-
安徽铜陵矿集区是长江中下游铜-铁-硫-金成矿带的重要组成部分,发育众多的斑岩型、矽卡岩型和热液脉型铜金多金属矿床,长期以来一直是矿床学家们的研究热点(郭文魁,1957;郭宗山,1957;徐克勤,1978;李文达,1989;常印佛等,1991;翟裕生等,1992;唐永成等,1998;Pan Yuanming and Dong Ping,1999;陆建军等,2003;毛景文等,2009;徐晓春等,2011;Hou Zengqian et al.,2015;Pirajno Franco and Zhou Taofa,2015;周涛发,2017;Du Jianguo and Audétat Andreas,2020)。铜陵矿集区也是中国东部重要的岩浆活动集中区,广泛发育中生代侵入岩,并且与区内铜金多金属矿床具有密切的成因联系,因此相关研究长期不辍,研究文献不计其数。在中生代侵入岩的相关研究中,有些学者从单个侵入岩体的研究入手(王彦斌等,2004a,2004b,2004c;徐夕生等,2004;高庚等,2006;吴淦国等,2008;Xiong Yanyun et al.,2020);有些学者专注于矿集区及其中各个矿田内各类侵入岩的研究(王强等,2003;王元龙等,2004;Xie Jiancheng et al.,2008;徐晓春等,2008;Yang Xiaonan et al.,2008;吴才来等,2010;谢建成等,2012;Chen Changjian et al.,2016;施柯等,2019);也有许多学者将其纳入长江中下游成矿带乃至中国东部进行观察和探讨(陈江峰等,1993;邢凤鸣和徐祥,1995,1996;张旗等,2001;吴才来等,2003;闫峻等,2003;狄永军等,2005;Yan Jun et al.,2008;Ling Mingxing et al.,2009,2011;Li Xianhua et al.,2013;徐晓春等,2019;Chen Long et al.,2020)。然而对于铜陵矿集区中生代侵入岩的成因一直存在争议,各种观点莫衷一是。
-
本文以铜陵矿集区中生代侵入岩中的中酸性岩为研究对象,在全岩主微量元素、稀土元素和Sr-Nd同位素地球化学研究基础上开展锆石Hf-O同位素以及磷灰石主微量元素地球化学研究,进一步探讨区内中生代侵入岩的成因。基于本研究获得的相关数据,结合区域地质构造演化历史,本文认为铜陵矿集区中生代中酸性侵入岩形成于大陆板内环境,具有岛弧岩浆岩特征继承于上一旋回新元古代大陆弧岩浆作用,岩浆起源于新元古代,俯冲于扬子克拉通之下的华夏洋片脱水熔融、交代的岩石圈地幔岩浆与新元古代新生岛弧地壳熔融岩浆的混合,上升过程中混入少量古元古代—中元古代古老地壳物质。中生代古太平洋板块的俯冲和回卷是导致古老造山带加厚再伸展、岩石圈地幔减薄和熔融的地球动力学机制。
-
1 地质背景
-
安徽铜陵矿集区位于长江中下游成矿带中段,长江中下游成矿带则位于华南板块西北部扬子地块东北段(图1a)。华南板块由扬子地块和华夏地块以及介于其间的江南造山带等三个地质单元共同组成,并且是由扬子地块和华夏地块在新元古代最终碰撞形成(Li Zhengxiang et al.,1999,2002;Zhou Meifu et al.,2005;Greentree Matthew et al.,2006;Ye Meifang et al.,2007;Li Xianhua et al.,2009;Wang Xiaolei et al.,2012;Zhao Guochun and Cawood,2012)。扬子地块东部与江南造山带之间的界线在扬州—九江—咸宁一线(严加永等,2022),也有人认为江南造山带的西北边界为九江-石台断裂和宁镇山脉(He Chuansong et al.,2013;Chen Long et al.,2016)。扬子地块基底与江南造山带基底不同(常印佛等,1991;唐永成等,1998),扬子地块前寒武纪地层单元由太古宙—古元古代结晶基底、中元古代—新元古代褶皱地层以及新元古代浅变质盖层组成(Zhao Guochun and Cawood,2012;王孝磊等,2017)。江南造山带缺失古老结晶基底,为新元古代增生造山带,新元古代早期华夏洋片俯冲于扬子克拉通之下导致陆—弧—陆碰撞并伴随扬子克拉通南缘增生大洋弧和大陆弧地体(Zhang Aimei et al.,2012;Zhang Shaobing and Zheng Yongfei,2013;Zheng Yongfei et al.,2013;Yao Jinlong et al.,2019)。
-
安徽铜陵矿集区中生代构造-岩浆活动强烈,形成为数众多、大小不一的岩体侵位于下古生界志留系—中生界三叠系之中,分布在铜陵-南陵深断裂控制的长40 km、宽25 km近东西向构造-岩浆-成矿带上,控制着铜官山、狮子山、新桥-舒家店、凤凰山和沙滩角等矿田及其中的铜金多金属矿床的分布(徐晓春等,2012;图1b)。这些侵入岩体的岩性变化于中基性—中酸性—酸性,按Le Maitre et al.(1989)实际矿物成分分类可确定为辉石闪长岩、二长闪长岩、石英闪长岩、石英二长闪长岩、石英二长岩、花岗闪长岩、二长花岗岩、钾长花岗岩等,具细—中粒结构,较少为粗粒结构,部分岩体或部分岩体局部为斑状结构。在所有侵入岩体中,中基性岩和酸性岩体较少,中酸性岩体居多,出露面积约占全部侵入岩出露面积的80%。前人对区内岩性不同的岩体开展了大量锆石 U-Pb同位素年代学研究,获得的地质年龄介于148~124 Ma之间(王彦斌等,2004a,2004b,2004c;杜杨松等,2007;谢建成,2008;徐晓春等,2008;吴才来等,2010;王世伟,2015;Xie Jiancheng et al.,2019)。徐晓春等(2018)将区内中生代侵入岩划分为早晚两期,同位素地质年龄分别为148~135 Ma和132~124 Ma,对应地质时代分别为晚侏罗世—早白垩世和早白垩世。早期侵入岩与长江中下游成矿带以及江南造山带中生代侵入岩成岩时代基本一致,构成铜陵矿集区侵入岩主体,以中酸性岩为主,少量中基性岩,与区内铜金多金属矿化关系密切;晚期侵入岩与长江中下游成矿带火山岩成岩时代大致相同,以酸性花岗质岩石为主,分布较少,常具斑状结构,多呈脉状产出并穿切早期侵入岩体,与矿化关系不密切。
-
2 样品采集和制备及分析方法
-
2.1 样品采集和制备
-
本次工作着重对铜陵矿集区分布最为广泛、与成矿关系最为密切的中生代早期中酸性侵入岩开展研究,选取其中4个代表性闪长质岩体为研究对象。其中,铜官山石英闪长岩和凤凰山花岗闪长岩样品采自岩体地表露头,胡村花岗闪长岩和冬瓜山石英闪长岩采自钻孔岩芯。对采集的样品先磨制薄片,进行显微观察和研究,再挑选锆石和磷灰石单矿物。锆石和磷灰石单矿物分离、制靶和阴极发光(CL)照相均在南京宏创地质勘查技术服务有限公司完成。
-
图1 安徽铜陵矿集区构造位置(a,据Chu Gaobin et al.,2020修改)和岩浆岩分布(b,据徐晓春等,2012修改)地质简图
-
Fig.1 Sketch geological maps of the structural location (a, modified after Chu Gaobin et al., 2020) and distribution of magmatic rocks for the Tongling ore concentration (b, modified after Xu Xiaochun et al., 2012)
-
1—白垩系;2—上侏罗统;3—中三叠统;4—上泥盆统—中三叠统;5—志留系;6—花岗斑岩;7—二长花岗斑岩;8—石英闪长岩;9—花岗闪长岩;10—辉石闪长岩; 11—辉绿岩;12—地质界线;13—断层;14—采样点
-
1—Cretaceous; 2—upper Jurassic Formation; 3—middle Triassic Formation; 4—upper Devonian Formation to middle Triassic Formation; 5—Silurian; 6—granite porphyry; 7—monzonitic granite porphyry; 8—quartz diorite; 9—granodiorite; 10—pyroxene diorite; 11—diobase; 12—fault; 13—geological boundary; 14—sample location
-
2.2 分析方法
-
2.2.1 锆石 LA-ICP-MS U-Pb定年及微量元素分析
-
LA-ICP-MS锆石U-Pb定年分析在合肥工业大学资源与环境工程学院质谱实验室进行,由ICP-MS和激光剥蚀系统联机完成。ICP-MS为美国Agilent公司生产的Agilent 7500a,激光剥蚀系统为美国Coherent Inc公司生产的GeoLasPro,采用工作波长193 nm的ComPex102 ArF准分子激光器,激光剥蚀光斑直径为32 μm。具体实验测试参数、分析方法和数据处理参见文献Liu Yongsheng et al.(2010),使用ISOPLOT软件进行年龄计算。
