en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张拴宏,男,1974年生。研究员,从事区域地质、大地构造及前寒武纪地质学研究。第八届黄汲清青年地质科学技术奖获奖者。E-mail:tozhangshuanhong@163.com。

参考文献
Abbott S T, Sweet I P, Plumb K A, Young D N, Cutovinos A, Ferenczi P A, Brakel A, Pietsch B A. 2001. Roper Region: Urapunga and Roper River Special, Northern Territory (Second Edition). 1∶250000 geological map series explanatory notes, SD 53-10, 11. Northern Territory Geological Survey and Geoscience Australia (National Geoscience Mapping Accord).
参考文献
Bleeker W, Ernst R. 2006. Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth's paleogeographic record back to 2. 6 Ga. In: Hanski E, Mertanen S, Rämö T, Vuollo J, eds. Dyke Swarms—Time Markers of Crustal Evolution. London: Taylor & Francis Group: 3~26.
参考文献
Bodorkos S, Crowley J L, Claoué-Long J C, Anderson J R, Magee Jr C W. 2021. Precise U-Pb baddeleyite dating of the Derim Derim dolerite, McArthur basin, Northern Territory: Old and new SHRIMP and ID-TIMS constraints. Australian Journal of Earth Sciences, 68: 36~50.
参考文献
Bunger A P, Cruden A R. 2011. Modeling the growth of laccoliths and large mafic sills: Role of magma body forces. Journal of Geophysical Research, 116(B2): B02203.
参考文献
Cawood P A, Korsch R J. 2008. Assembling Australia: Proterozoic building of a continent. Precambrian Research, 166: 1~38.
参考文献
Coffin M F, Eldholm O. 1992. Volcanism and continental break-up: A global compilation of large igneous provinces. In: Storey B C, Alabaster T, Pankhurst R J. eds. Magmatism and the Causes of Continental Break-up. London, Geological Society, Special Publication, 68: 17~30.
参考文献
Coffin M F, Eldholm O. 1994. Large igneous provinces: Crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32: 1~36.
参考文献
Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. 1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters, 166: 177~195.
参考文献
Cox G M, Collins A S, Jarrett A J M, Blades M L, Shannon A V, Yang Bo, Farkas J, Hall P A, O'Hare B, Close D, Baruch, E T. 2022. A very unconventional hydrocarbon play: The Mesoproterozoic Velkerri Formation of northern Australia. AAPG Bulletin, 106(6): 1213~1237.
参考文献
Davis G A, Zheng Yadong, Wang Cong, Darby B J, Zhang Changhou, Gehrels G. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, northern China. In: Hendrix M S, Davis G A, eds. Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intracontinental Deformation. Boulder, Colorado, Geological Society of America Memoir, 194: 171~197.
参考文献
Doughty P T, Chamberlain K R. 1996. Salmon River Arch revisited: New evidencefor 1370 Ma rifting near the end of deposition in the Middle Proterozoic Belt basin. Canadian Journal of Earth Sciences, 33: 1037~1052.
参考文献
Dutkiewicz A, Volk H, Ridley J, George S. 2007. Precambrian inclusion oils in the Roper Group: A review. In: Munson T J, Ambrose G J, eds. Proceedings of the Central Australian Basins Symposium, Alice Springs 16-18 August, 2005. Northern Territory Geological Survey, Special Publication, 2: 326~348.
参考文献
Ernst R E. 2014. Large Igneous Provinces. Cambridge: Cambridge University Press: 1~653.
参考文献
Ernst R E, Wingate M T D, Buchan K L, Li Z X. 2008. Global record of 1600-700 Ma large igneous provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research, 160: 159~178.
参考文献
Ernst R E, Bell K. 2010. Large igneous provinces (LIPs) and carbonatites. Mineralogy and Petrology, 98: 55~76.
参考文献
Ernst R E, Bleeker W. 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: Significance for breakup events within Canada and adjacent regions from 2. 5 Ga to the Present. Canadian Journal of Earth Sciences, 47: 695~739.
参考文献
Ernst R E, Pereira E, Hamilton M A, Pisarevsky S A, Rodriques J, Tassinari C C G, Teixeira W, Van-Dunem V. 2013. Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Research, 230: 103~118.
参考文献
Ernst R E, Hamilton M A, Söderlund U, Hanes J A, Gladkochub D P, Okrugin A V, Kolotilina T, Mekhonoshin A S, Bleeker W, LeCheminant A N, Buchan K L, Chamberlain K R, Didenko A N. 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geoscience, 9: 464~469.
参考文献
Evans D A D, Mitchell R N. 2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology, 39: 443~446.
参考文献
Frizonde de Lamotte D, Fourdan B, Leleu S, Leparmentier F, de Clarens P. 2015. Style of rifting and the stages of Pangea breakup. Tectonics, 34: 1009~1029.
参考文献
Gaynor S P, Svensen H H, Polteau S, Schaltegger U. 2022. Local melt contamination and global climate impact: Dating the emplacement of Karoo LIP sills into organic-rich shale. Earth and Planetary Science Letters, 579: 117371.
参考文献
Goldberg A S. 2010. Dyke swarms as indicators of major extensional events in the 1. 9-1. 2 Ga Columbia supercontinent. Journal of Geodynamics, 50: 176~190.
参考文献
Heaman L M, LeCheminant A N. 1993. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chemical Geology, 110: 95~126.
参考文献
Hu Guohui, Wang Mengxi, Zhang Shuanhong, Zhao Yue, Zhang Qiqi. 2022. A ca. 1. 33 Ga mafic dyke identified from the Liaodong Peninsula, northeastern North China Craton: Implications for eastward extension of the Yanliao large igneous province. Precambrian Research, 378: 106770.
参考文献
Idnurm M, Giddings J W, Plumb K A. 1995. Apparent polar wander and reversal stratigraphy of the Palaeo-Mesoproterozoic southeastern McArthur basin, Australia. Precambrian Research, 72: 1~41.
参考文献
Johansson A. 2009. Baltica, Amazonia and the SAMBA connection—1000 million years of neighbourhood during the Proterozoic? Precambrian Research, 175: 221~234.
参考文献
Kirscher U, Mitchell R N, Liu Y, Nordsvan A R, Cox G M, Pisarevsky S A, Wang C, Wu L, Murphy J B, Li Z X. 2021. Paleomagnetic constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent. Geology, 49: 174~179.
参考文献
Kunzmann M, Schmid S, Blaikie T N, Halverson G P. 2019. Facies analysis, sequence stratigraphy, and carbon isotope chemostratigraphy of a classic Zn-Pb host succession: The Proterozoic middle McArthur Group, McArthur basin, Australia. Ore Geology Reviews, 106: 150~175.
参考文献
Li Huaikun, Lu Songnian, Li Huimin, Sun Lixin, Xiang Zhenqun, Geng Jianzhen, Zhou Hongying. 2009. Zircon and baddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation, North China. Geological Bulletin of China, 28: 1396~1404 (in Chinese with English abstract).
参考文献
Li Huaikun, Lu Songnian, Su Wenbo, Xiang Zhenqun, Zhou Hongying, Zhang Yongqing. 2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216~227.
参考文献
Li Huaikun, Zhang Jian, Tian Hui, Zhou Hongying, Xiang Zhenqun, Liu Huan. 2020. Recent advances in the study of the Meso- to Neoproterozoic chronostratigraphy of the Yanliao Aulacogen on the northern margin of the North China Craton. Geological Survey and Research, 43(2): 127~136 (in Chinese with English abstract).
参考文献
Li Qiuli, Liu Yu, Tang Guoqiang, Wang Kaiyi, Ling Xiaoxiao, Li Jiao. 2018. Zircon Th-Pb dating by secondary ion mass spectrometry. Journal of Analytical Atomic Spectrometry, 33: 1536~1544.
参考文献
Li Xianhua, Liu Yu, Li Qiuli, Guo Chunhua, Chamberlain K R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochemistry Geophysics Geosystem, 10: Q04010.
参考文献
Li Zhengxiang, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu Songnian, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160: 179~210.
参考文献
Lu Songnian, Zhao Guochun, Wang Huichu, Hao Guojie. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160: 77~93.
参考文献
Luepke J J, Lyons T W. 2001. Pre-Rodinian (Mesoproterozoic) supercontinental rifting along the western margin of Laurentia: Geochemical evidence from the Belt-Purcell Supergroup. Precambrian Research, 111: 79~90.
参考文献
Mäkitie H, Data G, Isabirye E, Mänttäri I, Huhma H, Klausen M B, Pakkanen L, Virransalo P. 2014. Petrology, geochronology and emplacement model of thegiant 1. 37 Ga arcuate Lake Victoria dyke swarm on the margin of a large igneous province in eastern Africa. Journal of African Earth Sciences, 97: 273~296.
参考文献
Marzoli A, Renne P R, Piccirillo E M, Ernesto M, Bellieni G, De Min A. 1999. Extensive 200 million-year-old continental flood basalts of the central Atlantic magmatic province. Science, 284: 616~618.
参考文献
Medig K P R, Turner E C, Thorkelson D J, Rainbird R H. 2016. Rifting of Columbia to form a deep-water siliciclastic to carbonate succession: The Mesoproterozoic Pinguicula Group of northern Yukon, Canada. Precambrian Research, 278: 179~206.
参考文献
Meert J G, Torsvik T H. 2003. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics, 375: 261~288.
参考文献
Meert J G, Santosh M. 2017. The Columbia supercontinent revisited. Gondwana Research, 50: 67~83.
参考文献
Mitchell R N, Kirscher U, Kunzmann M, Liu Y, Cox G M. 2021. Gulf of Nuna: Astrochronologic correlation of a Mesoproterozoic oceanic euxinic event. Geology, 49: 25~29.
参考文献
Moores E M. 1991. Southwest U. S. -East Antarctic (SWEAT) connection: A hypothesis. Geology, 19: 425~428.
参考文献
Nixon A L, Glorie S, Collins A S, Blades M L, Simpson A, Whelan J A. 2022. Inter-cratonic geochronological and geochemical correlations of the Derim Derim-Galiwinku/Yanliao reconstructed large igneous province across the North Australian and North China cratons. Gondwana Research, 103: 473~486.
参考文献
Page R W, Jackson M J, Krassay A A. 2000. Constraining sequence stratigraphy in north Australian basins: SHRIMP U-Pb zircon geochronology between Mt Isa and McArthur River. Australian Journal of Earth Sciences, 47: 431~459.
参考文献
Peace A L, Phethean J J J, Franke D, Foulger G R, Schiffer C, Welford J K, McHone G, Rocchi S, Schnabel M, Dore A G. 2020. A review of Pangaea dispersal and Large Igneous Provinces — In search of a causative mechanism. Earth-Science Reviews, 206: 102902.
参考文献
Peng Peng. 2015. Precambrian mafic dyke swarms in the North China craton and their geological implications. Science China Earth Sciences, 58: 649~675.
参考文献
Poletti J E, Cottle J M, Hagen-Peter G A, Lackey J S. 2016. Petrochronological constraints on the origin of the Mountain Pass ultrapotassic and carbonatite intrusive suite, California. Journal of Petrology, 57: 1555~1598.
参考文献
Puchkov V N, Bogdanova S V, Ernst R E, Kozlov V I, Krasnobaev A A, Söderlund U, Wingate M T D, Postnikov A V, Sergeeva N D. 2013. The ca. 1380 Ma Mashakigneous event of the southern Urals. Lithos, 174: 109~124.
参考文献
Revie D. 2017. Unconventional petroleum resources of the Roper Group, McArthur basin. Northern Territory Geological Survey, Record 2017-002, 64.
参考文献
Svensen H, Planke S, Malthe-Sorenssen A, Jamtveit B, Myklebust R, Rasmussen Eidem T, Rey S S. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429: 542~545.
参考文献
Svensen H, Fristad K E, Polozov A G, Planke S. 2015. Volatile generation and release from continental large igneous provinces. In: Schmidt A, Fristad K E, Elkins-Tanton L T, eds. Volcanism and Global Environmental Change. Cambridge: Cambridge University Press, 177~192.
参考文献
Svensen H H, Frolov S, Akhmanov G G, Polozov A G, Jerram D A, Shiganova O V, Melnikov N V, Iyer K, Planke S. 2018. Sills and gas generation in the Siberian Traps. Philosophical Transactions of the Royal Society A, 376: 20170080.
参考文献
Shi Yuruo, Liu Dunyi, Kröner A, Jian Ping, Miao Laicheng, Zhang Fuqin. 2012. Ca. 1318 Ma A-type granite on the northern margin of the North China Craton: Implications for intraplate extension of the Columbia supercontinent. Lithos, 148: 1~9.
参考文献
Shui Guohao, Zhang Shuanhong, Hu Guohui, Zhang Qiqi. 2020. Estimation of carbon dioxide released during emplacement of ca. 1. 32 Ga mafic sills into the Xiamaling Formation in Yanliao (northern Hebei-western Liaoning) area in the North China Craton and its potential environmental effect. Geological Review, 66(4): 909~918 (in Chinese with English abstract).
参考文献
Slezak P, Spandler C. 2019. Carbonatites as recorders of mantle-derived magmatism and subsequent tectonic events: An example of the Gifford Creek Carbonatite Complex, Western Australia. Lithos, 328-329: 212~227.
参考文献
Söderlund U, Johansson L. 2002. A simple way to extract baddeleyite (ZrO2). Geochemistry Geophysics Geosystem, 3: 1014.
参考文献
Storey B C, Vaughan A P M, Riley T R. 2013. The links between large igneous provinces, continental break-up and environmental change: Evidence reviewed from Antarctica. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104(1): 17~30.
参考文献
Su Li, Wang Tieguan, Li Xianhua, Song Shuguang, Yang Shuwen, Zhang Hongyu, Zhong Linxi. 2016. Petrogenesis and emplacement age of the gabbro-dolerite sills within the Mesoproterozoic Xiamaling Formation in Yanliao rifting zone. In: Sun Shu, Wang Tieguan, eds. Meso-Neoproterozoic Geology and Oil and Gas Resources in Eastern China. Beijing: Science Press, 325~342 (in Chinese).
参考文献
Sweet I P, Brakel A T, Rawlings D J, Haines P W, Plum K A, Wygralak A S. 1999. Mount Marumba, Northern Territory, 1: 250000 geological map series explanatory notes, SD 53-6. Australian Geological Survey Organization, Canberra and Northern Territory Geological Survey, Darwin, 1~84.
参考文献
Tack L, Wingate M T D, De Waele B, Meert J, Belousova E, Griffin B, Tahon A, Fernandez-Alonso M. 2010. The 1375 Ma Kibaran event in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Research, 180: 63~84.
参考文献
Teixeira W, Ernst R E, Hamilton M A, Lima G, Ruiz A S, Geraldes M C. 2015. Widespread ca. 1. 4 Ga intraplate magmatism and tectonics in a growing Amazonia. GFF, 138: 243~256.
参考文献
Verbaas J, Thorkelson D J, Milidragovic D, Crowley J L, Foster D, Gibson H D, Marshall D D. 2018. Rifting of western Laurentia at 1. 38 Ga: The Hart River sills of Yukon, Canada. Lithos, 316-317: 243~260.
参考文献
Wang Chong, Li Zhengxiang, Peng Peng, Pisarevsky S, Liu Yebo, Kirscher U, Nordsvan A. 2019. Long-lived connection between the North China and North Australian cratons in supercontinent Nuna: Paleomagnetic and geological constraints. Science Bulletin, 64: 873~876.
参考文献
Wang Qinghai, Yang Hao, Yang Debin, Xu Wenliang. 2014. Mid-Mesoproterozoic (~1. 32 Ga) diabase swarms from the western Liaoning region in the northern margin of the North China Craton: Baddeleyite Pb-Pb geochronology, geochemistry and implications for the final breakup of the Columbia supercontinent. Precambrian Research, 254: 114~128.
参考文献
Wang Xinping, Peng Peng, Wang Chong. 2022. A new 1. 32 Ga Tianshui mafic sill in the Liaodong area and its relations to the Yanliao large igneous province in the northern North China Craton. Precambrian Research, 369: 106535.
参考文献
Warren J K, George S C, Hamilton P J, Tingate P. 1998. Proterozoic source rocks: Sedimentology and organic characteristics of the Velkerri Formation, northern Territory, Australia. AAPG Bulletin, 82: 442~463.
参考文献
Williams K M, Kavanagh J L, Dennis D J C. 2022. Focused flow during the formation and propagation of sills: Insights from analogue experiments. Earth and Planetary Science Letters, 584: 117492.
参考文献
Whelan J A, Beyer E E, Donnellan N, Bleeker W, Chamberlin K R, Söderlund U, Ernst R E. 2016. 1. 4 billion years of Northern Territory geology: Insights from collaborative U-Pb zircon and baddeleyite dating. In: Annual Geoscience Exploration Seminar (AGES) Proceedings, Alice Springs, Northern Territory, 15-16 March 2016. Darwin: Northern Territory Geological Survey, 115~123.
参考文献
Xu Huiru, Yang Zhenyu, Peng Peng, Meert J G, Zhu Rixiang. 2014. Paleo-position of the North China craton within the supercontinent Columbia: Constraints from new paleomagnetic results. Precambrian Research, 255: 276~293.
参考文献
Yang Bo, Collins A S, Cox G M, Jarrett A J M, Denyszyn S, Blades M L, Farkas J, Glorie S. 2020. Using Mesoproterozoic sedimentary geochemistry to reconstruct basin tectonic geography and link organic carbon productivity to nutrient flux from a northern Australian Large Igneous Province. Basin Research, 32: 1734~1750.
参考文献
Zhang Shuanhong, Zhao Yue, Yang Zhenyu, He Zhefeng, Wu Hai. 2009. The 1. 35 Ga diabase sills from the northern North China Craton: Implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 288: 588~600.
参考文献
Zhang Shuanhong, Zhao Yue, Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222-223: 339~367.
参考文献
Zhang Shihong, Li Zhengxiang, Evans D A D, Wu Huaichun, Li Haiyan, Dong Jin. 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353-354: 145~155.
参考文献
Zhang Shuichang, Wang Xiaomei, Wang Huajian, Bjerrum C J, Hammarlund E U, Costa M M, Connelly J N, Zhang Baomin, Su Jin, Canfield D E. 2016. Sufficient oxygen for animal respiration 1, 400 million years ago. Proceedings of the National Academy of Sciences of the United States of America, 113: 1731~1736.
参考文献
Zhang Shuanhong, Zhao Yue, Li Xianhua, Ernst R E, Yang Zhenyu. 2017a. The 1. 33-1. 30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112~125.
参考文献
Zhang Shuanhong, Zhao Yue, Liu Yongsheng. 2017b. A precise zircon Th-Pb age of carbonatite sills from the world's largest Bayan Obo deposit: Implications for timing and genesis of REE-Nb mineralization. Precambrian Research, 291: 202~219.
参考文献
Zhang Shuanhong, Ernst R E, Pei Junling, Zhao Yue, Zhou Meifu, Hu Guohui. 2018. A temporal and causal link between ca. 1380 Ma large igneous provinces and black shales: Implications for the Mesoproterozoic time-scale and paleoenvironment. Geology, 46: 963~966.
参考文献
Zhang Shuanhong, Zhao Yue. 2018. The 1. 33-1. 30 Ga mafic large igneous province and REE-Nb metallogenic event in the northern North China Craton. Earth Science Frontiers, 25(5): 34~50 (in Chinese with English abstract).
参考文献
Zhang Shuanhong, Pei Junling, Hu Guohui, Zhang Qiqi, Shui Guohao, Zhao Yue. 2019. Genetic link between large igneous provinces and large volumes of black shale deposition and its implications. Journal of Geomechanics, 25: 920~931 (in Chinese with English abstract).
参考文献
Zhang Shuanhong, Ernst R E, Pei Junling, Zhao Yue, Hu Guohui. 2021. LIPs (large igneous provinces) and anoxia events in 'the Boring Billion'. In: Ernst R E, Dickson A J, Bekker A, eds. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes (1st Edition). Volume for AGU Geophysical Monograph Series (GM 255). American Geophysical Union and John Wiley & Sons, Inc. : 449~486.
参考文献
Zhang Shuanhong, Ernst R E, Yang Zhenyu, Zhou Zaizheng, Pei Junling, Zhao Yue. 2022a. Spatial distribution of 1. 4~1. 3 Ga LIPs and carbonatite-related REE deposits: Evidence for large-scale continental rifting in the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 597: 117815.
参考文献
Zhang Shuanhong, Ernst R E, Munson T J, Pei Junling, Hu Guohui, Liu Jianmin, Zhang Qiqi, Cai Yuhang, Zhao Yue. 2022b. Comparisons of the Paleo-Mesoproterozoic large igneous provinces and black shales in the North China and North Australian cratons. Fundamental Research, 2(1): 84~100.
参考文献
Zhang Shuanhong, Zhao Yue, Pei Junling, Wang Hongyu, Hu Guohui, Zhang Qiqi, Cai Yuhang, Kong Linghao, Wang Sen, Wang Kai. 2022. A review on large igneous provinces (LIPs) and their implications for paleogeographic reconstruction and continental breakup. Geological Review, 68(5): 1634~1652 (in Chinese with English abstract).
参考文献
Zhang Shuanhong, Peng Peng. 2023. Proterozoic large igneous provinces and implications for paleogeographic and paleoenvironmental reconstructions. Chinese Science Bulletin, 68: 2324~2340 (in Chinese with English abstract).
参考文献
Zhao Guochun, Cawood P A, Wilde S A, Sun Min. 2002. Review of the global 2. 1-1. 8 Ga orogens: implications for a pre-Rodinian supercontinent. Earth-Science Review, 59: 125~162.
参考文献
Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2003. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: Records in theNorth China craton. Gondwana Research, 6: 417~434.
参考文献
Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67: 91~123.
参考文献
Zhao Guochun, Han Yigui, Li Jianhua, Yao Jinlong, Liu Qian, Zhang Donghai, Wang Chao, Tang Qing, Zhang Jian, Yin Changqing, Zhang Guowei. 2022. Environmental effects of assembly and breakup of supercontinents. Acta Geologica Sinica, 96(9): 3120~3127 (in Chinese with English abstract).
参考文献
Zhao Wenzhi, Wang Xiaomei, Hu Suyun, Zhang Shuichang, Wang Huajian, Guan Shuwei, Ye Yuntao, Ren Rong, Wang Tongshan. 2019. Hydrocarbon generation characteristics and exploration prospects of Proterozoic source rocks in China. Science China Earth Sciences, 62: 909~934.
参考文献
Zhao Yue. 1990. The Mesozoic orogenies and tectonic evolution of the Yanshan Area. Geological Review, 36(1): 1~12 (in Chinese with English abstract)
参考文献
Zheng Yadong, Davis G A, Wang Cong, Darby B J, Zhang Changhou. 2000. Major Mesozoic tectonic events in the Yanshan belt and the plate tectonic setting. Acta Geologica Sinica, 74(4): 289~302 (in Chinese with English abstract)
参考文献
Zhu Yusheng, Yang Jinhui, Wang Hao, Wu Fuyuan. 2020. Mesoproterozoic (~1. 32 Ga) modification of lithospheric mantle beneath the North China craton caused by break-up of the Columbia supercontinent. Precambrian Research, 342: 105674.
参考文献
Zi Jianwei, Gregory C, Rasmussen B, Sheppard S, Muhling J R. 2017. Using monazite geochronology to test the plume model for carbonatites: The example of Gifford Creek Carbonatite Complex, Australia. Chemical Geology, 463: 50~60.
参考文献
李怀坤, 陆松年, 李惠民, 孙立新, 相振群, 耿建珍, 周红英. 2009. 侵入下马岭组的基性岩床的锆石及斜锆石U-Pb精确定年. 地质通报, 28(10): 1396~1404.
参考文献
李怀坤, 张健, 田辉, 周红英, 相振群, 刘欢. 2020. 华北克拉通北缘燕辽裂陷槽中-新元古代地层年代学研究进展. 地质调查与研究, 43(2): 127~136.
参考文献
税国豪, 张拴宏, 胡国辉, 张琪琪. 2020. 燕辽地区下马岭组内基性岩床侵位过程中CO2释放量估算及对表生环境影响的探讨. 地质论评, 66(4): 909~918.
参考文献
苏犁, 王铁冠, 李献华, 宋述光, 杨树文, 张红雨, 钟林汐. 2016. 燕辽裂陷带中元古界下马岭组辉长辉绿岩岩床成岩机制及侵入时间. 孙枢, 王铁冠, 主编. 中国东部中—新元古界地质学与油气资源. 北京: 地质出版社, 325~342.
参考文献
张拴宏, 赵越. 2018. 华北克拉通北部13. 3~13. 0亿年基性大火成岩省与稀土-铌成矿事件. 地学前缘, 25(5): 34~50.
参考文献
张拴宏, 裴军令, 胡国辉, 张琪琪, 税国豪, 赵越. 2019. 大火成岩省与大规模黑色页岩沉积的成因联系及其意义. 地质力学学报, 25(5): 920~931.
参考文献
张拴宏, 赵越, 裴军令, 王宏宇, 胡国辉, 张琪琪, 蔡瑜杭, 孔令昊, 王森, 王开. 2022. 大火成岩省及其在古大陆重建及裂解研究中的应用. 地质论评, 68(5): 1634~1652.
参考文献
张拴宏, 彭澎. 2023. 元古宙大火成岩省与超大陆重建及古环境. 科学通报, 68(18): 2324~2340.
参考文献
赵国春, 韩以贵, 李建华, 姚金龙, 刘潜, 张东海, 王潮, 唐卿, 张健, 尹常青, 张国伟. 2022. 超大陆聚散的环境效应. 地质学报, 96(9): 3120~3127.
参考文献
赵越. 1990. 燕山地区中生代造山运动及构造演化. 地质论评, 36(1): 1~12.
参考文献
郑亚东, Davis G A, 王琮, Darby B J, 张长厚. 2000. 燕山带中生代主要构造事件与板块构造背景问题. 地质学报, 74(4): 289~302.
目录contents

