en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李雷,男,1989年生。硕士,主要从事油气田勘探、开发油藏地球物理研究。E-mail:lilei40@cnooc.com.cn。

通讯作者:

王祥春,男,1980年生。博士,教授,博士生导师,海洋地震资料处理研究方向。E-mail:wangxc@cugb.edu.cn。

参考文献
Candes E J, Wakin M B. 2008. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2): 21~30.
参考文献
Guo Aihua, Lu Pengfei, Yu Bo, Lu Chenghui, Wang Bin, Wan Lingna. 2021. Improving the resolution of poststack seismic data using Shearlet Transform. Petroleum Geophysical Exploration, 56(5): 992~1000+925(in Chinese with English abstract).
参考文献
Han Hongping. 2012. Research on signal reconstruction algorithm in compressed sensing. Master's thesis of Nanjing University of Posts and Telecommunications (in Chinese with English abstract).
参考文献
Ji Huancheng, Wang Jiang, Liu Hechong, Zhong Jie, Fang Xuelian. 2022. Application of two-way extension frequency high-resolution seismic technology in the Wuxia fracture zone. Progress in Geophysics, 37(1): 201~212 (in Chinese with English abstract).
参考文献
Li Wenjing. 2015. Research on imaging algorithm of inverse synthetic-aperture radar based on compressed sensing. Master's thesis of Jiangsu University of Science and Technology (in Chinese with English abstract).
参考文献
Li Xushen, Zhang Yingchao, Yang Xibing, Xu Xuefeng, Zhang Jianxin, Man Xiao. 2017. New understanding and progress in natural gas exploration in the Yinggehai Qiongdongnan basin. China Offshore Oil and Gas, 29(6): 1~11 (in Chinese with English abstract).
参考文献
Liao Jihua, Wang Hua, Gan Huajun, Sun Ming, Wang Ying, Cai Lulu, Guo Shuai, Guo Jia. 2017. High precision sequence stratigraphic characteristics and subtle oil and gas reservoir prediction of the first member of the Miocene Huangliu Formation in the eastern region of the Yinggehai basin. Natural Gas Geoscience, 28(2): 241~253 (in Chinese with English abstract).
参考文献
Liu Weihong, Gao Xianzhi, Ye Xinlin, Ran Qigui, Cheng Honggang. 2017. Main controlling factors and exploration fields of natural gas reservoirs in the lower paleozoic in the Tadong area. Marine Oil and Gas Geology, 22(4): 61~68 (in Chinese with English abstract).
参考文献
Lü Lei, Huang Yunfeng, Tian Yancan, Chen Long. 2018. Application of zero phase deconvolution in fidelity processing of unconformity contact relations. Petroleum Geophysical Exploration, 53(S2): 20~23+7~8 (in Chinese with English abstract).
参考文献
Luo Jie, Yang Maoxin, Sun Zhenzhen, Ma Liping, Hu Zhenhua. 2022. The application of 2022 blue filtering frequency raising technology in improving the prediction accuracy of thin interbedded reservoirs in tight oil superimposed sand bodies. Proceedings of the China Petroleum Geophysical Exploration Academic Annual Conference (Volume II): 32~35 (in Chinese with English abstract).
参考文献
Ran Xiyang. 2019. Wave impedance inversion based on frequency division and extension technology. Master's thesis of Chengdu University of Technology (in Chinese with English abstract).
参考文献
Richard G B. 2007. Compressive Sensing. IEEE Signal Processing Magazine, 52(4): 118~124.
参考文献
Sun Chengyu. 2000. Spectral simulation method and its application in improving seismic data resolution. Petroleum Geophysical Exploration, 35 (1): 27~35 (in Chinese with English abstract).
参考文献
Wang Deying, Huang Jianping, Kong Xue, Li Zhenchun, Wang Jiao. 2017. A method for improving seismic data resolution based on time-frequency quadratic spectrum. Applied Geophysics, (2): 236~246+323 (in Chinese with English abstract).
参考文献
Wang Xiongwen, Wang Huazhong, Zheng Xiaopeng. 2014. High dimensional seismic data interpolation with weighted matching pursuit based on compressed sensing. Journal of Geophysics and Engineering, 11(6): 065003.
参考文献
Xie Yuhong, Li Xushen, Xu Xinde, Tong Chuanxin, Xiong Xiaofeng. 2016. Natural gas accumulation and exploration breakthroughs in the high-temperature and high-pressure fields of the Yingqiong basin. China Petroleum Exploration, 21(4): 19~29 (in Chinese with English abstract).
参考文献
Xu Lu. 2018. Fine Characterization and main control factors of shallow seabed fan in Huangliu Formation I, Eastern X Zone, Yinggehai basin. Master's thesis of Xi'an Shiyou University (in Chinese with English abstract).
参考文献
Yaakov T, David L D. 2006. Extensions of compressed sensing. Signal Processing, 86(3): 533~548.
参考文献
Zhao Bo, Yu Shouming, He Zhenhua, Huang Deji. 1998. Blue filtering and its application. Mineral and Rock, S1(52): 216~219 (in Chinese with English abstract).
参考文献
Zhang Gulan, Xiong Xiaojun, Rong Jiaojun, Zhang Yanbin, Cai Zhidong. 2010. Formation absorption attenuation compensation based on improved generalized S-transform. Petroleum Geophysical Exploration, 45(4): 512~515 (in Chinese with English abstract).
参考文献
Zhang Ying. 2013. Research on low-frequency compensation method based on compressed sensing and sparse inversion. Master's thesis of Jilin University (in Chinese with English abstract).
参考文献
Zhang Zaijin. 2023. Spectral ratio method for Q-value extraction based on VSP sub spectral simulation and its application in improving seismic resolution. Zhongwai Energy, 28(5): 9~14 (in Chinese with English abstract).
参考文献
Zhu Xiangyu, Guo Tingchao, Cao Wenjun, Pan Chenglei, Xu Chong. 2022. Improving seismic data resolution based on reflection coefficient inversion. Petroleum Geophysical Exploration, 61(6): 985~993 (in Chinese with English abstract).
参考文献
郭爱华, 路鹏飞, 余波, 卢成慧, 汪彬, 万玲娜. 2021. 利用Shearlet变换提高叠后地震资料分辨率. 石油地球物理勘探 , 56(5): 992~1000+925.
参考文献
韩红平. 2012. 压缩感知中信号重构算法的研究. 南京邮电大学硕士学位论文.
参考文献
季焕成, 王江, 刘荷冲, 钟洁, 方雪莲. 2022. 双向拓频高分辨率地震技术在乌夏断裂带的应用. 地球物理学进展, 37(1): 201~212.
参考文献
李文静. 2015. 基于压缩感知的逆合成孔径雷达成像算法研究. 江苏科技大学硕士学位论文.
参考文献
李绪深, 张迎朝, 杨希冰, 徐雪丰, 张建新, 满晓. 2017. 莺歌海-琼东南盆地天然气勘探新认识与新进展.中国海上油气, 29(6): 1~11.
参考文献
廖计华, 王华, 甘华军, 孙鸣, 王颖, 蔡露露, 郭帅, 郭佳. 2017. 莺歌海盆地东方区中新统黄流组一段高精度层序地层特征与隐蔽油气藏预测. 天然气地球科学, 28(2): 241~253.
参考文献
刘卫红, 高先志, 叶信林, 冉启贵, 程宏岗. 2017. 塔东地区下古生界天然气成藏主控因素及勘探领域. 海相油气地质, 22(4): 61~68.
参考文献
吕磊, 黄云峰, 田彦灿, 陈龙. 2018. 零相位反褶积在不整合接触关系保真处理中的应用. 石油地球物理勘探 , 53(S2): 20~23+7~8.
参考文献
罗杰, 杨懋新, 孙珍珍, 马丽萍, 胡振华. 2022蓝色滤波提频技术在提高致密油叠置砂体薄互储层预测精度中的应用. 2022年中国石油物探学术年会论文集(中册), 32~35.
参考文献
冉喜阳. 2019. 基于分频与拓频技术的波阻抗反演. 成都理工大学硕士学位论文.
参考文献
孙成禹. 2000. 谱模拟方法及其在提高地震资料分辨率中的应用. 石油地球物理勘探, 35 (1) : 27~35.
参考文献
王德营, 黄建平, 孔雪, 李振春, 王姣. 2017. 基于时频二次谱的提高地震资料分辨率方法. Applied Geophysics, (2): 236~246, 323.
参考文献
谢玉洪, 李绪深, 徐新德, 童传新, 熊小峰. 2016. 莺-琼盆地高温高压领域天然气成藏与勘探大突破. 中国石油勘探, 21(4): 19~29.
参考文献
许璐. 2018. 莺歌海盆地东方X区黄流组Ⅰ段浅海海底扇精细表征及主控因素研究. 西安石油大学硕士学位论文.
参考文献
赵波, 余寿明, 何振华, 黄德济. 1998. 蓝色滤波及其应用. 矿物岩石, S1(52): 216~219.
参考文献
张固澜, 熊晓军, 容娇君, 张彦斌, 蔡志东. 2010. 基于改进的广义 S 变换的地层吸收衰减补偿. 石油地球物理勘探, 45(4): 512~515.
参考文献
张莹. 2013. 基于压缩感知和稀疏反演的低频补偿方法研究. 吉林大学硕士学位论文.
参考文献
张在金. 2023. 基于VSP子波谱模拟的谱比法Q值提取及在提高地震分辨率中的应用. 中外能源, 28(5): 9~14.
参考文献
朱相羽, 郭廷超, 曹文俊, 潘成磊, 许冲. 2022. 基于反射系数反演提高地震资料分辨率. 石油物探, 61(6): 985~993.
目录contents

