.

    • Fan Jianjun, Zhang Bochuan, Liu Haiyong, Liu Yiming, Yu Yunpeng, Hao Yujie, Awangdanzeng. 2019. Early-Middle Jurassic intra-oceanic subduction of the Bangong-Nujiang oceanic lithosphere: Evidence of the Dong Co ophiolite. Acta Petrologica Sinica, 35(10): 3048~3064 (in Chinese with English abstract).

    • Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K. 2007. A vestige of Earth's oldest ophiolite. Science, 315(5819): 1704~1707.

    • Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131(4): 323~346.

    • Garuti G, Fershtater G, Bea F, Montero P, Pushkarev E V, Zaccarini F. 1997. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals: Preliminary results. Tectonophysics, 276(1~4): 181~194.

    • Godard M, Jousselin D, Bodinier J L. 2000. Relationships between geochemistry and structure beneath a palaeo-spreading centre: A study of the mantle section in the Oman ophiolite. Earth and Planetary Science Letters, 180(1~2): 133~148.

    • González-Jiménez J M, Gervilla F, Kerestedjian T, Proenza J A. 2010. Alteration of platinum-group and base-metal mineral assemblages in ophiolite chromitites from the Dobromirtsi massif, Rhodope Mountains (Bulgaria). Resource Geology, 60(4): 315~334.

    • Grieco G, Diella V, Chaplygina N L, Savelieva G N. 2007. Platinum group elements zoning and mineralogy of chromitites from the cumulate sequence of the Nurali massif (southern Urals, Russia). Ore Geology Reviews, 30(3~4): 257~276.

    • Hou Kejun, Ma Xudong, Li Yanhe, Liu Feng, Han Dan. 2019. Genesis of Huoqiu banded iron formation (BIF), southeastern North China craton, constraints from geochemical and Hf-O-S isotopic characteristics. Journal of Geochemical Exploration, 197: 60~69.

    • Huang Qiangtai, Xia Bin, Li Qiang, Zhong Yun, Hu Xichong, Zheng Hao. 2015. Geochemical signatures and tectonic setting of the basalts from the Dongqiao region, Xizang. Sedimentary Geology and Tethyan Geology, 35(2): 97~103 (in Chinese with English abstract).

    • Irvine T N. 1967. Chromian spinel as a petrogenetic indicator: Part 2. Petrologic applications. Canadian Journal of Earth Sciences, 4(1): 71~103.

    • Jiang Jiuyang, Zhu Yongfeng. 2020. Characterization of the Hegenshan podiform chromitites (Inner Mongolia, China): Sub-solidus cooling and hydrothermal alteration. Ore Geology Reviews, 120: 103413.

    • Kamenetsky V S, Crawford A J, Meffre S. 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42(4): 655~671.

    • Kapp P, Murphy M A, YinAn, Harrison T M, Ding Lin, Guo Jinghu. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 1029~1053.

    • Khedr M Z, Arai S. 2016. Chemical variations of mineral inclusions in Neoproterozoic high-Cr chromitites from Egypt: Evidence of fluids during chromitite genesis. Lithos, 240: 309~326.

    • Leblanc M. 1980. Chromite growth, dissolution and deformation from a morphological view point: SEM investigations. Mineralium Deposita, 15(2): 201~210.

    • Leblanc M, Nicolas A. 1992. Ophiolitic chromitites. International Geology Review, 34(7): 653~686.

    • Lian Dongyang, Yang Jingsui, Xiong Fahui, Liu Fei, Wang Yunpeng, Zhou Wenda, Zhao Yiyu. 2014. Composition and environment analysis of mantle peridotite in the western part of the ophiolite belt of Yarlung Zangbo River. Acta Petrologica Sinica, 30(8): 2164~2184(in Chinese with English abstract).

    • Liu Tong, Zhai Qingguo, Wang Jun, Bao Peisheng, Qiangba Zhaxi, Tang Suohan, Tang Yue. 2016. Tectonic significance of the Dongqiao ophiolite in the north-central Tibetan Plateau: Evidence from zircon dating, petrological, geochemical and Sr-Nd-Hf isotopic characterization. Journal of Asian Earth Sciences, 116: 139~154.

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1~2): 34~43.

    • Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535~1546.

    • Litasov K D, Kagi H, Voropaev S A, Hirata T, Ohfuji H, Ishibashi H, Makino Y, Bekker T B, Sevastyanov V S, Afanasiev V P, Pokhilenko N P. 2019. Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: Assessing the role of contamination by synthetic materials. Gondwana Research, 75: 16~27.

    • Litasov K D, Kagi H, Bekker T B. 2019. Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags. Lithos, 340: 181~190.

    • Maier W D, Barnes S J, De Waal S A. 1998. Exploration for magmatic Ni-Cu-PGE sulphide deposits: A review of recent advances in the use of geochemical tools, and their application to some South African ores. South African Journal of Geology, 101(3): 237~253.

    • Matveev S, Ballhaus C. 2002. Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters, 203(1): 235~243.

    • Maurel C, Maurel P. 1982. Étude expérimentale de la distribution de l'aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: Teneur en chrome des spinelles. Bulletin De Minéralogie, 105(2): 197~202.

    • McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(1~4): 223~253.

    • Miyashiro A. 1973. The Troodos ophiolitic complex was probably formed in an island arc. Earth and Planetary Science Letters, 19(2): 218~224.

    • Mondal S K, Ripley E M, Li Chusi, Frei R. 2006. The genesis of Archaean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum Craton, India. Precambrian Research, 148(1~2): 45~66.

    • Nicolas A. 1989. The various ophiolites and their oceanic environments of origin. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. 187~201.

    • Nicolas A, Al Azri H. 1991. Chromite-rich and chromite-poor ophiolites: The Oman case. Ophiolite Genesis and Evolution of the Oceanic Lithosphere: Proceedings of the Ophiolite Conference, held in Muscat, Oman, 7~18 January 1990. Dordrecht: Springer Netherlands, 261~274.

    • Niu Yaoling. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12): 2423~2458.

    • Niu Yaoling, Langmuir C H, Kinzler R J. 1997. The origin of abyssal peridotites: A new perspective. Earth and Planetary Science Letters, 152(1): 251~265.

    • Ozawa K. 1994. Melting and melt segregation in the mantle wedge above a subduction zone: Evidence from the chromite-bearing peridotites of the Miyamori ophiolite complex, northeastern Japan. Journal of Petrology, 35(3): 647~678.

    • Pagé P, Barnes S J. 2009. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford mines ophiolite, Qué bec, Canada. Economic Geology, 104(7): 997~1018.

    • Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

    • Pan Guitang, Wang Liquan, Geng Quanru, Yin Fuguang, Wang Baodi, Wang Dongbing, Peng Zhimin, Ren Fei. 2020. Space-time structure of the Bangonghu-Shuanghu-Nujiang-Changning-Menglian mega-suture zone: A discussion ongeology and evolution of the Tethys Ocean. Sedimentary Geology and Tethyan Geology, 40(3): 1~19(in Chinese with English abstract).

    • Parkinson I J, Pearce J A. 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9): 1577~1618.

    • Pattou L, Lorand J P, Gros M. 1996. Non-chondritic platinum-group element ratios in the Earth's mantle. Nature, 379: 712~715.

    • Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society of London Special Publications, 16(1): 77~94.

    • Pearce J A, Deng Wanming. 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327(1594): 215~238.

    • Prichard H M, Neary C R, Fisher P C, O'Hara M J. 2008. PGE-rich podiform chromitites in the Al'ays ophiolite complex, Saudi Arabia: An example of critical mantle melting to extract and concentrate PGE. Economic Geology, 103(7): 1507~1529.

    • Qiu Tian, Yang Jingsui, Milushi I, Wu Weiwei, Mekshiqi N, Xiong Fahui, Zhang Cong, Shen Tingting. 2018. Petrology and PGE abundances of high-Cr and high-Al podiform chromitites and peridotites from the bulqiza ultramafic massif, eastern Mirdita ophiolite, Albania. Acta Geologica Sinica-English Edition, 92(3): 1063~1081.