    摘要

    近20年的研究工作表明,华北克拉通北部燕辽地区侵入到中元古代沉积地层中的大规模辉绿岩床群构成了一个1.32 Ga的基性大火成岩省。该大火成岩省与华北克拉通西北缘白云鄂博矿区富稀土-铌火成碳酸岩相伴生。大火成岩省、沉积地层对比和古地磁资料研究结果表明,燕辽大火成岩省与北澳大利亚克拉通代理姆-加里温库大火成岩省是被大陆裂解分割开来的同一个基性大火成岩省的组成部分,显示1.8~1.3 Ga期间华北克拉通北-北东缘与北澳大利亚克拉通北缘在哥伦比亚(奴那)超大陆中长期相邻(连)。全球1.4~1.3 Ga大火成岩省及基性岩浆活动的时空分布及其岩石学、地球化学及同位素组成对比研究显示,这些全球广泛分布的大火成岩省或基性岩浆活动主要形成于裂谷环境。结合1.4 Ga左右哥伦比亚超大陆古地理重建结果,发现在哥伦比亚超大陆中存在沿劳伦(北美+格陵兰)克拉通西缘、西伯利亚克拉通西缘及北缘、波罗地克拉通东南缘、西非克拉通西缘及北缘、亚马逊克拉通西南缘、刚果/圣弗朗西斯科克拉通南缘及东缘、卡拉哈里克拉通东缘、华北克拉通北缘及北澳大利亚克拉通北缘分布,长度>15000 km的巨型裂谷系。该巨型裂谷系由一个主裂谷带和三个分支裂谷组成,其中主裂谷带和位于华北与北澳大利亚克拉通之间的分支裂谷发展成了大洋,并导致了大陆分离;而位于西伯利亚东缘、格陵兰北缘和波罗地东缘的1.38 Ga分支裂谷,以及位于北美北缘和西伯利亚西南缘的1.35~1.32 Ga分支裂谷则为夭折裂谷,未导致大陆裂离。这一巨型裂谷系是哥伦比亚超大陆裂解的重要标志,并可能是其最终裂解的最主要原因。另外,研究结果也显示,虽然全球两个最大规模的火成碳酸岩型稀土矿床,即华北克拉通西北缘的白云鄂博超大型稀土矿床和北美克拉通西缘的Mountain Pass超大型稀土矿床在哥伦比亚超大陆中并不相邻(相连),但却可以通过1.4~1.3 Ga巨型裂谷系相联系起来,显示这一巨型裂谷系控制了白云鄂博和Mountain Pass大型稀土矿床的形成,并具有较好的稀土及金属成矿潜力。未来需要进一步加强燕辽辉绿岩床群侵位机制与岩浆补给系统,岩床侵位过程中温室气体排放量定量估算及其环境效应,哥伦比亚超大陆中1.4~1.3 Ga巨型裂谷系的形成机制、深部动力学背景、环境效应及资源能源潜力等方面的研究。