    摘要

    针对莺琼盆地W1井区地震资料分辨率低、砂体展布及叠置关系复杂的问题,综合莺琼盆地W1井区三个年份的原始资料,设计了一套包括预处理、去噪处理、偏移以及偏后处理的整套资料处理流程。在偏后处理中将压缩感知提频技术应用于叠前深度偏移剖面上,并与蓝色滤波提频技术、零相位反褶积提频技术进行了对比,体现了压缩感知提频技术的优势;运用压缩感知提频技术解决了莺琼盆地W1井区目前存在的地质问题,证明其在莺琼盆地W1井区后续开发实施上的合理性。结果表明:相较于其他两种提频技术,采用压缩感知提频技术可以保护主频以下可靠的低频信息,拓展高频,提高了资料的分辨率。通过压缩感知提频后的地震数据,气水关系更加清晰,砂体的叠置特征得以真实呈现,验证了其对后续油气勘探的指示意义。压缩感知提频技术作为一种新的地震资料处理技术,能够较好地解决地震资料分辨率低、砂体展布及叠置关系复杂等问题,值得在实际地震资料处理中推广应用。

    Abstract

    In order to solve the problems of low-resolution seismic data and the complex sand body distribution and overlapping relationships in the W1 well area of the Yingqiong basin, a comprehensive data processing process was developed based on three years of original data.This process includes pre-processing, denoising, migration, and bias post-processing.Duringthe bias post-processing stage, the compressed sensing frequency lifting method was applied to the pre-stack depth migration profile and compared with the blue filtering frequency lifting method and the zero-phase deconvolution frequency lifting method. The advantages of the compressed sensing frequency lifting method were demonstrated, and the application of the method to solve current geological problems proved its rationality in the subsequent development and implementation in the W1 well area of the Yingqiong basin.The results show that, compared with the other two frequency lifting methods, the compressed sensing frequency lifting method effectively preserves reliable low-frequency information below the main frequency while expanding the high frequency range and enhancing data resolution. By using the compressed sensing frequency lifting method of seismic data, the gas-water relationship becomes clearer, and the stacking characteristics of sand bodies can be accurately represented. This verifiestheir indicative significance in guiding subsequent oil and gas exploration efforts.As a new seismic data processing method, the compressed sensing frequency lifting method can better solve the problems of low seismic data resolution, sand body distribution, and complex overlapping relationships. Therefore, it is worth popularizing and applying in practical seismic data processing.