    • Qu Xiaoming, Wang Ruijiang, Xin Hongbo, Zhao Yuanyi, Fan Xingtao. 2009. Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arczone, the western Tibetan Plateau. Geochimica, 38(6): 523~535 (in Chinese with English abstract).

    • Rollinson H. 1995. Composition and tectonic settings of chromite deposits through time; discussion. Economic Geology, 90(7): 2091~2092.

    • Rollinson H, Adetunji J. 2013. Mantle podiform chromitites do not form beneath mid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite. Lithos, 177: 314~327.

    • Rui Huichao, Yang Jingsui, Llanes Castro A I, Zheng Jianping, Lian Dongyang, Wu Weiwei, Valdes M Y. 2022. Ti-poor high-Al chromitites of the Moa-Baracoa ophiolitic massif (eastern Cuba) formed in a nascent forearc mantle. Ore Geology Reviews, 144: 104847.

    • Shi Rendeng, Alard O, Zhi Xiachen, O'Reilly S Y, Pearson N J, Griffin W L, Zhang Ming, Chen Xiaoming. 2007. Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru-Os-Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth and Planetary Science Letters, 261(1~2): 33~48.

    • Stowe C W. 1994. Compositions and tectonic settings of chromite deposits through time. Economic Geology, 89(3): 528~546.

    • Su Benxun, Bai Yang, Chen Chen, Liu Xia, Xiao Yan, Tang Dongmei, Liang Zi, Cui Mengmeng, Peng Qingshan. 2018. Petrological and mineralogical investigations on hydrous properties of parental magmas of chromite deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 37(6): 1035~1046 (in Chinese with English abstract).

    • Su Benxun, Robinson P T, Chen Chen, Xiao Yan, Melcher F, Bai Yang, Gu Xiaoyan, Uysal I, Lenaz D. 2020. The occurrence, origin, and fate of water in chromitites in ophiolites. American Mineralogist, 105(6): 894~903.

    • Su Benxun, Liu Xia, Chen Chen, Robinson P T, Xiao Yan, Zhou Meifu, Bai Yang, Uysal I, Zhang Pengfei. 2021. A new model for chromitite formation in ophiolites: Fluid immiscibility. Science China Earth Sciences, 51(2): 250~260(in Chinese).

    • Su Benxun, Pan Qiqi, Xiao Yan, Jing Jiejun, Robinson P T, Uysal I, Liu Xia, Liu Jianguo. 2023. Mantle peridotites of ophiolites rarely preserve reliable records of paleo-oceanic lithospheric mantle. Earth-Science Reviews, 244: 104544.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Societyof London Special Publications, 42(1): 313~345.

    • Thayer T P. 1960. Some critical differences between alpine-type and stratiform peridotite-gabbro complexes. 21st Intern. Geol. Congress, Copenhagen, XIII. 247~259.

    • Thayer T P. 1964. Principal features and origin of podiform chromite deposits, and some observations on the Guelman-Soridag District, Turkey. Economic Geology, 59(8): 1497~1524.

    • Thayer T P. 1970. Chromite segregations as petrogenetic indicators. Geological Society of South Africa Special Publications, 1: 380~390.

    • Tian Yazhou, Yang Jingsui, Robinson P T, Xiong Fahui, Li Yuan, Zhang Zhongming, Liu Zhao, Liu Fei, Niu Xiaolu. 2015. Diamond discovered in high-Al chromitites of the sartohay ophiolite, Xinjiang Province, China. Acta Geologica Sinica-English Edition, 89(2): 332~340.

    • Tian Yazhou, Yang Jingsui, Yang Huashen, Tian Yunlei. 2019. Characteristics of platinum group minerals and sulfides in chromite from Saltuohai, Xinjiang. Acta Geologica Sinica, 93(10): 2639~2655(in Chinese with English abstract).

    • Uysal I, Kapsiotis A, Akmaz R M, Saka S, Seitz H M. 2018. The Guleman ophiolitic chromitites (SE Turkey) and their link to a compositionally evolving mantle source during subduction initiation. Ore Geology Reviews, 93: 98~113.

    • Wang Hengsheng. 1983. Ferrochrome Deposit and Its Origin in China. Beijing: Science Press (in Chinese with English abstract).

    • Wang Weiliang, Aitchison J C, Lo C H, Zeng Qinggao. 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. Journal of Asian Earth Sciences, 33(1~2): 122~138.

    • Wang Xibin, Bao Peisheng, Deng Wanming, Wang Fangguo. 1987. Tectonic Evolution of Himalayan Lithosphere: Tibet Ophiolite. Beijing: Geological Publishing House(in Chinese with English abstract).

    • Xia Bin, Xu Lifeng, Wei Zhenquan, Zhang Yuquan, Wang Ran, Li Jianfeng, Wang Yanbin. 2008. SHRIMP zircon dating of gabbro from the Donqiao ophiolite in Tibet and its geological implications. Acta Geologica Sinica, 82(4): 528~531(in Chinese with English abstract).

    • Xiong Fahui, Yang Jingsui, Liu Zhao. 2013. Multi-stage formation of the podiform chromitite. Geology in China, 40(3): 820~839(in Chinese with English abstract).

    • Xiong Fahui, Yang Jingsui, Robinson P, Xu Xiangzhen, Liu Zhao, Li Yuan, Li Jinyang, Chen Songyong. 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27: 525~542.

    • Xiong Fahui, Yang Jingsui, Schertl H P, Liu Zhao, Xu Xiangzhen. 2020a. Multistage origin of dunite in the Purang ophiolite, southern Tibet, documented by composition, exsolution and Li isotope characteristics of constituent minerals. European Journal of Mineralogy, 32(1): 187~207.

    • Xiong Fahui, Zoheir B, Robinson P T, Yang Jingsui, Xu Xiangzhen, Meng Fancong. 2020b. Genesis of the Ray-Iz chromitite, Polar Urals: Inferences to mantle conditions and recycling processes. Lithos, 374~375: 105699.

    • Xiong Fahui, Zoheir B, Wirth R, Milushi I, Qiu Tian, Yang Jingsui. 2021. Mineralogical and isotopic peculiarities of high-Cr chromitites: Implications for a mantle convection genesis of the Bulqiza ophiolite. Lithos, 398~399: 106305.

    • Xiong Fahui, Xu Xiangzhen, Yang Shengbiao, Yan Jinyu, Zhang Boyang, Cao Chuqi, Sun Yi, Yang Jingsui. 2022. Genesis and significance of different types of mineral inclusions in podiform chromitite. Acta Petrologica et Mineralogica, 41(2): 413~436(in Chinese with English abstract).

    • Xiong Qing, Henry H, Griffin W L, Zheng Jianping, Satsukawa T, Pearson N J, O'Reilly S Y. 2017a. High-and low-Cr chromitite and dunite in a Tibetan ophiolite: Evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 172: 1~22.

    • Xiong Qing, Griffin W L, Zheng Jianping, Pearson N J, O'Reilly S Y. 2017b. Two-layered oceanic lithospheric mantle in a Tibetan ophiolite produced by episodic subduction of Tethyan slabs. Geochemistry, Geophysics, Geosystems, 18(3): 1189~1213.

    • Xiong Qing, Xu Yong, González-Jiménez J M, Liu Jingao, Alard O, Zheng Jianping, Griffin W L, O'Reilly, S Y. 2020. Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective. Earth and Planetary Science Letters, 531: 115969.

    • Xu Rongke, Zheng Youye, Zhao Pingjia, Shan Ling, Zhang Yulian, Cao Ling, Qi Jianhong, Zhang Gangyang, Dai Fanghua. 2007. Definition and geological significance of the Gacangjian volcanic arc north of Dongqiao, Tibet. Geology in China, 34(5): 768~777(in Chinese with English abstract).