    Abstract

    Twenty years of research on the Yanliao sill swarms intruding into the Mesoproterozoic strata in the northern North China Craton (NCC) shows that the Yanliao sill swarms constitute a ca. 1.32 Ga mafic large igneous province (LIP) termed as the Yanliao LIP, which is coeval with the REE-Nb rich carbonatites in the Bayan Obo giant REE deposit on the northwestern margin of the NCC. A comparison of intraplate mafic events interpreted as LIPs or portions of LIPs (LIP fragments/remnants due to continental breakup or erosion) from the NCC and North Australian Craton (NAC), in combined with paleomagnetic data indicate that the northern-northeastern margin of the NCC had been connected to the northern margin of the NAC for almost 500 Ma from ca. 1.8 Ga to 1.3 Ga. Spatial and temporal distributions of the 1.4~1.3 Ga LIPs and smaller intraplate mafic magmatic events (interpreted as LIP fragments/remnants) in the refined paleogeographic reconstruction map of Columbia (Nuna) supercontinent, together with previous petrological, geochemical and isotopic results reveal a 1.4~1.3 Ga large-scale continental rift system extending about 15000 km across the Columbia supercontinent. This huge continental rift zone extends along the western Laurentia (North America and Greenland), western-northern Siberia, southeastern Baltica, western-northern West Africa, southwestern Amazonia, southern-eastern Congo/São Francisco, eastern Kalahari, northern NCC and northern NAC and consists of a main rift zone and three branch rift zones. The main rift zone along western Laurentia, western-northern Siberia, southeastern Baltica, western-northern West Africa, southwestern Amazonia, southern-eastern Congo/São Francisco, eastern Kalahari, northern NCC and northern NAC and the rift zone branch between the NAC and NCC had developed to the drifting stage (new oceans) and resulted in fragmentation and final breakup of Columbia supercontinent. However, the other two rift zone branches including one extending to eastern Siberia, northern Greenland and eastern Baltica (1.38 Ga), and another extending to northern North America and southwestern Siberia (1.35~1.32 Ga) are most likely failed rifts and haven't resulted in separation of Siberia from Laurentia and Baltica, respectively. The 1.4~1.3 Ga large-scale continental rift system is considered as the main indicator and a proximal reason for final breakup of the Columbia supercontinent. This newly identified huge continental rift zone system had also controlled the distributions of the world's first and second largest REE-Nb deposits (the Bayan Obo deposit on northwestern margin of the NCC and Mountain Pass deposit in western Laurentia) and is most likely a favorable metallogenic belt for other carbonatite-related REE (-Nb) deposits and other metallogenic types such as giant clastic-dominated Zn-Pb-Ag deposits. Future research directions are suggested to focus on the emplacement mechanism and magma plumbing system of the Yanliao LIP, quantitative estimation of greenhouse gases released during emplacement of the Yanliao sill swarms and their environmental effects, the mechanism and deep processes for formation of the 1.4~1.3 Ga huge rift system, and global environmental effects and resource potentials of the 1.4~1.3 Ga large-scale rift system.

  • 大火成岩省(large igneous province,LIP)或称为大岩浆岩省(large magmatic province)代表了地质历史上相对较短的时期内(一般在<1 Ma,部分可到5~15 Ma)形成的,规模宏大(面积>10万km2,体积>10万km3)的板内幔源岩浆活动(Coffin and Eldholm,1992,1994; Ernst,2014),对于研究全球性大气-海洋环境的巨变与生物灭绝、大规模成矿及超大陆的重建与裂解均有非常重要的意义(如:Coffin and Eldholm,1992,1994; Marzoli et al.,1999; Ernst,2014)。大火成岩省一般由基性熔岩流、岩床和岩墙组成,部分大火成岩省还伴生有少量的酸性岩、金伯利岩及火成碳酸岩等(Ernst and Bell,2010; Ernst,2014),其中金伯利岩和火成碳酸岩是全球金刚石及稀土矿床的主要围岩。

  • 厘定一个大火成岩省的核心是要确定其形成时代、规模及地球化学性质。部分大火成岩省形成后由于受到大陆裂解及抬升剥蚀等因素的影响,呈碎片/残片状(LIP fragments/remnants)分散分布在不同的大陆上。如形成于约200 Ma的中大西洋大火成岩省(Central Atlantic magmatic province,CAMP),由于受潘吉亚超大陆裂解的影响,分散分布在北美洲、南美洲、非洲及欧洲等不同的陆块上(Courtillot et al.,1999; Marzoli et al.,1999)。通过大火成岩省及沉积地层、古生物等地质标志对比,结合古地磁资料,将受大陆裂解分离的大火成岩省残片复原,将会为古大陆恢复重建及裂解研究提供可靠依据(Bleeker and Ernst,2006; Ernst et al.,20082016; Ernst and Bleeker,2010)。特别是对重建标志较少的前寒武纪超大陆,大火成岩省在其重建及裂解研究中具有非常重要的科学价值(如:Ernst,2014; 张拴宏等,2022; 张拴宏和彭澎,2023)。

  • 1 华北克拉通燕辽大火成岩省的厘定

  • 20世纪60~70年代的区域地质调查结果显示,在华北克拉通北部燕辽地区中元古代沉积地层内有大量的辉绿岩床侵位,这些辉绿岩床主要侵位于下马岭组、雾迷山组、高于庄组、杨庄组、铁岭组等地层单元,特别是在下马岭组页岩内侵位最为广泛(图1),但在下马岭组之上的沉积地层中却不发育(辽宁省地质矿产局,1965,1967,1969,1970,1972,1974,1976)。特别是从冀西北至辽西超过400 km范围的下马岭组黑色页岩内存在有3~5层、厚度从数米至上百米辉绿岩床群,野外沿走向可追溯的长度达到数十至上百千米(图1),并与地层一起发生褶皱变形。在辽西朝阳地区侵位于雾迷山组和高于庄组地层内的辉绿岩床厚度可达数百米,规模非常宏大。受测年技术手段的限制,前人主要认为这些辉绿岩床形成于中生代(辽宁省地质矿产局,1965,1967,1969,1970),导致其地质意义长期以来被忽视。

  • 近20~30年以来,随着硅不饱和岩浆岩中斜锆石分选及定年技术的进步(Heaman and LeCheminant,1993; Söderlund and Johansson,2002; Li Xianhua et al.,2009),斜锆石U-Pb定年在前寒武纪基性大火成岩省时代厘定方面发挥着越来越重要的作用(Ernst,2014)。考虑到燕辽地区辉绿岩床只侵位到下马岭组及其下部地层层位,以及前人关于这些辉绿岩床群侵位时代主要为中生代的认识与该地区中生代已经强烈变形的地质事实(如:赵越,1990; 郑亚东等,2000; Davis et al.,2001)是矛盾的,从2001年开始,笔者及其团队对燕辽地区辉绿岩床群开展了详细的野外调查及剖面测量,并尝试从这些辉绿岩中分选斜锆石以确定其侵位时代。

  • 笔者及其团队通过对采自辽宁朝阳南部阎王鼻子水库附近侵入到雾迷山组内辉绿岩床样品的锆石及斜锆石LA-ICP-MS U-Pb定年,粗略地将其侵位时代限定在1.35 Ga左右,结合全球基性岩浆活动对比及古地磁数据,提出燕辽辉绿岩床群侵位于中元古代中期,并与哥伦比亚(奴那)超大陆的裂解有关(Zhang Shuanhong et al.,2009)。与此同时,李怀坤等(2009)通过对河北宽城化皮溜子黄家庄侵位到下马岭组内辉绿岩床样品的锆石SHRIMP及斜锆石ID-TIMS U-Pb定年,限定其侵位时代为1.32 Ga,并从限定下马岭组沉积时代及华北克拉通中元古代地层划分方案的角度讨论了这些辉绿岩床的地质意义。此后,不同学者对燕辽不同地区侵位到中元古代沉积地层中辉绿岩床群开展了大量斜锆石SIMS U-Pb/Pb-Pb测年,结果显示这些辉绿岩床群侵位时代接近,其峰期侵位时代为1.32 Ga(Zhang Shuanhong et al.,20122017a; Wang Qinghai et al.,2014; Peng Peng,2015; 苏犁等,2016; Zhu Yusheng et al.,2020)。

  • 多年的野外地质调查结果表明,燕辽辉绿岩床群分布在西起北京西山、河北怀来,向东经京北、河北兴隆、承德县、宽城、平泉、辽西辽源、朝阳至义县近600 km长、200 km宽的范围内,分布面积近12万km2Zhang Shuanhong et al.,20122017a; 张拴宏和赵越,2018)(图2)。剖面测量结果显示,燕辽辉绿岩床群累计厚度有自西向东逐步增加的趋势,在北京西山、河北怀来累计厚度约50 m,在辽西朝阳地区累计厚度可达1800 m(Zhang Shuanhong et al.,2017a)。岩石学及地球化学分析结果表明,燕辽辉绿岩床群具有基性岩及板内、拉斑质地球化学特征(Zhang Shuanhong et al.,20122017a; Wang Qinghai et al.,2014; 苏犁等,2016; Zhu Yusheng et al.,2020)。因此,燕辽地区中元古代沉积地层内侵位的大规模辉绿岩床群构成了一个形成于1.32 Ga的基性大火成岩省,我们将其命名为燕辽大火成岩省(Zhang Shuanhong et al.,2017a)。燕辽大火成岩省的侵位伴随有前岩浆期抬升,表现为下马岭组与长龙山组之间的平行不整合;根据下马岭组内斑脱岩年龄及地层厚度估算的抬升时限为1.35~1.34 Ga,比燕辽大火成岩省形成时间早20~30 Ma(Zhang Shuanhong et al.,2017a)。

  • 图1 河北承德县侵入到下马岭组页岩中的辉绿岩床

  • Fig.1 Field photographs showing dolerite sills intruding into the shales of Xiamaling Formation near Chengde County

  • 除燕辽大规模辉绿岩床群之外,在华北克拉通北部其他地区还存在一些近同期侵入的基性岩墙或岩床(Peng Peng,2015; Hu Guohui et al.,2022; Wang Xinping et al.,2022),表明燕辽大火成岩省还可以向东-西两侧延伸。如山西大同地区北东走向、近70 m宽基性岩墙的斜锆石U-Pb年龄为1326±4 Ma(Peng Peng,2015);辽东鞍山甜水镇侵入到中元古代沉积地层中辉长岩岩床的斜锆石U-Pb年龄为1324±2 Ma和1326±5 Ma(Wang Xinping et al.,2022);辽东青城子镇北东侵入到辽河群内近南-北向辉长岩墙的锆石LA-ICP-MS U-Pb年龄为1.33 Ga左右(Hu Guohui et al.,2022)。

  • 除基性岩之外,在华北克拉通北部还存在一些与燕辽大火成岩省同期侵位的火成碳酸岩及花岗岩(Zhang Shuanhong et al.,20122017b2022a; Shi Yuruo et al.,2012)。锆石LA-ICP-MS U-Pb定年结果显示,内蒙古商都北东侵位到白云鄂博群中的眼球状花岗岩体侵位于1.33~1.31 Ga(Zhang Shuanhong et al.,2012);集宁北部乌兰哈达地区侵位到白云鄂博群中的花岗岩脉侵位于1.32 Ga左右(Shi Yuruo et al.,2012)。白云鄂博矿区富稀土-铌火成碳酸岩中同岩浆期结晶锆石的LA-ICP-MS 208Pb/232Th年龄为1310±9~1301±12 Ma(Zhang Shuanhong et al.,2017b2022a),富稀土火成碳酸岩的锆石SIMS 208Pb/232Th年龄为1327±20 Ma(Li Qiuli et al.,2018)。锆石微量元素及包体矿物组成显示,这些锆石不但是与火成碳酸岩同期结晶的,而且是与稀土-铌矿化同期结晶的,其年龄代表了白云鄂博火成碳酸岩及稀土-铌矿化的时代,说明白云鄂博矿区火成碳酸岩及稀土-铌矿化形成于1.31~1.30 Ga左右,并与燕辽大火成岩省相伴生(Zhang Shuanhong et al.,2017b)。

  • 2 燕辽大火成岩省与代理姆-加里温库大火成岩省对比及华北-北澳大利亚克拉通连接关系的确立

  • 华北克拉通中元古代(1.80~1.00 Ga)沉积地层较为齐全(如:Lu Songnian et al.,2008; Li Huaikun et al.,2013; 李怀坤等,2020),并且发育有多期次的中元古代基性岩浆活动(如:Peng Peng,2015)。与华北克拉通相似,北澳大利亚克拉通是全球为数不多的保留有较完整中元古代沉积地层序列的克拉通之一,自下而上分别称为Tawallah群、McArthur群、Nathan群和Roper群(Idnurm et al.,1995; Sweet et al.,1999; Page,2000; Dutkiewicz et al.,2007)。北澳大利亚克拉通中元古代基性岩浆活动也较为发育,其中最为著名的是麦克阿瑟盆地内广泛侵位于Roper群Velkerri组,少量侵位于Corcoran组、Bessie Greek组、Mainoru组、Crawford组、Dherwin组、Arnold组、Jalboli组、Moroak砂岩及Bukalorkmi砂岩中的基性岩床群,称为代理姆(Derim Derim)辉绿岩床群(Sweet et al.,1999; Abbott et al.,2001)。20世纪90年代中期,澳大利亚地质调查局J. Claoué-Long对代理姆辉绿岩床群一个样品开展了斜锆石SHRIMP U-Pb定年,并在1997年获得了其侵位年龄为1324±4 Ma。该侵位年龄在该地区多个区调报告中均有提及(Sweet et al.,1999; Abbott et al.,2001),但这套辉绿岩床群地质意义却一直未得到重视。野外地质调查及钻孔资料揭示,代理姆辉绿岩床群的分布范围>6万km2,厚度变化于26~173 m(图3;Zhang Shuanhong et al.,2022b)。钻孔及航磁资料显示,在中元古代麦克阿瑟盆地及其北部的新元古代 —二叠纪Arafura盆地深部,存在有与代理姆辉绿岩床群同期侵入的北东至北西走向加里温库(Galiwinku)基性岩墙群(Goldberg,2010)。近年来获得的加里温库基性岩墙群钻孔样品的斜锆石SIMS U-Pb年龄为1325±36 Ma(Whelan et al.,2016),支持了前人关于加里温库基性岩墙群与代理姆辉绿岩床群同期侵位的推断(Goldberg,2010)。

  • 北澳大利亚克拉通代理姆辉绿岩床群和加里温库基性岩墙群分布在长度约400 km,宽度约600 km的范围内,分布面积超过了24万km2(图3)。这些基性岩床及岩墙侵位时代接近,其斜锆石SHRIMP及CA-ID-TIMS U-Pb年龄为1325±36~1312.9±0.7 Ma(Abbott et al.,2001; Whelan et al.,2016; Yang Bo et al.,2020; Bodorkos et al.,2021)。代理姆辉绿岩床群和加里温库基性岩墙群具有相似的板内、拉斑质地球化学特征(Zhang Shuanhong et al.,2017a2022a2022b),因此构成了一个侵位于1.32 Ga的基性大火成岩省,被称为代理姆-加里温库大火成岩省(Zhang Shuanhong et al.,2017a; Nixon et al.,2022)。

