-
近些年来,伴随着大气中温室气体排放量的持续增加,全球变暖气候背景下的海平面上升一直是学术界关注的热点问题(Meehl et al.,2005;Kerr,2006)。政府间气候变化专门委员会(intergovernmental panel on climate change,IPCC)第5次评估报告(the fifth assessment report of the Intergovernmental Panel on Climate Change)指出:自工业革命时期起,全球气候呈现持续变暖态势(Abram et al.,2016; Kaufman et al.,2023),1901~2010年间,全球平均海平面的上升幅度高达0.19 m,近150年以来,全球平均海平面的上升速率始终高于过去两千年的平均水平。模型预测截至21世纪末全球平均海平面相对于1986~2005年间的上升幅度最高可达1 m,彼时约有全球70%的海岸线都将受到海平面上升的影响而被迫向内陆迁移(Intergovernmental Panel on Climate Change,2013),沿海岸带地区的生态系统、淡水补给以及人口密集沿海地区的经济发展因此也会遭到波及(McGranahan et al.,2007;Intergovernmental Panel on Climate Change,2021)。在如此的气候背景下,通过重建过去时段的相对海平面升降进而确定气候变化的自然变率背景,有助于进一步预测未来气候系统对人类活动的响应(Hallmann et al.,2018;Chang Xin et al.,2023)。然而,目前海平面器测数据的年代跨度只含括过去几十年,单纯依靠器测数据预测未来人类活动影响下相对海平面的变化趋势仍存在不确定性。因此,要清晰地区分造成海平面变化的人为与自然因素信号,还需利用地质档案反演古海平面在更长时间尺度上(如全新世)的变化进程。
-
介形类(Ostracoda)作为在近海区域具有较高丰度和分异度的小型甲壳类节肢动物,已成为近岸带海洋生物多样性与现代(古)气候以及环境变化之间作用关系的理想研究材料之一(Holmes et al.,2002;Frenzel et al.,2005;Irizuki et al.,2021)。一方面,大量研究表明沿岸带现生海相介形类动物群的丰度以及多样性程度的变化与重金属污染、富营养化以及低氧带分布等环境因素密切相关(Yasuhara et al.,2012;王雨楠等,2019;Hong Yuanyuan et al.,2019);另一方面,一些狭生态幅的介形类属种或者介形类组合的更迭也可以用来指示某些特定环境因子的变化,如盐度、温度、水深等(Frenzel et al.,2005;Tanaka et al.,2011;Irizuki et al.,2015)。并且,由于介形类的钙质壳体极易被保存为化石(Horne,2002),也使其成为研究地质历史时期海洋生物多样性变化的绝佳材料(Yasuhara et al.,2008,2014),进而为我们探讨海洋生物多样性与古气候变化以及古环境变迁之间的关系提供线索与信息(Tanaka et al.,2011;Irizuki et al.,2015)。前人研究发现地质历史时期近岸带介形类动物群的丰度以及多样性程度极易受到区域环境以及全球气候变化的影响,更有大量研究结果表明近岸带海相介形类动物群对全新世期间的海平面波动十分敏感。例如,Viehberg et al.(2008)通过南波罗的海地区潟湖沉积物中淡水与耐盐介形类组合之间的更替,识别了早全新世Littorina海侵的发生;Marco-Barba et al.(2013)结合介形类生态学、壳体埋藏学以及地球化学分析,恢复了西地中海地区沿岸湿地在全新世期间的环境演变;Tanaka et al.(2012)根据三浦半岛岩芯沉积物中介形类动物群的变化,得出研究区在全新世期间由内海湾泥质底质沉积环境转为浅海泥滩的结论等。因此,基于介形类化石在恢复古气候和重建古环境方面的优越性,其化石记录被广泛应用于重建全新世期间相对海平面的变化进程(Gouramanis et al.,2012;Tanaka et al.,2012)。
-
截至目前,依托介形类化石记录重建东亚地区全新世期间相对海平面变化进程的相关研究已在中国和日本沿岸的多个河口、潟湖、海湾以及浅水陆架区开展,其相对海平面的重建结果与全球冰融等效海平面(ice melt equivalent sea-level,IESL)曲线的变化趋势大致相同(Yokoyama et al.,2011;Lambeck et al.,2014)。然而,由于构造运动和“冰川-水均衡调整”(glacio-hydro isostatic adjustment,GIA)作用的影响(Clark et al.,1978;Lambeck,2001;Lin Jingxing et al.,2012),东亚地区各地之间相对海平面的重建结果仍存在差异。因此,为探究全新世期间东亚地区相对海平面变化的时间-空间模式,仍需覆盖更多研究点位且具备高分辨率年代精度,以使海平面重建工作继续进行。
-
我国福建沿海地区第四纪海侵、海退沉积地层较为发育,记录了晚更新世以来的多次海侵事件,如:长乐海侵(全新世)、福州海侵(44~22 ka BP)以及琅岐海侵(60~42 ka BP)等(林景星,1979;蓝东兆等,1986;陈承惠等,1990),因此,被众多学者认为是晚第四纪时期相对海平面变化研究的理想区域(陈园田,1991;马明明等,2016)。近几十年来,关于福建沿海地区晚更新世以来古海面变化的研究主要基于海平面标志物、孢粉、硅藻以及有孔虫等微体化石记录(蓝东兆等,1986;曾从盛,1991;何梅等,2021;于俊杰等,2021),其年代分辨率主要集中在千年尺度。并且,不同记录揭示的海侵期间相对海平面的变化模式存在较大差异,甚至矛盾(Zong Yongqiang,2004;王龙等,2022;Yu Fengling et al.,2023)。因此,本文将通过对福建宁德地区NDQK5岩芯中高分辨率介形类化石记录的研究,揭示福建沿海地区晚更新世以来相对海平面的变化进程,进而与其他海平面重建结果进行对比,并讨论相对海平面变化的驱动机制。
-
1 研究区域概况
-
宁德市位于福建省东北部,东部邻近东海,地理位置介于118°32′E~120°43′E,26°18′N~27°40′N之间,其境内海岸线长达1046 km,海域面积为4.46×105 km2。宁德区域内的地形地貌以山地丘陵为主,界内分布交溪、霍童溪和大金溪3条较大河流,以西北—东南走向汇入邻近海域(图1;彭博等,2021)。本次研究所选取的研究点位位于宁德市东南部的三沙湾地区,该海湾属半封闭性质,仅在其东侧存在一出水口,海湾内部的沉积物受海浪作用小,因此是海洋沉积物研究的理想区域。此外,宁德地区气候属亚热带季风气候,年均温约为20℃,年平均降雨达1600 mm(于俊杰等,2021),区域植被则以亚热带、热带常绿阔叶和落叶阔叶灌丛居多,亚热带针叶林次之(张新时,2007)。
-
图1 福建宁德研究区域(a)及NDQK5孔(b)地理位置图
-
Fig.1 Location maps of Ningde in Fujian Province (a) and borehole NDQK5 (b)
-
2 材料与方法
-
NDQK5钻孔(26°42.30′N,119°36.52′E)位于福建省宁德市三沙湾北部(图1)。钻孔深度61 m,岩性以淤泥质黏土和粉砂质黏土为主;其中钻孔顶部0~2.27 m段为素填土;2.27~22.7 m段为淤泥质黏土;22.7~47.75 m段以粉砂质黏土为主,伴有厚层状黏土和中粗砂;钻孔底部47.75~61 m段为块状砾石沉积以及基岩风化层。根据钻孔沉积物的岩性特征,本文选择岩芯2.5~47.8 m段的淤泥质黏土、黏土和粉砂质黏土进行介形类化石分析,以15~45 cm不等间距取得143个沉积物样品。
-
对于NDQK5岩芯年代框架的建立,本文采用AMS 14C和光释光测年方法测定沉积物样品的绝对年龄。其中,AMS 14C测年工作在美国Beta实验室进行,共计3个样品(表1)。经测试得到的14C年龄数据使用软件Calib Rev 8.0.1(数据校正集:Marine20)进行校正,校正过程中取福建沿海地区海洋碳库校正值Delta-R为113±37,得到距今的日历年龄(Stuiver et al.,1993)。光释光年龄则引自于俊杰等(2021)。最后,利用R 4.2.2统计软件中的Bacon程序(Blaauw et al.,2011)建立NDQK5岩芯中介形类化石分布层位的年代-深度模式。
-