    • Xu Xiangzhen, Xiong Fahui, Zhang Chengjie, Chen Jian, Zhang Ran, Yan Jinyu, Yang Jingsui. 2021. Genesis of Dingqing mantle peridotite in the eastern segment of the Bangong-Nujiang suture zone: Evidence from mineralogy and geochemistry of mantle peridotite from borehole ZK02. Acta Petrologica Sinica, 37(10): 2944~2970(in Chinese with English abstract).

    • Yang Jingsui, Dobrzhinetskaya L, Bai Wenji, Fang Qingsong, Robinson P T, Zhang Junfeng, Green II H W. 2007. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35(10): 875~878.

    • Yang Jingsui, Bai Wenji, Fang Qingsong, Rong He. 2008. Ultra-high pressure minerals and new minerals from the Luobusa ophiolitic chromitites in Tibet: A review. Acta Geoscientica Sinica, 29(3): 263~274(in Chinese with English abstract).

    • Yang Jingsui, Xiong Fahui, Guo Guolin, Liu Fei, Liang Fenghua, Chen Songyong, Li Zhaoli, Zhang Liwen. 2011. Dongbo ultramafic pluton: A mantle peridotite with high chromite prospect in the western part of the Yarlong Zangbo suture zone, Tibet. Acta Geoscientica Sinica, 27(11): 3207~3222(in Chinese with English abstract).

    • Yang Jingsui, Xu Xiangzhen, Zhang Zhongming, Rong He, Li Yuan, Xiong Fahui, Liang Fenghua, Liu Zhao, Liu Fei, Li Jinyang, Li Zhaoli, Chen Songyong, Guo Guolin, Robinson P T. 2013. Ophiolite-type diamond and deep genesis of chromitite. Acta Geoscientica Sinica, 34(6): 643~653 (in Chinese with English abstract).

    • Yang Jingsui, Robinson P T, Dilek Y. 2014. Diamonds in ophiolites. Elements, 10(2): 127~130.

    • Yang Jingsui, Simakov S K, Moe K, Scribano V, Lian Dongyang, Wu Weiwei. 2020. Comment on “Comparison of enigmatic diamonds from the tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: Assessing the role of contamination by synthetic materials”. Gondwana Research, 79: 301~303.

    • Yang Jingsui, Lian Dongyang, Wu Weiwei, Yang Yu, Cai Pengjie, Rui Huichao, Shi Rendeng, Xiong Fahui. 2022. Chromitites in ophiolites: Questions and thoughts. Acta Geologica Sinica, 96(5): 1608~1634 (in Chines with English abstract).

    • Yang Shengbiao, Li Yuan, Yang Jingsui, Ba Dengzhu, Bo Rongzhong, Li Ruibao, Liu Chengjun, Xiong Fahui, Cao Chuqi. 2022. Genesis and tectonic implications ofpodiform chromitite from the Renbu ophiolite in central Yarlung Zangbo Suture Zone, Tibet. Acta Geologica Sinica, 96(2): 533~553(in Chinese with English abstract).

    • Yang Yiheng, Zeng Le, Deng Fan, Hu Jianzhong. 2018. Potential analysis and prospecting direction of chromite resources in China. Earth Frontier, 25(3): 138~147(in Chinese with English abstract).

    • Ye Peisheng, Wu Zhenhan, Hu Daogong, Jiang Wan, Liu Qisheng, Yang Xinde. 2004. Geochemical characteristics and tectonic setting of ophiolite of Dongqiao, Tibet. Geoscience, 18(3): 309~315(in Chinese with English abstract).

    • Yu Shimian, Ma Xudong, Hu Yanchun, Chen Wei, Liu Qingping, Song Yang, Tang Juxing. 2022. Post-subdution evolution of the Northern Lhasa Terrane, Tibet: Constraints from geochemical anomalies, chronology and petrogeochemistry. China Geology, 5(1): 84~95.

    • Zaccarini F, Garuti G, Proenza J A, Campos L, Thalhammer O A, Aiglsperger T, Lewis J F. 2011. Chromite and platinum group elements mineralization in the Santa Elena Ultramafic Nappe (CostaRica): Geodynamic implications. Geologica Acta: an international earth science journal, 9(3~4): 407~423.

    • Zhang Qi, Zhou Guoqing. 2001. Ophiolites of China. Beijing: Science Press, 85~89(in Chinese with English abstract).

    • Zhang Qizhi, Ba Dengzhu, Xiong Fahui, Yang Jingsui. 2017. Deep prospecting breakthrough and genetic model discussion of Luobsa podded chromite deposit in Tibet. Geology in China, 44(2): 224~241(in Chinese with English abstract).

    • Zhong Yun, Hu Xichong, Liu Weiliang, Xia Bin, Zhang Xiao, Huang Wei, Fu Yuanbin, Wang Yuguang. 2018. Age and nature of the Jurassic-Early Cretaceous mafic and ultramafic rocks from the Yilashan area, Bangong-Nujiang suture zone, central Tibet: Implications for petrogenesis and tectonic evolution. International Geology Review, 60(10): 1244~1266.

    • Zhou Meifu, Robinson P T. 1994. High-Cr and high-Al podiform chromitites, western China: Relationship to partial melting and melt/rock reaction in the upper mantle. International Geology Review, 36(7): 678~686.

    • Zhou Meifu, Bai Wenji. 1994. Understanding of genesis of podiform chromite deposit. Deposit Geology, 13(3): 242~249(in Chinese with English abstract).

    • Zhou Meifu, Robinson P T, Malpas J, Li Zijin. 1996. Podiform chromitites in the luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1): 3~21.

    • Zhou Meifu, Sun Min, Keays R R, Kerrich R W. 1998. Controls on platinum-group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62(4): 677~688.

    • Zhou Meifu, Robinson P T, Malpas J, Edwards S J, Qi Liang. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. Journal of Petrology, 46(3): 615~639.

    • Zhou Meifu, Robinson P T, Su Benxun, Gao Jianfeng, Li Jianwei, Yang Jingsui, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1): 262~283.

    • Zhu Dicheng, Pan Guitang, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Liao Zhongli, Geng Quanru, Dong Guochen. 2006. Identification for the Mesozoic OIB-type basalts inCentral Qinghai-Tibetan Plateau: Geochronology, geochemistry and their tectonic setting. Acta Geologica Sinica, 80(9): 1312~1328(in Chinese with English abstract).

    • Zhu Dicheng, Li Shimin, Cawood P A, Wang Qing, Zhao Zhidan, Liu Shengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7~17.

    • 白文吉, 李行. 1993. 内蒙古贺根山蛇绿岩型铬铁矿中固体包裹体矿物化学成分研究. 矿物学报, 13(3): 204~213.

    • 鲍佩声. 2009. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说. 地质通报, 28(12): 1741~1761.

    • 曹楚奇, 杨经绥, 杨胜标, 董玉飞, 陈晓坚, 熊发挥, 卢雨潇. 2022. 西藏班公湖-怒江缝合带中段东巧豆荚状铬铁矿特征及构造背景. 岩石学报, 38(11): 3391~3410.

    • 陈宇鹏. 2012. 班公湖-怒江缝合带中段东巧地区蛇绿岩及其赋存的铬铁矿成矿模式探讨. 中国地质大学(北京).

    • 董玉飞, 杨经绥, 连东洋, 熊发挥, 赵慧, 陈晓坚, 李观龙, 王天泽. 2019. 西藏班公湖-怒江缝合带中段东巧地幔橄榄岩岩石成因及构造环境分析. 中国地质, 46(1): 87~114.

    • 杜德道, 曲晓明, 王根厚, 辛洪波, 刘治博. 2011. 西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲: 来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据. 岩石学报, 27(7): 1993~2002.

    • 范建军, 张博川, 刘海永, 刘一鸣, 于云鹏, 郝宇杰, 阿旺旦增. 2019. 班公湖-怒江洋早-中侏罗世洋内俯冲: 来自洞错蛇绿岩的证据. 岩石学报, 35(10): 3048~3064.

    • 黄强太, 夏斌, 李强, 钟云, 胡西冲, 郑浩. 2015. 西藏东巧地区玄武岩地球化学特征及构造环境分析. 沉积与特提斯地质, 35(2): 97~103.