  • 莺琼盆地是我国近海海域典型的高温高压型盆地,超过75%的区带发育高温高压地层,过去10年间,莺琼盆地在高温高压领域相继发现了多个气田(刘卫红等,2017)。然而,在开发过程中很多气田面临着如下问题:砂体展布及叠置关系复杂,受储层内部多期次水道迁移影响,储层非均质性强,砂体连通性认识不清(谢玉洪等,2016李绪深等,2017),因此需要高品质地震资料指导后续开发研究。而提高分辨率是获得高品质地震资料的主要手段之一,学者们对于提高地震资料分辨率做了大量研究。赵波等(1998)使用蓝色滤波技术来实现叠后高分辨率处理,蓝色滤波是通过模拟反射系数中的有色成分来获取与反射系数中有色成分相关的蓝色滤波算子,再将反褶积后的地震资料进行褶积运算,从而可以得到优于普通反褶积方法的效果。孙成禹(2000)提出了多道统计加权的谱模拟方法并提高了地震资料分辨率。张固澜等(2010)利用改进的广义S变换方法可以提取时变Q值,从而避免传统方法中利用Q值进行补偿所带来的欠补偿或过补偿问题,提高了资料分辨率。Wang Xiongwen et al.(2014)利用地震数据有效信号的稀疏性特征,在压缩感知的理论框架下通过使用匹配追踪算法求解,实现了高分辨的线性Radon变换。王德营等(2017)研究出一种基于时频二次谱来提高地震资料分辨率方法。郭爱华等(2021)提出在Shearlet域可将有效信号与随机噪声分开,通过Shearlet变换将地震信号转换到Shearlet域,对Shearlet域系数进行合理的补偿后,再做Shearlet反变换,可实现对地震资料的提高分辨率处理。季焕成等(2022)提出一种双向拓频高分辨率地震技术,其主要通过Butterworth子波载波调制在低频和高频两个方向上来压制地震记录子波旁瓣,进而大幅拓宽地震记录频带。张在金等(2023)在传统谱比法基础上,考虑反射系数及噪声对Q值求取的影响,提出了基于VSP子波谱模拟的谱比法Q值提取方法,采用子波谱模拟的方式消除地层反射系数对ZVSP下行地震子波的影响,在子波谱基础上利用谱比法求取井点处的Q值,然后利用井点处Q值与地层速度的关系外推建立Q场,利用建立的Q场进行驱动地面地震提高分辨率处理。在上述提高地震资料分辨率的方法中,很多方法都是在全频带提高分辨率,由于地震波在地下介质传播过程中低频能量吸收衰减量较高频小,相比之下低频所承载的信息可靠度比高频高。为了保留最真实的地质信息,本文提出只针对高频成分,保留低频信息的压缩感知提频技术。

  • 为了验证压缩感知提频技术的保真性,采取了如下措施:首先,为莺琼盆地东方区W1井区三个年份的原始地震资料设计了基本的处理流程,进行实质性处理之后得到了叠前深度偏移剖面。再选取三种不同的提频技术对叠前深度偏移剖面进行处理,第一种是在原数据基础上扩展高频成分的压缩感知提频技术,另外两种提频技术选择的是常用的提频技术,分别是使用数学方法提升资料高频成分的蓝色滤波提频技术和直接展开频谱,低频和高频能量同时提升的零相位反褶积提频技术。最后将未提频资料结合三种提频技术提频后资料展开频谱对比,并分析了提频效果,再将压缩感知提频后的地震资料用于对该区的砂体展布、砂体叠置关系、砂体连通性等地质问题的解释,验证了压缩感知提频技术的真实性和可行性。

  • 1 地质背景及问题

  • 莺歌海盆地位于中国海南省与越南之间的莺歌海域,西邻望昆嵩隆起,东邻琼东南盆地,北邻北部湾盆地,是南海北部被动大陆边缘与印支板块交接区上发育的新生代大型走滑拉张盆地,受基底断裂带控制,整体呈NNW-SSE向延伸(图1)。盆地以快速沉降填充、高地温梯度、大规模异常压力体系和热流体底辟为重要特征。莺歌海盆地划分为莺东斜坡带、中央坳陷带、莺西斜坡带、河内坳陷带等四个一级构造单元。作为莺歌海盆地的主体沉积区,中央坳陷带发育二级构造单元——泥底辟构造带,而与其北部相接壤的临高凸起隔开了河内坳陷与中央坳陷,亦属于二级构造单元(许璐,2018)。

  • 图1 莺歌海盆地区域构造图(据廖计华等,2017

  • Fig.1 Regional tectonic map of Yinggehai basin (after Liao Jihua et al., 2017)

  • 本次研究区位于莺歌海盆地中央坳陷的北部东方区(图1红框),目的层为黄流组一段(T31~T30)海底扇发育地层(T31~T301),如图2所示。其中,T31界面为黄流组一段的底界面,T30界面为黄流组一段的顶界面,T301界面以下是海底扇主要发育部位,地震反射特征为低频中强振幅,目的层上部发育大套泥岩地层(T301~T30)作为盖层为油气的成藏提供封盖条件,其地震反射特征为高频、杂乱、弱振幅。研究区为重力流海底扇沉积的岩性气藏,岩性为粉砂岩及泥质粉砂岩,物性为中孔、低渗储层。井实钻证实,目的层砂体整体厚度较厚,但纵向上又分为多套小层,各小层厚度较薄,多数不超过10 m,但由于地层埋深较大,现有地震资料分辨率较低,从图2可以看出,目的层(T31~T301)地震反射同相轴纵向及横向的连续性较差,反映储层内部砂体结构复杂、非均质性强,现有地震资料难以满足砂体精细刻画的需求,需进一步开展地震资料高分辨率处理研究。

  • 表1为本次处理资料的观测系统主要信息,本次处理资料包含三个年度(2001年、2004年、2011年),采集方式均为拖缆采集,工区主要发育多次波、涌浪噪声及少量异常振幅,目的层附近有效信号弱,且被大量多次波掩盖。

  • 如图3所示,预处理后,对数据进行去噪处理并采取精细速度分析,再做时间和深度偏移,最终在叠前深度偏移剖面的基础上进行压缩感知提频处理,以实现道集的叠加和输出。

  • 图2 莺琼盆地W1井区目的层黄流组一段地震剖面

  • Fig.2 Seismic profile of the first member of Huangliu Formation in the target layer of the well W1 in the Yingqiong basin

  • 表1 莺琼盆地W1井区观测系统主要信息表

  • Table1 Main information table of W1 well area observation system in Yingqiong basin