介形类化石样品的预处理以及后期扫描成像工作均在中国科学院南京地质古生物研究所现代古生物学与地层学国家重点实验室进行,本文中介形类化石的获取采用通用的钙质微体古生物化石分析处理方法:① 将沉积物样品放置于70℃烘箱内充分烘干并称取样品干重;② 将样品置于清水中浸泡,待其充分分散后过63 μm筛网并加以清水冲洗; ③ 收集残留于63 μm筛网表面的沉积物,再次烘干称重。化石个体的挑取使用体视显微镜Zeiss stemi2000完成,随后采用TESCAN MAIA3 GMU和HITACHI SU3500扫描电子显微镜对化石样品进行拍照分析。介形类化石属种的鉴定主要参考汪品先等(1988)、阮培华和郝诒纯(1988)及侯祐堂和勾韵娴(2007)所总结的介形类系统分类学资料。最后,使用TILIA软件(Grimm,1991)绘制介形类属种的相对丰度随钻孔深度变化的分布图。
-
3 研究结果
-
3.1 钻孔年代框架及地层时代
-
据本文获得的3个AMS14C年龄(表1,序号1、3、6)以及于俊杰等(2021)此前报道的12个年龄数据(表1,序号2、4、5、7~15;9个14C和3个光释光年龄)显示,NDQK5钻孔中7.35 m处14C年龄和42.9~47.0 m区间的光释光年龄相比于临近层位出现倒转(表1,序号2、14、15),这些年龄数据不被使用。此外,岩芯34.35 m和36.7 m处测年点的14C年龄显示超过最大测年范围(约5 ka)(Christie,2018),并且32.9~33 m区间的光释光年龄为64.5 ka,表明岩芯32.9~36.7 m段可能对应MIS 4(Lisiecki et al.,2005)。同时,岩芯34.35~47 m区间高海面指示物(如,海相沟鞭藻)的缺失也验证了此段岩芯可能保存低海平面MIS 4时期的地层沉积(于俊杰等,2021)。因此,本文推测福建宁德地区NDQK5岩芯至少保存了MIS 4以来的地层沉积,岩芯内的沉积物以末次冰期时期居多。
-
注:序号2、4、5、7~15的年龄数据引自于俊杰等(2021);*代表倒转的年龄数据。
-
3.2 介形类分布特征及其环境指示意义
-
本次研究共计分析处理143个沉积物样品,其中含介形类化石的样品共计56个,总计挑出12516枚介形类化石壳体(单瓣),共鉴定出隶属于Podocopa亚纲的23属26种: Sinocytheridea impressa、Loxoconcha ocellifera、Bicornucythere bisanensis、Neomonoceratina delicata、Loxoconcha zhejiangensis、Munseyella pupilla、Keijella hodgii、Pistocythereis bradyformis、Aurila cymba、Propontocypris euryhalina、Cythere lutea、Cythere omotenipponica、Stigmatocythere costa、Bythoceratina sheyangensis、Nipponocythere asamushiensis、Hemicytheridea reticulata、Sinocythere sinensis、Paijenborchella formosana、Semicytherura sp.、Callistocythere sinensis、Paradoxostoma tabulata、Copytus posterosulcus、Cornucoquimba sp.、Loxoconcha sinensis、Cytheropteron miurense、Archicythereis xiamenensis(图2)。岩芯中的介形类化石记录主要分布于4~17.1 m段,4.15~6.25 m和17.1~20.35 m段偶见介形类化石个体。基于Bacon模型建立的年代-深度模式显示,NDQK5岩芯中介形类化石记录分布层位的下限对应~8.2 ka BP(图3),化石记录分布层位的上限由于没有测年点限制,根据沉积速率推算可能对应6.9 ka BP。整个岩芯中介形类动物群的丰度和简单分异度变化较大,自岩芯17.1 m处开始大量出现介形类化石个体后总体呈现上升趋势,并在岩芯14.8 m处达到最高,随后逐渐下降。岩芯中介形类动物群的复合分异度(Shannon-Wiener指数)则变化较小(图4),指示介形类动物群的属种组成及其相对丰度比较稳定。
-
NDQK5岩芯内的介形类动物群以主要分布于浅水区域的介形类属种为主,其中以Sinocytheridea impressa和Loxoconcha ocellifera 最为丰富,二者在岩芯内的平均相对丰度分别为30.94%和15.13%;岩芯内的其他介形类属种按照平均相对丰度由高到低依次为Bicornucythere bisanensis(9.86%)、Neomonoceratina delicata(8.24%)、Loxoconcha zhejiangensis(1.81%)、Keijella hodgii(1.04%);平均相对丰度小于1%,仍在岩芯中较常见的属种有Pistocythereis bradyformis(0.39%)、Aurila cymba(0.39%)、Propontocypris euryhalina(0.36%)。根据岩芯内介形类动物群的相异程度以及介形类优势种和特征种的相对丰度沿岩芯深度的分布特征,NDQK5岩芯中的介形类动物群可划分为3个组合:
-
图2 福建宁德NDQK5岩芯中的介形类属种
-
Fig.2 Ostracode species in the core NDQK5 from Ningde in Fujian Province
-
1、2—Sinocytheridea impressa,雄性个体左壳外视,FJZX-18,雌性个体右壳外视,FJZX-19;3、4—Loxoconcha ocellifera,雄性个体右壳外视,FJZX-59,雌性个体左壳外视,FJZX-60;5—Cythere lutea,左壳外视,FJZX-8;6—Cythere omotenipponica,左壳外视,FJZX-12;7—Neomonoceratina delicata,左壳外视,FJZX-83;8—Stigmatocythere costa,左壳外视,FJZX-128;9—Bicornucythere bisanensis,左壳外视,FJZX-104;10—Loxoconcha zhejiangensis,左壳外视,FJZX-63;11—Bythoceratina sheyangensis,左壳外视,FJZX-6;12—Nipponocythere asamushiensis,右壳外视,FJZX-68;13—Hemicytheridea reticulata,右壳外视,FJZX-41;14—Sinocythere dongtaiensis,右壳外视,FJZX-46;15—Paijenborchella formosana,左壳外视,FJZX-86;16—Semicytherura sp.,左壳外视,FJZX-33;17—Callistocythere sinensis,右壳外视,FJZX-53;18—Paradoxostoma tabulata,左壳外视,FJZX-77;19—Propontocypris euryhalina,左壳外视,FJZX-135;20—Copytus posterosulcus,左壳外视,FJZX-73;21—Munseyella pupilla,右壳外视,FJZX-81;22—Cornucoquimba sp.,左壳外视,FJZX-39;23—Pistocythereis bradyformis,右壳外视,FJZX-123;24—Keijella hodgii,左壳外视,FJZX-113;25—Aurila cymba,右壳外视,FJZX-35;26—Loxoconcha sinensis,左壳外视,FJZX-57;27—Cytheropteron miurense,左壳外视,FJZX-24;28—Archicythereis xiamenensis,右壳外视,FJZX-100;图中比例尺均为 100 μm,标本均保存于中国科学院南京地质古生物研究所
-