    • 连东洋, 杨经绥, 熊发挥, 刘飞, 王云鹏, 周文达, 赵一钰. 2014. 雅鲁藏布江蛇绿岩带西段达机翁地幔橄榄岩组成特征及其形成环境分析. 岩石学报, 30(8): 2164~2184.

    • 潘桂棠, 王立全, 耿全如, 尹福光, 王保弟, 王冬兵, 彭志敏, 任飞. 2020. 班公湖-双湖-怒江-昌宁-孟连对接带时空结构——特提斯大洋地质及演化问题. 沉积与特提斯地质, 40(3): 1~19.

    • 曲晓明, 王瑞江, 辛洪波, 赵元艺, 樊兴涛. 2009. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学. 地球化学, 38(6): 523~535.

    • 苏本勋, 白洋, 陈晨, 刘霞, 肖燕, 唐冬梅, 梁子, 崔梦萌, 彭青山. 2018. 铬铁矿床母岩浆含水性的岩石矿物学探讨. 矿物岩石地球化学通报, 37(6): 1035~1046.

    • 苏本勋, 刘霞, 陈晨, Robinson P T, 肖燕, 周美夫, 白洋, Uysal I, 张鹏飞. 2021. 蛇绿岩铬铁矿成矿新模型: 流体不混溶作用. 中国科学: 地球科学, 51(2): 250~260.

    • 田亚洲, 杨经绥, 杨华燊, 田云雷. 2019. 新疆萨尔托海铬铁矿中铂族矿物及硫化物特征. 地质学报, 93(10): 2639~2655.

    • 王恒升. 1983. 中国铬铁矿床及成因. 科学出版社.

    • 王希斌, 鲍佩声, 邓万明, 王方国. 1987. 喜马拉雅岩石圈构造演化——西藏蛇绿岩. 北京: 地质出版社.

    • 夏斌, 徐力峰, 韦振权, 张玉泉, 王冉, 李建峰, 王彦斌. 2008. 西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义. 地质学报, 82(4): 528~531.

    • 熊发挥, 杨经绥, 刘钊. 2013. 豆荚状铬铁矿多阶段形成过程的讨论. 中国地质, 40(3): 820~839.

    • 熊发挥, 徐向珍, 杨胜标, 闫金禹, 张博杨, 曹楚奇, 孙怡, 杨经绥. 2022. 豆荚状铬铁矿中不同类型矿物包裹体成因及指示意义. 岩石矿物学杂志, 41(2): 413~436.

    • 许荣科, 郑有业, 赵平甲, 陕亮, 张雨莲, 曹亮, 齐建宏, 张刚阳, 代芳华. 2007. 西藏东巧北尕苍见岛弧的厘定及地质意义. 中国地质, 34(5): 768~777.

    • 徐向珍, 熊发挥, 张承杰, 陈建, 张然, 闫金禹, 杨经绥. 2021. 班公湖-怒江缝合带东段丁青地幔橄榄岩成因: 来自钻孔ZK02地幔橄榄岩矿物学及地球化学特征约束. 岩石学报, 37(10): 2944~2970.

    • 杨经绥, 张仲明, 李天福, 李兆丽, 任玉峰, 徐向珍, 巴登珠, 白文吉, 方青松, 陈松永, 戎合. 2008. 西藏罗布莎铬铁矿体围岩方辉橄榄岩中的异常矿物. 岩石学报, 24(7): 1445~1452.

    • 杨经绥, 熊发挥, 郭国林, 刘飞, 梁凤华, 陈松永, 李兆丽, 张隶文. 2011. 东波超镁铁岩体: 西藏雅鲁藏布江缝合带西段一个甚具铬铁矿前景的地幔橄榄岩体. 岩石学报, 27(11): 3207~3222.

    • 杨经绥, 徐向珍, 张仲明, 戎合, 李源, 熊发挥, 梁风华, 刘钊, 刘飞, 李金阳, 李兆丽, 陈松永, 郭国林, Robinson P T. 2013. 蛇绿岩型金刚石和铬铁矿深部成因. 地球学报, 34(6): 643~653.

    • 杨经绥, 连东洋, 吴魏伟, 杨彧, 蔡鹏捷, 芮会超, 史仁灯, 熊发挥. 2022. 蛇绿岩中铬铁矿研究的问题与思考. 地质学报, 96(5): 1608~1634.

    • 杨胜标, 李源, 杨经绥, 巴登珠, 薄容众, 李瑞保, 刘成军, 熊发挥, 曹楚奇. 2022. 西藏雅鲁藏布江缝合带中段仁布豆荚状铬铁矿成因及构造意义. 地质学报, 96(2): 533~553.

    • 杨毅恒, 曾乐, 邓凡, 胡建中. 2018. 中国铬铁矿资源潜力分析及找矿方向. 地学前缘, 25(3): 138~147.

    • 叶培盛, 吴珍汉, 胡道功, 江万, 刘琦胜, 杨欣德. 2004. 西藏东巧蛇绿岩的地球化学特征及其形成的构造环境. 现代地质, 18(3): 309~315.

    • 张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社, 85~89.

    • 章奇志, 巴登珠, 熊发挥, 杨经绥. 2017. 西藏罗布莎豆荚状铬铁矿床深部找矿突破与成因模式讨论. 中国地质, 44(2): 224~241.

    • 周美夫, 白文吉. 1994. 对豆荚状铬铁矿床成因的认识. 矿床地质, 13(3): 242~249.

    • 朱弟成, 潘桂棠, 莫宣学, 王立全, 赵志丹, 廖忠礼, 耿全如, 董国臣. 2006. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、地球化学及其构造环境. 地质学报, 80(9): 1312~1328.

  • 参考文献

    • Allégre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Schärer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariépy C, Göpel C, Li Tindong, Xiao Xuchang, Chang Chenfa, Li Guangqin, Lin Baoyu, Teng Jiwen, Wang Naiwen, Chen Guoming, Han Tonglin, Wang Xibin, Deng Wanming, Sheng Huaibin, Cao Yougong, Zhou Ji, Qiu Hongrong, Bao Peisheng, Wang Songchan, Wang Bixiang, Zhou Yaoxiu, Xu Ronghua. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17~22.

    • Arai S, Abe N. 1994. Podiform chromitite in the arc mantle: Chromitite xenoliths from the Takashima alkali basalt, southwest Japan arc. Mineralium Deposita, 29(5): 434~438.

    • Arai S, Miura M. 2016. Formation and modification of chromitites in the mantle. Lithos, 264: 277~295.

    • Bai Wenji, Zhou Meifu, Robinson P T. 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Canadian Journal of Earth Sciences, 30(8): 1650~1659.

    • Bai Wenji, Li Hang. 1993. A study on the chemical composition of mineral inclusions in chromite from the hegenshan ophiolite massif, inner Mongolia, China. Acta Mineralogica Sinica, 13(3): 204~213 (in Chinese with English abstract).

    • Bao Peisheng. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites-Questioning about the rock/melt interaction metallogeny. Geological Bulletin of China, 28(12): 1741~1761 (in Chinese with English abstract).

    • Barnes S J. 1998. Chromite in komatiites, 1. magmatic controls on crystallization and composition. Journal of Petrology, 39(10): 1689~1720.

    • Barnes S J, Roeder P L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42(12): 2279~2302.

    • Batanova V G, Suhr G, Sobolev A V. 1998. Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: ion probe study of clinopyroxenes. Geochimica et Cosmochimica Acta, 62(5): 853~866.

    • Bodinier J L, Godard M. 2003. Orogenic, ophiolitic, and abyssal peridotites. Treatise on Geochemistry, 2(568): 103~167.

    • Borisov A, Palme H, Spettel B. 1994. Solubility of palladium in silicate melts: Implications for core formation in the Earth. Geochimica et Cosmochimica Acta, 58(2): 705~716.

    • Cao Chuqi, Yang Jingsui, Yang Shengbiao, Dong Yufei, Chen Xiaojian, Xiong Fahui, Lu Yuxaio. 2022. Characteristics and tectonic setting of Dongqiao lenticular chromite in the middle section of Bangong Hu-Nujiang suture belt, Tibet. Acta Petrologica Sinica, 38(11): 3391~3410(in Chinese with English abstract).