  • 2 压缩感知提频技术原理及应用

  • 2.1 压缩感知提频原理

  • 压缩感知理论指出,信号在某一域内为稀疏表示时,可在该域内实现稀疏重构并取得理想结果(韩红平,2012)。即当满足特定条件时,信号能够稀疏表示则压缩感知理论可以应用。压缩感知理论的实现整体上包括稀疏表示、设计观测矩阵和约束求解三个环节(李文静,2015)。

  • 地震褶积模型可以看作是地震子波w和地下反射系数r的褶积与随机噪声n的总和:

  • s=r*r+n
    (1)
  • 式(1)在频率域可以表示为:

  • S=WR+N=WFr+N
    (2)
  • 其中,SWRN分别是地震记录s、地震子波w、地下反射系数r及随机噪声n的Fourier变换,F是Fourier(傅里叶)变换矩阵。

  • 根据地震勘探的基本假设,地下反射系数是一个随机序列,因此它的频谱R应该是全带宽的。然而,由于地震子波的滤波作用,它变成了一个带宽有限的频谱S冉喜阳,2019),因此丢失了一些有用的信息。为了恢复频带信息,需要通过有限带宽的地震数据频谱S恢复全带宽数据R

  • 图3 莺琼盆地W1井区资料处理流程图

  • Fig.3 Data processing flow chart in the well W1 of the Yingqiong basin

  • 压缩感知利用信号的稀疏特性,通过非线性重构来重建信号。由于地震反射系数r是稀疏的,所以求解公式(2)的过程满足压缩感知理论。

  • 这里将频域的反射系数R看作要恢复的信号,稀疏域就是时间域,通过Fourier变换矩阵与反射系数r来稀疏表示。即:

  • R=Fr
    (3)
  • 而设计的观测矩阵为频域地震子波WR进行观测,则有:

  • S=WR
    (4)
  • 与传统常用的压缩感知方法不同的是,这里的采样矩阵W不是完全随机函数。所以只能在一定程度上恢复全带宽能量S,而不能达到完全恢复整个频带能量。与压缩感知理论相辅相承的是L1范数最小化稀疏约束条件(Yaakov et al.,2006)。求解稀疏反射系数r的问题可以描述为一个由误差L2的范数和解r的L1范数共同约束的目标函数:

  • J=12WR-S22+λr11=12WFr-S22+λr11
    (5)
  • 将公式(5)经推导后再对J相对于r求导,得到目标函数后,使用基追踪去噪法求解即得到拓频后地震数据的频率域表示形式,再对其做反傅里叶变换,则得到提高分辨率的地震记录。这也是一种频域的反褶积方法,经实际数据和理论数据均显示了很好的效果(张莹,2013)。

  • 2.2 压缩感知提频处理流程

  • 以压缩感知提频原理为指导,可以借助稀疏反演在频率域对地震数据进行重构(Richard,2007Candes et al.,2008)。将地震数据从时间域转到频率域,保持相位不变,对振幅谱进行平滑,消除振幅谱中的陷波现象(陷波代表超出地震分辨率的薄层引起的陷波现象,而地震子波的频宽和主频,应该与地震数据一致,因此采用平滑的方式消除振幅谱中的陷波),获得消除陷波的频率域数据之后,将振幅谱最高点(主频)及以下频率成分的振幅保持不变,对主频以上振幅谱乘以系数提高其振幅,从而实现拓展频宽和高频成分的目标,获得分辨率提高的子波,最后在原始子波的低频形态上,添加高频成分,与反射系数褶积,获得高分辨率数据。

  • 2.3 压缩感知提频技术优势及效果

  • 地震波在地下介质传播过程中因低频能量吸收衰减量较高频小,相比之下低频所承载的信息可靠度比高频高,且由于本研究区三个年份原始数据枪缆沉放深度小,低频信息比较丰富,又因为频带越宽,地震资料的分辨率也越高,故本次对于地震资料的提频处理要求是保留低频信息,拓展高频。

  • 本文选取了3种提频技术在研究区未提频叠前深度偏移剖面上进行应用,比较分析其优缺点:① 针对反褶积后地震数据的有色成分即蓝色高频部分进行补偿,从而提高地震数据纵向分辨率的蓝色滤波提频技术(罗杰等,2022);② 只对地震道的振幅进行处理,通过拓展子波振幅谱宽度提高地震子波分辨率,而不改变地震道的相位的零相位反褶积提频技术(吕磊等,2018);③ 利用反射系数的稀疏性,进行稀疏反演对地震频带进行恢复,只拓展高频成分的压缩感知提频技术(朱相羽等,2022)。

  • 图5和图6展示了使用3种提频技术处理后的偏移剖面及频谱,从3种提频技术提频后剖面局部放大对比来看(图5),三种提频技术均起到了改善分辨率的作用,采用压缩感知提频技术的地震剖面相对于未提频的地震剖面效果更加明显,地震波形和砂体对应关系明显有所改善,振幅能量有所增强,使得地震波形强弱变化对砂体的响应更为准确,为下一步地震波形指示反演奠定了较好的资料基础。从最终的频谱对比图(图6)可以发现蓝色滤波提频技术、零相位反褶积提频技术处理后高频幅度提高有限,而且这两种提频方法对资料低频端都有不同程度的损伤,达不到真正的保低频拓高频的目的,而压缩感知提频技术可以在保护低频的同时能够很大程度上提高资料分辨率。

  • 图4 压缩感知提高分辨率实际流程图

  • Fig.4 Flow chart of compressed sensing for improved resolution

  • 图5 三种地震资料提频技术处理剖面局部放大对比

  • Fig.5 Three frequency lifting methods deal with section local amplification contrast in seismic data processing

  • (a)—压缩感知提频前地震剖面;(b)—压缩感知提频后地震剖面;(c)—零相位反褶积提频后地震剖面;(d)—蓝色滤波提频后地震剖面

  • (a) —seismic profile before compressed sensing frequency lifting; (b) —seismic profile after compressed sensing frequency lifting; (c) —seismic profile after zero phase deconvolution frequency lifting; (d) —seismic profile after blue filtering frequency lifting