1, 2—Sinocytheridea impressa, left lateral view, male (FJZX-18) , right lateral view, female (FJZX-19) ; 3, 4—Loxoconcha ocellifera, right lateral view, male (FJZX-59) , left lateral view, female (FJZX-60) ; 5—Cythere lutea, left lateral view (FJZX-8) ; 6—Cythere omotenipponica, left lateral view (FJZX-12) ; 7—Neomonoceratina delicata, left lateral view (FJZX-83) ; 8—Stigmatocythere costa, left lateral view (FJZX-128) ; 9—Bicornucythere bisanensis, left lateral view (FJZX-104) ; 10—Loxoconcha zhejiangensis, left lateral view (FJZX-63) ; 11—Bythoceratina sheyangensis, left lateral view (FJZX-6) ; 12—Nipponocythere asamushiensis, right lateral view (FJZX-68) ; 13—Hemicytheridea reticulata Kingma, 1948, right lateral view (FJZX-41) ; 14—Sinocythere dongtaiensis, right lateral view (FJZX-46) ; 15—Paijenborchella formosana, left lateral view (FJZX-86) ; 16—Semicytherura sp., left lateral view (FJZX-33) ; 17—Callistocythere sinensis, right lateral view (FJZX-53) ; 18—Paradoxostoma tabulata, left lateral view (FJZX-77) ; 19—Propontocypris euryhalina, left lateral view (FJZX-135) ; 20—Copytus posterosulcus, left lateral view (FJZX-73) ; 21—Munseyella pupilla, right lateral view (FJZX-81) ; 22—Cornucoquimba sp., left lateral view (FJZX-39) ; 23—Pistocythereis bradyformis, right lateral view (FJZX-123) ; 24—Keijella hodgii, left lateral view (FJZX-113) ; 25—Aurila cymba, right lateral view (FJZX-35) ; 26—Loxoconcha sinensis, left lateral view (FJZX-57) ; 27—Cytheropteron miurense, left lateral view (FJZX-24) ; 28—Archicythereis xiamenensis, right lateral view (FJZX-100) ; all the scales in the figure represent 100 μm, and all the specimens are deposited in Nanjing Institute of Geology and Palaeontology, CAS
-
(1)组合A(孔深17.1~15.8 m):以Bicornucythere bisanensis和Sinocytheridea impressa为主要因子,二者平均相对丰度为45.89%和39.53%,其中前者是东亚沿海地区较为常见的浅水介形类属种,主要分布于中国和日本沿岸水深小于20 m的潮间带、潮下带和海湾区域(Ishizaki,1968,1969,1971; Hong Yuanyuan et al.,2019;Wang He et al.,2022);后者则多见于我国东海和南海水深小于20 m的潮下带水域,对盐度具有高度的适应性,是在我国沿岸地区第四系中分布最为广泛的广盐类属种(赵泉鸿,1984; Whatley et al.,1987; 赵泉鸿和汪品先,1988; 周洋等,2015; Hong et al.,2019)。在此区间内还常见浅水广盐类属种Loxoconcha ocellifera(12.04%)和Neomonoceratina delicata(10.29%),二者通常分布于东海水深20 m以内的潮下带水域(赵泉鸿等,1986;汪品先等,1988)。此外,还可见少量现生对照种多分布于东海20~50 m水深的近岸内陆架种A. cymba(赵泉鸿等,2009; Hong Yuanyuan et al.,2019)。
-
图3 福建宁德NDQK5岩芯介形类化石分布层位的年代-深度模式
-
Fig.3 Age-depth model for the fossil-occurred horizons in core NDQK5 from Ningde in Fujian Province
-
图4 福建宁德NDQK5岩芯常见介形类属种的相对丰度(%)分布
-
Fig.4 Relative abundance (%) of selected ostracod species in core NDQK5 from Ningde in Fujian Province
-
(2)组合B(孔深15.8~9.1 m):以Sinocytheridea impressa和Neomonoceratina delicata为优势分子,其平均相对丰度为43.79%和11.57%。根据其区间内近岸内陆架种相对丰度的分布特征,此组合可进一步划分为B1与B2两个组合,其中B1组合(15.8~14 m)以浅水广盐种S. impressa(68.73%)、N. delicata(16.9%)以及近岸浅水种Bicornucythere bisanensis(16.16%)为主要分子。其次,主要分布于东海20~50 m水深的近岸内陆架种Keijella hodgii、Aurila cymba以及Pistocythereis bradyformis(赵泉鸿和汪品先,1990;赵泉鸿等,2009)在此阶段大量出现,其平均相对丰度分别为2.9%、2.82%、0.21%。在此区间还可见少量现生种分布于日本沿岸河口地区的近岸浅水种C. lutea(Ishizaki,1971)。B2组合(14~9.1 m)以S. impressa和Loxoconcha ocellifera为优势种,二者平均相对丰度分别为49.58%和21.79%。常见种为浅水广盐种N. delicata(13.05%)和近岸浅水种B. bisanensis(9.49%)。相比于B1组合,在此区间近岸内陆架种K. hodgii(3.17%)和P. bradyformis(1.49%)的平均相对丰度有所上升,并在岩芯10.25 m处达到最高。同时,在此区间内中—内陆架种Munseyella pupilla少量出现(赵泉鸿和汪品先,1988),其平均相对丰度为1.38%。
-
(3)组合C(孔深9.1~5.5 m,4 m):以浅水广盐种Sinocytheridea impressa和Loxoconcha ocellifera为主要分子,二者平均相对丰度分别为38.07%和33.26%。其次,此组合亦可见浅水广盐种Neomonoceratina delicata(10.54%)和近岸浅水种Bicornucythere bisanensis(8.30%),二者的相对丰度相比于前一组合略微减小。同时,潮间带种L. zhejiangensis开始大量出现(赵泉鸿,1984),并在7.25 m处达到整个岩芯的峰值,在此阶段其平均相对丰度为9.09%;近岸内陆架种Keijella hodgii、Pistocythereis bradyformis以及Aurila cymba相对丰度迅速下降,仅在8.25 m和7.85 m处有少量分布。
-
4 讨论
-
4.1 晚更新世以来福建沿海地区的相对海平面变化
-
大量古海平面证据显示晚更新世以来福建沿海地区发生多次海侵,其中包括MIS 3时期的琅岐海侵和福州海侵以及MIS 1时期的长乐海侵(蓝东兆等,1986;陈承惠等,1990; Lin Jingxing et al.,2012; 何梅等,2021)。结合岩芯年代数据以及前人研究(于俊杰等,2021; Dai Lu et al.,2021)可知,福建东北部NDQK5岩芯可能记录了MIS 4以来的沉积,其中岩芯下部32.9~30.9 m段海相沟鞭藻的出现指示MIS 3早期海侵事件的发生,这与同时期在闽江口地区出现的琅岐海侵相对应(陈承惠等,1990);NDQK5岩芯上部17.1~4 m(约8.2~?6.9 ka BP)段出现大量的海相介形类化石以及海相沟鞭藻,对应全新世时期在福建沿海地区广泛发生的MIS 1期海侵(Dai Lu et al.,2021; 孙丹丹等,2022; Ren Yongqing et al.,2022)。