-
2.2.2 锆石Lu-Hf和O同位素分析
-
LA-MC-ICP-MS锆石Lu-Hf同位素分析在中国科学院壳幔物质与环境重点实验室完成。使用的仪器为193 nm ArF激光系统和Neptune型MC-ICP-MS。尽量选择了锆石U-Pb定年和微量元素分析的点或其附近区域进行Lu-Hf同位素分析。分析测试过程中176Lu和176Yb会对176Hf/177Hf比值产生影响,故须将176Lu和176Yb的影响扣除,以得到准确的176Hf/177Hf比值。本文根据Gu Hai'ou et al.(2019)提出的等压校正模型对锆石Lu-Hf同位素原始数据进行校正。用于锆石微区原位氧同位素测试的样品靶制备和上机测试均在中国科学院地质与地球物理研究所(北京)离子探针中心完成,分析点位尽量放在U-Pb定年和Lu-Hf同位素分析点位附近,使用的仪器为高分辨率二次离子探针质谱仪(SHRIMP II e-MC)。
-
2.2.3 磷灰石主微量元素分析
-
磷灰石单矿物分离后,挑选代表性颗粒制靶拍照。磷灰石的EPMA成分分析由合肥工业大学资源与环境工程学院电子探针实验室完成,对探针片进行喷碳处理后在JXA-8230仪器上进行测定,测试条件为:加速电压20 kV,电流20 nA,束斑直径为1 μm,分析精度为0.01%。磷灰石的微量元素成分分析由合肥工业大学矿物微区分析实验室采用Analyte HE 193 nm气态准分子激光剥蚀系统(美国)和 Agilent 7500a型(美国)的ICP-MS 联机完成。磷灰石样品固定在环氧树脂靶上,抛光后在超纯水中超声清洗,分析前用分析级甲醇擦拭样品表面,之后在30 μm束斑直径的激光条件下进行样品分析。
-
3 分析结果
-
3.1 锆石U-Pb年龄
-
锆石CL图像显示,4个岩石样品中的锆石晶形均较为完整,自形程度高,多为柱状自形晶。大部分锆石内部结构比较均匀,发育振荡环带,为典型的岩浆锆石,LA-ICP-MS U-Pb年龄介于140~135 Ma之间。其中,胡村花岗闪长岩加权平均年龄为135.0±2.1 Ma;冬瓜山石英闪长岩加权平均年龄为135.4±1.8 Ma;凤凰山花岗闪长岩加权平均年龄为140.6±0.9 Ma;铜官山石英闪长岩加权平均年龄为137.0±1.2 Ma(图2)。分析结果显示,这4个侵入岩样品中的锆石U-Pb年龄与前人获得的区内早期侵入岩年龄完全一致,介于148~135 Ma之间,成岩时代为晚侏罗世—早白垩世。此外,在这4个岩石样品中还有部分锆石具有明显的继承锆石核,核幔边界清晰,LA-ICP-MS U-Pb年龄介于2764±49~698±15 Ma之间(图3),且大多数数据分别集中于1.0~0.8 Ga和2.4~2.0 Ga区间(附表1)。
-
3.2 锆石Hf-O同位素组成
-
锆石Hf同位素组成分析结果(附表2)显示:胡村花岗闪长岩中岩浆锆石的初始176Hf/177Hf比值介于0.282154~0.282299之间,平均值为0.282230;εHf(t)值介于-19.5~-14.0之间,平均值为-16.6(图4),对应的两阶段Hf模式年龄(tDM2)介于2390~2073 Ma之间,平均为2225 Ma;凤凰山花岗闪长岩中岩浆锆石的初始176Hf/177Hf比值介于0.282039~0.282390之间,平均值0.2822;εHf(t)值介于-17.5~-9.3之间,平均值为-13.7,对应的两阶段Hf模式年龄(tDM2)介于2332~1827 Ma之间,平均值为2131 Ma;铜官山石英闪长岩中岩浆锆石的初始176Hf/177Hf比值介于0.282198~0.282308之间,平均值为0.28 2205;εHf(t)值介于-20.5~-8.7之间,平均值为-16.3,对应的两阶段Hf模式年龄(tDM2)介于2911~1752 Ma之间,平均值为2306 Ma;冬瓜山石英闪长岩中岩浆锆石的初始176Hf/177Hf比值介于0.281968~0.282248之间,平均值为0.282162;εHf(t)值介于-20.1~-5.1之间,平均值为-12.8,对应的两阶段Hf模式年龄(tDM2)介于2444~1591 Ma之间,平均值为1976 Ma。数据显示,4个侵入岩样品中的锆石εHf(t)值和两阶段Hf模式年龄(tDM2)值大体一致,略有差异。
-
图2 铜陵地区中酸性侵入岩锆石U-Pb谐和年龄图
-
Fig.2 Concordia diagrams of zircon U-Pb dating of the intermediate-acid intrusive rocks in the Tongling area
-
(a)—胡村花岗闪长岩;(b)—凤凰山花岗闪长岩;(c)—冬瓜山石英闪长岩;(d)—铜官山石英闪长岩
-
(a) —Hucun granodiorite; (b) —Fenghuangshan granodiorite; (c) —Dongguashan quartz diorite; (d) —Tongguanshan quartz diorite
-
图3 铜陵地区中酸性侵入岩具有继承锆石核的锆石阴极发光图像、分析位置及U-Pb年龄值
-
Fig.3 CL images,analysis positions and U-Pb ages for the inherited zircon cores of the intermediate-acid intrusive rocks in the Tongling area
-
对铜官山石英闪长岩和凤凰山花岗闪长岩样品中的锆石进行了氧同位素分析,测定值相对较为集中,δ18O值介于5.93‰~8.85‰之间,平均值为7.27‰。其中,铜官山石英闪长岩锆石δ18O值为5.93‰~8.73‰,平均值7.33‰;凤凰山花岗闪长岩锆石δ18O值为6.10‰~8.73‰,平均值7.61‰(附表2)。数据显示与前人所做的区内中酸性侵入岩锆石δ18O值范围(6.48‰~7.39‰)(范子良,2016)以及Chen Long et al.(2014,2016)所做的庐枞和宁芜盆地中生代火山岩的岩浆锆石δ18O值(5.3‰~7.6‰)基本一致,而且它们的锆石δ18O值均高于正常地幔平衡熔体的锆石δ18O值(5.3‰±0.3‰;Valley et a1.,1998)。
-
3.3 磷灰石元素组成
-
从胡村花岗闪长岩(样品ZK931)、铜官山石英闪长岩(样品T107)以及冬瓜山石英闪长岩(样品D850)中选取的磷灰石晶体大多呈棱柱状,长度约为100 μm。在单偏光镜下,磷灰石表面干净,近乎透明;CL图像颜色灰暗,结构均匀,且环带较为清晰,孔洞、裂隙和包体均少见(图5)。电子探针主量元素分析数据显示(附表3),所有样品中的CaO和P2O5含量分别介于53.25%~55.72%和41.05%~43.42%之间,变化较小。卤素元素F含量为2.14%~3.50%,相对较为集中,平均值为2.62%,指示所有磷灰石均属于氟磷灰石;Cl含量在0.14%~0.58%之间,变化范围相对较大,平均值为0.30%,其中胡村花岗闪长岩磷灰石Cl含量分布范围较为集中(0.16%~0.28%),铜官山石英闪长岩磷灰石Cl含量较高且变化范围较大(0.20%~0.63%),且大部分点在0.2%以上。磷灰石Cl/F比值计算结果为0.052~0.244,绝大部分大于0.1。
-
图4 铜陵地区中酸性侵入岩代表性锆石εHf(t)值及分析位置
-
Fig.4 εHf (t) values and analysis positions for the representative zircon grains of the intermediate-acid intrusive rocks in the Tongling area
-
(a)—凤凰山花岗闪长岩;(b)—铜官山石英闪长岩
-
(a) —Fenghuangshan granodiorite; (b) —Tongguanshan quartz diorite
-
磷灰石微量元素原始地幔蛛网图显示出明显亏损 Rb、Ba、Pb、Sr 等大离子亲石元素,亏损 Nb、Ta、Ti、Zr、Hf等元素,富集 Th、U、Ce 等高场强元素,微量元素一致的变化趋势反映它们具有相同的成因(图6a)。其中,磷灰石中Zr、Hf负异常可能受控于岩浆中锆石的形成。3个侵入岩磷灰石样品T107、D850、ZK931中的稀土总量高,分别为2217×10-6~8270×10-6、1714×10-6~5711×10-6、2790×10-6~5903×10-6。LREE/HREE比值为6.43~45.04,平均值为24.16,La/Yb比值为12.44~191,平均值为53.99,变化均较大,总体表现为轻稀土富集。δEu值介于0.26~0.68之间,平均值为0.54,具弱Eu负异常。在稀土元素配分图中显示出轻稀土富集、重稀土亏损的一致性特征,均呈现右倾斜模式,指示胡村花岗闪长岩、冬瓜山和铜官山石英闪长岩三个样品具有相同的成因(图6b)。
-
图5 铜陵地区中酸性侵入岩代表性磷灰石透射光照片和CL图像
-