  • 图6 地震资料频谱分析

  • Fig.6 Spectrum analysis of seismic data

  • 验证了压缩感知提频技术相对于常规提频技术的优势之后,将压缩感知提频技术应用于整个工区的地震资料中,得到地震剖面如图7所示,在W1井2300 ms处,提频后地震同相轴携带细节信息更加丰富,分辨率更高。总的来说,压缩感知提频技术较另外2种提频技术优势体现在:① 保护主频以下信息,剖面的波组特征及相位与输入数据一致;② 最大限度地提升了高频成分,改善了剖面分辨率。

  • 图7 莺琼盆地W1井区压缩感知提频前后对比

  • Fig.7 Comparison of compressed sensing before and after frequency lifting in W1 well area of Yingqiong basin

  • (a)—压缩感知提频前地震剖面;(b)—压缩感知提频后地震剖面

  • (a) —seismic profile before compressed sensing frequency lifting; (b) —seismic profile after compressed sensing frequency lifting

  • 综上,压缩感知提频处理后地震资料的分辨率有了很大的提高,但地层的界面产状和能量变化不大,显示了良好保幅性,相对于其他两种方法更适合成为本研究区处理的叠前深度偏移剖面的提频手段。

  • 3 压缩感知提频技术解决的地质问题

  • 3.1 莺琼盆地W1井区目的层气水关系分析

  • 莺琼盆地W1井区储层内部砂体结构复杂、非均质性强,砂体叠置连通关系不明。图5为地震资料处理前后连井地震剖面对比,绿色的井曲线为伽马曲线,井柱子为测井解释结果,红色的表示为气层,灰色为泥岩层,黄色为干层,紫色为气水同层,天蓝色为含气水层,蓝色为纯水层。从图8a处理前地震剖面可以看出,W2井在高部位钻遇气层,W1井在低部位钻遇气水界面,气底海拔深度为2896.5 m,而斜井却在W1井及W2井中间部位钻遇含气水层,含气水层顶面海拔深度为2867.9 m,比W1井气底深度高出28.6 m,出现气水关系矛盾的现象,因此斜井钻遇的砂体与W1井钻遇的砂体应该为两套叠置不连通的砂体。但处理前地震资料显示W1井、斜井及W2井之间地震同相轴连续,无法准确刻画砂体叠置不连通的接触关系。经本次处理后的连井剖面显示(图8b),斜井所钻遇的砂体为独立的一套砂体,与W1井及W2井所钻遇的砂体为叠置不连通(图8b),解决了气水界面矛盾的问题,与井实钻情况更加吻合,验证了本次资料处理结果的可靠性。

  • 3.2 莺琼盆地W1井区目的层内幕精细刻画及对油气勘探的指示意义

  • 图9为莺琼盆地W1井区压缩感知提频处理前后目的层砂体沉积期次解释方案剖面对比图,该区南部为低部位,北部为高部位。图9a为基于原始地震资料对目的层砂体沉积期次及展布范围进行刻画的方案,黑色实线为每期砂体的底界面,总共刻画了7期砂体,北部的为最早沉积的第一期砂体,由北向南逐渐侧积至最晚的第七期砂体。由于原始地震资料分辨率较低,基于原始地震刻画的各期砂体之间的接触关系还存在较大不确定性。通过本次压缩感知提频处理后,地震分辨率明显提升,目的层砂体展布及接触关系更清楚,并基于提频处理后地震资料重新对目的层砂体沉积期次及展布范围进行了刻画(图9b)。在原始地震剖面上,第二期砂体与第三期砂体接触关系不明,而新处理地震资料可以明显看到第二期与第三期砂体实际为同一期,为方便与原始方案进行对比,将其命名为第三期。同时,经过新资料的刻画,第一期及第四期砂体低部位展布范围进一步扩大,且由于地震分辨率的提升,第一期、第六期砂体中发育的隔夹层得以显示(黑色虚线所示),在第七期砂体沉积之后的晚期小水道也得以显示,并且可以看到晚期小水道对第七期砂体进行侵蚀切割,对第七期砂体的连通性造成一定阻隔。另外,两批解释方案变化较大的地方为第六期砂体与第七期砂体接触关系的刻画,在原始剖面上,W1井钻遇的最上面一套砂体为第七期砂体的高部位,且W1井在这套砂体钻遇了气水界面(图8a),这就导致第七期砂体低部位存在水的风险极大;而新处理资料显示,W1钻遇的最上面一套砂体实际为第六期砂体的高部位,而第七期砂体与第六期砂体在图中蓝色实现圈内叠置不连通,这样即使W1井钻遇了气水界面,第七期砂体依然存在潜力。

  • 图8 莺琼盆地W1井区压缩感知提频处理前后连井剖面对比

  • Fig.8 Comparison of connected well profile before and after compressed sensing frequency lifting in W1 well area of Yingqiong basin

  • (a)—压缩感知提频前连井地震剖面;(b)—压缩感知提频后连井地震剖面

  • (a) —well connection seismic profile before compressed sensing; (b) —well connection seismic profile after compressed sensing

  • 图9 莺琼盆地W1井区压缩感知提频处理前后目的层砂体沉积期次解释剖面对比

  • Fig.9 Comparison of the sub-interpretation profile of the target sand body before and after compressed sensing frequency lifting in W1 well area of Yingqiong basin

  • (a)—压缩感知提频前目的层砂体沉积期次解释剖面;(b)—压缩感知提频后目的层砂体沉积期次解释剖面

  • (a) —interpretation profile of sedimentary periods of the target sand body before compressed sensing frequency lifting processing; (b) —interpretation profile of sedimentary periods of the target sand body after compressed sensing frequency lifting processing

  • 基于新处理后的地震资料开展W1井区目的层内幕精细刻画,相较于原始方案,新方案更加准确地描述了各期砂体的展布范围及接触关系,进一步厘清该区目的层内幕各期砂体的沉积期次,为该区储量的落实及进一步的勘探评价奠定良好的基础。

  • 4 结论

  • (1)压缩感知提频技术相较于其他提频技术可以保护主频以下信息,保持剖面波组特征和相位与输入数据一致,且能提升高频成分,能够充分挖掘研究区现有地震资料的信息,将地震资料频带拓宽,分辨率提升的同时不损失资料信噪比,得到高分辨率地震资料以利于开展砂体内幕的精细刻画。

  • (2)压缩感知提频技术提高了地震资料的分辨率之后能够帮助解释存在的气水矛盾问题,解释后的结果吻合井实钻情况,可有效提高薄互层砂体的识别,支撑开发井网部署,对于莺琼盆地勘探开发有一定意义。

  • (3)压缩感知提频后的地震数据对叠置砂体的精细刻画,效果更为明显,进一步厘清了莺琼盆地W1井区目的层内幕各期砂体的沉积期次,为该区储量的落实及进一步的勘探评价奠定良好的基础。

  • 参考文献

    • Candes E J, Wakin M B. 2008. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2): 21~30.