-
NDQK5岩芯内介形类组合的更替进一步揭示福建沿海地区在全新世高海平面背景下存在相对海平面的次一级波动。如图5所示,NDQK5岩芯中具有明显水深指示意义的介形类属种的相对丰度变化指示福建沿海地区相对海平面在中全新世期间存在较大幅度的波动。其中,介形类组合A(8.2~8.07 ka BP)以近岸浅水种Bicornucythere bisanensis和浅水广盐种Sinocytheridea impressa为主要因子,在此区间亦可见浅水广盐种Loxoconcha ocellifera和Neomonoceratina delicata,以及少量的近岸内陆架种Keijella hodgii、Aurila cymba、Pistocythereis bradyformis,对应潮下带的沉积环境。在此区间介形类动物群的绝对丰度、简单分异度以及复合分异度整体呈现上升趋势,本文推测研究区域相对海平面在此期间持续上升。介形类组合B1(8.07~7.87 ka BP)仍以浅水广盐种S. impressa、N. delicata和近岸浅水种B. bisanensis为主,但近岸内陆架种K. hodgii、A. cymba以及P. bradyformis的相对丰度明显上升,该组合对应近岸内陆架的沉积环境,指示福建沿海地区相对海平面进一步上升;介形类组合B2(7.87~7.38 ka BP)的优势属种与组合B1大致相同,但其相对丰度明显减少,近岸内陆架种K. hodgii和P. bradyformis的相对丰度继续上升,同时在此区间内亦可见少量中—内陆架种Munseyella pupilla。因此,在此期间研究区域相对海平面继续上升并达到最高,但鉴于该介形类组合中近岸浅水种仍占主导(相对丰度总和大于70%),本文推测该介形类组合仍对应近岸内陆架的沉积环境。介形类组合C(7.38~?6.90 ka BP)以浅水广盐种S. impressa和L. ocellifera为主要因子,在此区间亦可见主要分布于潮间带地区的Loxoconcha zhejiangensis(赵泉鸿,1984),该组合对应潮间带的沉积环境。同时,在此区间内岩芯5.55~4.15 m (7.03~?6.90 ka BP)段的介形类化石记录缺失,指示沉积环境可能转变为潮上带。因此,介形类组合C对应时段内福建沿海地区的相对海平面变化总体上呈现先降后升的趋势。综上,NDQK5岩芯中的介形类化石记录揭示中全新世期间福建沿海地区相对海平面的变化模式为在约8.2~7.4 ka BP期间持续上升,并在约7.9~7.4 ka BP区间达到最高;7.4~7.0 ka BP期间海平面下降,随后可能在约6.9 ka BP再次上升。
-
图5 区域及全球相对海平面重建结果对比
-
Fig.5 Comparison of relative sea level reconstruction on regional and global scales
-
4.2 相对海平面重建结果对比及其驱动机制
-
4.2.1 重建结果对比
-
区域以及全球相对海平面变化的对比结果显示(图5),本文依据介形类化石记录定性重建的福建沿海地区中全新世期间相对海平面的变化趋势与前人已发表全球及该地区相对海平面变化的定量重建结果在7.4 ka BP以前基本吻合,即相对海平面在7.4 ka BP前一致呈现上升态势。7.4 ka BP后,定量重建结果显示福建沿海地区相对海平面仍保持上升趋势,但上升速率明显降低(曾从盛等,1997;Zong Yongqiang,2004;王龙等,2022;Yu Fengling et al.,2023)。介形类化石记录则指示7.4 ka BP后福建沿海地区的相对海平面明显下降,这仅与曾从盛等(1997)的相对海平面重建结果一致。究其原因可能是目前用于定量重建福建沿海地区相对海平面变化的海平面指示点数据在8~7 ka BP期间内的数量较少或连续性较差,依靠少量数据点或邻近时间区间内的数据模拟相对海平面的变化趋势存在不确定性;其次,不同海平面指示物对海平面变化敏感程度的差异以及年代测定的不确定性也可能是造成相对海平面重建结果存在差异的原因。
-
此外,福建沿海地区内部构造背景的差异也可能是造成相对海平面重建结果出现分歧的原因之一,例如童永福(1985)提出福建沿海地区存在以闽江为界南升北降的内部构造分化现象。在本次研究中,福建东北部NDQK5岩芯中的介形类化石记录指示福建沿海地区相对海平面在约7.9~7.4 ka BP区间达到最高,然而依托大多分布于闽中—闽南地区海平面数据点的海平面定量重建结果显示福建沿海地区相对海平面在约7~6 ka BP期间才达到峰值(王绍鸿等,1994;曾从盛,1997;李永飞等,2016;王龙等,2022),这表明区域内部构造背景的差异可能会造成高海平面出现时间节点的不一致。同时,位于本文研究区域北部的宁波湾地区的沉积物记录显示在其区域的古姚江河谷在7.5 ka BP因海平面迅速上升转为开放海域,随后在7 ka BP转为沿岸沼泽(Lyu Ye et al.,2021,2022),这表明宁波湾地区的相对海平面有可能在7.5~7.0 ka BP区间就已经达到峰值,间接佐证了本文得出研究区域在7 ka BP前就达到高海平面的结论。因此,福建沿海地区相对海平面重建的对比结果表明在其区域内相对海平面的变化进程可能存在差异,而造成相对海平面变化存在空间差异的具体原因有待进一步研究。
-
4.2.2 驱动机制的讨论
-
第四纪时期的全球海平面升降主要取决于两极冰盖在轨道时间尺度上的盈亏变化(Lambeck,2001;Lambeck et al.,2014),即在冰期时冰盖扩张,海平面下降;间冰期时冰盖融化,海平面上升。然而,在具有更短时间尺度的全新世时期,其区间内的相对海平面变化除受两极冰盖的融化进程影响外,还可能受到构造运动、沉积压实以及“冰川-水均衡调整”(GIA)作用等多个因素的共同驱动(Zong Yongqiang,2004; Horton and Shennan,2009; Lin Jingxing et al.,2012;王龙等,2022)。
-
福建沿海地区远离两极大规模陆地冰盖发育区,属受“冰川-水均衡调整”作用影响的远场区(far-field)(Yokoyama et al.,2011)。同时,该地与西太平洋区域内的板块边界距离适中,在长时间尺度背景下的区域构造运动较为稳定(Pedoja et al.,2008)。研究区域内的相对海平面变化持续受控于区域千年时间尺度的沉积压实作用的可能性也较低。因此,排除可能对海平面变化造成影响的诸多因素,中全新世期间福建沿海地区的相对海平面变化可能主要受控于同期两极冰盖融水注入邻近大洋的速率与强度 (Yokoyama et al.,2011;Lambeck et al.,2014)。然而,诸多研究表明在约7 ka BP全球大部分冰盖完成消融后(Fleming et al.,1998;Ullman et al.,2016),冰融等效海平面模拟结果显示全球平均海平面的上升速率迅速下降(图5;Lambeck et al.,2014),然而福建沿海地区相对海平面在7 ka BP后仍保持高于现今海平面的“高海平面”水平(蓝东兆等,1986;Zong Yongqiang,2004;王龙等,2022;Yu Fengling et al.,2023),这表明中全新世7 ka BP后福建沿海地区相对海平面变化可能受控于其他因素。王龙等(2022)通过分别对比福建沿海地区相对海平面变化的指示点数据与IESL曲线以及GIA作用的模拟结果提出中全新世7 ka BP后冰盖融水所能引起全球海平面上升的幅度和速率十分有限,福建沿海地区相对海平面变化的驱动机制可能由冰盖融水控制转为陆架边缘海区域的“冰川-水均衡调整”作用占主导。同时,本文中介形类化石记录在7 ka BP后的缺失也可能说明促进福建沿海地区相对海平面上升的“冰盖融水”组分的占比大幅度降低,区域海平面的上升速率减小甚至转而下降(图5);此外,同属三沙湾地区NDGK2岩芯中淡水环纹藻的浓度在7 ka BP后的稍微上升,以及同期海相沟鞭藻化石记录的缺失也指示研究区域内存在由海相向陆相沉积环境转变的趋势(于俊杰等,2021)。因此,本文将中全新世期间福建沿海地区相对海平面变化的驱动机制总结为在约8.2~7 ka BP期间可能主要受控于冰盖融水注入大洋的速率与强度,7 ka BP后则可能受控于GIA作用。
-
5 结论
-