Fig.5 CL images for the presentative apatite grains of the intermediate-acid intrusive rocks in the Tongling area
-
图6 铜陵地区中酸性侵入岩磷灰石微量元素蛛网图(a)和磷灰石稀土元素配分模式图(b)
-
Fig.6 Chondrite-normalized trace elements spider diagram (a) and REE patterns of apatite (b) of the intermediate-acid intrusive rocks in the Tongling area
-
微量元素原始地幔数据和稀土元素球粒陨石标准化值引自Sun weidong and McDonough,1989
-
The primitive mantle values and the chondrite values are from Sun and McDonough (1989)
-
4 讨论
-
多年以来,学者们对铜陵矿集区中酸性侵入岩进行了大量岩石学和地球化学研究,对于它们的岩浆起源和岩石成因进行了深入分析和探讨,但仍然存在极大争议。争议的焦点不仅表现在岩浆作用发生时的大地构造背景和地球动力学机制上,还涉及成岩物质来源和岩浆形成机制,代表性的主要观点有以下几种:①俯冲洋壳或被俯冲洋壳交代的地幔楔部分熔融(Ling Mingxing et al.,2009;孙卫东等,2010;Li Xianhua et al.,2013);②增厚/拆沉下地壳的部分熔融或幔源玄武岩浆底侵下地壳(张旗等,2001;Xu Jifeng et al.,2002;Gao Shan et al.,2004;Wang Qiang et al.,2006;Huang Fang and He Yongsheng,2010;He Yongsheng et al.,2011);③富集幔源玄武质岩浆与古老下地壳源长英质岩浆混合(邢凤鸣和徐祥,1995;Chen Jiangfeng et al.,2001;王强等,2003;吴才来等,2003,2010;高庚等,2006;Yan Jun et al.,2008,2015;Chen Changjian et al.,2016);④起源于富集地幔部分熔融且混入古老地壳物质再经历分离结晶作用(Li Jianwei et al.,2009;Xie Guiqing et al.,2011)。本文基于选取的铜陵矿集区中酸性侵入岩代表性岩体的全岩主微量元素成分和Sr-Nd同位素组成及其中锆石和磷灰石地球化学特征,结合已有文献数据,对区内中酸性侵入岩的上述成因观点分别进行分析和讨论,提出新的成因认识。
-
4.1 成因机制
-
基于本文数据和前人大量岩石化学分析结果可见,区内中酸性侵入岩SiO2含量介于58.0%~69.8%之间,Na2O含量介于3.1%~5.1%之间,K2O含量介于2.3%~5.2%之间,属高钾钙碱性岩石系列(图8a、b)。Al2O3含量介于15.2%~17.5%之间,具有高Al特征,为过铝质岩石(图8c)。地球化学分析结果表明,区内中酸性侵入岩Sr同位素组成(87Sr/86Sr)i值介于0.70716~0.70794之间,εNd(t)值介于-12.50~-8.72之间,显示出富集的Sr-Nd同位素组成(陈江峰等,1993;唐永成等,1998;王强等,2003;Liu Yongsheng at al.,2010;Yan Jun et al.,2015)。在微量元素中,区内中酸性侵入岩表现出高Sr(>400×10-6)、低Y(大多≤18×10-6)和高Sr/Y(≥40)比值特征,在Sr/Y-Y图解上本研究采集的样品绝大部分落于埃达克岩区或埃达克岩与岛弧岩石叠合区,表现出埃达克岩特征(图8d)。以往不少学者在研究区内中酸性侵入岩的成因时,正是基于其具有与典型埃达克岩相似的特征而认为古太平洋板块的西向俯冲是铜陵地区中酸性侵入岩的重要形成机制。区内中酸性侵入岩具有类似于洋壳俯冲特点的富Na、Al和高Mg#、高Pb同位素以及较低的Th/U比值等特点(杨一增,2015),也与起源于俯冲洋壳岩浆或被俯冲洋壳交代地幔楔部分熔融岩浆特征一致(Ling Mingxing et al.,2009;孙卫东等,2010;Li Xianhua et al.,2013)。然而,俯冲洋壳熔融来源的岩浆除了具有埃达克岩地球化学特征外,还具有富Na和贫K的特征(Defant and Drummond,1990;Martin et al.,2005)以及类似于MORB的Sr-Nd-Hf同位素组成特征(初始 87Sr/86Sr<0.7045,εNd(t)>0,εHf(t)>0;Defant and Kepezhinskas,2001;Richards and Kerrich,2007)。前文述及,区内中酸性侵入岩富碱富K,属高钾钙碱性系列,且具有富集的Sr-Nd-Hf同位素组成,因此,单一的俯冲洋壳部分熔融模型无法解释其成因。虽然也有学者提出区内富集同位素组成特征归因于俯冲洋壳部分熔融过程中陆源沉积物的加入或岩石圈地幔/地壳物质的同化混染(Ling Mingxing et al.,2009;Liu Sheng'ao et al.,2010;Yang Yizeng et al.,2014,2017),但是,本区中酸性侵入岩的Sr-Nd和Hf-O同位素组成趋向古老下地壳而不是GLOSS(Global Subducting Sediment; Plank and Langmuir,1998;Yan Jun et al.,2015;Chen Long at al.,2020),这种现象不支持陆源沉积物是富集组分的主要提供者这一观点。另一方面,在俯冲洋壳熔融过程中,如果大量的沉积物被纳入长江中下游成矿带埃达克岩的来源中,很难解释为什么在其他地区没有或很少量沉积物参与埃达克岩的形成(Drummond and Defant,1990;王强等,2003;Richards and Kerrich,2007)。
-
部分学者提出区内中酸性侵入岩岩浆起源于增厚/拆沉下地壳的部分熔融或幔源玄武岩浆底侵下地壳(张旗等,2001;Xu Jifeng et al.,2002;Gao shan et al.,2004;Wang Qiang et al.,2006;Huang Fang and He Yongsheng,2010;He Yongsheng et al.,2011)。增厚古老下地壳的部分熔融模型可以解释区内侵入岩低εNd(t)和高Sr的初始同位素值,然而,区内中酸性侵入岩具有较高Mg#的MgO含量,与长江中下游埃达克岩Mg#一致(35~76)(侯增谦等,2007;谢建成,2008;Liu Sheng'ao et al.,2010),表明岩浆和地幔橄榄岩之间存在相互作用。此外,从构造学角度,侏罗纪—白垩纪中国东部经历了大规模的伸展和岩石圈破坏(Xu Yigang,2001;Sun Weidong et al.,2007),这些都是下地壳增厚模型无法解释的(Ling Mingxing et al.,2009)。拆沉大陆下地壳的部分熔融模型为区内岩浆岩高Mg# 和Sr-Nd同位素特征提供了一种可能的解释,然而拆沉的下地壳是否能被熔融仍然是一个悬而未决的问题(Defant and Drummond,1990;Gutscher et al.,2000)。此外,地壳拆沉作用也需要以地壳显著增厚为前提(以产生致密的榴辉岩下地壳,达到榴辉岩相稳定场)。但是如前文所述,地壳增厚模型没有得到支持。虽然铜陵矿集区(下扬子带)中酸性侵入岩略高的Mg#特征可以通过底侵玄武质下地壳的熔融得到很好的解释(侯增谦等,2007),然而热的底侵玄武质成分却对榴辉岩的形成有一定的阻扰作用,因此,在底侵之前下地壳须是榴辉岩质的条件下才能形成埃达克岩浆。综上,增厚/拆沉下地壳的部分熔融或幔源玄武岩浆底侵模式不能很好解释区内中酸性侵入岩的成因。
-
图7 铜陵地区中酸性侵入岩TAS图解(a,底图据Middlemost,1994);SiO2-K2O图解(b,底图据Ewart,1982);A/NK-A/CNK 图解(c,底图据Maniar and Piccoli,1989);Sr/Y-Y图解(d,底图据Richards and Kerrich,2007)
-
Fig.7 TAS diagram (a, modified from Middlemost,1994) ;SiO2-K2O diagram (b, modified from Ewart,1982) ; A/NK-A/CNK diagram (c, modified from Maniar and Piccoli, 1989) ; Sr/Y-Y diagram (d, modified from Richards and Kerrich, 2007) of the intermediate-acid intrusive rock in the Tonglin area
-