    • Guo Aihua, Lu Pengfei, Yu Bo, Lu Chenghui, Wang Bin, Wan Lingna. 2021. Improving the resolution of poststack seismic data using Shearlet Transform. Petroleum Geophysical Exploration, 56(5): 992~1000+925(in Chinese with English abstract).

    • Han Hongping. 2012. Research on signal reconstruction algorithm in compressed sensing. Master's thesis of Nanjing University of Posts and Telecommunications (in Chinese with English abstract).

    • Ji Huancheng, Wang Jiang, Liu Hechong, Zhong Jie, Fang Xuelian. 2022. Application of two-way extension frequency high-resolution seismic technology in the Wuxia fracture zone. Progress in Geophysics, 37(1): 201~212 (in Chinese with English abstract).

    • Li Wenjing. 2015. Research on imaging algorithm of inverse synthetic-aperture radar based on compressed sensing. Master's thesis of Jiangsu University of Science and Technology (in Chinese with English abstract).

    • Li Xushen, Zhang Yingchao, Yang Xibing, Xu Xuefeng, Zhang Jianxin, Man Xiao. 2017. New understanding and progress in natural gas exploration in the Yinggehai Qiongdongnan basin. China Offshore Oil and Gas, 29(6): 1~11 (in Chinese with English abstract).

    • Liao Jihua, Wang Hua, Gan Huajun, Sun Ming, Wang Ying, Cai Lulu, Guo Shuai, Guo Jia. 2017. High precision sequence stratigraphic characteristics and subtle oil and gas reservoir prediction of the first member of the Miocene Huangliu Formation in the eastern region of the Yinggehai basin. Natural Gas Geoscience, 28(2): 241~253 (in Chinese with English abstract).

    • Liu Weihong, Gao Xianzhi, Ye Xinlin, Ran Qigui, Cheng Honggang. 2017. Main controlling factors and exploration fields of natural gas reservoirs in the lower paleozoic in the Tadong area. Marine Oil and Gas Geology, 22(4): 61~68 (in Chinese with English abstract).

    • Lü Lei, Huang Yunfeng, Tian Yancan, Chen Long. 2018. Application of zero phase deconvolution in fidelity processing of unconformity contact relations. Petroleum Geophysical Exploration, 53(S2): 20~23+7~8 (in Chinese with English abstract).

    • Luo Jie, Yang Maoxin, Sun Zhenzhen, Ma Liping, Hu Zhenhua. 2022. The application of 2022 blue filtering frequency raising technology in improving the prediction accuracy of thin interbedded reservoirs in tight oil superimposed sand bodies. Proceedings of the China Petroleum Geophysical Exploration Academic Annual Conference (Volume II): 32~35 (in Chinese with English abstract).

    • Ran Xiyang. 2019. Wave impedance inversion based on frequency division and extension technology. Master's thesis of Chengdu University of Technology (in Chinese with English abstract).

    • Richard G B. 2007. Compressive Sensing. IEEE Signal Processing Magazine, 52(4): 118~124.

    • Sun Chengyu. 2000. Spectral simulation method and its application in improving seismic data resolution. Petroleum Geophysical Exploration, 35 (1): 27~35 (in Chinese with English abstract).

    • Wang Deying, Huang Jianping, Kong Xue, Li Zhenchun, Wang Jiao. 2017. A method for improving seismic data resolution based on time-frequency quadratic spectrum. Applied Geophysics, (2): 236~246+323 (in Chinese with English abstract).

    • Wang Xiongwen, Wang Huazhong, Zheng Xiaopeng. 2014. High dimensional seismic data interpolation with weighted matching pursuit based on compressed sensing. Journal of Geophysics and Engineering, 11(6): 065003.

    • Xie Yuhong, Li Xushen, Xu Xinde, Tong Chuanxin, Xiong Xiaofeng. 2016. Natural gas accumulation and exploration breakthroughs in the high-temperature and high-pressure fields of the Yingqiong basin. China Petroleum Exploration, 21(4): 19~29 (in Chinese with English abstract).

    • Xu Lu. 2018. Fine Characterization and main control factors of shallow seabed fan in Huangliu Formation I, Eastern X Zone, Yinggehai basin. Master's thesis of Xi'an Shiyou University (in Chinese with English abstract).

    • Yaakov T, David L D. 2006. Extensions of compressed sensing. Signal Processing, 86(3): 533~548.

    • Zhao Bo, Yu Shouming, He Zhenhua, Huang Deji. 1998. Blue filtering and its application. Mineral and Rock, S1(52): 216~219 (in Chinese with English abstract).

    • Zhang Gulan, Xiong Xiaojun, Rong Jiaojun, Zhang Yanbin, Cai Zhidong. 2010. Formation absorption attenuation compensation based on improved generalized S-transform. Petroleum Geophysical Exploration, 45(4): 512~515 (in Chinese with English abstract).

    • Zhang Ying. 2013. Research on low-frequency compensation method based on compressed sensing and sparse inversion. Master's thesis of Jilin University (in Chinese with English abstract).

    • Zhang Zaijin. 2023. Spectral ratio method for Q-value extraction based on VSP sub spectral simulation and its application in improving seismic resolution. Zhongwai Energy, 28(5): 9~14 (in Chinese with English abstract).

    • Zhu Xiangyu, Guo Tingchao, Cao Wenjun, Pan Chenglei, Xu Chong. 2022. Improving seismic data resolution based on reflection coefficient inversion. Petroleum Geophysical Exploration, 61(6): 985~993 (in Chinese with English abstract).

    • 郭爱华, 路鹏飞, 余波, 卢成慧, 汪彬, 万玲娜. 2021. 利用Shearlet变换提高叠后地震资料分辨率. 石油地球物理勘探 , 56(5): 992~1000+925.