本文通过福建宁德NDQK5岩芯中的高分辨率介形类化石记录重建了中全新世期间福建沿海地区的相对海平面变化,并在此基础上与前人已发表该地区的相对海平面重建结果进行对比,讨论福建沿海地区相对海平面变化的驱动机制,得出如下结论:
-
(1)NDQK5岩芯内的介形类化石记录主要分布在于17.1~4 m段,其上下限对应年代属深海氧同位素1期(MIS 1),对应全新世时期在福建沿海地区广泛发生的MIS 1期海侵。
-
(2)根据介形类动物群的相异程度以及介形类优势种和特征种相对丰度的分布特征,岩芯内的介形类动物群共被划分为3个组合:① 介形类组合A以Bicornucythere bisanensis和Sinocytheridea impressa为主,代表潮下带环境;② 介形类组合B以Sinocytheridea impressa和Neomonoceratina delicata为优势种,伴有特征种Keijella hodgii、Aurila cymba以及Pistocythereis bradyformis,指示近岸内陆架的沉积环境;③ 介形类组合C以Sinocytheridea impressa和Loxoconcha ocellifera为主,伴有特征种Loxoconcha zhejiangensis,代表潮间带的沉积环境。
-
(3)结合岩芯年代框架以及介形类组合的分布特征可知福建沿海地区在全新世高海平面背景下仍存在相对海平面的次一级波动,其相对海平面在中全新世期间的变化模式为在约8.2~7.4 ka BP期间持续上升,并在约7.9~7.4 ka BP区间达到最高;7.4~7.0 ka BP期间海平面下降,随后再次上升。研究区域的相对海平面变化在8.2~7 ka BP期间可能主要受冰盖融水控制,7 ka BP后则可能受控于“冰川-水均衡调整”作用。
-
致谢:感谢南京大学泮燕红教授在本文的撰写以及修改过程中提出的宝贵意见和建议;感谢香港大学Moriaki Yasuhara副教授和洪媛媛博士在海相介形类化石的属种鉴定方面给予的帮助与指导;介形类化石样品的预处理以及后期扫描成像工作得到中国科学院南京地质古生物研究所张红勇、茅永强、王春朝以及方艳高级工程师的莫大帮助与支持;审稿专家对本文提出了建设性的意见与建议,使文章内容得到进一步提升,在此一并致谢!
-
参考文献
-
Abram N J, McGregor H V, Tierney J E, Evans M N, McKay N P, Kaufman D S. 2016. Early onset of industrial-era warming across the oceans and continents. Nature, 536(7617): 411~418.
-
Blaauw M, Christen J A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3): 457~474.
-
Chang Xin, Liu Xiting, Liu Jiarui, Zhang Mingyu, Gu Yu, Wang Nan, Wang Houjie, Zhuang Guangchao, Yu Junjie, Chen Jing. 2023. Late quaternary marine transgressions inferred from the pyrite sulfur content and isotopes within core sediments from the southeast coast of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 618: 111513.
-
Chen Chenghui, Lan Dongzhao, Yu Yongfen, Zhang Weilin. 1990. Late Quaternary stratigraphy in the Western Taiwan Straits. Quaternary Sciences, 4: 301~307 (in Chinese with English abstract).
-
Chen Yuantian. 1991. A preliminary study of the late Quaternary marine strata in Fujian coastal area. Journal of Stratigraphy, 15(4): 285~290+310 (in Chinese).
-
Christie M. 2018. Radiocarbon dating. Wiki Journal of Science, 1(1): 6.
-
Clark J A, Farrell W E, Peltier W R. 1978. Global changes in postglacial sea level: A numerical calculation. Quaternary Research, 9(3): 265~287.
-
Dai Lu, Li Shuaili, Yu Junjie, Wang Jilong, Peng Bo, Wu Bin, Lao Jinxiu, Zhang Qqingyun, Hao Qinghe. 2021. Palynological evidence indicates the paleoclimate evolution in southeast China since late Marine Isotope Stage 5. Quaternary Science Reviews, 266: 106964.
-
Fleming K, Johnston P, Zwartz D, Yokoyama Y, Lambeck K, Chappell J. 1998. Refining the eustatic sea-level curve since the Last Glacial Maximum using far-and intermediate-field sites. Earth and Planetary Science Letters, 163(1): 327~342.
-
Frenzel P, Boomer I. 2005. The use of ostracods from marginal marine, brackish waters as bioindicators of modern and Quaternary environmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 225(1-4): 68~92.
-
Gouramanis C, Dodson J, Wilkins D, De Deckker P, Chase B M. 2012. Holocene palaeoclimate and sea level fluctuation recorded from the coastal barker swamp, rottnest island, south-western Western Australia. Quaternary Science Reviews, 54: 40~57.
-
Grimm E C. 1991. TILIA V2. 0. 4 (Computer Software). Springfield: Illinois State Museum, Research and Collections Centre.
-
Hallmann N, Camoin G, Eisenhauer A, Botella A, Milne G A, Vella C, Samankassou E, Pothin V, Dussouillez P, Fleury J, Fietzke J. 2018. Ice volume and climate changes from a 6000 year sea-level record in French Polynesia. Nature Communications, 9(1): 285.
-
He Mei, Liu Gengyu, Zhou Guohua, Che Bolin, Ma Mingming, Jin Jianhui, Liu Xiuming, Yu Mingtong. 2021. Transgression-regression process recorded by borehole sediments in Fuzhou basin since MIS 3. Journal of Earth Environment, 12(1): 44~56 (in Chinese with English abstract).