虚线为碱性系列和亚碱性系列分界线;文献数据引自Wang Qiang et al.,2003b;王元龙等,2004;赖小东等,2012;郭维民等,2013;Li Shuang et al.,2014;涂伟,2014;杨彦超,2014;Wang Shiwei et al.,2015;Yan Jun et al.,2015;Chen Changjian et al.,2016
-
The dotted line is the dividing line between the basic series and the subbasic series; the literatures are from Wang Qiang et al., 2003b; Wang Yuanlong et al., 2004; Lai Xiaodong et al., 2012; Guo Weimin et al., 2013; Li Shuang et al., 2014; Tu Wei,2014; Yang Yanchao,2014; Wang Shiwei et al., 2015; Yan Jun et al., 2015; Chen Changjian et al., 2016
-
排除上述成因的可能性,本文倾向认为,铜陵矿集区中生代中酸性侵入岩岩浆不完全具备典型的埃达克岩形成条件——榴辉岩相条件下俯冲洋壳或加厚/拆沉下地壳部分熔融,而是由幔源岩浆和壳源岩浆混合形成的。前人研究也已发现区内冬瓜山、铜官山石英二长岩中发育斜长石和角闪石反环带结构(Wang Shiwei et al.,2015;Xiao Xin et al.,2021;熊燕云,2022)以及铜官山石英二长闪长岩和凤凰山(新屋里)花岗闪长(斑)岩中发育大量镁铁质微粒(MME)包体(Chen Changjian et al.,2016)。本文同样在凤凰山花岗闪长岩体中观察到镁铁质微粒包体(MME)(图8a、b),且在冬瓜山石英闪长岩岩体中发现斜长石反环带结构(图8c、d),它们均指示基性岩浆的注入对岩浆起源和演化起了重要作用。此外,在铜官山石英闪长岩体中还常见针柱状磷灰石(图8e、f),后者被认为是快速冷凝结晶(淬冷)结构,亦被认为是岩浆混合作用公认的指示性矿物特征之一(Wyllie et al.,1962;Frost and Mahood,1987;Hibbard,1991)。地球化学模拟也能有效揭示岩浆混合或分离结晶趋势,在FeOT-MgO图解(Zorpi et al.,1989)中,区内中酸性侵入岩并非沿着分离结晶趋势演化而是沿岩浆混合趋势分布(图9a);在SiO2-MgO图解(Keller Brenhin et al.,2015)中,区内中酸性侵入岩显示达到了60%~100%岩浆混合趋势(图9b)。
-
图8 铜陵地区中酸性侵入岩镁铁质微粒包体(a、b);斜长石环带结构、电子探针分析点位和An数(c、d)及磷灰石针柱状晶体(e、f)
-
Fig.8 Mafic microgranular enclaves (a, b) ; EPMA points (c) and the An values (d) across the plagioclase grain as well as needle-column crystals of apatite (e, f) of the intermediate-acid intrusive rocks in the Tongling area
-
MME—基性包体;Pl—斜长石;Cpx—单斜辉石;Amp—角闪石;Ap—磷灰石
-
MME—mafic enclaves; Pl—plagioclase; Cpx—clinopyroxene; Amp—amphibole; Ap—apatite
-
综上所述,我们有理由认为铜陵矿集区中酸性侵入岩岩浆是由幔源岩浆和壳源岩浆混合形成的。然而,这两个岩浆端元在成岩过程中具体的形成机制又有不同观点,如前文提及,或为富集幔源玄武质岩浆与古老下地壳源长英质岩浆混合(邢凤鸣和徐祥,1995;陈江峰等,2001;Wang Qiang et al.,2003b;吴才来等,2003,2010;高庚等,2006;Yan Jun et al.,2008,2015;Chen Changjian et al.,2016),或起源于富集地幔部分熔融且混入古老地壳物质再经分离结晶作用(Li Jianwei et al.,2009;Xie Guiqing et al.,2011)。
-
岩浆岩成分的研究对分析岩浆源区及岩石成因具有重要意义(邓晋福等,2002)。区内中酸性侵入岩富集LREE和大离子亲石元素LILE,“TNT”负异常即亏损Ta、Nb、Ti,类似于大陆弧安山岩(CAA)和全球海洋沉积物(GLOSS)特征(图10),表明与正常的岛弧岩浆岩类似,具有岛弧岩浆岩地球化学特征,指示原始玄武质岩浆来自于富集的岩石圈地幔。一般情况下,地幔源区可以通过俯冲板片析出的流体/熔体以及下地壳拆沉获得岛弧型元素特征(Yan Jun et al.,2015),前文论述中已经否定了下地壳拆沉的岩浆起源机制。磷灰石通常不易受亚固相线卤素交换的影响(Sha and Chappell,1999),因此磷灰石的卤族元素可以指示花岗质岩石的母岩浆来源(Gao Peng et al.,2020)。根据现有的地球化学数据,来自俯冲环境的安山质岩石中的磷灰石Cl含量相对较高(Boyce and Hervig,2009),俯冲洋壳的脱水会释放Cl进入地幔楔中(Lassiter et al.,2002;Scambellui et al.,2004),因此,俯冲带地幔楔是Cl富集的重要场所。在花岗岩中,高Cl/F比的磷灰石与板片脱水以及板片流体交代有关(Pan Lichuan et al.,2016;Zafar et al.,2019),反之低Cl/F比表示花岗岩与地壳物质部分熔融有关(邢凯等,2018)。本文分析表明,铜陵矿集区中酸性侵入岩磷灰石Cl含量均大于0.1%(平均为0.304%),与岛弧岩浆Cl含量相当,且远高于MORB以及地壳物质部分熔融(例如澳大利亚拉克兰褶皱带S型花岗岩)中的磷灰石Cl含量(Sha and Chappell et al.,1999;Van den Bleeken et al.,2015)(图11a),而且Cl/F比值介于0.052~0.244之间,绝大多数大于0.1。因此,区内侵入岩的磷灰石具有较高的Cl含量以及高的Cl/F比值,指示其岩浆源区受到了俯冲环境下板片脱水/板片流体交代的影响。此外,磷灰石Sr/Th-La/Sm微量图解显示本区样品同样表现出明显的板片脱水/流体交代趋势(图11b)。板片脱水时Cl高度不相容,优先进入到流体相(Sun Weidong et al.,2007),而且Cl对Cu、Au等亲铜元素比F更加敏感,富Cl流体对于铜金矿床的形成也会更加有利(Wang Hairuo et al.,2021)。综上,本文认为区内中酸性侵入岩的玄武质岩浆端元来源于受俯冲板片析出流体/熔体交代的含水富集地幔源区。
-
图9 铜陵地区中酸性侵入岩FeOT-MgO图解(a,底图据Zorpi et al.,1989)和SiO2-MgO图解 (b,底图据Keller Brenhin et al.,2015)
-
Fig.9 FeOT-MgO diagram (a, modified from Zorpi et al., 1989) and SiO2-MgO diagram (b, modified from Keller Brenhin et al., 2015) of the intermediate-acid intrusive rocks in the Tongling area
-
图10 铜陵地区中酸性侵入岩微量元素蛛网图(a)和稀土元素配分图(b)
-
Fig.10 The REE distribution patterns (a) and the trace element spider diagrams (b) of the intermediate-acid intrusive rocks in the Tongling area
-
球粒陨石标准化值引自文献Boynton,1984;原始地幔数据引自Sun Weidong and McDonough,1989;CAA以及OAB数据参考自Kelemen et al.,2003;GLOSS数据参考自Plank and Langmuir et al.,1988;铜陵中酸性侵入岩文献数据同图7
-
The chondrite values are from Boynton (1984) ; the primitive mantle values are from Sun and McDonough (1989) ; CAA and OAB data are from Kelemen et al., 2003; GLOSS is from Plank and Langmuir et al., 1988; the literatures for the intermediate-acid intrusions are same as Fig.7
-