    • Chen Yupeng. 2012. Discussion on ophiolite and its occurrence chromite metallogenic model in Dongqiao area in the middle part of Bangong Hu-Nujiang suture zone. China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Derbyshire E J, O'Driscoll B, Lenaz D, Zanetti A, Gertisser R. 2019. Chromitite petrogenesis in the mantle section of the Ballantrae Ophiolite Complex (Scotland). Lithos, 344-345: 51~67.

    • Dick H J B, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1): 54~76.

    • Dick H J B, Natland J H. 1995. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In Proceedings-Ocean Drilling Program Scientific Results. College station, TX: Ocean Drilling Program, 147: 103~134.

    • Dickey P A. 1975. Possible primary migration of oil from source rock in oil phase: Geologic notes. AAPG Bulletin, 59(2): 337~345.

    • Dilek Y, Newcomb S. 2003. Ophiolite concept and its evolution. Special Papers-Geological Society of America, 373: 1~16.

    • Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(1~4): 387~411.

    • Dobrzhinetskaya L F, Wirth R, Yang Jingsui, Hutcheon I D, Weber P K, Green H W II. 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences of the United States of America, 106(46): 19233~19238.

    • Dong Yufei, Yang Jingsui, Lian Dongyang, Xiong Fahuui, Zhao Hui, Chen Xiaojian, Li Guanlong, Wang Tianze. 2019. Petrogenesis and tectonic environment analysis of Dongqiao mantle peridotite in the middle part of Bangong Hu-Nujiang suture zone, Tibet. Geology in China, 46(1): 87~114(in Chinese with English abstract).

    • Du Dedao, Qu Xiaoming, Wang Genhou, Xin Hongbo, Liu Zhibo. 2011. Bidirectional subduction of the Middle Tethys Ocean basin in the western section of the Bangong Lake-Nujiang suture zone, Tibet: Evidence from zircon U-Pb age and elemental geochemistry of island arc granites. Acta Petrologica Sinica, 27(7): 1993~2002(in Chinese with English abstract).

    • Dymek R F, Brothers S C, Schiffries C M. 1988. Petrogenesis of ultramafic metamorphic rocks from the 3800 Ma Isua supracrustal belt, West Greenland. Journal of Petrology, 29(6): 1353~1397.

    • Fan Jianjun, Zhang Bochuan, Liu Haiyong, Liu Yiming, Yu Yunpeng, Hao Yujie, Awangdanzeng. 2019. Early-Middle Jurassic intra-oceanic subduction of the Bangong-Nujiang oceanic lithosphere: Evidence of the Dong Co ophiolite. Acta Petrologica Sinica, 35(10): 3048~3064 (in Chinese with English abstract).

    • Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K. 2007. A vestige of Earth's oldest ophiolite. Science, 315(5819): 1704~1707.

    • Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131(4): 323~346.

    • Garuti G, Fershtater G, Bea F, Montero P, Pushkarev E V, Zaccarini F. 1997. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals: Preliminary results. Tectonophysics, 276(1~4): 181~194.

    • Godard M, Jousselin D, Bodinier J L. 2000. Relationships between geochemistry and structure beneath a palaeo-spreading centre: A study of the mantle section in the Oman ophiolite. Earth and Planetary Science Letters, 180(1~2): 133~148.

    • González-Jiménez J M, Gervilla F, Kerestedjian T, Proenza J A. 2010. Alteration of platinum-group and base-metal mineral assemblages in ophiolite chromitites from the Dobromirtsi massif, Rhodope Mountains (Bulgaria). Resource Geology, 60(4): 315~334.

    • Grieco G, Diella V, Chaplygina N L, Savelieva G N. 2007. Platinum group elements zoning and mineralogy of chromitites from the cumulate sequence of the Nurali massif (southern Urals, Russia). Ore Geology Reviews, 30(3~4): 257~276.

    • Hou Kejun, Ma Xudong, Li Yanhe, Liu Feng, Han Dan. 2019. Genesis of Huoqiu banded iron formation (BIF), southeastern North China craton, constraints from geochemical and Hf-O-S isotopic characteristics. Journal of Geochemical Exploration, 197: 60~69.

    • Huang Qiangtai, Xia Bin, Li Qiang, Zhong Yun, Hu Xichong, Zheng Hao. 2015. Geochemical signatures and tectonic setting of the basalts from the Dongqiao region, Xizang. Sedimentary Geology and Tethyan Geology, 35(2): 97~103 (in Chinese with English abstract).

    • Irvine T N. 1967. Chromian spinel as a petrogenetic indicator: Part 2. Petrologic applications. Canadian Journal of Earth Sciences, 4(1): 71~103.

    • Jiang Jiuyang, Zhu Yongfeng. 2020. Characterization of the Hegenshan podiform chromitites (Inner Mongolia, China): Sub-solidus cooling and hydrothermal alteration. Ore Geology Reviews, 120: 103413.

    • Kamenetsky V S, Crawford A J, Meffre S. 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42(4): 655~671.

    • Kapp P, Murphy M A, YinAn, Harrison T M, Ding Lin, Guo Jinghu. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 1029~1053.

    • Khedr M Z, Arai S. 2016. Chemical variations of mineral inclusions in Neoproterozoic high-Cr chromitites from Egypt: Evidence of fluids during chromitite genesis. Lithos, 240: 309~326.

    • Leblanc M. 1980. Chromite growth, dissolution and deformation from a morphological view point: SEM investigations. Mineralium Deposita, 15(2): 201~210.

    • Leblanc M, Nicolas A. 1992. Ophiolitic chromitites. International Geology Review, 34(7): 653~686.

    • Lian Dongyang, Yang Jingsui, Xiong Fahui, Liu Fei, Wang Yunpeng, Zhou Wenda, Zhao Yiyu. 2014. Composition and environment analysis of mantle peridotite in the western part of the ophiolite belt of Yarlung Zangbo River. Acta Petrologica Sinica, 30(8): 2164~2184(in Chinese with English abstract).

    • Liu Tong, Zhai Qingguo, Wang Jun, Bao Peisheng, Qiangba Zhaxi, Tang Suohan, Tang Yue. 2016. Tectonic significance of the Dongqiao ophiolite in the north-central Tibetan Plateau: Evidence from zircon dating, petrological, geochemical and Sr-Nd-Hf isotopic characterization. Journal of Asian Earth Sciences, 116: 139~154.

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1~2): 34~43.

    • Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535~1546.

    • Litasov K D, Kagi H, Voropaev S A, Hirata T, Ohfuji H, Ishibashi H, Makino Y, Bekker T B, Sevastyanov V S, Afanasiev V P, Pokhilenko N P. 2019. Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: Assessing the role of contamination by synthetic materials. Gondwana Research, 75: 16~27.

    • Litasov K D, Kagi H, Bekker T B. 2019. Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags. Lithos, 340: 181~190.

    • Maier W D, Barnes S J, De Waal S A. 1998. Exploration for magmatic Ni-Cu-PGE sulphide deposits: A review of recent advances in the use of geochemical tools, and their application to some South African ores. South African Journal of Geology, 101(3): 237~253.

    • Matveev S, Ballhaus C. 2002. Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters, 203(1): 235~243.

    • Maurel C, Maurel P. 1982. Étude expérimentale de la distribution de l'aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: Teneur en chrome des spinelles. Bulletin De Minéralogie, 105(2): 197~202.

    • McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(1~4): 223~253.

    • Miyashiro A. 1973. The Troodos ophiolitic complex was probably formed in an island arc. Earth and Planetary Science Letters, 19(2): 218~224.

    • Mondal S K, Ripley E M, Li Chusi, Frei R. 2006. The genesis of Archaean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum Craton, India. Precambrian Research, 148(1~2): 45~66.

    • Nicolas A. 1989. The various ophiolites and their oceanic environments of origin. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. 187~201.