-
Holmes J A, Chivas A R. 2002. The Ostracoda: Applications in Quaternary Research. Washington: Washington DC American Geophysical Union Geophysical Monograph Series.
-
Hong Yuanyuan, Yasuhara M, Iwatani H, Mamo B. 2019. Baseline for ostracod-based northwestern Pacific and Indo-Pacific shallow-marine paleoenvironmental reconstructions: Ecological modeling of species distributions. Biogeosciences, 16(2): 585~604.
-
Horne D J, Cohen A, Martens K. 2002. Taxonomy, morphology and biology of Quaternary and living ostracoda. In: Holmes J A, Chivas A R, eds. The Ostracoda: Applications in Quaternary Research. Washington: Washington DC American Geophysical Union Geophysical Monograph Series, 5~36.
-
Horton B P, Shennan I. 2009. Compaction of Holocene strata and the implications for relative sea level change on the east coast of England. Geology, 37(12): 1083~1086.
-
Hou Youtang, Gou Yunxian. 2007. Fossil Ostracoda of China (Vol. 2). Beijing: Science Press (in Chinese).
-
Intergovernmental Panel on Climate Change. 2013. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
-
Intergovernmental Panel on Climate Change. 2021. Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
-
Irizuki T, Kobe M, Ohkushi K i, Kawahata H, Kimoto K. 2015. Centennial- to millennial-scale change of Holocene shallow marine environments recorded in ostracode fauna, northeast Japan. Quaternary Research, 84(3): 467~480.
-
Irizuki T, Takahashi J, Seto K, Ishiga H, Fujihara Y, Kawano S. 2021. Response of bay ostracod assemblages to late Holocene sea-level, centennial-scale climate, and human-induced factors in northeast beppu bay, Japan. Marine Micropaleontology, 102002.
-
Ishizaki K. 1968. Ostracodes from Uranouchi bay, Kochi prefecture, Japan. Science Reports of the Tohoku University, Second Series (Geology), 40(1): 1~45.
-
Ishizaki K. 1969. Ostracodes from Shinjiko and Nakanoumi, Shimane prefecture, western Honshu, Japan. Science Reports of the Tohoku University, Second Series (Geology), 41(2): 197~A113.
-
Ishizaki K. 1971. Ostracodes from Aomori bay, Aomori prefecture, northeast Honshu, Japan. Science Reports of the Tohoku University, Second Series (Geology), 43(1): 59~97.
-
Kaufman D S, Broadman E. 2023. Revisiting the Holocene global temperature conundrum. Nature, 614(7948): 425~435.
-
Kerr R A. 2006. A worrying trend of less ice, higher seas. Science, 311(5768): 1698~1701.
-
Lambeck K, Chappell J. 2001. Sea level change through the Last Glacial cycle. Science, 292(5517): 679~686.
-
Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M. 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences, 111(43): 15296~15303.
-
Lan Dongzhao, Yu Yongfen, Chen Chenghui, Xie Zaituan. 1986. Preliminary study on Late Pleistocene transgression and Holocene sea-level fluctuation in Fuzhou basin. Marine Geology & Quaternary Geology, 6(3): 103~111 (in Chinese with English abstract).
-
Li Yongfei, Xu Liuyuan, Xu Bin. 2016. Changes of sea-level in Fujian coast during the past 40000 years. Journal of Neijiang Normal University, 31(6): 46~55+61 (in Chinese with English abstract).
-
Lin Jingxing. 1979. Preliminary notes on Holocene transgression in the seaboard of Fujian, South China. Chinese Science Bulletin, 24(11): 517~520 (in Chinese).
-
Lin Jingxing, Dai Luping. 2012. Quaternary marine transgressions in eastern China. Journal of Palaeogeography, 1(2): 105~125.
-
Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1): PA1003.
-
Lyu Ye, Tong Chunfu, Saito Y, Meadows M E, Wang Zhanghua. 2021. Early to Mid-Holocene sedimentary evolution on the southeastern coast of Hangzhou bay, East China, in response to sea-level change. Marine Geology, 442: 106655.
-
Lyu Ye, Xu Hao, Meadows M E, Wang Zhanghua. 2022. Early to Mid-Holocene sedimentary environmental evolution in the palaeo-Ningbo bay, East China and its implications for Neolithic coastal settlement. Frontiers in Marine Science, 9: 1059746.
-
Ma Mingming, Liu Xiuming, Zhou Guohua, Liu Gengyu, Che Bolin. 2016. A review of Late Quaternary transgression studies and some basic questions in Fujian coastal area. Journal of Subtropical Resources and Environment, 11(3): 9~19 (in Chinese with English abstract).
-
Marco-Barba J, Holmes J A, Mesquita-Joanes F, Miracle M R. 2013. The influence of climate and sea-level change on the Holocene evolution of a mediterranean coastal lagoon: Evidence from ostracod palaeoecology and geochemistry. Geobios, 46(5): 409~421.
-
McGranahan G, Balk D, Anderson B. 2007. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization, 19(1): 17~37.
-
Meehl G A, Washington W M, Collins W D, Arblaster J M, Hu A, Buja L E, Strand W G, Teng H. 2005. How much more global warming and sea level rise? Science, 307(5716): 1769~1772.
-
Pedoja K, Shen J-W, Kershaw S, Tang C. 2008. Coastal quaternary morphologies on the northern coast of the South China Sea, China, and their implications for current tectonic models: A review and preliminary study. Marine Geology, 255(3): 103~117.
-
Peng Bo, Wang Jilong, Tong Meng, Wu Bin, Liu Xiaoqiang, Niu Shujie, Lin Mudong, Zhang Hua, Li Maotian, Yu Junjie. 2021. Heavy metal deposition and its impact on ecological environment in Sanduao Bay of Fujian Province during the past century under the influence of human activities. Geology in China, 48(6): 1759~1769 (in Chinese with English abstract).
-
Ren Yongqing, Jin Jianhui, Huang Yunming, Zuo Xinxin. 2022. Chronology of Last Glacial Maximum sediments in the coast of Fujian, South China. Marine Geology, 451: 106884.
-
Stuiver M, Reimer P J. 1993. Extended 14C data base and revised calib 3. 0 14C age calibration program. Radiocarbon, 35(1): 215~230.
-
Sun Dandan, Liu Ping, Zhang Jie, Yu, Junjie, Yue Wei, Wang Jilong, Peng Bo, Liu Yan, Li Yue, Chen Jing. 2022. Identification and significance of the late Pleistocene transgressive strata in the bays of northern Fujian Province based on geochemical element indicators of sedimentary origin. Journal of Palaeogeography, 24(1): 139~151 (in Chinese with English abstract).
-
Tanaka G, Komatsu T, Saito Y, Nguyen D P, Vu Q L. 2011. Temporal changes in ostracod assemblages during the past 10000 years associated with the evolution of the red river delta system, northeastern Vietnam. Marine Micropaleontology, 81(3-4): 77~87.
-
Tanaka G, Matsushima Y, Maeda H. 2012. Holocene ostracods from the borehole core at Oppama park, Yokosuka City, Kanagawa prefecture, central Japan: Paleoenvironmental analysis and the discovery of a fossil ostracod with three-dimensionally preserved soft parts. Paleontological Research, 16(1): 1~18.
-
Tong Yongfu. 1985. A outline of the Quaternary deposits of Fujian Province. Quaternary Sciences, 6(1): 99~106 (in Chinese with English abstract).