前人研究认为,下扬子地区深部确实存在一个在俯冲作用下由含水熔体/富水流体交代形成的具有EMII型同位素组成特征的交代富集岩石圈地幔(Yan Jun et al.,2008,2015,2021;谢建成等,2008,2012;Li Xianhua et al.,2013;Yang Zhaoyao and Jiang Shaoyong,2018;Chu Gaobin et al.,2020)。然而,对于该富集岩石圈地幔发生交代作用的时间仍有争议,主要集中于中生代古太平洋板块西向俯冲(Li Zhengxiang and Li Xianhua,2007;Yan Jun et al.,2008,2015,2021;Li Xianhua et al.,2013;Xie Jiancheng et al.,2019;Yang Chao et al.,2020),或是中元古代末—新元古代早期扬子陆块与华夏陆块碰撞前(江南造山过程)的北北西向古俯冲板块交代残留(Tang Ming et al.,2012;Chen Long et al.,2014,2016,2020;Wang Shiwei et al.,2015,2016;Zhou Taofa et al.,2016;Chu Gaobin et al.,2020)两种观点。近年来对于下扬子地区不同性质岩浆岩产出位置和分布、年代学以及岩石地球化学数据综合对比工作发现,单一的古太平洋西向俯冲模式无法解释长江中下游地区复杂的岩浆岩类型及其同位素时-空演化特征(Chen Long et al.,2020)。同时,地球物理证据也同样表明古太平洋俯冲板块只是为下扬子地区燕山期岩浆活动提供了远程动力学效应(并未俯冲至扬子陆块深部),而无实质性的物源贡献(施珂等,2009)。因此,在排除古太平洋板块的物源贡献后,研究区岩石圈地幔的交代富集最可能为扬子陆块与华夏陆块碰撞前的古大洋板块俯冲作用所致。Chen Long et al.(2014,2016,2020)、周涛发等(2017)、徐晓春等(2019)和Chu Gaobin et al.(2020)研究认为,下扬子地区交代富集岩石圈地幔是由新元古代早期扬子陆块与华夏陆块之间的古大洋板块俯冲过程形成的,且一直稳定地留存至中生代,直至受到古太平洋板块向西俯冲的远程动力学作用下,才使这一“老的”交代富集岩石圈地幔重新活化、再造。
-
图11 磷灰石F-Cl分布图(a)和Sr/Th-La/Sm图解(b)
-
Fig.11 F-Cl diagram (a) and Sr/Th-La/Sm diagram for apatite grains (b)
-
锆石Hf-O同位素组成是岩浆岩物质来源和成因的重要指示,铜陵矿集区中酸性侵入岩锆石εHf(t)值介于-20.1~-5.1之间,其在给定的176Lu/177Hf比值为0.015(平均地壳Lu/Hf比值)的条件下(图12b),显示江南造山带新元古代花岗岩可以演化至与区内中酸性岩相似的范围内,区内中酸性侵入岩锆石εHf(t)值所对应的锆石两阶段Hf模式年龄(tDM2)也与江南造山带新元古代花岗岩的锆石两阶段Hf模式年龄(tDM2)相似(图13a;Wang Xiaolei et al.,2013),部分略高的两阶段Hf模式年龄可能是由于岩浆上升过程中同化了区内较多的古老继承锆石(2.4~2.0 Ga)所致。考虑到 Hf模式年龄反应其寄主岩石从亏损 MORB 源区中提取的时间(Zheng Yongfei et al.,2008),因此铜陵矿集区中酸性侵入岩与江南造山带新元古代岛弧岩浆岩之间相似的 Hf 模式年龄表明,其地幔源区物质与江南造山带新元代岩浆岩具有密切的成因联系。Zheng Yongfei et al.(2008)提出新元古代华夏板块与扬子板块碰撞形成华南板块之后,区内出现了大规模的地壳增生事件,并且形成了具有岛弧性质的新生地壳。锆石δ18O值显示(图12a)区内中酸性侵入岩δ18O(5.93‰~8.85‰)均高于正常地幔平衡熔体的锆石δ18O值(5.3‰±0.3‰)。太古代崆岭群锆石δ18O值介于5.4‰~6.8‰之间(Guo Jingliang et al.,2014),明显低于区域中酸性侵入岩锆石δ18O值。江南造山带新元古代花岗岩锆石δ18O值介于8.4‰~12.0‰之间(Wu Rongxin et al.,2006;Wang Xiaolei et al.,2013),与区内部分较高的δ18O值类似,这些岩浆岩的成因曾被解释为新元古代(约900~880 Ma)大规模幔源岩浆活动(对应于新元古代地壳增生事件)形成的新生弧地壳经快速风化沉积后,在820~780 Ma重熔的结果(吴荣新等,2005;Wu Rongxin et a1.,2006)。因此,区内中酸性侵入岩较高的、接近江南造山带新元古代花岗岩锆石的δ18O值指示其岩浆可能经历了类似的过程。另一方面来看,铜陵矿集区中酸性侵入岩发育较多的继承锆石核,其U-Pb年龄分别集中于1.0~0.8 Ga和2.4~2.0 Ga之间(图13b)(徐夕生等,2004;Yang Xiaonan et al.,2008;吴淦国等,2008;郭维民等,2013;Wang Xiaolei et al.,2013;Wang Shiwei et al.,2015;Yan Jun et al.,2015),进一步指示有新元古代新生地壳物质以及更古老(古元古代)的地壳物质贡献。因此,本文认为研究区中酸性侵入岩源区的物质来源主要为两部分:新元古代新生岛弧地壳以及中元古代末—新元古代早期扬子陆块与华夏陆块碰撞前(江南造山过程)古俯冲板块交代残留所致的交代富集岩石圈地幔。近年来在对华南地区岩浆岩的研究中,新元古代的俯冲作用及其对岩浆作用的影响受到越来越多的重视,尤其是长江中下游宁芜盆地、庐枞盆地以及江南造山带等地区的研究成果中都强调了新元古代早期华夏陆块与扬子陆块之间的古洋壳俯冲作用对区域燕山期岩浆活动的物源贡献(Liu Xuan et al.,2012;Yang Wei and Zhang Hongfu,2012;Tang Ming et al.,2012; Chen Long et al.,2014,2016,2020;Chu Gaobin et al.,2020)。铜陵矿集区中生代时期与上述邻区处于相同的大地构造背景之下,与早白垩世大陆弧安山岩具有相似的地球化学特征,因此,我们认为区内中生代中酸性侵入岩的岩浆起源可能也相似。
-
图12 铜陵地区中酸性侵入岩锆石Hf-O同位素(a,据Yuan Lingling,2022修改)和锆石U-Pb年龄-εHf(t)图解(b,据Yan Jun,2015修改)
-
Fig.12 Zircon Hf-O isotopes (a, modified from Yuan Lingling, 2022) and zircon U-Pb age-εHf (t) diagram (b, modified from Yan Jun, 2015) of the intermediate-acid intrusions in the Tongling area
-
弧下地壳、新生陆壳的氧同位素分别引自Lackey et al.,2006和Bruno et al.,2011;铜陵中酸性侵入岩文献数据引自Yan Jun et al.,2015;Chen Changjian et.,2016;吴迪,2020;江南造山带新元古代岩浆岩数据引自Wu Rongxin et al.,2006;Zheng Yongfei et al.,2008;Wang Xiaolei et al.,2013;太古代崆岭群数据引自Ma Changqian et al.,2000;Zhang Shaobing et al.,2006
-
The data for arc lower crust and juvenile continental crust are from Lackey et al., 2006 and Bruno et al., 2011,respectively;the literatures for the intermediate-acid intrusions are from Yan Jun et al., 2015;Chen Changjian et.,2016;Wu Di,2020;Neoproterozoic magmatic rocks in Jiangnan orogeny are from Wu Rongxin et al., 2006;Zheng Yongfei et al., 2008;Wang Xiaolei et al., 2013;Archean Kongling Group are from Ma Changqian et al., 2000;Zhang Shaobing et al., 2006
-