    • 韩红平. 2012. 压缩感知中信号重构算法的研究. 南京邮电大学硕士学位论文.

    • 季焕成, 王江, 刘荷冲, 钟洁, 方雪莲. 2022. 双向拓频高分辨率地震技术在乌夏断裂带的应用. 地球物理学进展, 37(1): 201~212.

    • 李文静. 2015. 基于压缩感知的逆合成孔径雷达成像算法研究. 江苏科技大学硕士学位论文.

    • 李绪深, 张迎朝, 杨希冰, 徐雪丰, 张建新, 满晓. 2017. 莺歌海-琼东南盆地天然气勘探新认识与新进展.中国海上油气, 29(6): 1~11.

    • 廖计华, 王华, 甘华军, 孙鸣, 王颖, 蔡露露, 郭帅, 郭佳. 2017. 莺歌海盆地东方区中新统黄流组一段高精度层序地层特征与隐蔽油气藏预测. 天然气地球科学, 28(2): 241~253.

    • 刘卫红, 高先志, 叶信林, 冉启贵, 程宏岗. 2017. 塔东地区下古生界天然气成藏主控因素及勘探领域. 海相油气地质, 22(4): 61~68.

    • 吕磊, 黄云峰, 田彦灿, 陈龙. 2018. 零相位反褶积在不整合接触关系保真处理中的应用. 石油地球物理勘探 , 53(S2): 20~23+7~8.

    • 罗杰, 杨懋新, 孙珍珍, 马丽萍, 胡振华. 2022蓝色滤波提频技术在提高致密油叠置砂体薄互储层预测精度中的应用. 2022年中国石油物探学术年会论文集(中册), 32~35.

    • 冉喜阳. 2019. 基于分频与拓频技术的波阻抗反演. 成都理工大学硕士学位论文.

    • 孙成禹. 2000. 谱模拟方法及其在提高地震资料分辨率中的应用. 石油地球物理勘探, 35 (1) : 27~35.

    • 王德营, 黄建平, 孔雪, 李振春, 王姣. 2017. 基于时频二次谱的提高地震资料分辨率方法. Applied Geophysics, (2): 236~246, 323.

    • 谢玉洪, 李绪深, 徐新德, 童传新, 熊小峰. 2016. 莺-琼盆地高温高压领域天然气成藏与勘探大突破. 中国石油勘探, 21(4): 19~29.

    • 许璐. 2018. 莺歌海盆地东方X区黄流组Ⅰ段浅海海底扇精细表征及主控因素研究. 西安石油大学硕士学位论文.

    • 赵波, 余寿明, 何振华, 黄德济. 1998. 蓝色滤波及其应用. 矿物岩石, S1(52): 216~219.

    • 张固澜, 熊晓军, 容娇君, 张彦斌, 蔡志东. 2010. 基于改进的广义 S 变换的地层吸收衰减补偿. 石油地球物理勘探, 45(4): 512~515.

    • 张莹. 2013. 基于压缩感知和稀疏反演的低频补偿方法研究. 吉林大学硕士学位论文.

    • 张在金. 2023. 基于VSP子波谱模拟的谱比法Q值提取及在提高地震分辨率中的应用. 中外能源, 28(5): 9~14.

    • 朱相羽, 郭廷超, 曹文俊, 潘成磊, 许冲. 2022. 基于反射系数反演提高地震资料分辨率. 石油物探, 61(6): 985~993.

  • 参考文献

    • Candes E J, Wakin M B. 2008. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2): 21~30.

    • Guo Aihua, Lu Pengfei, Yu Bo, Lu Chenghui, Wang Bin, Wan Lingna. 2021. Improving the resolution of poststack seismic data using Shearlet Transform. Petroleum Geophysical Exploration, 56(5): 992~1000+925(in Chinese with English abstract).

    • Han Hongping. 2012. Research on signal reconstruction algorithm in compressed sensing. Master's thesis of Nanjing University of Posts and Telecommunications (in Chinese with English abstract).

    • Ji Huancheng, Wang Jiang, Liu Hechong, Zhong Jie, Fang Xuelian. 2022. Application of two-way extension frequency high-resolution seismic technology in the Wuxia fracture zone. Progress in Geophysics, 37(1): 201~212 (in Chinese with English abstract).

    • Li Wenjing. 2015. Research on imaging algorithm of inverse synthetic-aperture radar based on compressed sensing. Master's thesis of Jiangsu University of Science and Technology (in Chinese with English abstract).

    • Li Xushen, Zhang Yingchao, Yang Xibing, Xu Xuefeng, Zhang Jianxin, Man Xiao. 2017. New understanding and progress in natural gas exploration in the Yinggehai Qiongdongnan basin. China Offshore Oil and Gas, 29(6): 1~11 (in Chinese with English abstract).

    • Liao Jihua, Wang Hua, Gan Huajun, Sun Ming, Wang Ying, Cai Lulu, Guo Shuai, Guo Jia. 2017. High precision sequence stratigraphic characteristics and subtle oil and gas reservoir prediction of the first member of the Miocene Huangliu Formation in the eastern region of the Yinggehai basin. Natural Gas Geoscience, 28(2): 241~253 (in Chinese with English abstract).

    • Liu Weihong, Gao Xianzhi, Ye Xinlin, Ran Qigui, Cheng Honggang. 2017. Main controlling factors and exploration fields of natural gas reservoirs in the lower paleozoic in the Tadong area. Marine Oil and Gas Geology, 22(4): 61~68 (in Chinese with English abstract).

    • Lü Lei, Huang Yunfeng, Tian Yancan, Chen Long. 2018. Application of zero phase deconvolution in fidelity processing of unconformity contact relations. Petroleum Geophysical Exploration, 53(S2): 20~23+7~8 (in Chinese with English abstract).

    • Luo Jie, Yang Maoxin, Sun Zhenzhen, Ma Liping, Hu Zhenhua. 2022. The application of 2022 blue filtering frequency raising technology in improving the prediction accuracy of thin interbedded reservoirs in tight oil superimposed sand bodies. Proceedings of the China Petroleum Geophysical Exploration Academic Annual Conference (Volume II): 32~35 (in Chinese with English abstract).

    • Ran Xiyang. 2019. Wave impedance inversion based on frequency division and extension technology. Master's thesis of Chengdu University of Technology (in Chinese with English abstract).