  • 在全球大火成岩省数据库中(Ernst,2014),华北克拉通燕辽大火成岩省与北澳大利亚代理姆-加里温库大火成岩省在形成时代、产状、围岩特征及地球化学特征等方面均有明显的相似性,表明二者可能是被大陆裂解分割开来的同一个大火成岩省的组成部分,即华北克拉通与北澳大利亚克拉通在中元古代中期是相邻或相连的(Zhang Shuanhong et al.,2017a),这一推测与前人及近期的古地磁重建结果相吻合(Zhang Shihong et al.,2012; Xu Huiru et al.,2014),也得到了近年来大量研究成果的支持(Wang Chong et al.,2019; Yang Bo et al.,2020; Bodorkos et al.,2021; Mitchell et al.,2021; Kirscher et al.,2021; Nixon et al.,2022; Wang Xinping et al.,2022)。结合山西大同1.32 Ga辉绿岩墙及加里温库基性岩墙群几何学产状(Peng Peng,2015),提出华北克拉通北-北东缘与北澳大利亚克拉通北缘在中元古代中期是相连或相邻的,由加里温库基性岩墙群几何学产状推测的地幔柱中心位于北澳大利亚克拉通北部Arafura盆地以北地区(图3; Zhang Shuanhong et al.,2017a)。

  • 通过对华北与北澳大利亚克拉通1.8~0.8 Ga大火成岩省(或大规模基性岩浆活动)及大规模黑色页岩时空分布的系统总结对比,特别是对北澳大利亚麦克阿瑟盆地钻孔资料的综合分析,结合新的年代学及地球化学数据,发现华北与北澳大利亚克拉通1.8~1.3 Ga期间大火成岩省及大规模黑色页岩沉积时代有明显的一致性,但在1.3 Ga之后出现了明显的差别(图4; Zhang Shuanhong et al.,2022b)。其中1.79~1.77 Ga、1.73 Ga、1.68~1.67 Ga和1.32 Ga大火成岩省(或大规模基性岩浆活动)在两个克拉通可以精确匹配(Zhang Shuanhong et al.,2022b)。在黑色页岩沉积时代方面,华北克拉通的崔庄组、串岭沟组与北澳大利亚Barney Creek组相近;华北克拉通的下马岭组与北澳大利亚克拉通的Velkerri和Kyalla组相似(图4; Zhang Shuanhong et al.,2022b)。古地磁重建结果显示,华北与北澳大利亚克拉通在1.78~1.32 Ga期间具有相似的视极移曲线,但在1.3 Ga之后出现明显差别,表明这两个克拉通在1.78~1.32 Ga近0.5 Ga期间长期相连(或相邻),但在1.3 Ga之后发生裂解分离(Zhang Shuanhong et al.,2022b)。

  • 3 哥伦比亚超大陆1.4~1.3 Ga巨型裂谷系的厘定及其成矿意义

  • 超大陆裂解(裂离)是地质历史上影响深远的重大地质事件,对全球构造格局重塑、大气-海洋环境剧变、生物演化与灭绝及大规模成矿均有显著的影响(Storey et al.,2013; Ernst,2014; 赵国春等,2022)。潘吉亚超大陆的裂解过程以发育201~55 Ma多期大火成岩省及大陆裂谷为主要特征,并形成了延伸长度近20000 km的大西洋-卡鲁巨型裂谷系(Courtillot et al.,1999; Frizonde de Lamotte et al.,2015; Pearce et al.,2020; 张拴宏等,2022)。罗迪尼亚超大陆的裂解也伴随有825~740 Ma多期大火成岩省及大陆裂谷(Meert and Torsvik,2003; Li Zhengxiang et al.,2008)。作为地质历史上最早形成的超大陆,前人对哥伦比亚(奴那)超大陆聚合过程的认识已经较为清晰,但关于其裂解过程及裂解机制的认识还不清楚(Zhao Guochun et al.,200220032004)。

  • 图4 华北克拉通与北澳大利亚克拉通1800~800 Ma 基性岩浆作用(绿色条带)及黑色页岩(黑色条带) 沉积对比图(据Zhang Shuanhong et al.,2022b修改)

  • Fig.4 Comparisons of the 1800~800 Ma LIP (or mafic magmatic event) barcodes (green bars) and black shales (black bars) in the North China and North Australian cratons (modified after Zhang Shuanhong et al., 2022b)

  • 尽管前人发现了大量1.4~1.3 Ga与裂谷-裂解有关的大火成岩省或基性岩浆活动(Ernst,2014;图5),但未发现与哥伦比亚裂解相关的巨型裂谷系。1.4~1.3 Ga大火成岩省或基性岩浆活动(包括基性岩床、岩墙及基性熔岩等)在全球主要克拉通均有广泛分布(图5),包括北美克拉通西缘1.38 Ga的Salmon River Arch和Hart River基性岩床、北美克拉通北缘1.35 Ga的Barking Dog基性岩床和1.37 Ga的Aillik Bay煌斑岩墙、格陵兰克拉通北部1.38 Ga的Midsommersø-Zig-Zag Dal辉绿岩及基性熔岩、波罗地克拉通西部1.35 Ga的Sveconorwegian变质辉绿岩和1.33 Ga的Kelseaa辉绿岩墙、波罗地克拉通东缘1.38 Ga的Mashak(Kama-Belsk)大火成岩省、西伯利亚克拉通北缘1.38 Ga的Chieress基性岩墙和1.36 Ga的Severobyrrang基性岩床、西伯利亚克拉通东南缘1.34 Ga的Listvyanka基性岩墙、西伯利亚克拉通南缘1.35 Ga的Listvyanka基性岩墙和1.34 Ga的Goloustnaya基性岩墙、华北克拉通北部1.32 Ga的燕辽大火成岩省和1.35~1.32 Ga的基性岩、北澳大利亚克拉通1.32 Ga的代理姆-加里温库大火成岩省、西澳大利亚克拉通1.39 Ga的Biberkine基性岩床群、刚果克拉通1.38 Ga的Kunene-Kibaran大火成岩省、卡拉哈里克拉通Pilanesberg大火成岩省、亚马逊克拉通南西1.42~1.37 Ga 的基性岩床(墙)和熔岩、西非克拉通1.42~1.38 Ga的Bas Drâa基性岩墙和1.36 Ga的Tagrara d'Akka基性岩墙及西南极西福尔丘陵1.38 Ga的基性岩墙等(图5)。1.4~1.3 Ga火成碳酸岩包括位于中国华北克拉通北部的1.32~1.30 Ga的中国白云鄂博、劳伦克拉通西缘的1.40~1.33 Ga的Mountain Pass、西澳大利亚克拉通西部的1.37 Ga的Gifford Creek、格陵兰南部的1.33 Ga的Grønedal-Íka及卡拉哈里东南部1.36 Ga的Stukpan和1.34 Ga的Spitskop等,其中白云鄂博、Mountain Pass及Gifford Creek等火成碳酸岩均富含稀土矿床(图5)。

  • 1.4~1.3 Ga大火成岩省岩性主要为辉绿岩或辉长岩岩床(墙)、基性熔岩及基性—超基性层状侵入体,伴生岩石包括正长岩、二长岩、火成碳酸岩、斜长岩、花岗岩、流纹岩及凝灰岩等(Zhang Shuanhong et al.,2022a)。其中大多数基性岩均具有亚碱性、板内、拉斑质地球化学组成(Zhang Shuanhong et al.,2022a)。前人研究结果显示,哥伦比亚超大陆中大多数1.4~1.3 Ga大火成岩省或基性岩浆活动均与陆内裂谷或哥伦比亚超大陆裂解有关(Doughty and Chamberlain,1996; Zhang Shuanhong et al.,20092012; 2017a; 2022a,2022b; Tack et al.,2010; Ernst et al.,2013; Puchkov et al.,2013; Mäkitie et al.,2014; Teixeira et al.,2015; Medig et al.,2016; Verbaas et al.,2018)。地球化学及沉积学证据显示,北美克拉通西缘1.38 Ga的Hart River基性岩床与劳伦和澳大利亚的裂解有关(Luepke and Lyons,2001; Medig et al.,2016; Verbaas et al.,2018)。波罗地克拉通东缘1.38 Ga的Mashak(Kama-Belsk)大火成岩省被认为与波罗地克拉通东缘和西伯利亚东缘之间的裂谷作用有关(Puchkov et al.,2013)。华北克拉通北部的燕辽大火成岩省及北澳大利亚克拉通代理姆-加里温库大火成岩省被认为与哥伦比亚超大陆最终裂解及华北克拉通与北澳大利亚克拉通的裂离有关(Zhang Shuanhong et al.,200920122017a2022a2022b; Kirscher et al.,2021)。

  • 图5 全球1.4~1.3 Ga大火成岩省及火成碳酸岩分布图(据Zhang Shuanhong et al.,2022a修改; 底图来源于Ernst,2014

  • Fig.5 Distribution of the 1.4~1.3 Ga LIPs or LIP fragments/remnants and carbonatites (after Zhang Shuanhong et al., 2022a; base map was updated and modified after Ernst, 2014)

  • 全球主要克拉通1.8~1.2 Ga古地磁极分析结果表明,哥伦比亚超大陆中主要陆块群(华北、北澳大利亚、亚马逊、波罗地、劳伦、西伯利亚、西非、刚果-圣弗朗西斯科克拉通)1.8~1.3 Ga的古地磁极运移趋势相似,但在1.3 Ga之后出现明显差别(图6),表明这些克拉通在1.8~1.3 Ga是哥伦比亚超大陆的重要组成部分,但在1.3 Ga之后裂离。根据古地磁数据,并结合不同陆块群连接关系的其他地质证据(Moores,1991; Cawood and Korsch,2008; Johansson,2009; Evans and Mitchell,2011; Ernst et al.,2016; Meert and Santosh,2017; Zhang Shuanhong et al.,2017a),重建了哥伦比亚超大陆1.4 Ga左右古地理图(图6; Zhang Shuanhong et al.,2022a),为认识哥伦比亚超大陆中1.4~1.3 Ga大火成岩省或基性岩浆活动的时空分布提供了重要依据。

  • 图6 哥伦比亚超大陆主要陆块1.8~1.2 Ga古地磁极对比图(a~g)

  • Fig.6 Paleomagnetic poles of the main cratons in the Columbia supercontinent during 1.8~1.2 Ga (a~g)

  • 各古地磁极均绕欧拉极旋转,使1.4 Ga古地磁极位于北极点附近(据Zhang Shuanhong et al.,2022a修改);图6a~g中古地磁极年龄单位为Ma

  • The paleomagnetic poles are rotated around the Euler pole of each plate while the 1.4 Ga poles are located in North pole (after Zhang Shuanhong et al., 2022a) ; ages of the paleomagnetic poles in Fig.6 a~g are in Ma

  • 在1.4 Ga左右哥伦比亚超大陆古地理重建图上,1.4~1.3 Ga大火成岩省或基性岩浆活动有明显的分布规律(图7)。根据1.4~1.3 Ga具裂谷或裂解性质大火成岩省及基性岩浆活动的时空分布,发现在哥伦比亚超大陆中存在有沿劳伦克拉通西缘、西伯利亚克拉通西缘及北缘、波罗地克拉通东南缘、西非克拉通西缘及北缘、亚马逊克拉通西南缘、刚果/圣弗朗西斯科克拉通南缘及东缘、卡拉哈里克拉通东缘、华北克拉通北缘及北澳大利亚克拉通北缘分布,长度>15000 km的巨型裂谷系(图7)。该巨型裂谷系由一个主裂谷带和三个分支裂谷组成,其中主裂谷带和位于华北克拉通与北澳大利亚克拉通之间的分支裂谷发展成了大洋并导致了大陆分离;而位于西伯利亚东缘、格陵兰北缘和波罗地东缘的1.38 Ga分支裂谷及位于北美北缘和西伯利亚西南缘的1.35~1.32 Ga分支裂谷则为夭折裂谷,未导致大陆裂离(图7)。这一巨型裂谷系是哥伦比亚超大陆裂解的重要标志,并可能是其最终裂解的最主要原因(Zhang Shuanhong et al.,2022a)。1.4~1.3 Ga这一巨型裂谷系及哥伦比亚超大陆的裂解可能与1.38 Ga和1.32 Ga左右的两期地幔柱活动(图7)有关,但还需要开展更多的研究工作来证实。

  • 1.4~1.3 Ga是全球火成碳酸岩型稀土矿床的最主要发育时期之一。如位于华北克拉通西北缘的白云鄂博矿床是世界最大规模的稀土矿床,近年来对富稀土火成碳酸岩的锆石Th-Pb定年结果显示富稀土-Nb火成碳酸岩侵位及稀土初始成矿时代为1.33~1.30 Ga(Zhang Shuanhong et al.,2017b2022a; Li Qiuli et al.,2018)。位于北美西缘美国加州的Mountain Pass是世界第二大稀土矿床,其富稀土火成碳酸岩的独居石Th-Pb年龄为1396±16 Ma至1371±10 Ma(Poletti et al.,2016)。位于澳大利亚西南部Gifford Creek火成碳酸岩杂岩体内Yangibana超大型稀土矿床的成矿时代为1.37~1.36 Ga(Zi Jianwei et al.,2017; Slezak and Spandler,2019)。虽然白云鄂博和Mountain Pass两个全球最大规模的火成碳酸岩型稀土矿床,在哥伦比亚超大陆中并不相邻(相连),但却可以通过1.4~1.3 Ga巨型裂谷系相联系起来,显示这一巨型裂谷系控制了白云鄂博和Mountain Pass大型稀土矿床的形成,并具有较好的稀土成矿潜力(Zhang Shuanhong et al.,2022a)。此外,沿该巨型裂谷系内还分布有巨厚的黑色页岩沉积(包括其变质形成的炭质板岩)及喷流-沉积型铜铅锌银矿床(Warren et al.,1998; Zhang Shuichang et al.,2016; Revie,2017; Zhang Shuanhong et al.,201820212022b; 张拴宏等,2019; Kunzmann et al.,2019; Zhao Wenzhi et al.,2019; Cox et al.,2022),可能具有较好的油气及金属成矿潜力。

  • 图7 哥伦比亚超大陆中1.4~1.3 Ga巨型裂谷系重建图(据Zhang Shuanhong et al.,2022a修改)