-
Ullman D J, Carlson A E, Hostetler S W, Clark P U, Cuzzone J, Milne G A, Winsor K, Caffee M. 2016. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change. Quaternary Science Reviews, 152: 49~59.
-
Viehberg F A, Frenzel P, Hoffmann G. 2008. Succession of late Pleistocene and Holocene ostracode assemblages in a transgressive environment: A study at a coastal locality of the southern Baltic sea (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 264(3): 318~329.
-
Wang He, Xu Hua, Aye K K T, Hong Yuanyuan, Cao Meizhen, Yasuhara M. 2022. Ostracods reveal the palaeoenvironmental changes in Laizhou bay, Bohai sea (eastern China) since the Late Pleistocene. Marine Micropaleontology, 175: 102150.
-
Wang Long, Wang Zhanghua, Li Cuiyu. 2022. Holocene relative sea-level change of Fujian coast, southeastern China: Geological records and comparison with glacio-hydro isostatic adjustment modelling. Haiyang Xuebao, 44(9): 109~123 (in Chinese with English abstract).
-
Wang Pinxian, Zhang Jijun, Zhao Quanhong, Min Qiubao, Bian Yunhua, Zheng Lianfu, Cheng Xinrong, Chen Ronghua. 1988. Foraminifera and Ostracoda in Bottom Sediments of East China Sea. Beijing: Ocean Press (in Chinese).
-
Wang Shaohong, Yang Jianming, Zeng Congsheng, Wu Xuezhong, Yu Mingtong. 1994. Sea level changes since late Pleistocene along Fujian coast. Taiwan Strait, 11(2): 166~175 (in Chinese with English abstract).
-
Wang Yunan, Miao Kejia, Wu Yijing, Zhao Quanhong, Yang Shouye, Fan Daidu, Zhou Baochun. 2019. Two morphotypes of Bicornucythere bisanensis (Crustacea, Ostracoda) in the East China Sea and their differentiated adaptation to environmental factors. Acta Micropalaeontologica Sinica, 36(4): 399~411 (in Chinese with English abstract).
-
Whatley R, Zhao Quanhong. 1987. A revision of brady's 1869 study of the ostracoda of Hong Kong. Journal of Micropalaeontology, 7(1): 21~29.
-
Yasuhara M, Cronin T M, deMenocal P B, Okahashi H, Linsley B K. 2008. Abrupt climate change and collapse of deep-sea ecosystems. Proceedings of the National Academy of Sciences, 105(5): 1556~1560.
-
Yasuhara M, Hunt G, Breitburg D, Tsujimoto A, Katsuki K. 2012. Human-induced marine ecological degradation: Micropaleontological perspectives. Ecology and Evolution, 2(12): 3242~3268.
-
Yasuhara M, Okahashi H, Cronin T M, Rasmussen T L, Hunt G. 2014. Response of deep-sea biodiversity to abrupt Deglacial and Holocene climate changes in the north Atlantic Ocean. Global Ecology and Biogeography, 23(9): 957~967.
-
Yokoyama Y, Esat T. 2011. Global climate and sea level: Enduring variability and rapid fluctuations over the past 150000 years. Oceanography, 24(2): 54~69.
-
Yu Fengling, Li Nannan, Tian Ganghua, Huang Zhaoquan, Xiong Haixian, Li Tanghua, Liu Shengtao, Liu Yuze. 2023. A re-evaluation of holocene relative sea-level change along the Fujian coast, southeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 622: 111577.
-
Yu Junjie, Peng Bo, Lan You, Wu Bin, Wang Jilong, Ding Dalin, Lao Jinxiu, Li Shuaili, Dai Lu. 2021. Palynological record revealed anthropogenic deforestation, sea level and climate changes since marine isotope stage 5a in the northeastern coast of Fujian province. Earth Science, 46(1): 281~292 (in Chinese with English abstract).
-
Zeng Congsheng. 1991. Sea level variation along Fujian coast in Holocene. Taiwan Strait, 10 (1): 77~84 (in Chinese with English abstract).
-
Zeng Congsheng. 1997. Transgression and sea level changes along the northern coast of Fujian during the late Quaternary. Journal of Fujian Normal University (Natural Science), 13(4): 94~101 (in Chinese with English abstract).
-
Zhao Quanhong. 1984. Recent Ostracoda from the coast zone of the East China Sea and the Yellow Sea. Marine Geology & Quaternary Geology, 4(1): 45~57 (in Chinese).
-
Zhao Quanhong, Wang Pinxian, Zhang Qinglan. 1986. Distribution of ostracode species in shelf bottom of northern South China Sea. Acta Oceanologica Sinica, 8(5): 590~602+665~666 (in Chinese).
-
Zhao Quanhong, Wang Pinxian. 1988. Modern Ostracoda in sediments of shelf seas off China: Quantitative and qualitative distributions. Oceanologia et Limnologia Sinica, 19(6): 553~561 (in Chinese with English abstract).
-
Zhao Quanhong, Wang Pinxian. 1990. Modern Ostracoda in shelf seas off China: Zoogeographical zonation. Oceanologia et Limnologia Sinica, 21(5): 458~464+499~500 (in Chinese with English abstract).
-
Zhao Quanhong, Jian Zhimin, Zhang Zaixiu, Cheng Xinrong, Wang Ke, Zheng Hongbo. 2009. Holocene benthic Foraminifera and Ostracoda from the shelf mud area of the East China Sea and their paleoenvironmental implications. Acta Micropalaeontologica Sinica, 26(2): 117~128 (in Chinese with English abstract).
-
Zhou Yang, Xie Yecai, Chen Fang, Long Gui, Chen Chixin, Wu Cong, Zheng Zhimin, Huang Xuefei. 2015. Microfaunas in Hole ZK201-2 at Zhujiang river delta since Late Pleistocene and their implications for paleoenviroments. Marine Geology & Quaternary Geology, 35(4): 113~123 (in Chinese with English abstract).
-
Zong Yongqiang. 2004. Mid-Holocene sea-level highstand along the southeast coast of China. Quaternary International, 117(1): 55~67.
-
陈承惠, 蓝东兆, 于永芬, 张维林. 1990. 台湾海峡西部海域晚第四纪地层. 第四纪研究, 4: 301~307.
-
陈园田. 1991. 福建沿海晚第四纪海相地层的初步研究. 地层学杂志, 15(4): 285~290+310.
-
何梅, 刘庚余, 周国华, 车柏林, 马明明, 靳建辉, 刘秀铭, 俞鸣同. 2021. 福州盆地钻孔沉积物记录的MIS 3以来海侵-海退过程. 地球环境学报, 12(1): 44~56.
-
侯祐堂, 勾韵娴. 2007. 中国介形类化石第二卷. 北京: 科学出版社.
-
蓝东兆, 于永芬, 陈承惠, 谢在团. 1986. 福州盆地晚更新世海侵及全新世海面波动的初步研究. 海洋地质与第四纪地质, 6(3): 103~111.
-
李永飞, 徐柳园, 许斌. 2016. 福建沿海40000年以来的海面变化. 内江师范学院学报, 31(6): 46~55+61.
-
林景星. 1979. 福建沿海全新世海进的初步认识. 科学通报, 24(11): 517~520.
-
马明明, 刘秀铭, 周国华, 刘庚余, 车柏林. 2016. 福建沿海地区晚第四纪海侵研究进展及存在的问题. 亚热带资源与环境学报, 11(3): 9~19.