关于铜陵矿集区乃至长江中下游成矿带中生代岩浆作用的构造背景一直存在争议,一种观点认为是活动大陆边缘环境,与古太平洋板块西向俯冲作用有关,另一种观点则认为是大陆板内环境,与古太平洋板块西向俯冲之后的回卷及伸展环境有关。铜陵矿集区中生代中酸性侵入岩富集大离子亲石元素LILE(Rb、Ba、Sr、U、Th等),亏损高场强元素(HFSE),尤其是Ta-Nb-Ti(TNT)负异常,暗示了与俯冲相关的构造背景(赵振华,2007)。在花岗岩构造环境判别图解中(Pearce et al.,1984),铜陵矿集区中生代中酸性侵入岩数据点基本落于岛弧花岗岩范围内,同样暗示了其源区受到了板块俯冲的影响。然而,万天丰和赵庆乐(2012)认为太平洋板块对下扬子地区的俯冲会增加其侧向压力,而在增温增压的同时不可能形成如此大规模的熔融岩浆层;周涛发等(2016)认为长江中下游成矿带内的斑岩型矿床沿长江断裂带分布,与古太平洋板块俯冲方向平行或斜交,这些特征均与古太平洋板块俯冲观点相矛盾。
-
图13 铜陵地区中酸性侵入岩Hf二阶段模式年龄频数图(a)和继承锆石年龄频数图(b)
-
Fig.13 Cumulative probability plots of the inherited zircon U-Pb ages (a) and histogram of εHf (t) and tDM2 (b) of the intermediate-acid intrusions in the Tongling area
-
文献数据引自Yang Xiaonan et al.,2008;徐夕生等,2004;吴淦国等,2008;郭维民等,2013;Yan Jun et al.,2015;Wang Shiwei et al.,2015
-
The literatures are from Yang Xiaonan et al., 2008;Xu Xisheng et al., 2004;Wu Ganguo et al., 2008;Guo Weimin et al., 2013;Yan Jun et al., 2015; Wang Shiwei et al., 2015
-
关于铜陵矿集区乃至长江中下游成矿带中生代的构造体制,Lv Qingtian et al.(2014)提出从中侏罗世开始逐渐由特提斯构造域向滨太平洋构造域转换,并逐渐受控于古太平洋板块向华南地区之下低角度俯冲的远程应力,逐渐形成长江中下游地区的陆内造山运动,即研究区铜陵矿集区在燕山期时并非处于俯冲环境下,而是远离俯冲带的陆内环境,而本区中生代中酸性侵入岩的岛弧型岩浆岩微量元素特征并不一定反映成岩时期的构造背景(如前人提及的古太平洋俯冲或者洋脊俯冲),而可能继承于更早期的洋壳俯冲事件,即前人提出的早期形成的“古老”岛弧型岩石端元活化和部分熔融。(Zhao Zifu and Zheng Yongfei,2009;Wang Xiaolei et al.,2013;Mao Jianren et al.,2014;薛怀民,2021)。古太平洋板块从中生代晚侏罗世(165±5~135 Ma)开始向欧亚板块俯冲的事实毋庸置疑(Zhou Xinmin et al.,2000;Zheng Yongfei et al.,2013;Mao Jianren et al.,2014),但其更多的是动力学机制上的远程动力场效应,而不是直接提供物质来源(Tang Ming et al.,2012;Yang Wei and Zhang Hongfu,2012;Zheng Yongfei et al.,2013;Mao Jianren et al.,2014;周涛发等,2016,2017;Chen Long et al.,2020;Chu Gaobin et al.,2020)。虽然众多研究者曾基于中国东部以及长江中下游地区在时空上毗邻(古)太平洋俯冲带的地质事实,提出了古太平洋板块西向俯冲(Li Zhengxiang and Li Xianhua,2007;Li Xianhua et al.,2013;Wang Xiaolei et al.,2013;Yang Yizeng et al.,2014,2017)或洋脊俯冲(太平洋板块和伊泽奈崎板块之间的俯冲洋中脊;Ling Mingxing et al.,2009,2011;Liu Sheng'ao et al.,2010;孙卫东等,2010)模式,然而目前众多证据均不支持其物源贡献。首先,古太平洋俯冲带距离长江中下游地区较远(600 km以上,甚至达1300 km以上,远超过一般俯冲带的俯冲距离),因此能否俯冲到本区地壳之下值得商榷;其次,单一的古太平洋西向俯冲模式无法解释区域复杂的岩浆岩类型及其同位素组成和时-空演化特征;最后,洋脊俯冲事件开始于早新生代而非晚中生代,下扬子地区的埃达克岩岩浆作用始于~150 Ma,显然早于该期的洋脊俯冲事件(Chen Long et al.,2020)。
-
4.2 成岩模式
-
综上所述,本文认为铜陵矿集区中生代中酸性侵入岩与长江中下游其他地区火山-侵入岩乃至中国东部中生代岩浆岩受控于统一的大地构造背景和地球动力学机制,其形成大致经历了新元古代早期物源准备阶段、新元古代至中生代物源储存阶段以及燕山期物源再造熔融和成岩阶段(图14)。成岩模式描述如下:
-
(1)新元古代早期物源准备阶段:在新元古代早期(大约1000~860 Ma),华夏洋大致沿江山—绍兴断裂带向扬子地块之下俯冲,此时的长江中下游地区处于俯冲带之上,沉积物部分熔融和俯冲洋壳脱水产生的熔/流体交代板片与地幔楔交界处的地幔橄榄岩形成了的地幔源区。同时,来自该地幔源的含水玄武岩浆广泛底侵于下地壳底部,形成新元古代新生岛弧地壳(Liu Xuan et al.,2012;Chu Gaobin et al.,2020),并具有岛弧性质且富集大量金属元素特征(Wang Shiwei et al.,2015; Liu Xuan et al.,2012),为后期中生代成岩成矿作用提供了重要的物质基础。该新生地壳经过再造并经历快速风化剥蚀沉积形成了新元古代浅变质岩基底(约860~825 Ma),并被稍晚形成的(约825 Ma)江南造山带(以许村、歙县、休宁为代表)新元古代花岗岩所侵位(Wu Rongxin et al.,2006;Zheng Yongfei et al.,2008;Wang Xiaolei et al.,2013;Yao Jinlong et al.,2019)。
-
图14 铜陵矿集区中酸性侵入岩成岩模式
-
Fig.14 The petrogenic model for the intermediate-acid intrusive rocks of the Tongling ore concentration
-
(2)新元古代—中生代物源储存阶段:富集富沃的地幔源区在弧下岩石圈地幔底部存留很长时间且没有受到构造扰动(在特定的情况下,俯冲物质可以在岩石圈地幔等构造环境下停留很长时间(可能大于1 Ga; Zheng Yongfei et al.,2008),并最终在合适的构造条件下再活化从而以陆内岩浆作用的形式表现出来(Liu Yongsheng et al.,2008;Zhao Zifu et al.,2013;Zheng Yongfei et al.,2015;Chen Long,2016;Dai Fuqiang et al.,2016)。
-
(3)燕山期物源再造熔融和成岩阶段:晚侏罗世—早白垩世(165±5~135 Ma),古太平洋板块西向和/或西北向俯冲之后回卷产生弧后伸展环境,使得长江中下游地区乃至中国东部岩石圈地幔发生拉张/拆沉减薄,软流圈地幔上涌加热诱发“古老”富集富沃岩石圈地幔发生部分熔融形成含水玄武岩浆,经历一定演化过程形成了偏基性岩石(浆)端元(Yang Chao et al.,2020)。岩石圈地幔岩浆上涌和加热(王强等,2003)和加厚岩石圈减压熔融(毛景文等,2004)的双重机制,使得新元古代新生岛弧下地壳发生熔融,促使壳源埃达克岩岩浆形成。壳源埃达克岩岩浆和玄武质幔源岩浆发生岩浆混合作用,最终侵位冷凝结晶形成中酸性侵入岩(图14)。
-
5 结论
-
(1)铜陵矿集区中生代中酸性侵入岩具有一致的主微量元素、稀土元素和Sr-Nd同位素组成特征,与岛弧型岩浆岩和埃达克岩具有相似性,指示其经历了基本一致的地质作用过程。结合镁铁质微粒包体以及斜长石和角闪石的反环带结构等岩石学特征,表明其岩浆起源于壳源岩浆和幔源岩浆的混合。
-
(2)铜陵矿集区中生代中酸性侵入岩锆石Hf-O同位素组成特征以及Hf两阶段模式年龄(tDM2)和继承锆石年龄指示壳源岩浆来自于新元古代新生岛弧地壳,在上升过程中可能混入少量古元古代—中元古代古老地壳物质。磷灰石卤族元素特征指示幔源岩浆遭受过俯冲作用的影响,来源于受俯冲板片析出流体/熔体交代的含水富集岩石圈地幔。富集岩石圈地幔源岩浆由新元古代华夏洋俯冲析出流体交代扬子板块岩石圈地幔所形成而非中生代古太平洋板块的俯冲。古太平洋板块俯冲之后的回卷是导致古老造山带加厚再伸展、岩石圈地幔减薄和熔融的地球动力学机制。
-
附件:本文附件(附表1~3)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202502094?st=article_issue
-
参考文献
-
Boynton W V. 1984. Cosmochemistry of the rare-earth elements: Meteorite studies. In Rare Earth Element Geochemistry II, 63~114.