  • Fig.7 Paleogeographic reconstruction map of Columbia supercontinent showing spatial and temporal distributions of the 1.4~1.3 Ga LIPs and huge continental rift system (after Zhang Shuanhong et al., 2022a)

  • 右上角插图显示了不同克拉通1.5~1.3 Ga古地磁极

  • The inset map shows the 1.5~1.3 Ga paleomagnetic poles of different cratons

  • 哥伦比亚超大陆中>15000 km长度、1.4~1.3 Ga巨型裂谷系的厘定一方面为认识哥伦比亚超大陆的裂解过程、裂解机制及哥伦比亚向罗迪尼亚超大陆的转换提供了新的思路;另一方面也为认识白云鄂博和Mountain Pass超大型稀土矿床形成的构造背景及开展全球稀土及金属成矿带对比提供了重要的理论依据。

  • 4 结论及展望

  • 近20年华北克拉通燕辽辉绿岩床群及其全球对比研究,为认识华北克拉通在哥伦比亚超大陆中的位置及哥伦比亚超大陆的裂解过程及全球稀土成矿带对比提供了主要依据,也提供了一个从辉绿岩床群和大火成岩省全球对比结合古地磁及其他地质证据逐步认识全球超大陆重建与裂解过程及相关成矿作用的典型实例。

  • (1)华北克拉通北部侵位于中元古代沉积地层内燕辽辉绿岩床群分布面积超过12万km2,累计厚度50 m至1800 m。这些辉绿岩具有板内、拉斑质地球化学特征及相近的侵位年龄,构成了一个侵位于1.32 Ga,并具有全球对比意义的基性大火成岩省。白云鄂博富稀土-铌火成碳酸岩是燕辽大火成岩省的伴生产物。燕辽大火成岩省还伴生有少量花岗岩侵位。

  • (2)华北克拉通燕辽大火成岩省与北澳大利亚代理姆-加里温库大火成岩省在形成时代、产状、围岩特征及地球化学特征等方面均有明显的相似性,是被大陆裂解分割开来的同一个大火成岩省的组成部分。1.8~0.8 Ga大火成岩省(或大规模基性岩浆活动)及大规模黑色页岩时空分布对比,结合古地磁结果显示,华北克拉通北-北东缘与北澳大利亚克拉通北缘在1.8~1.3 Ga近0.5 Ga期间长期相连(邻),但在1.3 Ga之后裂解(裂离)。

  • (3)全球1.4~1.3 Ga具裂谷或裂解性质大火成岩省及基性岩浆活动时空分布结合古地理重建结果揭示,在哥伦比亚超大陆中存在有沿劳伦克拉通西缘、西伯利亚克拉通西缘及北缘、波罗地克拉通东南缘、西非克拉通西缘及北缘、亚马逊克拉通西南缘、刚果/圣弗朗西斯科克拉通南缘及东缘、卡拉哈里克拉通东缘、华北克拉通北缘及北澳大利亚克拉通北缘分布,长度>15000 km的巨型裂谷系。该巨型裂谷系是哥伦比亚超大陆裂解的重要标志,并可能是其最终裂解的最主要原因。

  • (4)哥伦比亚超大陆中1.4~1.3 Ga巨型裂谷系控制了全球两个最大规模的火成碳酸岩型稀土矿床,即华北克拉通西北缘的白云鄂博超大型稀土矿床和北美克拉通西缘的Mountain Pass超大型稀土矿床的分布。沿该巨型裂谷系内还分布有巨厚的黑色页岩沉积及喷流-沉积型铜铅锌银矿床,可能具有较好的稀土、油气及金属成矿潜力。

  • 尽管燕辽大火成岩省及其全球对比取得了一些重要进展,但仍有诸多问题需要进一步开展研究,未来需要加强以下几方面的研究:

  • (1)燕辽辉绿岩床群侵位机制、生长过程与岩浆补给系统。燕辽辉绿岩床群分布面积(长度>600 km)及厚度(单层厚度可达600~800 m,最大累计厚度可达1800 m)大,在世界其他地区并不多见,具有典型性和代表性。大规模辉绿岩床群的形成需要岩浆沿地层中近水平薄弱面远距离流动运移及持续的岩浆补给,其形成机制及受控因素一直是国际地学界关注和探索的前沿科学问题之一(如:Bunger and Cruden,2011; Williams et al.,2022)。目前关于燕辽辉绿岩床群侵位机制、生长过程与岩浆补给系统的研究非常薄弱,需要进一步加强。

  • (2)燕辽辉绿岩床群侵位过程中温室气体排放量及其环境效应。大规模基性岩床由于岩浆温度高,与地层接触面积大,其侵位到黑色页岩、煤层、蒸发岩及碳酸盐岩中接触变质所释放的温室及有毒气体(CO2、CH4、SO2、CH3Cl等)量非常可观,对驱动全球大气-海洋环境巨变及生物灭绝有非常重要的意义(如:Svensen et al.,200420152018; Gaynor et al.,2022)。燕辽辉绿岩床主要侵位于下马岭组黑色页岩内,部分侵位到高于庄组、雾迷山组和铁岭组碳酸盐岩中,其中下马岭组被辉绿岩床侵位的黑色页岩分布在400 km长、200 km宽的范围内,接触烘烤脱碳带非常发育,其侵位过程中释放的巨量CO2等温室气体可能对表生环境有重要影响(税国豪等,2020)。虽然前人已经开展了一些辉绿岩床侵入到下马岭组黑色页岩中CO2等温室气体释放量的初步估算(税国豪等,2020),但关于温室气体类型与排放量定量估算及其环境效应的研究还很薄弱,需要开展更深入的研究工作。

  • (3)哥伦比亚超大陆中1.4~1.3 Ga巨型裂谷系的形成机制、深部动力学背景及对大气-海洋环境的影响。目前的研究结果厘定了哥伦比亚超大陆中1.4~1.3 Ga巨型裂谷系的时空分布及其在哥伦比亚超大陆裂解中的作用,但关于该裂谷系的形成机制及其深部动力学背景的认识仍不清楚,需要进一步加强。由于巨型裂谷系的演化过程中全球洋陆格局有重要调整,必然会对全球大气-海洋环境及生物演化产生重要影响,也需要进一步开展研究。

  • (4)哥伦比亚超大陆中1.4~1.3 Ga巨型裂谷系资源潜力及全球成矿带对比。哥伦比亚超大陆中巨型裂谷系控制了全球两大火成碳酸岩型稀土矿床的分布,该裂谷系内还分布有巨厚的黑色页岩(包括黑色页岩变质形成的碳质板岩)沉积及喷流-沉积型铜铅锌银矿床,具有较好的稀土、油气及金属成矿潜力。未来需要对哥伦比亚超大陆巨型裂谷系内广泛分布的黑色页岩及炭质板岩开展调查研究,分析黑色页岩中喷流-沉积型铜铅锌银矿床及石墨、重金属元素、稀有元素、分散元素、放射性元素、稀土元素等战略性矿产资源潜力,并开展全球成矿区带对比。

  • 致谢:谨以此文纪念黄汲清院士诞辰120周年!感谢Richard Ernst、李献华、刘勇胜、Tim J. Munson等国内外专家对本研究工作的帮助和支持。本研究近20年期间得到了国家自然科学基金委员会、科学技术部、中国地质调查局、中国地质科学院及中国地质科学院地质力学研究所的项目及经费支持,在此表示诚挚的感谢。

  • 注释

  • ❶ 辽宁省地质矿产局,1965. 凌源幅(K-50-30)1/20万区域地质图及说明书.

  • ❷ 辽宁省地质矿产局,1967. 朝阳幅(K-51-19)1/20万区域地质图及说明书.

  • ❸ 辽宁省地质矿产局,1969. 锦西幅(K-51-25)1/20万区域地质图及说明书.

  • ❹ 河北省地质矿产局,1970. 青龙幅(K-50-35)1/20万地质图、矿产图及说明书.

  • ❺ 河北省地质矿产局,1972. 丰宁幅(K-50-27)1/20万地质图、矿产图及其说明书.

  • ❻ 河北省地质矿产局,1974. 承德幅(K-50-28)1/20万区域地质图及说明书.

  • ❼ 河北省地质矿产局,1976. 平泉幅(K-50-29)1/20万区域地质图及说明书.

  • 参考文献

    • Abbott S T, Sweet I P, Plumb K A, Young D N, Cutovinos A, Ferenczi P A, Brakel A, Pietsch B A. 2001. Roper Region: Urapunga and Roper River Special, Northern Territory (Second Edition). 1∶250000 geological map series explanatory notes, SD 53-10, 11. Northern Territory Geological Survey and Geoscience Australia (National Geoscience Mapping Accord).

    • Bleeker W, Ernst R. 2006. Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth's paleogeographic record back to 2. 6 Ga. In: Hanski E, Mertanen S, Rämö T, Vuollo J, eds. Dyke Swarms—Time Markers of Crustal Evolution. London: Taylor & Francis Group: 3~26.

    • Bodorkos S, Crowley J L, Claoué-Long J C, Anderson J R, Magee Jr C W. 2021. Precise U-Pb baddeleyite dating of the Derim Derim dolerite, McArthur basin, Northern Territory: Old and new SHRIMP and ID-TIMS constraints. Australian Journal of Earth Sciences, 68: 36~50.

    • Bunger A P, Cruden A R. 2011. Modeling the growth of laccoliths and large mafic sills: Role of magma body forces. Journal of Geophysical Research, 116(B2): B02203.

    • Cawood P A, Korsch R J. 2008. Assembling Australia: Proterozoic building of a continent. Precambrian Research, 166: 1~38.

    • Coffin M F, Eldholm O. 1992. Volcanism and continental break-up: A global compilation of large igneous provinces. In: Storey B C, Alabaster T, Pankhurst R J. eds. Magmatism and the Causes of Continental Break-up. London, Geological Society, Special Publication, 68: 17~30.

    • Coffin M F, Eldholm O. 1994. Large igneous provinces: Crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32: 1~36.

    • Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. 1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters, 166: 177~195.

    • Cox G M, Collins A S, Jarrett A J M, Blades M L, Shannon A V, Yang Bo, Farkas J, Hall P A, O'Hare B, Close D, Baruch, E T. 2022. A very unconventional hydrocarbon play: The Mesoproterozoic Velkerri Formation of northern Australia. AAPG Bulletin, 106(6): 1213~1237.

    • Davis G A, Zheng Yadong, Wang Cong, Darby B J, Zhang Changhou, Gehrels G. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, northern China. In: Hendrix M S, Davis G A, eds. Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intracontinental Deformation. Boulder, Colorado, Geological Society of America Memoir, 194: 171~197.

    • Doughty P T, Chamberlain K R. 1996. Salmon River Arch revisited: New evidencefor 1370 Ma rifting near the end of deposition in the Middle Proterozoic Belt basin. Canadian Journal of Earth Sciences, 33: 1037~1052.

    • Dutkiewicz A, Volk H, Ridley J, George S. 2007. Precambrian inclusion oils in the Roper Group: A review. In: Munson T J, Ambrose G J, eds. Proceedings of the Central Australian Basins Symposium, Alice Springs 16-18 August, 2005. Northern Territory Geological Survey, Special Publication, 2: 326~348.

    • Ernst R E. 2014. Large Igneous Provinces. Cambridge: Cambridge University Press: 1~653.

    • Ernst R E, Wingate M T D, Buchan K L, Li Z X. 2008. Global record of 1600-700 Ma large igneous provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research, 160: 159~178.

    • Ernst R E, Bell K. 2010. Large igneous provinces (LIPs) and carbonatites. Mineralogy and Petrology, 98: 55~76.

    • Ernst R E, Bleeker W. 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: Significance for breakup events within Canada and adjacent regions from 2. 5 Ga to the Present. Canadian Journal of Earth Sciences, 47: 695~739.

    • Ernst R E, Pereira E, Hamilton M A, Pisarevsky S A, Rodriques J, Tassinari C C G, Teixeira W, Van-Dunem V. 2013. Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Research, 230: 103~118.

    • Ernst R E, Hamilton M A, Söderlund U, Hanes J A, Gladkochub D P, Okrugin A V, Kolotilina T, Mekhonoshin A S, Bleeker W, LeCheminant A N, Buchan K L, Chamberlain K R, Didenko A N. 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geoscience, 9: 464~469.

    • Evans D A D, Mitchell R N. 2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology, 39: 443~446.

    • Frizonde de Lamotte D, Fourdan B, Leleu S, Leparmentier F, de Clarens P. 2015. Style of rifting and the stages of Pangea breakup. Tectonics, 34: 1009~1029.

    • Gaynor S P, Svensen H H, Polteau S, Schaltegger U. 2022. Local melt contamination and global climate impact: Dating the emplacement of Karoo LIP sills into organic-rich shale. Earth and Planetary Science Letters, 579: 117371.

    • Goldberg A S. 2010. Dyke swarms as indicators of major extensional events in the 1. 9-1. 2 Ga Columbia supercontinent. Journal of Geodynamics, 50: 176~190.

    • Heaman L M, LeCheminant A N. 1993. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chemical Geology, 110: 95~126.

    • Hu Guohui, Wang Mengxi, Zhang Shuanhong, Zhao Yue, Zhang Qiqi. 2022. A ca. 1. 33 Ga mafic dyke identified from the Liaodong Peninsula, northeastern North China Craton: Implications for eastward extension of the Yanliao large igneous province. Precambrian Research, 378: 106770.

    • Idnurm M, Giddings J W, Plumb K A. 1995. Apparent polar wander and reversal stratigraphy of the Palaeo-Mesoproterozoic southeastern McArthur basin, Australia. Precambrian Research, 72: 1~41.

    • Johansson A. 2009. Baltica, Amazonia and the SAMBA connection—1000 million years of neighbourhood during the Proterozoic? Precambrian Research, 175: 221~234.

    • Kirscher U, Mitchell R N, Liu Y, Nordsvan A R, Cox G M, Pisarevsky S A, Wang C, Wu L, Murphy J B, Li Z X. 2021. Paleomagnetic constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent. Geology, 49: 174~179.

    • Kunzmann M, Schmid S, Blaikie T N, Halverson G P. 2019. Facies analysis, sequence stratigraphy, and carbon isotope chemostratigraphy of a classic Zn-Pb host succession: The Proterozoic middle McArthur Group, McArthur basin, Australia. Ore Geology Reviews, 106: 150~175.

    • Li Huaikun, Lu Songnian, Li Huimin, Sun Lixin, Xiang Zhenqun, Geng Jianzhen, Zhou Hongying. 2009. Zircon and baddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation, North China. Geological Bulletin of China, 28: 1396~1404 (in Chinese with English abstract).