    • Nicolas A, Al Azri H. 1991. Chromite-rich and chromite-poor ophiolites: The Oman case. Ophiolite Genesis and Evolution of the Oceanic Lithosphere: Proceedings of the Ophiolite Conference, held in Muscat, Oman, 7~18 January 1990. Dordrecht: Springer Netherlands, 261~274.

    • Niu Yaoling. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12): 2423~2458.

    • Niu Yaoling, Langmuir C H, Kinzler R J. 1997. The origin of abyssal peridotites: A new perspective. Earth and Planetary Science Letters, 152(1): 251~265.

    • Ozawa K. 1994. Melting and melt segregation in the mantle wedge above a subduction zone: Evidence from the chromite-bearing peridotites of the Miyamori ophiolite complex, northeastern Japan. Journal of Petrology, 35(3): 647~678.

    • Pagé P, Barnes S J. 2009. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford mines ophiolite, Qué bec, Canada. Economic Geology, 104(7): 997~1018.

    • Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

    • Pan Guitang, Wang Liquan, Geng Quanru, Yin Fuguang, Wang Baodi, Wang Dongbing, Peng Zhimin, Ren Fei. 2020. Space-time structure of the Bangonghu-Shuanghu-Nujiang-Changning-Menglian mega-suture zone: A discussion ongeology and evolution of the Tethys Ocean. Sedimentary Geology and Tethyan Geology, 40(3): 1~19(in Chinese with English abstract).

    • Parkinson I J, Pearce J A. 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9): 1577~1618.

    • Pattou L, Lorand J P, Gros M. 1996. Non-chondritic platinum-group element ratios in the Earth's mantle. Nature, 379: 712~715.

    • Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society of London Special Publications, 16(1): 77~94.

    • Pearce J A, Deng Wanming. 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327(1594): 215~238.

    • Prichard H M, Neary C R, Fisher P C, O'Hara M J. 2008. PGE-rich podiform chromitites in the Al'ays ophiolite complex, Saudi Arabia: An example of critical mantle melting to extract and concentrate PGE. Economic Geology, 103(7): 1507~1529.

    • Qiu Tian, Yang Jingsui, Milushi I, Wu Weiwei, Mekshiqi N, Xiong Fahui, Zhang Cong, Shen Tingting. 2018. Petrology and PGE abundances of high-Cr and high-Al podiform chromitites and peridotites from the bulqiza ultramafic massif, eastern Mirdita ophiolite, Albania. Acta Geologica Sinica-English Edition, 92(3): 1063~1081.

    • Qu Xiaoming, Wang Ruijiang, Xin Hongbo, Zhao Yuanyi, Fan Xingtao. 2009. Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arczone, the western Tibetan Plateau. Geochimica, 38(6): 523~535 (in Chinese with English abstract).

    • Rollinson H. 1995. Composition and tectonic settings of chromite deposits through time; discussion. Economic Geology, 90(7): 2091~2092.

    • Rollinson H, Adetunji J. 2013. Mantle podiform chromitites do not form beneath mid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite. Lithos, 177: 314~327.

    • Rui Huichao, Yang Jingsui, Llanes Castro A I, Zheng Jianping, Lian Dongyang, Wu Weiwei, Valdes M Y. 2022. Ti-poor high-Al chromitites of the Moa-Baracoa ophiolitic massif (eastern Cuba) formed in a nascent forearc mantle. Ore Geology Reviews, 144: 104847.

    • Shi Rendeng, Alard O, Zhi Xiachen, O'Reilly S Y, Pearson N J, Griffin W L, Zhang Ming, Chen Xiaoming. 2007. Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru-Os-Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth and Planetary Science Letters, 261(1~2): 33~48.

    • Stowe C W. 1994. Compositions and tectonic settings of chromite deposits through time. Economic Geology, 89(3): 528~546.

    • Su Benxun, Bai Yang, Chen Chen, Liu Xia, Xiao Yan, Tang Dongmei, Liang Zi, Cui Mengmeng, Peng Qingshan. 2018. Petrological and mineralogical investigations on hydrous properties of parental magmas of chromite deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 37(6): 1035~1046 (in Chinese with English abstract).

    • Su Benxun, Robinson P T, Chen Chen, Xiao Yan, Melcher F, Bai Yang, Gu Xiaoyan, Uysal I, Lenaz D. 2020. The occurrence, origin, and fate of water in chromitites in ophiolites. American Mineralogist, 105(6): 894~903.

    • Su Benxun, Liu Xia, Chen Chen, Robinson P T, Xiao Yan, Zhou Meifu, Bai Yang, Uysal I, Zhang Pengfei. 2021. A new model for chromitite formation in ophiolites: Fluid immiscibility. Science China Earth Sciences, 51(2): 250~260(in Chinese).

    • Su Benxun, Pan Qiqi, Xiao Yan, Jing Jiejun, Robinson P T, Uysal I, Liu Xia, Liu Jianguo. 2023. Mantle peridotites of ophiolites rarely preserve reliable records of paleo-oceanic lithospheric mantle. Earth-Science Reviews, 244: 104544.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Societyof London Special Publications, 42(1): 313~345.

    • Thayer T P. 1960. Some critical differences between alpine-type and stratiform peridotite-gabbro complexes. 21st Intern. Geol. Congress, Copenhagen, XIII. 247~259.

    • Thayer T P. 1964. Principal features and origin of podiform chromite deposits, and some observations on the Guelman-Soridag District, Turkey. Economic Geology, 59(8): 1497~1524.

    • Thayer T P. 1970. Chromite segregations as petrogenetic indicators. Geological Society of South Africa Special Publications, 1: 380~390.

    • Tian Yazhou, Yang Jingsui, Robinson P T, Xiong Fahui, Li Yuan, Zhang Zhongming, Liu Zhao, Liu Fei, Niu Xiaolu. 2015. Diamond discovered in high-Al chromitites of the sartohay ophiolite, Xinjiang Province, China. Acta Geologica Sinica-English Edition, 89(2): 332~340.

    • Tian Yazhou, Yang Jingsui, Yang Huashen, Tian Yunlei. 2019. Characteristics of platinum group minerals and sulfides in chromite from Saltuohai, Xinjiang. Acta Geologica Sinica, 93(10): 2639~2655(in Chinese with English abstract).

    • Uysal I, Kapsiotis A, Akmaz R M, Saka S, Seitz H M. 2018. The Guleman ophiolitic chromitites (SE Turkey) and their link to a compositionally evolving mantle source during subduction initiation. Ore Geology Reviews, 93: 98~113.

    • Wang Hengsheng. 1983. Ferrochrome Deposit and Its Origin in China. Beijing: Science Press (in Chinese with English abstract).

    • Wang Weiliang, Aitchison J C, Lo C H, Zeng Qinggao. 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. Journal of Asian Earth Sciences, 33(1~2): 122~138.

    • Wang Xibin, Bao Peisheng, Deng Wanming, Wang Fangguo. 1987. Tectonic Evolution of Himalayan Lithosphere: Tibet Ophiolite. Beijing: Geological Publishing House(in Chinese with English abstract).

    • Xia Bin, Xu Lifeng, Wei Zhenquan, Zhang Yuquan, Wang Ran, Li Jianfeng, Wang Yanbin. 2008. SHRIMP zircon dating of gabbro from the Donqiao ophiolite in Tibet and its geological implications. Acta Geologica Sinica, 82(4): 528~531(in Chinese with English abstract).

    • Xiong Fahui, Yang Jingsui, Liu Zhao. 2013. Multi-stage formation of the podiform chromitite. Geology in China, 40(3): 820~839(in Chinese with English abstract).

    • Xiong Fahui, Yang Jingsui, Robinson P, Xu Xiangzhen, Liu Zhao, Li Yuan, Li Jinyang, Chen Songyong. 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27: 525~542.

    • Xiong Fahui, Yang Jingsui, Schertl H P, Liu Zhao, Xu Xiangzhen. 2020a. Multistage origin of dunite in the Purang ophiolite, southern Tibet, documented by composition, exsolution and Li isotope characteristics of constituent minerals. European Journal of Mineralogy, 32(1): 187~207.