-
Boyce W J, Hervig L R. 2009. Apatite as a monitor of late-stage magmatic processes at Volcan Irazu, Costa Rica. Contributions to Mineralogy and Petrology, 157(2): 135~145.
-
Dhuime B, Hawkesworth C, Cawood P. 2011. When Continents Formed. Science, 331(6014): 154~155.
-
Chang Yinfo, Liu Xiangpei, Wu Yanchang. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological Publishing House, 1~363 (in Chinese with English abstract).
-
Chang Yinfo, Dong Shuwen, Huang Dezhi. 1996. On the pattern and evolution of “One Cover and Many Bases” in the Middle-Lower Yangtze. Volcanic Geology and Minerals, 17(1~2): 1~15 (in Chinese with English abstract).
-
Chen Changjian, Chen Bin, Li Zhuang, Wang Zhiqiang. 2016. Important role of magma mixing in generating the Mesozoic monzodioritic-granodioritic intrusions related to Cu mineralization, Tongling, East China: Evidence from petrological and in-situ Sr-Hf isotopic data. Lithos, 248: 80~93.
-
Chen Long, Zhao Zifu, Zheng Yongfei. 2014. Origin of andesitic rocks: Geochemical constraints from Mesozoic volcanics in the Luzong basin, South China. Lithos, 190: 220~239.
-
Chen Long. 2016. Geochemistry of late Mesozoic volcanic rocks in the middle and lower reaches of Yangtze River. Doctoral dissertation of University of Science and Technology of China (in Chinese with English abstract).
-
Chen Long, Zheng Yongfei, Zhao Zifu. 2016. Geochemical constraints on the origin of Late Mesozoic andesites from the Ningwu basin in the Middle-Lower Yangtze Valley, South China. Lithos, 254: 94~117.
-
Chen Long, Zheng Yongfei, Zhao Zifu. 2020. Origin of arc-like magmatism at fossil convergent plate boundaries: Geochemical insights from Mesozoic igneous rocks in the Middle to Lower Yangtze Valley, South China. Earth Science Reviews, 211: 103416.
-
Chen Jiangfeng, Zhou Taixi, Li Xueming, Foland K A, Huang Chengyi, Lu Wei. 1993. Sr and Nd isotopes in source area of Yanshan intermediate acid intrusive rocks in southern Anhui Province. Geochemical Journal, 3: 261~268 (in Chinese with English abstract).
-
Chen Jiangfeng, Xie Zhi, Zhang Si, Zhou Taixi. 2001. Crustal evolution in Anhui: Nd and Sr isotopic evidence. Geology of Anhui, 11(2): 123~130.
-
Chen Jiangfeng, Yan Jun, Xie Zhi, Xing Fengming. 2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China: Constraints on sources. Physics and Chemistry of the Earth. Part A: Solid Earth and Geodesy, 26 (9): 719~731.
-
Chu Gaobin, Chen Huayong, Trevor J, Han Jinsheng, Zhang Shitao, Cheng Jiamin, Zhang Xiaobo. 2020. Early Cretaceous mantle upwelling and melting of juvenile lower crust in the Middle-Lower Yangtze River Metallogenic Belt: Example from Tongshankou Cu-(Mo, W) ore deposit. Gondwana Research, 83: 183~200.
-
Dai Fuqiang, Zhao Zifu, Dai Liqun, Zheng Yongfei. 2016. Slab-Mantle Interaction in the petrogenesis of Andesitic magmas: Geochemical evidence from postcollisional intermediate volcanic rocks in the Dabie orogen, China. Journal of Petrology, 57(6): 1109~1134.
-
Defant M J and Drummond M S. 1990. Derivation of some modern magma by melting of young subduction lithosphere. Nature, 347: 662~665.
-
Defant M J and Kepezhinskas P. 2001. Evidence suggests slab melting in arc magmas. Transactions American Geophysical Union, 82(6): 65~80.
-
Deng Jingfu, Dai Shengqian, Zhao Hailin, Du Jianguo. 2002. Identification of magmatic fluid-metallogenic system and subsystem in Tongling Cu-Au (Ag) metallogenic area. Mineral Deposits, 21(4): 317~322 (in Chinese with English abstract).
-
Di Yongjun, Zhao Hailing, Wu Ganguo, Zhang Da, Zang Wenchuan, Liu Qinghua. 2005. Genesis of Yanshanian intrusive rocks and mixing of three-terminal magma in Tongling area. Geological Review, 5: 50~60 (in Chinese with English abstract).
-
Du Jingguo, Andreas A. 2020. Early sulfide saturation is not detrimental to porphyry Cu-Au formation. Geology, 48(5): 519~524.
-
Du Yangsong, Li Shunting, Cao Yi, Qin Xinlong, Lou Ya'er. 2007. The formation process of Mesozoic intrusive rocks in Tongguanshan mining area, Tongling, Anhui Province: Magma floor invasion, assimilative mixing and separation crystallization. Geoscience, 21(1): 71~77 (in Chinese with English abstract).
-
Fan Ziliang. 2016. Petrogenic Mechanism of the Mesozoic intrusive rocks of the Tongling ore-district and metallogenic model of the Shizishan ore-field, Anhui Province. Doctoral dissertation of Hefei University of Technology: 1~214 (in Chinese with English abstract).
-
Frost T P and Mahood G A. 1987. Field, chemical, and physical constraints on mafic-felsic magma interaction in the Lamarck granodiorite. Sierra Nevada California, 99(2): 272~291.
-
Gao Geng, Xu Zhaowen, Yang Xiaonan, Wang Yunjian, Zhang Jun, Jiang Shaoyong, Ling Hongfei. 2006. Genesis of the Baimangshan pyroxene diorite in Tongling, Anhui Province: Sr-Nd-Pb-O isotopic analysis. Journal of Nanjing University (Natural Science Edition), 3: 269~279 (in Chinese with English abstract).