    • Li Huaikun, Lu Songnian, Su Wenbo, Xiang Zhenqun, Zhou Hongying, Zhang Yongqing. 2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216~227.

    • Li Huaikun, Zhang Jian, Tian Hui, Zhou Hongying, Xiang Zhenqun, Liu Huan. 2020. Recent advances in the study of the Meso- to Neoproterozoic chronostratigraphy of the Yanliao Aulacogen on the northern margin of the North China Craton. Geological Survey and Research, 43(2): 127~136 (in Chinese with English abstract).

    • Li Qiuli, Liu Yu, Tang Guoqiang, Wang Kaiyi, Ling Xiaoxiao, Li Jiao. 2018. Zircon Th-Pb dating by secondary ion mass spectrometry. Journal of Analytical Atomic Spectrometry, 33: 1536~1544.

    • Li Xianhua, Liu Yu, Li Qiuli, Guo Chunhua, Chamberlain K R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochemistry Geophysics Geosystem, 10: Q04010.

    • Li Zhengxiang, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu Songnian, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160: 179~210.

    • Lu Songnian, Zhao Guochun, Wang Huichu, Hao Guojie. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160: 77~93.

    • Luepke J J, Lyons T W. 2001. Pre-Rodinian (Mesoproterozoic) supercontinental rifting along the western margin of Laurentia: Geochemical evidence from the Belt-Purcell Supergroup. Precambrian Research, 111: 79~90.

    • Mäkitie H, Data G, Isabirye E, Mänttäri I, Huhma H, Klausen M B, Pakkanen L, Virransalo P. 2014. Petrology, geochronology and emplacement model of thegiant 1. 37 Ga arcuate Lake Victoria dyke swarm on the margin of a large igneous province in eastern Africa. Journal of African Earth Sciences, 97: 273~296.

    • Marzoli A, Renne P R, Piccirillo E M, Ernesto M, Bellieni G, De Min A. 1999. Extensive 200 million-year-old continental flood basalts of the central Atlantic magmatic province. Science, 284: 616~618.

    • Medig K P R, Turner E C, Thorkelson D J, Rainbird R H. 2016. Rifting of Columbia to form a deep-water siliciclastic to carbonate succession: The Mesoproterozoic Pinguicula Group of northern Yukon, Canada. Precambrian Research, 278: 179~206.

    • Meert J G, Torsvik T H. 2003. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics, 375: 261~288.

    • Meert J G, Santosh M. 2017. The Columbia supercontinent revisited. Gondwana Research, 50: 67~83.

    • Mitchell R N, Kirscher U, Kunzmann M, Liu Y, Cox G M. 2021. Gulf of Nuna: Astrochronologic correlation of a Mesoproterozoic oceanic euxinic event. Geology, 49: 25~29.

    • Moores E M. 1991. Southwest U. S. -East Antarctic (SWEAT) connection: A hypothesis. Geology, 19: 425~428.

    • Nixon A L, Glorie S, Collins A S, Blades M L, Simpson A, Whelan J A. 2022. Inter-cratonic geochronological and geochemical correlations of the Derim Derim-Galiwinku/Yanliao reconstructed large igneous province across the North Australian and North China cratons. Gondwana Research, 103: 473~486.

    • Page R W, Jackson M J, Krassay A A. 2000. Constraining sequence stratigraphy in north Australian basins: SHRIMP U-Pb zircon geochronology between Mt Isa and McArthur River. Australian Journal of Earth Sciences, 47: 431~459.

    • Peace A L, Phethean J J J, Franke D, Foulger G R, Schiffer C, Welford J K, McHone G, Rocchi S, Schnabel M, Dore A G. 2020. A review of Pangaea dispersal and Large Igneous Provinces — In search of a causative mechanism. Earth-Science Reviews, 206: 102902.

    • Peng Peng. 2015. Precambrian mafic dyke swarms in the North China craton and their geological implications. Science China Earth Sciences, 58: 649~675.

    • Poletti J E, Cottle J M, Hagen-Peter G A, Lackey J S. 2016. Petrochronological constraints on the origin of the Mountain Pass ultrapotassic and carbonatite intrusive suite, California. Journal of Petrology, 57: 1555~1598.

    • Puchkov V N, Bogdanova S V, Ernst R E, Kozlov V I, Krasnobaev A A, Söderlund U, Wingate M T D, Postnikov A V, Sergeeva N D. 2013. The ca. 1380 Ma Mashakigneous event of the southern Urals. Lithos, 174: 109~124.

    • Revie D. 2017. Unconventional petroleum resources of the Roper Group, McArthur basin. Northern Territory Geological Survey, Record 2017-002, 64.

    • Svensen H, Planke S, Malthe-Sorenssen A, Jamtveit B, Myklebust R, Rasmussen Eidem T, Rey S S. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429: 542~545.

    • Svensen H, Fristad K E, Polozov A G, Planke S. 2015. Volatile generation and release from continental large igneous provinces. In: Schmidt A, Fristad K E, Elkins-Tanton L T, eds. Volcanism and Global Environmental Change. Cambridge: Cambridge University Press, 177~192.

    • Svensen H H, Frolov S, Akhmanov G G, Polozov A G, Jerram D A, Shiganova O V, Melnikov N V, Iyer K, Planke S. 2018. Sills and gas generation in the Siberian Traps. Philosophical Transactions of the Royal Society A, 376: 20170080.

    • Shi Yuruo, Liu Dunyi, Kröner A, Jian Ping, Miao Laicheng, Zhang Fuqin. 2012. Ca. 1318 Ma A-type granite on the northern margin of the North China Craton: Implications for intraplate extension of the Columbia supercontinent. Lithos, 148: 1~9.

    • Shui Guohao, Zhang Shuanhong, Hu Guohui, Zhang Qiqi. 2020. Estimation of carbon dioxide released during emplacement of ca. 1. 32 Ga mafic sills into the Xiamaling Formation in Yanliao (northern Hebei-western Liaoning) area in the North China Craton and its potential environmental effect. Geological Review, 66(4): 909~918 (in Chinese with English abstract).

    • Slezak P, Spandler C. 2019. Carbonatites as recorders of mantle-derived magmatism and subsequent tectonic events: An example of the Gifford Creek Carbonatite Complex, Western Australia. Lithos, 328-329: 212~227.

    • Söderlund U, Johansson L. 2002. A simple way to extract baddeleyite (ZrO2). Geochemistry Geophysics Geosystem, 3: 1014.

    • Storey B C, Vaughan A P M, Riley T R. 2013. The links between large igneous provinces, continental break-up and environmental change: Evidence reviewed from Antarctica. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104(1): 17~30.

    • Su Li, Wang Tieguan, Li Xianhua, Song Shuguang, Yang Shuwen, Zhang Hongyu, Zhong Linxi. 2016. Petrogenesis and emplacement age of the gabbro-dolerite sills within the Mesoproterozoic Xiamaling Formation in Yanliao rifting zone. In: Sun Shu, Wang Tieguan, eds. Meso-Neoproterozoic Geology and Oil and Gas Resources in Eastern China. Beijing: Science Press, 325~342 (in Chinese).

    • Sweet I P, Brakel A T, Rawlings D J, Haines P W, Plum K A, Wygralak A S. 1999. Mount Marumba, Northern Territory, 1: 250000 geological map series explanatory notes, SD 53-6. Australian Geological Survey Organization, Canberra and Northern Territory Geological Survey, Darwin, 1~84.

    • Tack L, Wingate M T D, De Waele B, Meert J, Belousova E, Griffin B, Tahon A, Fernandez-Alonso M. 2010. The 1375 Ma Kibaran event in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Research, 180: 63~84.

    • Teixeira W, Ernst R E, Hamilton M A, Lima G, Ruiz A S, Geraldes M C. 2015. Widespread ca. 1. 4 Ga intraplate magmatism and tectonics in a growing Amazonia. GFF, 138: 243~256.

    • Verbaas J, Thorkelson D J, Milidragovic D, Crowley J L, Foster D, Gibson H D, Marshall D D. 2018. Rifting of western Laurentia at 1. 38 Ga: The Hart River sills of Yukon, Canada. Lithos, 316-317: 243~260.

    • Wang Chong, Li Zhengxiang, Peng Peng, Pisarevsky S, Liu Yebo, Kirscher U, Nordsvan A. 2019. Long-lived connection between the North China and North Australian cratons in supercontinent Nuna: Paleomagnetic and geological constraints. Science Bulletin, 64: 873~876.

    • Wang Qinghai, Yang Hao, Yang Debin, Xu Wenliang. 2014. Mid-Mesoproterozoic (~1. 32 Ga) diabase swarms from the western Liaoning region in the northern margin of the North China Craton: Baddeleyite Pb-Pb geochronology, geochemistry and implications for the final breakup of the Columbia supercontinent. Precambrian Research, 254: 114~128.

    • Wang Xinping, Peng Peng, Wang Chong. 2022. A new 1. 32 Ga Tianshui mafic sill in the Liaodong area and its relations to the Yanliao large igneous province in the northern North China Craton. Precambrian Research, 369: 106535.

    • Warren J K, George S C, Hamilton P J, Tingate P. 1998. Proterozoic source rocks: Sedimentology and organic characteristics of the Velkerri Formation, northern Territory, Australia. AAPG Bulletin, 82: 442~463.

    • Williams K M, Kavanagh J L, Dennis D J C. 2022. Focused flow during the formation and propagation of sills: Insights from analogue experiments. Earth and Planetary Science Letters, 584: 117492.

    • Whelan J A, Beyer E E, Donnellan N, Bleeker W, Chamberlin K R, Söderlund U, Ernst R E. 2016. 1. 4 billion years of Northern Territory geology: Insights from collaborative U-Pb zircon and baddeleyite dating. In: Annual Geoscience Exploration Seminar (AGES) Proceedings, Alice Springs, Northern Territory, 15-16 March 2016. Darwin: Northern Territory Geological Survey, 115~123.

    • Xu Huiru, Yang Zhenyu, Peng Peng, Meert J G, Zhu Rixiang. 2014. Paleo-position of the North China craton within the supercontinent Columbia: Constraints from new paleomagnetic results. Precambrian Research, 255: 276~293.

    • Yang Bo, Collins A S, Cox G M, Jarrett A J M, Denyszyn S, Blades M L, Farkas J, Glorie S. 2020. Using Mesoproterozoic sedimentary geochemistry to reconstruct basin tectonic geography and link organic carbon productivity to nutrient flux from a northern Australian Large Igneous Province. Basin Research, 32: 1734~1750.

    • Zhang Shuanhong, Zhao Yue, Yang Zhenyu, He Zhefeng, Wu Hai. 2009. The 1. 35 Ga diabase sills from the northern North China Craton: Implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 288: 588~600.

    • Zhang Shuanhong, Zhao Yue, Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222-223: 339~367.

    • Zhang Shihong, Li Zhengxiang, Evans D A D, Wu Huaichun, Li Haiyan, Dong Jin. 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353-354: 145~155.

    • Zhang Shuichang, Wang Xiaomei, Wang Huajian, Bjerrum C J, Hammarlund E U, Costa M M, Connelly J N, Zhang Baomin, Su Jin, Canfield D E. 2016. Sufficient oxygen for animal respiration 1, 400 million years ago. Proceedings of the National Academy of Sciences of the United States of America, 113: 1731~1736.

    • Zhang Shuanhong, Zhao Yue, Li Xianhua, Ernst R E, Yang Zhenyu. 2017a. The 1. 33-1. 30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112~125.

    • Zhang Shuanhong, Zhao Yue, Liu Yongsheng. 2017b. A precise zircon Th-Pb age of carbonatite sills from the world's largest Bayan Obo deposit: Implications for timing and genesis of REE-Nb mineralization. Precambrian Research, 291: 202~219.

    • Zhang Shuanhong, Ernst R E, Pei Junling, Zhao Yue, Zhou Meifu, Hu Guohui. 2018. A temporal and causal link between ca. 1380 Ma large igneous provinces and black shales: Implications for the Mesoproterozoic time-scale and paleoenvironment. Geology, 46: 963~966.

    • Zhang Shuanhong, Zhao Yue. 2018. The 1. 33-1. 30 Ga mafic large igneous province and REE-Nb metallogenic event in the northern North China Craton. Earth Science Frontiers, 25(5): 34~50 (in Chinese with English abstract).

    • Zhang Shuanhong, Pei Junling, Hu Guohui, Zhang Qiqi, Shui Guohao, Zhao Yue. 2019. Genetic link between large igneous provinces and large volumes of black shale deposition and its implications. Journal of Geomechanics, 25: 920~931 (in Chinese with English abstract).

    • Zhang Shuanhong, Ernst R E, Pei Junling, Zhao Yue, Hu Guohui. 2021. LIPs (large igneous provinces) and anoxia events in 'the Boring Billion'. In: Ernst R E, Dickson A J, Bekker A, eds. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes (1st Edition). Volume for AGU Geophysical Monograph Series (GM 255). American Geophysical Union and John Wiley & Sons, Inc. : 449~486.

    • Zhang Shuanhong, Ernst R E, Yang Zhenyu, Zhou Zaizheng, Pei Junling, Zhao Yue. 2022a. Spatial distribution of 1. 4~1. 3 Ga LIPs and carbonatite-related REE deposits: Evidence for large-scale continental rifting in the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 597: 117815.

    • Zhang Shuanhong, Ernst R E, Munson T J, Pei Junling, Hu Guohui, Liu Jianmin, Zhang Qiqi, Cai Yuhang, Zhao Yue. 2022b. Comparisons of the Paleo-Mesoproterozoic large igneous provinces and black shales in the North China and North Australian cratons. Fundamental Research, 2(1): 84~100.

    • Zhang Shuanhong, Zhao Yue, Pei Junling, Wang Hongyu, Hu Guohui, Zhang Qiqi, Cai Yuhang, Kong Linghao, Wang Sen, Wang Kai. 2022. A review on large igneous provinces (LIPs) and their implications for paleogeographic reconstruction and continental breakup. Geological Review, 68(5): 1634~1652 (in Chinese with English abstract).

    • Zhang Shuanhong, Peng Peng. 2023. Proterozoic large igneous provinces and implications for paleogeographic and paleoenvironmental reconstructions. Chinese Science Bulletin, 68: 2324~2340 (in Chinese with English abstract).

    • Zhao Guochun, Cawood P A, Wilde S A, Sun Min. 2002. Review of the global 2. 1-1. 8 Ga orogens: implications for a pre-Rodinian supercontinent. Earth-Science Review, 59: 125~162.

    • Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2003. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: Records in theNorth China craton. Gondwana Research, 6: 417~434.

    • Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67: 91~123.