    • Xiong Fahui, Zoheir B, Robinson P T, Yang Jingsui, Xu Xiangzhen, Meng Fancong. 2020b. Genesis of the Ray-Iz chromitite, Polar Urals: Inferences to mantle conditions and recycling processes. Lithos, 374~375: 105699.

    • Xiong Fahui, Zoheir B, Wirth R, Milushi I, Qiu Tian, Yang Jingsui. 2021. Mineralogical and isotopic peculiarities of high-Cr chromitites: Implications for a mantle convection genesis of the Bulqiza ophiolite. Lithos, 398~399: 106305.

    • Xiong Fahui, Xu Xiangzhen, Yang Shengbiao, Yan Jinyu, Zhang Boyang, Cao Chuqi, Sun Yi, Yang Jingsui. 2022. Genesis and significance of different types of mineral inclusions in podiform chromitite. Acta Petrologica et Mineralogica, 41(2): 413~436(in Chinese with English abstract).

    • Xiong Qing, Henry H, Griffin W L, Zheng Jianping, Satsukawa T, Pearson N J, O'Reilly S Y. 2017a. High-and low-Cr chromitite and dunite in a Tibetan ophiolite: Evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 172: 1~22.

    • Xiong Qing, Griffin W L, Zheng Jianping, Pearson N J, O'Reilly S Y. 2017b. Two-layered oceanic lithospheric mantle in a Tibetan ophiolite produced by episodic subduction of Tethyan slabs. Geochemistry, Geophysics, Geosystems, 18(3): 1189~1213.

    • Xiong Qing, Xu Yong, González-Jiménez J M, Liu Jingao, Alard O, Zheng Jianping, Griffin W L, O'Reilly, S Y. 2020. Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective. Earth and Planetary Science Letters, 531: 115969.

    • Xu Rongke, Zheng Youye, Zhao Pingjia, Shan Ling, Zhang Yulian, Cao Ling, Qi Jianhong, Zhang Gangyang, Dai Fanghua. 2007. Definition and geological significance of the Gacangjian volcanic arc north of Dongqiao, Tibet. Geology in China, 34(5): 768~777(in Chinese with English abstract).

    • Xu Xiangzhen, Xiong Fahui, Zhang Chengjie, Chen Jian, Zhang Ran, Yan Jinyu, Yang Jingsui. 2021. Genesis of Dingqing mantle peridotite in the eastern segment of the Bangong-Nujiang suture zone: Evidence from mineralogy and geochemistry of mantle peridotite from borehole ZK02. Acta Petrologica Sinica, 37(10): 2944~2970(in Chinese with English abstract).

    • Yang Jingsui, Dobrzhinetskaya L, Bai Wenji, Fang Qingsong, Robinson P T, Zhang Junfeng, Green II H W. 2007. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35(10): 875~878.

    • Yang Jingsui, Bai Wenji, Fang Qingsong, Rong He. 2008. Ultra-high pressure minerals and new minerals from the Luobusa ophiolitic chromitites in Tibet: A review. Acta Geoscientica Sinica, 29(3): 263~274(in Chinese with English abstract).

    • Yang Jingsui, Xiong Fahui, Guo Guolin, Liu Fei, Liang Fenghua, Chen Songyong, Li Zhaoli, Zhang Liwen. 2011. Dongbo ultramafic pluton: A mantle peridotite with high chromite prospect in the western part of the Yarlong Zangbo suture zone, Tibet. Acta Geoscientica Sinica, 27(11): 3207~3222(in Chinese with English abstract).

    • Yang Jingsui, Xu Xiangzhen, Zhang Zhongming, Rong He, Li Yuan, Xiong Fahui, Liang Fenghua, Liu Zhao, Liu Fei, Li Jinyang, Li Zhaoli, Chen Songyong, Guo Guolin, Robinson P T. 2013. Ophiolite-type diamond and deep genesis of chromitite. Acta Geoscientica Sinica, 34(6): 643~653 (in Chinese with English abstract).

    • Yang Jingsui, Robinson P T, Dilek Y. 2014. Diamonds in ophiolites. Elements, 10(2): 127~130.

    • Yang Jingsui, Simakov S K, Moe K, Scribano V, Lian Dongyang, Wu Weiwei. 2020. Comment on “Comparison of enigmatic diamonds from the tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: Assessing the role of contamination by synthetic materials”. Gondwana Research, 79: 301~303.

    • Yang Jingsui, Lian Dongyang, Wu Weiwei, Yang Yu, Cai Pengjie, Rui Huichao, Shi Rendeng, Xiong Fahui. 2022. Chromitites in ophiolites: Questions and thoughts. Acta Geologica Sinica, 96(5): 1608~1634 (in Chines with English abstract).

    • Yang Shengbiao, Li Yuan, Yang Jingsui, Ba Dengzhu, Bo Rongzhong, Li Ruibao, Liu Chengjun, Xiong Fahui, Cao Chuqi. 2022. Genesis and tectonic implications ofpodiform chromitite from the Renbu ophiolite in central Yarlung Zangbo Suture Zone, Tibet. Acta Geologica Sinica, 96(2): 533~553(in Chinese with English abstract).

    • Yang Yiheng, Zeng Le, Deng Fan, Hu Jianzhong. 2018. Potential analysis and prospecting direction of chromite resources in China. Earth Frontier, 25(3): 138~147(in Chinese with English abstract).

    • Ye Peisheng, Wu Zhenhan, Hu Daogong, Jiang Wan, Liu Qisheng, Yang Xinde. 2004. Geochemical characteristics and tectonic setting of ophiolite of Dongqiao, Tibet. Geoscience, 18(3): 309~315(in Chinese with English abstract).

    • Yu Shimian, Ma Xudong, Hu Yanchun, Chen Wei, Liu Qingping, Song Yang, Tang Juxing. 2022. Post-subdution evolution of the Northern Lhasa Terrane, Tibet: Constraints from geochemical anomalies, chronology and petrogeochemistry. China Geology, 5(1): 84~95.

    • Zaccarini F, Garuti G, Proenza J A, Campos L, Thalhammer O A, Aiglsperger T, Lewis J F. 2011. Chromite and platinum group elements mineralization in the Santa Elena Ultramafic Nappe (CostaRica): Geodynamic implications. Geologica Acta: an international earth science journal, 9(3~4): 407~423.

    • Zhang Qi, Zhou Guoqing. 2001. Ophiolites of China. Beijing: Science Press, 85~89(in Chinese with English abstract).

    • Zhang Qizhi, Ba Dengzhu, Xiong Fahui, Yang Jingsui. 2017. Deep prospecting breakthrough and genetic model discussion of Luobsa podded chromite deposit in Tibet. Geology in China, 44(2): 224~241(in Chinese with English abstract).

    • Zhong Yun, Hu Xichong, Liu Weiliang, Xia Bin, Zhang Xiao, Huang Wei, Fu Yuanbin, Wang Yuguang. 2018. Age and nature of the Jurassic-Early Cretaceous mafic and ultramafic rocks from the Yilashan area, Bangong-Nujiang suture zone, central Tibet: Implications for petrogenesis and tectonic evolution. International Geology Review, 60(10): 1244~1266.

    • Zhou Meifu, Robinson P T. 1994. High-Cr and high-Al podiform chromitites, western China: Relationship to partial melting and melt/rock reaction in the upper mantle. International Geology Review, 36(7): 678~686.

    • Zhou Meifu, Bai Wenji. 1994. Understanding of genesis of podiform chromite deposit. Deposit Geology, 13(3): 242~249(in Chinese with English abstract).

    • Zhou Meifu, Robinson P T, Malpas J, Li Zijin. 1996. Podiform chromitites in the luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1): 3~21.

    • Zhou Meifu, Sun Min, Keays R R, Kerrich R W. 1998. Controls on platinum-group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62(4): 677~688.

    • Zhou Meifu, Robinson P T, Malpas J, Edwards S J, Qi Liang. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. Journal of Petrology, 46(3): 615~639.