    • Richard G B. 2007. Compressive Sensing. IEEE Signal Processing Magazine, 52(4): 118~124.

    • Sun Chengyu. 2000. Spectral simulation method and its application in improving seismic data resolution. Petroleum Geophysical Exploration, 35 (1): 27~35 (in Chinese with English abstract).

    • Wang Deying, Huang Jianping, Kong Xue, Li Zhenchun, Wang Jiao. 2017. A method for improving seismic data resolution based on time-frequency quadratic spectrum. Applied Geophysics, (2): 236~246+323 (in Chinese with English abstract).

    • Wang Xiongwen, Wang Huazhong, Zheng Xiaopeng. 2014. High dimensional seismic data interpolation with weighted matching pursuit based on compressed sensing. Journal of Geophysics and Engineering, 11(6): 065003.

    • Xie Yuhong, Li Xushen, Xu Xinde, Tong Chuanxin, Xiong Xiaofeng. 2016. Natural gas accumulation and exploration breakthroughs in the high-temperature and high-pressure fields of the Yingqiong basin. China Petroleum Exploration, 21(4): 19~29 (in Chinese with English abstract).

    • Xu Lu. 2018. Fine Characterization and main control factors of shallow seabed fan in Huangliu Formation I, Eastern X Zone, Yinggehai basin. Master's thesis of Xi'an Shiyou University (in Chinese with English abstract).

    • Yaakov T, David L D. 2006. Extensions of compressed sensing. Signal Processing, 86(3): 533~548.

    • Zhao Bo, Yu Shouming, He Zhenhua, Huang Deji. 1998. Blue filtering and its application. Mineral and Rock, S1(52): 216~219 (in Chinese with English abstract).

    • Zhang Gulan, Xiong Xiaojun, Rong Jiaojun, Zhang Yanbin, Cai Zhidong. 2010. Formation absorption attenuation compensation based on improved generalized S-transform. Petroleum Geophysical Exploration, 45(4): 512~515 (in Chinese with English abstract).

    • Zhang Ying. 2013. Research on low-frequency compensation method based on compressed sensing and sparse inversion. Master's thesis of Jilin University (in Chinese with English abstract).

    • Zhang Zaijin. 2023. Spectral ratio method for Q-value extraction based on VSP sub spectral simulation and its application in improving seismic resolution. Zhongwai Energy, 28(5): 9~14 (in Chinese with English abstract).

    • Zhu Xiangyu, Guo Tingchao, Cao Wenjun, Pan Chenglei, Xu Chong. 2022. Improving seismic data resolution based on reflection coefficient inversion. Petroleum Geophysical Exploration, 61(6): 985~993 (in Chinese with English abstract).

    • 郭爱华, 路鹏飞, 余波, 卢成慧, 汪彬, 万玲娜. 2021. 利用Shearlet变换提高叠后地震资料分辨率. 石油地球物理勘探 , 56(5): 992~1000+925.

    • 韩红平. 2012. 压缩感知中信号重构算法的研究. 南京邮电大学硕士学位论文.

    • 季焕成, 王江, 刘荷冲, 钟洁, 方雪莲. 2022. 双向拓频高分辨率地震技术在乌夏断裂带的应用. 地球物理学进展, 37(1): 201~212.

    • 李文静. 2015. 基于压缩感知的逆合成孔径雷达成像算法研究. 江苏科技大学硕士学位论文.

    • 李绪深, 张迎朝, 杨希冰, 徐雪丰, 张建新, 满晓. 2017. 莺歌海-琼东南盆地天然气勘探新认识与新进展.中国海上油气, 29(6): 1~11.

    • 廖计华, 王华, 甘华军, 孙鸣, 王颖, 蔡露露, 郭帅, 郭佳. 2017. 莺歌海盆地东方区中新统黄流组一段高精度层序地层特征与隐蔽油气藏预测. 天然气地球科学, 28(2): 241~253.

    • 刘卫红, 高先志, 叶信林, 冉启贵, 程宏岗. 2017. 塔东地区下古生界天然气成藏主控因素及勘探领域. 海相油气地质, 22(4): 61~68.

    • 吕磊, 黄云峰, 田彦灿, 陈龙. 2018. 零相位反褶积在不整合接触关系保真处理中的应用. 石油地球物理勘探 , 53(S2): 20~23+7~8.

    • 罗杰, 杨懋新, 孙珍珍, 马丽萍, 胡振华. 2022蓝色滤波提频技术在提高致密油叠置砂体薄互储层预测精度中的应用. 2022年中国石油物探学术年会论文集(中册), 32~35.

    • 冉喜阳. 2019. 基于分频与拓频技术的波阻抗反演. 成都理工大学硕士学位论文.

    • 孙成禹. 2000. 谱模拟方法及其在提高地震资料分辨率中的应用. 石油地球物理勘探, 35 (1) : 27~35.

    • 王德营, 黄建平, 孔雪, 李振春, 王姣. 2017. 基于时频二次谱的提高地震资料分辨率方法. Applied Geophysics, (2): 236~246, 323.

    • 谢玉洪, 李绪深, 徐新德, 童传新, 熊小峰. 2016. 莺-琼盆地高温高压领域天然气成藏与勘探大突破. 中国石油勘探, 21(4): 19~29.

    • 许璐. 2018. 莺歌海盆地东方X区黄流组Ⅰ段浅海海底扇精细表征及主控因素研究. 西安石油大学硕士学位论文.

    • 赵波, 余寿明, 何振华, 黄德济. 1998. 蓝色滤波及其应用. 矿物岩石, S1(52): 216~219.

    • 张固澜, 熊晓军, 容娇君, 张彦斌, 蔡志东. 2010. 基于改进的广义 S 变换的地层吸收衰减补偿. 石油地球物理勘探, 45(4): 512~515.

    • 张莹. 2013. 基于压缩感知和稀疏反演的低频补偿方法研究. 吉林大学硕士学位论文.

    • 张在金. 2023. 基于VSP子波谱模拟的谱比法Q值提取及在提高地震分辨率中的应用. 中外能源, 28(5): 9~14.

    • 朱相羽, 郭廷超, 曹文俊, 潘成磊, 许冲. 2022. 基于反射系数反演提高地震资料分辨率. 石油物探, 61(6): 985~993.