    • Zhao Guochun, Han Yigui, Li Jianhua, Yao Jinlong, Liu Qian, Zhang Donghai, Wang Chao, Tang Qing, Zhang Jian, Yin Changqing, Zhang Guowei. 2022. Environmental effects of assembly and breakup of supercontinents. Acta Geologica Sinica, 96(9): 3120~3127 (in Chinese with English abstract).

    • Zhao Wenzhi, Wang Xiaomei, Hu Suyun, Zhang Shuichang, Wang Huajian, Guan Shuwei, Ye Yuntao, Ren Rong, Wang Tongshan. 2019. Hydrocarbon generation characteristics and exploration prospects of Proterozoic source rocks in China. Science China Earth Sciences, 62: 909~934.

    • Zhao Yue. 1990. The Mesozoic orogenies and tectonic evolution of the Yanshan Area. Geological Review, 36(1): 1~12 (in Chinese with English abstract)

    • Zheng Yadong, Davis G A, Wang Cong, Darby B J, Zhang Changhou. 2000. Major Mesozoic tectonic events in the Yanshan belt and the plate tectonic setting. Acta Geologica Sinica, 74(4): 289~302 (in Chinese with English abstract)

    • Zhu Yusheng, Yang Jinhui, Wang Hao, Wu Fuyuan. 2020. Mesoproterozoic (~1. 32 Ga) modification of lithospheric mantle beneath the North China craton caused by break-up of the Columbia supercontinent. Precambrian Research, 342: 105674.

    • Zi Jianwei, Gregory C, Rasmussen B, Sheppard S, Muhling J R. 2017. Using monazite geochronology to test the plume model for carbonatites: The example of Gifford Creek Carbonatite Complex, Australia. Chemical Geology, 463: 50~60.

    • 李怀坤, 陆松年, 李惠民, 孙立新, 相振群, 耿建珍, 周红英. 2009. 侵入下马岭组的基性岩床的锆石及斜锆石U-Pb精确定年. 地质通报, 28(10): 1396~1404.

    • 李怀坤, 张健, 田辉, 周红英, 相振群, 刘欢. 2020. 华北克拉通北缘燕辽裂陷槽中-新元古代地层年代学研究进展. 地质调查与研究, 43(2): 127~136.

    • 税国豪, 张拴宏, 胡国辉, 张琪琪. 2020. 燕辽地区下马岭组内基性岩床侵位过程中CO2释放量估算及对表生环境影响的探讨. 地质论评, 66(4): 909~918.

    • 苏犁, 王铁冠, 李献华, 宋述光, 杨树文, 张红雨, 钟林汐. 2016. 燕辽裂陷带中元古界下马岭组辉长辉绿岩岩床成岩机制及侵入时间. 孙枢, 王铁冠, 主编. 中国东部中—新元古界地质学与油气资源. 北京: 地质出版社, 325~342.

    • 张拴宏, 赵越. 2018. 华北克拉通北部13. 3~13. 0亿年基性大火成岩省与稀土-铌成矿事件. 地学前缘, 25(5): 34~50.

    • 张拴宏, 裴军令, 胡国辉, 张琪琪, 税国豪, 赵越. 2019. 大火成岩省与大规模黑色页岩沉积的成因联系及其意义. 地质力学学报, 25(5): 920~931.

    • 张拴宏, 赵越, 裴军令, 王宏宇, 胡国辉, 张琪琪, 蔡瑜杭, 孔令昊, 王森, 王开. 2022. 大火成岩省及其在古大陆重建及裂解研究中的应用. 地质论评, 68(5): 1634~1652.

    • 张拴宏, 彭澎. 2023. 元古宙大火成岩省与超大陆重建及古环境. 科学通报, 68(18): 2324~2340.

    • 赵国春, 韩以贵, 李建华, 姚金龙, 刘潜, 张东海, 王潮, 唐卿, 张健, 尹常青, 张国伟. 2022. 超大陆聚散的环境效应. 地质学报, 96(9): 3120~3127.

    • 赵越. 1990. 燕山地区中生代造山运动及构造演化. 地质论评, 36(1): 1~12.

    • 郑亚东, Davis G A, 王琮, Darby B J, 张长厚. 2000. 燕山带中生代主要构造事件与板块构造背景问题. 地质学报, 74(4): 289~302.

  • 参考文献

    • Abbott S T, Sweet I P, Plumb K A, Young D N, Cutovinos A, Ferenczi P A, Brakel A, Pietsch B A. 2001. Roper Region: Urapunga and Roper River Special, Northern Territory (Second Edition). 1∶250000 geological map series explanatory notes, SD 53-10, 11. Northern Territory Geological Survey and Geoscience Australia (National Geoscience Mapping Accord).

    • Bleeker W, Ernst R. 2006. Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth's paleogeographic record back to 2. 6 Ga. In: Hanski E, Mertanen S, Rämö T, Vuollo J, eds. Dyke Swarms—Time Markers of Crustal Evolution. London: Taylor & Francis Group: 3~26.

    • Bodorkos S, Crowley J L, Claoué-Long J C, Anderson J R, Magee Jr C W. 2021. Precise U-Pb baddeleyite dating of the Derim Derim dolerite, McArthur basin, Northern Territory: Old and new SHRIMP and ID-TIMS constraints. Australian Journal of Earth Sciences, 68: 36~50.

    • Bunger A P, Cruden A R. 2011. Modeling the growth of laccoliths and large mafic sills: Role of magma body forces. Journal of Geophysical Research, 116(B2): B02203.

    • Cawood P A, Korsch R J. 2008. Assembling Australia: Proterozoic building of a continent. Precambrian Research, 166: 1~38.

    • Coffin M F, Eldholm O. 1992. Volcanism and continental break-up: A global compilation of large igneous provinces. In: Storey B C, Alabaster T, Pankhurst R J. eds. Magmatism and the Causes of Continental Break-up. London, Geological Society, Special Publication, 68: 17~30.

    • Coffin M F, Eldholm O. 1994. Large igneous provinces: Crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32: 1~36.

    • Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. 1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters, 166: 177~195.

    • Cox G M, Collins A S, Jarrett A J M, Blades M L, Shannon A V, Yang Bo, Farkas J, Hall P A, O'Hare B, Close D, Baruch, E T. 2022. A very unconventional hydrocarbon play: The Mesoproterozoic Velkerri Formation of northern Australia. AAPG Bulletin, 106(6): 1213~1237.

    • Davis G A, Zheng Yadong, Wang Cong, Darby B J, Zhang Changhou, Gehrels G. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, northern China. In: Hendrix M S, Davis G A, eds. Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intracontinental Deformation. Boulder, Colorado, Geological Society of America Memoir, 194: 171~197.

    • Doughty P T, Chamberlain K R. 1996. Salmon River Arch revisited: New evidencefor 1370 Ma rifting near the end of deposition in the Middle Proterozoic Belt basin. Canadian Journal of Earth Sciences, 33: 1037~1052.

    • Dutkiewicz A, Volk H, Ridley J, George S. 2007. Precambrian inclusion oils in the Roper Group: A review. In: Munson T J, Ambrose G J, eds. Proceedings of the Central Australian Basins Symposium, Alice Springs 16-18 August, 2005. Northern Territory Geological Survey, Special Publication, 2: 326~348.

    • Ernst R E. 2014. Large Igneous Provinces. Cambridge: Cambridge University Press: 1~653.

    • Ernst R E, Wingate M T D, Buchan K L, Li Z X. 2008. Global record of 1600-700 Ma large igneous provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research, 160: 159~178.

    • Ernst R E, Bell K. 2010. Large igneous provinces (LIPs) and carbonatites. Mineralogy and Petrology, 98: 55~76.

    • Ernst R E, Bleeker W. 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: Significance for breakup events within Canada and adjacent regions from 2. 5 Ga to the Present. Canadian Journal of Earth Sciences, 47: 695~739.

    • Ernst R E, Pereira E, Hamilton M A, Pisarevsky S A, Rodriques J, Tassinari C C G, Teixeira W, Van-Dunem V. 2013. Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Research, 230: 103~118.

    • Ernst R E, Hamilton M A, Söderlund U, Hanes J A, Gladkochub D P, Okrugin A V, Kolotilina T, Mekhonoshin A S, Bleeker W, LeCheminant A N, Buchan K L, Chamberlain K R, Didenko A N. 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geoscience, 9: 464~469.

    • Evans D A D, Mitchell R N. 2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology, 39: 443~446.

    • Frizonde de Lamotte D, Fourdan B, Leleu S, Leparmentier F, de Clarens P. 2015. Style of rifting and the stages of Pangea breakup. Tectonics, 34: 1009~1029.

    • Gaynor S P, Svensen H H, Polteau S, Schaltegger U. 2022. Local melt contamination and global climate impact: Dating the emplacement of Karoo LIP sills into organic-rich shale. Earth and Planetary Science Letters, 579: 117371.

    • Goldberg A S. 2010. Dyke swarms as indicators of major extensional events in the 1. 9-1. 2 Ga Columbia supercontinent. Journal of Geodynamics, 50: 176~190.

    • Heaman L M, LeCheminant A N. 1993. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chemical Geology, 110: 95~126.

    • Hu Guohui, Wang Mengxi, Zhang Shuanhong, Zhao Yue, Zhang Qiqi. 2022. A ca. 1. 33 Ga mafic dyke identified from the Liaodong Peninsula, northeastern North China Craton: Implications for eastward extension of the Yanliao large igneous province. Precambrian Research, 378: 106770.

    • Idnurm M, Giddings J W, Plumb K A. 1995. Apparent polar wander and reversal stratigraphy of the Palaeo-Mesoproterozoic southeastern McArthur basin, Australia. Precambrian Research, 72: 1~41.

    • Johansson A. 2009. Baltica, Amazonia and the SAMBA connection—1000 million years of neighbourhood during the Proterozoic? Precambrian Research, 175: 221~234.

    • Kirscher U, Mitchell R N, Liu Y, Nordsvan A R, Cox G M, Pisarevsky S A, Wang C, Wu L, Murphy J B, Li Z X. 2021. Paleomagnetic constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent. Geology, 49: 174~179.

    • Kunzmann M, Schmid S, Blaikie T N, Halverson G P. 2019. Facies analysis, sequence stratigraphy, and carbon isotope chemostratigraphy of a classic Zn-Pb host succession: The Proterozoic middle McArthur Group, McArthur basin, Australia. Ore Geology Reviews, 106: 150~175.

    • Li Huaikun, Lu Songnian, Li Huimin, Sun Lixin, Xiang Zhenqun, Geng Jianzhen, Zhou Hongying. 2009. Zircon and baddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation, North China. Geological Bulletin of China, 28: 1396~1404 (in Chinese with English abstract).

    • Li Huaikun, Lu Songnian, Su Wenbo, Xiang Zhenqun, Zhou Hongying, Zhang Yongqing. 2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216~227.

    • Li Huaikun, Zhang Jian, Tian Hui, Zhou Hongying, Xiang Zhenqun, Liu Huan. 2020. Recent advances in the study of the Meso- to Neoproterozoic chronostratigraphy of the Yanliao Aulacogen on the northern margin of the North China Craton. Geological Survey and Research, 43(2): 127~136 (in Chinese with English abstract).

    • Li Qiuli, Liu Yu, Tang Guoqiang, Wang Kaiyi, Ling Xiaoxiao, Li Jiao. 2018. Zircon Th-Pb dating by secondary ion mass spectrometry. Journal of Analytical Atomic Spectrometry, 33: 1536~1544.

    • Li Xianhua, Liu Yu, Li Qiuli, Guo Chunhua, Chamberlain K R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochemistry Geophysics Geosystem, 10: Q04010.

    • Li Zhengxiang, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu Songnian, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160: 179~210.

    • Lu Songnian, Zhao Guochun, Wang Huichu, Hao Guojie. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160: 77~93.

    • Luepke J J, Lyons T W. 2001. Pre-Rodinian (Mesoproterozoic) supercontinental rifting along the western margin of Laurentia: Geochemical evidence from the Belt-Purcell Supergroup. Precambrian Research, 111: 79~90.

    • Mäkitie H, Data G, Isabirye E, Mänttäri I, Huhma H, Klausen M B, Pakkanen L, Virransalo P. 2014. Petrology, geochronology and emplacement model of thegiant 1. 37 Ga arcuate Lake Victoria dyke swarm on the margin of a large igneous province in eastern Africa. Journal of African Earth Sciences, 97: 273~296.

    • Marzoli A, Renne P R, Piccirillo E M, Ernesto M, Bellieni G, De Min A. 1999. Extensive 200 million-year-old continental flood basalts of the central Atlantic magmatic province. Science, 284: 616~618.

    • Medig K P R, Turner E C, Thorkelson D J, Rainbird R H. 2016. Rifting of Columbia to form a deep-water siliciclastic to carbonate succession: The Mesoproterozoic Pinguicula Group of northern Yukon, Canada. Precambrian Research, 278: 179~206.

    • Meert J G, Torsvik T H. 2003. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics, 375: 261~288.

    • Meert J G, Santosh M. 2017. The Columbia supercontinent revisited. Gondwana Research, 50: 67~83.

    • Mitchell R N, Kirscher U, Kunzmann M, Liu Y, Cox G M. 2021. Gulf of Nuna: Astrochronologic correlation of a Mesoproterozoic oceanic euxinic event. Geology, 49: 25~29.

    • Moores E M. 1991. Southwest U. S. -East Antarctic (SWEAT) connection: A hypothesis. Geology, 19: 425~428.

    • Nixon A L, Glorie S, Collins A S, Blades M L, Simpson A, Whelan J A. 2022. Inter-cratonic geochronological and geochemical correlations of the Derim Derim-Galiwinku/Yanliao reconstructed large igneous province across the North Australian and North China cratons. Gondwana Research, 103: 473~486.

    • Page R W, Jackson M J, Krassay A A. 2000. Constraining sequence stratigraphy in north Australian basins: SHRIMP U-Pb zircon geochronology between Mt Isa and McArthur River. Australian Journal of Earth Sciences, 47: 431~459.

    • Peace A L, Phethean J J J, Franke D, Foulger G R, Schiffer C, Welford J K, McHone G, Rocchi S, Schnabel M, Dore A G. 2020. A review of Pangaea dispersal and Large Igneous Provinces — In search of a causative mechanism. Earth-Science Reviews, 206: 102902.

    • Peng Peng. 2015. Precambrian mafic dyke swarms in the North China craton and their geological implications. Science China Earth Sciences, 58: 649~675.

    • Poletti J E, Cottle J M, Hagen-Peter G A, Lackey J S. 2016. Petrochronological constraints on the origin of the Mountain Pass ultrapotassic and carbonatite intrusive suite, California. Journal of Petrology, 57: 1555~1598.