    • Zhou Meifu, Robinson P T, Su Benxun, Gao Jianfeng, Li Jianwei, Yang Jingsui, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1): 262~283.

    • Zhu Dicheng, Pan Guitang, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Liao Zhongli, Geng Quanru, Dong Guochen. 2006. Identification for the Mesozoic OIB-type basalts inCentral Qinghai-Tibetan Plateau: Geochronology, geochemistry and their tectonic setting. Acta Geologica Sinica, 80(9): 1312~1328(in Chinese with English abstract).

    • Zhu Dicheng, Li Shimin, Cawood P A, Wang Qing, Zhao Zhidan, Liu Shengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7~17.

    • 白文吉, 李行. 1993. 内蒙古贺根山蛇绿岩型铬铁矿中固体包裹体矿物化学成分研究. 矿物学报, 13(3): 204~213.

    • 鲍佩声. 2009. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说. 地质通报, 28(12): 1741~1761.

    • 曹楚奇, 杨经绥, 杨胜标, 董玉飞, 陈晓坚, 熊发挥, 卢雨潇. 2022. 西藏班公湖-怒江缝合带中段东巧豆荚状铬铁矿特征及构造背景. 岩石学报, 38(11): 3391~3410.

    • 陈宇鹏. 2012. 班公湖-怒江缝合带中段东巧地区蛇绿岩及其赋存的铬铁矿成矿模式探讨. 中国地质大学(北京).

    • 董玉飞, 杨经绥, 连东洋, 熊发挥, 赵慧, 陈晓坚, 李观龙, 王天泽. 2019. 西藏班公湖-怒江缝合带中段东巧地幔橄榄岩岩石成因及构造环境分析. 中国地质, 46(1): 87~114.

    • 杜德道, 曲晓明, 王根厚, 辛洪波, 刘治博. 2011. 西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲: 来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据. 岩石学报, 27(7): 1993~2002.

    • 范建军, 张博川, 刘海永, 刘一鸣, 于云鹏, 郝宇杰, 阿旺旦增. 2019. 班公湖-怒江洋早-中侏罗世洋内俯冲: 来自洞错蛇绿岩的证据. 岩石学报, 35(10): 3048~3064.

    • 黄强太, 夏斌, 李强, 钟云, 胡西冲, 郑浩. 2015. 西藏东巧地区玄武岩地球化学特征及构造环境分析. 沉积与特提斯地质, 35(2): 97~103.

    • 连东洋, 杨经绥, 熊发挥, 刘飞, 王云鹏, 周文达, 赵一钰. 2014. 雅鲁藏布江蛇绿岩带西段达机翁地幔橄榄岩组成特征及其形成环境分析. 岩石学报, 30(8): 2164~2184.

    • 潘桂棠, 王立全, 耿全如, 尹福光, 王保弟, 王冬兵, 彭志敏, 任飞. 2020. 班公湖-双湖-怒江-昌宁-孟连对接带时空结构——特提斯大洋地质及演化问题. 沉积与特提斯地质, 40(3): 1~19.

    • 曲晓明, 王瑞江, 辛洪波, 赵元艺, 樊兴涛. 2009. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学. 地球化学, 38(6): 523~535.

    • 苏本勋, 白洋, 陈晨, 刘霞, 肖燕, 唐冬梅, 梁子, 崔梦萌, 彭青山. 2018. 铬铁矿床母岩浆含水性的岩石矿物学探讨. 矿物岩石地球化学通报, 37(6): 1035~1046.

    • 苏本勋, 刘霞, 陈晨, Robinson P T, 肖燕, 周美夫, 白洋, Uysal I, 张鹏飞. 2021. 蛇绿岩铬铁矿成矿新模型: 流体不混溶作用. 中国科学: 地球科学, 51(2): 250~260.

    • 田亚洲, 杨经绥, 杨华燊, 田云雷. 2019. 新疆萨尔托海铬铁矿中铂族矿物及硫化物特征. 地质学报, 93(10): 2639~2655.

    • 王恒升. 1983. 中国铬铁矿床及成因. 科学出版社.

    • 王希斌, 鲍佩声, 邓万明, 王方国. 1987. 喜马拉雅岩石圈构造演化——西藏蛇绿岩. 北京: 地质出版社.

    • 夏斌, 徐力峰, 韦振权, 张玉泉, 王冉, 李建峰, 王彦斌. 2008. 西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义. 地质学报, 82(4): 528~531.

    • 熊发挥, 杨经绥, 刘钊. 2013. 豆荚状铬铁矿多阶段形成过程的讨论. 中国地质, 40(3): 820~839.

    • 熊发挥, 徐向珍, 杨胜标, 闫金禹, 张博杨, 曹楚奇, 孙怡, 杨经绥. 2022. 豆荚状铬铁矿中不同类型矿物包裹体成因及指示意义. 岩石矿物学杂志, 41(2): 413~436.

    • 许荣科, 郑有业, 赵平甲, 陕亮, 张雨莲, 曹亮, 齐建宏, 张刚阳, 代芳华. 2007. 西藏东巧北尕苍见岛弧的厘定及地质意义. 中国地质, 34(5): 768~777.

    • 徐向珍, 熊发挥, 张承杰, 陈建, 张然, 闫金禹, 杨经绥. 2021. 班公湖-怒江缝合带东段丁青地幔橄榄岩成因: 来自钻孔ZK02地幔橄榄岩矿物学及地球化学特征约束. 岩石学报, 37(10): 2944~2970.

    • 杨经绥, 张仲明, 李天福, 李兆丽, 任玉峰, 徐向珍, 巴登珠, 白文吉, 方青松, 陈松永, 戎合. 2008. 西藏罗布莎铬铁矿体围岩方辉橄榄岩中的异常矿物. 岩石学报, 24(7): 1445~1452.

    • 杨经绥, 熊发挥, 郭国林, 刘飞, 梁凤华, 陈松永, 李兆丽, 张隶文. 2011. 东波超镁铁岩体: 西藏雅鲁藏布江缝合带西段一个甚具铬铁矿前景的地幔橄榄岩体. 岩石学报, 27(11): 3207~3222.

    • 杨经绥, 徐向珍, 张仲明, 戎合, 李源, 熊发挥, 梁风华, 刘钊, 刘飞, 李金阳, 李兆丽, 陈松永, 郭国林, Robinson P T. 2013. 蛇绿岩型金刚石和铬铁矿深部成因. 地球学报, 34(6): 643~653.

    • 杨经绥, 连东洋, 吴魏伟, 杨彧, 蔡鹏捷, 芮会超, 史仁灯, 熊发挥. 2022. 蛇绿岩中铬铁矿研究的问题与思考. 地质学报, 96(5): 1608~1634.

    • 杨胜标, 李源, 杨经绥, 巴登珠, 薄容众, 李瑞保, 刘成军, 熊发挥, 曹楚奇. 2022. 西藏雅鲁藏布江缝合带中段仁布豆荚状铬铁矿成因及构造意义. 地质学报, 96(2): 533~553.

    • 杨毅恒, 曾乐, 邓凡, 胡建中. 2018. 中国铬铁矿资源潜力分析及找矿方向. 地学前缘, 25(3): 138~147.

    • 叶培盛, 吴珍汉, 胡道功, 江万, 刘琦胜, 杨欣德. 2004. 西藏东巧蛇绿岩的地球化学特征及其形成的构造环境. 现代地质, 18(3): 309~315.

    • 张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社, 85~89.

    • 章奇志, 巴登珠, 熊发挥, 杨经绥. 2017. 西藏罗布莎豆荚状铬铁矿床深部找矿突破与成因模式讨论. 中国地质, 44(2): 224~241.

    • 周美夫, 白文吉. 1994. 对豆荚状铬铁矿床成因的认识. 矿床地质, 13(3): 242~249.

    • 朱弟成, 潘桂棠, 莫宣学, 王立全, 赵志丹, 廖忠礼, 耿全如, 董国臣. 2006. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、地球化学及其构造环境. 地质学报, 80(9): 1312~1328.