-
彭博, 王继龙, 同萌, 武彬, 刘晓强, 牛淑杰, 林沐东, 张华, 李茂田, 于俊杰. 2021. 人类活动影响下福建三都澳近百年来重金属沉积记录及其对生态环境的影响. 中国地质, 48(6): 1759~1769.
-
阮培华, 郝诒纯. 1988. 冲绳海槽第四纪微体古生物群及其地质意义. 北京: 地质出版社.
-
孙丹丹, 刘平, 张杰, 于俊杰, 岳伟, 王继龙, 彭博, 刘演, 李月, 陈静. 2022. 基于沉积成因地化元素指标的闽北海湾晚更新世海侵地层辨识及其意义. 古地理学报, 24(1): 139~151.
-
童永福. 1985. 福建省第四系沉积概况. 第四纪研究, 6(1): 99~106.
-
汪品先, 章纪军, 赵泉鸿, 闵秋宝, 卞云华, 郑连福, 成鑫荣, 陈荣华. 1988. 东海底质中的有孔虫和介形虫. 北京: 海洋出版社.
-
王龙, 王张华, 李翠玉. 2022. 福建沿海全新世相对海平面变化: 地质记录与“冰川-水均衡调整”模拟对比. 海洋学报, 44(9): 109~123.
-
王绍鸿, 杨建明, 曾从盛, 吴学忠, 俞鸣同. 1994. 福建沿海晚更新世以来的海平面变化. 台湾海峡, 11(2): 166~175.
-
王雨楠, 缪克佳, 吴伊婧, 赵泉鸿, 杨守业, 范代读, 周保春. 2019. 东海美山双角花介Bicornucythere bisanensis(甲壳纲, 介形类)两个形态型及其分布控制因素. 微体古生物学报, 36(4): 399~411.
-
于俊杰, 彭博, 兰佑, 武彬, 王继龙, 丁大林, 劳金秀, 李帅丽, 戴璐. 2021. 孢粉证据揭示MIS 5a以来福建东北沿海地区人类活动、海平面及气候变化. 地球科学, 46(1): 281~292.
-
曾从盛. 1991. 福建沿海全新世海平面变化. 台湾海峡, 10(1): 79~86.
-
曾从盛. 1997. 闽东北沿海晚第四纪海侵与海面变动. 福建师范大学学报(自然科学版), 13(4): 94~101.
-
张新时. 2007. 中华人民共和国植被图(1∶1000000). 北京: 地质出版社.
-
赵泉鸿. 1984. 东-黄海海岸带现代介形虫. 海洋地质与第四纪地质, 4(1): 45~57.
-
赵泉鸿, 汪品先, 张清兰. 1986. 南海北部陆架底质中介形虫的分布. 海洋学报(中文版), 8(5): 590~602+665~666.
-
赵泉鸿, 汪品先. 1988. 中国浅海现代介形虫的数量和属种分布. 海洋与湖沼, 19(6): 553~561.
-
赵泉鸿, 汪品先. 1990. 中国浅海现代介形虫的动物地理分区. 海洋与湖沼, 21(5): 458~464+499~500.
-
赵泉鸿, 翦知湣, 张在秀, 成鑫荣, 王可, 郑洪波. 2009. 东海陆架泥质沉积区全新世有孔虫和介形虫及其古环境应用. 微体古生物学报, 26(2): 117~128.
-
周洋, 谢叶彩, 陈芳, 龙桂, 陈炽新, 吴聪, 郑志敏, 黄雪飞. 2015. 珠江三角洲zk201-2孔晚更新世以来微体生物群与古环境. 海洋地质与第四纪地质, 35(4): 113~123.
-
摘要
福建沿海地区第四系较为发育,是研究晚更新世以来相对海平面变化的理想区域。本文以福建宁德NDQK5岩芯中产出的高分辨率介形类化石为研究对象,结合加速器质谱法(accelerator mass spectrometry, AMS)14C和光释光测年技术建立岩芯年代框架,重建了中全新世期间福建沿海地区的相对海平面变化。结果显示,NDQK5岩芯中的介形类化石记录主要分布于4~17.1 m段,对应年代约为8.2~6.9 ka BP。岩芯内共计识别出海相介形类23属26种,根据优势种以及特征种的相对丰度变化特征可将岩芯内的介形类动物群划分为3个组合:① 介形类组合A以Bicornucythere bisanensis和Sinocytheridea impressa为主,代表潮下带环境;② 介形类组合 B以Sinocytheridea impressa和Neomonoceratina delicata为优势种,指示近岸内陆架的沉积环境;③ 介形类组合C以Sinocytheridea impressa和Loxoconcha ocellifera为主,代表潮间带的沉积环境。基于介形类组合的分布特征,本文推断福建沿海地区海平面约在8.2~7.4 ka BP期间持续上升,并在约7.9~7.4 ka BP区间达到最高;7.4~7.0 ka BP期间海平面下降,随后再次上升。因此,介形类化石记录指示福建沿海地区在全新世高海平面背景下依然存在相对海平面的次一级波动。同时,结合已有福建沿海地区海平面变化驱动机制的研究结果,本研究推断8.2~7 ka BP期间福建沿海地区的海平面变化可能主要受控于冰盖融水;7 ka BP后该地区的海平面波动可能受控于“冰川-水均衡调整”作用。
Abstract
The Fujian coastal area, with its extensive distribution of Quaternary deposits, offers an ideal location for studying relative sea level changes since the late Pleistocene. In this study, we utilized AMS 14C and optical stimulated luminescence (OSL) dating techniques to analyze the high-resolution ostracod records from core NDQK5, which was obtained from Ningde in Fujian Province. Our objective was to reconstruct the relative sea level changes during the Mid-Holocene in this area. The ostracods found incore NDQK5 were located at a depth interval of 4~17.1 m, corresponding to approximately 8.2~6.9 ka BP We identified twenty-six marine ostracod species belonging to twenty-three genera from the core samples. By analyzing the relative abundance of the main ostracod elements, we identified three distinct ostracod assemblages. Ostracod assemblage A, characterized by the dominance of Bicornucytherebisanensis and Sinocytheridea impressa, indicatesa subtidal zone environment. Assemblage B, with Sinocytheridea impressa and Neomonoceratina delicata asthe dominant species, represents the nearshore inner shelf. Assemblage C, marked by the dominance of Sinocytheridea impressa and Loxoconcha ocellifera, indicates an intertidal zone environment. Our ostracod data reveals a continuous rise in sea level in the Fujian coastal area since approximately 8.2 ka BP, with the sea level reaching its highstand between 7.9 and 7.4 ka BP. Subsequently, a decline in sea level existed during the period of 7.4 to 7.0 ka BP, followed by a minor rise. These findings indicate the presence of several minor fluctuations in sea level during the Holocene sea-level highstand period in the Fujian coastal area. Combining our result with the previous studies, we conclude that the sea level change in the Fujian coastal area was probably influenced by meltwater from the ice sheet during the period of 8.2 to 7 ka BP. However, it is probable that the glacio-hydro isostatic adjustment (GIA) effect played a role in controlling sea level after 7 ka BP.
Keywords
Ningde ; East China Sea ; MIS 1 ; Mid-Holocene sea-level highstand ; ostracod assemblages