    • Puchkov V N, Bogdanova S V, Ernst R E, Kozlov V I, Krasnobaev A A, Söderlund U, Wingate M T D, Postnikov A V, Sergeeva N D. 2013. The ca. 1380 Ma Mashakigneous event of the southern Urals. Lithos, 174: 109~124.

    • Revie D. 2017. Unconventional petroleum resources of the Roper Group, McArthur basin. Northern Territory Geological Survey, Record 2017-002, 64.

    • Svensen H, Planke S, Malthe-Sorenssen A, Jamtveit B, Myklebust R, Rasmussen Eidem T, Rey S S. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429: 542~545.

    • Svensen H, Fristad K E, Polozov A G, Planke S. 2015. Volatile generation and release from continental large igneous provinces. In: Schmidt A, Fristad K E, Elkins-Tanton L T, eds. Volcanism and Global Environmental Change. Cambridge: Cambridge University Press, 177~192.

    • Svensen H H, Frolov S, Akhmanov G G, Polozov A G, Jerram D A, Shiganova O V, Melnikov N V, Iyer K, Planke S. 2018. Sills and gas generation in the Siberian Traps. Philosophical Transactions of the Royal Society A, 376: 20170080.

    • Shi Yuruo, Liu Dunyi, Kröner A, Jian Ping, Miao Laicheng, Zhang Fuqin. 2012. Ca. 1318 Ma A-type granite on the northern margin of the North China Craton: Implications for intraplate extension of the Columbia supercontinent. Lithos, 148: 1~9.

    • Shui Guohao, Zhang Shuanhong, Hu Guohui, Zhang Qiqi. 2020. Estimation of carbon dioxide released during emplacement of ca. 1. 32 Ga mafic sills into the Xiamaling Formation in Yanliao (northern Hebei-western Liaoning) area in the North China Craton and its potential environmental effect. Geological Review, 66(4): 909~918 (in Chinese with English abstract).

    • Slezak P, Spandler C. 2019. Carbonatites as recorders of mantle-derived magmatism and subsequent tectonic events: An example of the Gifford Creek Carbonatite Complex, Western Australia. Lithos, 328-329: 212~227.

    • Söderlund U, Johansson L. 2002. A simple way to extract baddeleyite (ZrO2). Geochemistry Geophysics Geosystem, 3: 1014.

    • Storey B C, Vaughan A P M, Riley T R. 2013. The links between large igneous provinces, continental break-up and environmental change: Evidence reviewed from Antarctica. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104(1): 17~30.

    • Su Li, Wang Tieguan, Li Xianhua, Song Shuguang, Yang Shuwen, Zhang Hongyu, Zhong Linxi. 2016. Petrogenesis and emplacement age of the gabbro-dolerite sills within the Mesoproterozoic Xiamaling Formation in Yanliao rifting zone. In: Sun Shu, Wang Tieguan, eds. Meso-Neoproterozoic Geology and Oil and Gas Resources in Eastern China. Beijing: Science Press, 325~342 (in Chinese).

    • Sweet I P, Brakel A T, Rawlings D J, Haines P W, Plum K A, Wygralak A S. 1999. Mount Marumba, Northern Territory, 1: 250000 geological map series explanatory notes, SD 53-6. Australian Geological Survey Organization, Canberra and Northern Territory Geological Survey, Darwin, 1~84.

    • Tack L, Wingate M T D, De Waele B, Meert J, Belousova E, Griffin B, Tahon A, Fernandez-Alonso M. 2010. The 1375 Ma Kibaran event in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Research, 180: 63~84.

    • Teixeira W, Ernst R E, Hamilton M A, Lima G, Ruiz A S, Geraldes M C. 2015. Widespread ca. 1. 4 Ga intraplate magmatism and tectonics in a growing Amazonia. GFF, 138: 243~256.

    • Verbaas J, Thorkelson D J, Milidragovic D, Crowley J L, Foster D, Gibson H D, Marshall D D. 2018. Rifting of western Laurentia at 1. 38 Ga: The Hart River sills of Yukon, Canada. Lithos, 316-317: 243~260.

    • Wang Chong, Li Zhengxiang, Peng Peng, Pisarevsky S, Liu Yebo, Kirscher U, Nordsvan A. 2019. Long-lived connection between the North China and North Australian cratons in supercontinent Nuna: Paleomagnetic and geological constraints. Science Bulletin, 64: 873~876.

    • Wang Qinghai, Yang Hao, Yang Debin, Xu Wenliang. 2014. Mid-Mesoproterozoic (~1. 32 Ga) diabase swarms from the western Liaoning region in the northern margin of the North China Craton: Baddeleyite Pb-Pb geochronology, geochemistry and implications for the final breakup of the Columbia supercontinent. Precambrian Research, 254: 114~128.

    • Wang Xinping, Peng Peng, Wang Chong. 2022. A new 1. 32 Ga Tianshui mafic sill in the Liaodong area and its relations to the Yanliao large igneous province in the northern North China Craton. Precambrian Research, 369: 106535.

    • Warren J K, George S C, Hamilton P J, Tingate P. 1998. Proterozoic source rocks: Sedimentology and organic characteristics of the Velkerri Formation, northern Territory, Australia. AAPG Bulletin, 82: 442~463.

    • Williams K M, Kavanagh J L, Dennis D J C. 2022. Focused flow during the formation and propagation of sills: Insights from analogue experiments. Earth and Planetary Science Letters, 584: 117492.

    • Whelan J A, Beyer E E, Donnellan N, Bleeker W, Chamberlin K R, Söderlund U, Ernst R E. 2016. 1. 4 billion years of Northern Territory geology: Insights from collaborative U-Pb zircon and baddeleyite dating. In: Annual Geoscience Exploration Seminar (AGES) Proceedings, Alice Springs, Northern Territory, 15-16 March 2016. Darwin: Northern Territory Geological Survey, 115~123.

    • Xu Huiru, Yang Zhenyu, Peng Peng, Meert J G, Zhu Rixiang. 2014. Paleo-position of the North China craton within the supercontinent Columbia: Constraints from new paleomagnetic results. Precambrian Research, 255: 276~293.

    • Yang Bo, Collins A S, Cox G M, Jarrett A J M, Denyszyn S, Blades M L, Farkas J, Glorie S. 2020. Using Mesoproterozoic sedimentary geochemistry to reconstruct basin tectonic geography and link organic carbon productivity to nutrient flux from a northern Australian Large Igneous Province. Basin Research, 32: 1734~1750.

    • Zhang Shuanhong, Zhao Yue, Yang Zhenyu, He Zhefeng, Wu Hai. 2009. The 1. 35 Ga diabase sills from the northern North China Craton: Implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 288: 588~600.

    • Zhang Shuanhong, Zhao Yue, Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222-223: 339~367.

    • Zhang Shihong, Li Zhengxiang, Evans D A D, Wu Huaichun, Li Haiyan, Dong Jin. 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353-354: 145~155.

    • Zhang Shuichang, Wang Xiaomei, Wang Huajian, Bjerrum C J, Hammarlund E U, Costa M M, Connelly J N, Zhang Baomin, Su Jin, Canfield D E. 2016. Sufficient oxygen for animal respiration 1, 400 million years ago. Proceedings of the National Academy of Sciences of the United States of America, 113: 1731~1736.

    • Zhang Shuanhong, Zhao Yue, Li Xianhua, Ernst R E, Yang Zhenyu. 2017a. The 1. 33-1. 30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112~125.

    • Zhang Shuanhong, Zhao Yue, Liu Yongsheng. 2017b. A precise zircon Th-Pb age of carbonatite sills from the world's largest Bayan Obo deposit: Implications for timing and genesis of REE-Nb mineralization. Precambrian Research, 291: 202~219.

    • Zhang Shuanhong, Ernst R E, Pei Junling, Zhao Yue, Zhou Meifu, Hu Guohui. 2018. A temporal and causal link between ca. 1380 Ma large igneous provinces and black shales: Implications for the Mesoproterozoic time-scale and paleoenvironment. Geology, 46: 963~966.

    • Zhang Shuanhong, Zhao Yue. 2018. The 1. 33-1. 30 Ga mafic large igneous province and REE-Nb metallogenic event in the northern North China Craton. Earth Science Frontiers, 25(5): 34~50 (in Chinese with English abstract).

    • Zhang Shuanhong, Pei Junling, Hu Guohui, Zhang Qiqi, Shui Guohao, Zhao Yue. 2019. Genetic link between large igneous provinces and large volumes of black shale deposition and its implications. Journal of Geomechanics, 25: 920~931 (in Chinese with English abstract).

    • Zhang Shuanhong, Ernst R E, Pei Junling, Zhao Yue, Hu Guohui. 2021. LIPs (large igneous provinces) and anoxia events in 'the Boring Billion'. In: Ernst R E, Dickson A J, Bekker A, eds. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes (1st Edition). Volume for AGU Geophysical Monograph Series (GM 255). American Geophysical Union and John Wiley & Sons, Inc. : 449~486.

    • Zhang Shuanhong, Ernst R E, Yang Zhenyu, Zhou Zaizheng, Pei Junling, Zhao Yue. 2022a. Spatial distribution of 1. 4~1. 3 Ga LIPs and carbonatite-related REE deposits: Evidence for large-scale continental rifting in the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 597: 117815.

    • Zhang Shuanhong, Ernst R E, Munson T J, Pei Junling, Hu Guohui, Liu Jianmin, Zhang Qiqi, Cai Yuhang, Zhao Yue. 2022b. Comparisons of the Paleo-Mesoproterozoic large igneous provinces and black shales in the North China and North Australian cratons. Fundamental Research, 2(1): 84~100.

    • Zhang Shuanhong, Zhao Yue, Pei Junling, Wang Hongyu, Hu Guohui, Zhang Qiqi, Cai Yuhang, Kong Linghao, Wang Sen, Wang Kai. 2022. A review on large igneous provinces (LIPs) and their implications for paleogeographic reconstruction and continental breakup. Geological Review, 68(5): 1634~1652 (in Chinese with English abstract).

    • Zhang Shuanhong, Peng Peng. 2023. Proterozoic large igneous provinces and implications for paleogeographic and paleoenvironmental reconstructions. Chinese Science Bulletin, 68: 2324~2340 (in Chinese with English abstract).

    • Zhao Guochun, Cawood P A, Wilde S A, Sun Min. 2002. Review of the global 2. 1-1. 8 Ga orogens: implications for a pre-Rodinian supercontinent. Earth-Science Review, 59: 125~162.

    • Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2003. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: Records in theNorth China craton. Gondwana Research, 6: 417~434.

    • Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67: 91~123.

    • Zhao Guochun, Han Yigui, Li Jianhua, Yao Jinlong, Liu Qian, Zhang Donghai, Wang Chao, Tang Qing, Zhang Jian, Yin Changqing, Zhang Guowei. 2022. Environmental effects of assembly and breakup of supercontinents. Acta Geologica Sinica, 96(9): 3120~3127 (in Chinese with English abstract).

    • Zhao Wenzhi, Wang Xiaomei, Hu Suyun, Zhang Shuichang, Wang Huajian, Guan Shuwei, Ye Yuntao, Ren Rong, Wang Tongshan. 2019. Hydrocarbon generation characteristics and exploration prospects of Proterozoic source rocks in China. Science China Earth Sciences, 62: 909~934.

    • Zhao Yue. 1990. The Mesozoic orogenies and tectonic evolution of the Yanshan Area. Geological Review, 36(1): 1~12 (in Chinese with English abstract)

    • Zheng Yadong, Davis G A, Wang Cong, Darby B J, Zhang Changhou. 2000. Major Mesozoic tectonic events in the Yanshan belt and the plate tectonic setting. Acta Geologica Sinica, 74(4): 289~302 (in Chinese with English abstract)

    • Zhu Yusheng, Yang Jinhui, Wang Hao, Wu Fuyuan. 2020. Mesoproterozoic (~1. 32 Ga) modification of lithospheric mantle beneath the North China craton caused by break-up of the Columbia supercontinent. Precambrian Research, 342: 105674.

    • Zi Jianwei, Gregory C, Rasmussen B, Sheppard S, Muhling J R. 2017. Using monazite geochronology to test the plume model for carbonatites: The example of Gifford Creek Carbonatite Complex, Australia. Chemical Geology, 463: 50~60.

    • 李怀坤, 陆松年, 李惠民, 孙立新, 相振群, 耿建珍, 周红英. 2009. 侵入下马岭组的基性岩床的锆石及斜锆石U-Pb精确定年. 地质通报, 28(10): 1396~1404.

    • 李怀坤, 张健, 田辉, 周红英, 相振群, 刘欢. 2020. 华北克拉通北缘燕辽裂陷槽中-新元古代地层年代学研究进展. 地质调查与研究, 43(2): 127~136.

    • 税国豪, 张拴宏, 胡国辉, 张琪琪. 2020. 燕辽地区下马岭组内基性岩床侵位过程中CO2释放量估算及对表生环境影响的探讨. 地质论评, 66(4): 909~918.

    • 苏犁, 王铁冠, 李献华, 宋述光, 杨树文, 张红雨, 钟林汐. 2016. 燕辽裂陷带中元古界下马岭组辉长辉绿岩岩床成岩机制及侵入时间. 孙枢, 王铁冠, 主编. 中国东部中—新元古界地质学与油气资源. 北京: 地质出版社, 325~342.

    • 张拴宏, 赵越. 2018. 华北克拉通北部13. 3~13. 0亿年基性大火成岩省与稀土-铌成矿事件. 地学前缘, 25(5): 34~50.

    • 张拴宏, 裴军令, 胡国辉, 张琪琪, 税国豪, 赵越. 2019. 大火成岩省与大规模黑色页岩沉积的成因联系及其意义. 地质力学学报, 25(5): 920~931.

    • 张拴宏, 赵越, 裴军令, 王宏宇, 胡国辉, 张琪琪, 蔡瑜杭, 孔令昊, 王森, 王开. 2022. 大火成岩省及其在古大陆重建及裂解研究中的应用. 地质论评, 68(5): 1634~1652.

    • 张拴宏, 彭澎. 2023. 元古宙大火成岩省与超大陆重建及古环境. 科学通报, 68(18): 2324~2340.

    • 赵国春, 韩以贵, 李建华, 姚金龙, 刘潜, 张东海, 王潮, 唐卿, 张健, 尹常青, 张国伟. 2022. 超大陆聚散的环境效应. 地质学报, 96(9): 3120~3127.

    • 赵越. 1990. 燕山地区中生代造山运动及构造演化. 地质论评, 36(1): 1~12.

    • 郑亚东, Davis G A, 王琮, Darby B J, 张长厚. 2000. 燕山带中生代主要构造事件与板块构造背景问题. 地质学报, 74(4): 289~302.