-
Gao Peng, Lu Yinghui, Zhao Zifu, Zheng Yongfei. 2020. The compositional cariation of I-Type granites: Constraints from geochemical analyses and phase equilibrium calculations for granites from the Qinling orogen, central China. Jounal of Asian Earth Sciences: 200.
-
Gao Shan, Ling Wenli, Qiu Yumin, Lian Zhou, Gerald Hartmann, Klaus Simon. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta, 63 (13~14): 2071~2088.
-
Gao Shan, Rudnick Roberta, Yuan Hongling, Liu Xiaoming, Liu Yongsheng, Xu Wenliang, Ling Wenli, Ayers John, Wang Xuanche, Wang Qinghai. 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019): 892~897.
-
Greentree M R, Li Zhengxiang, Li Xianhua, Wu Huaichun. 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Research, 151(1~2): 79~100.
-
Gu Hai'ou, Sun He, Wang Fangyue, Ge Can, Zhou Taofa. 2019. A new practical isobaric interference correction model for the in situ Hf isotopic analysis using laser ablation-multi-collector-ICP-mass spectrometry of zircons with high Yb/Hf ratios. Journal of Analytical Atomic Spectrometry, 1223~1332.
-
Guo Jingliang, Gao Shan, Wu Yuanbao, Li Ming, Chen Kang, Hu Zhaochu, Liang Zhengwei, Liu Yongsheng, Zhou Lian, Zong Keqing, Zhang Wen, Chen Haihong. 2014. 3. 45 Ga granitic gneisses from the Yangtze craton, South China: Implications for Early Archean crustal growth. Precambrian Research, 242: 82~95.
-
Guo Weimin, Lu Jianjun, Jiang Shaoyong, Zhang Rongqing, Zhao Zhanjie. 2013. Chronology, Hf isotopes, geochemistry, and petrogenesis of the magmatic rocks in the Shizishan ore field of Tongling, Anhui Province. Science China: Earth Sciences, 56 (6): 993~1013 (in Chinese with English abstract).
-
Guo Wenkui. 1957. On Tongguanshan copper mine, Anhui Province. Acta Geologica Sinica, 37(3): 317~332 (in Chinese with English abstract).
-
Guo Zongshan. 1957. Some skarn copper deposits in the lower Yangtze River. Acta Geologica Sinica, 37(1): 1~10 (in Chinese with English abstract).
-
Gutscher, Marc-Andre, Maury Rene. 2000. Can slab melting be caused by flat subduction? Geology, 28(6): 535~538.
-
He Chuansong, Dong Shuwen, Santosh M, Chen Xuanhua. 2013. Seismic evidence for a geosuture between the Yangtze and Cathaysia blocks, South China. Scientific Reports, 3(1): 2200.
-
He Yongsheng, Li Shuguang, Jochen Hoefs, Huang Fang, Liu Sheng'ao, Hou Zhenhui. 2011. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochimica et Cosmochimica Acta, 75(13): 3815~3838.
-
Hibbard M J. 1991. Textural anatomy of twelve magma-mixed granitoid systems. Enclaves and Granite Petrology.
-
Hofmann A W. 2003. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. Treatise on Geochemistry, 2: 61~101.
-
Hou Zengqian, Pan Xiaofei, Yang Zhiming, Qu Xiaoming. 2007. Preliminary discussion on environmental porphyry copper deposit in Mainland China. Geoscience, 2: 332~351 (in Chinese with English abstract).
-
Hou Zengqian, Yang Zhiming, Kemp A, Zheng Yuanchuan, Li Qiuyun. 2015. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology, 43 (3): 247~250.
-
Huang Fang, He Yongsheng. 2010. Partial melting of dry mafic lower continental crust: Constraints on formation of C-type adakites. Chinese Science Bulletin, 2428~2439.
-
Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523~548.
-
Ito E, Haris D M, Anderson A T. 1983. Alteration of oceanic crust and geologic cycling of chlorine and water. Geochimica et Cosmochimica Acta, 47(9): 1613~1624.
-
Keller C B, Schoene B, Barboni M, Samperton, Kyle M, Husson, Jon M. 2015. Volcanic-plutonic parity and the differentiation of the continental crust. Nature, 523(7560): 301~307.
-
Kelemen P B, Hanghoj K, Greene A R. 2003. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry, 3: 593~659.
-
Lackey S J, Valley W J, Hinke J H. 2006. Deciphering the source and contamination history of peraluminous magmas using δ18O of accessory minerals: Examples from garnet-bearing plutons of the Sierra Nevada batholith. Contributions to Mineralogy and Petrology, 151(1): 20~44.
-
Lassiter J C, Hauri E H, Nikogosian I K. 2020 Chlorine-potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: Constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust. Earth and Planetary Science Letters, 202(3): 525~540.
-
Lai Xiaodong, Yang Xiaoyong, Sun Weidong, Cao Xiaosheng. 2012. Chronology, petrogeochemistry and metallogenic significance of Shujiadian pluton in Tongling. Acta Geologica Sinica, 86(03): 470~485 (in Chinese with English abstract).
-
Le Maitre R W, Bateman P, Dudek A, Keller J. 1989. Igneous rocks: A classification and glossary of terms. Oxford: Blackwell, 1~124.
-
Li Shuang, Yang Xiaoyong, Huang Yu, Sun Weidong. 2014. Petrogenesis and mineralization of the Fenghuangshan skarn Cu-Au deposit, Tongling ore cluster field, Lower Yangtze metallogenic belt. Ore Geology Reviews, 58: 148~162.
-
Li Jianwei, Zhao Xinfu, Zhou Meifu, Ma Changqian, Souza Z S, Vasconcelos P. 2009. Late Mesozoic magmatism from the Daye region, eastern China: U-Pb ages, petrogenesis and geodynamic implications. Contributions to Mineralogy and Petrology, 157(3): 383~409.
-
Li Jinwen, Pei Rongfu, Zhang Dequan, Mei Yanxiong, Zang Wenshuan, Meng Guixiang, Zeng Pusheng, Li Tiejun, Di Yongjun. 2007. Geochemical characteristics and geological significance of Yanshan intermediate-acid intrusive rocks in Tongling ore concentration area. Journal of Earth Sciences, (1): 11~22 (in Chinese with English abstract).
-
Li Wenda. 1989. On the Yangtze type copper ore deposits and its origin. East China Geology, 2: 1~14(in Chinese with English abstract).
-
Li XianHua, Li Wuxian, Li Zhengxiang, Lo Chinghua, Wang Jian, Ye Meifu, Yang Yueheng. 2009. Amalgamation between the Yangtze and Cathaysia blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 174 (1): 117~128.
-
Li Xianhua, Li Zhengxiang, Li Wuxian, Wang XuanCe, GaoYuya. 2013. Revisiting the“C-type adakites”of the lower Yangtze River belt, central easterm China: In-situ zircon Hf-O isotope and geochemical constraints. Chemical Geology, 345: 1~15.
-
Li Zhengxiang, Li XianHua, Kinny P D. 1999. The breakup of Rodinia: Did it start with a mantle plume beneath South China. Earth and Planetary Science Letters, 173(3): 171~181.
-
Li Zhengxiang, Li XianHua, Kinny P D. 2002. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 30: 163~166.
-
Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300 km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179~182.
-
Ling Mingxing, Wang Fangyue, Ding Xing, Hu Yanhua, Zhou Jibin, Zartman R E, Yang Xiaoyong, Sun Weidong. 2009. Cretaceous ridge subduction along the lower Yangtze River belt, Eastern China. Economic Geology and the Bulletin of the Society of Economic Geologists, 104 (2): 303~321.
-
Ling Mingxing, Wang Fangyue, Ding Xing, Zhou Jibin, Sun Weidong. 2011. Different origins of adakites from the Dabie mountains and the lower Yangtze River belt, Eastern China: Geochemical constraints. International Geology Review, 53 (5~6): 727~740.
-
Liu Sheng'ao, Li Shuguang, He Yongsheng, Huang Fang. 2010. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu-Au mineralization. Geochim Cosmochim Acta, 74 (24): 7160~7178.
-
Liu Xuan, Fan Hongrui, Santosh M, Hu Fangfang, Yang Kuifeng, Li Qiuli, YangYueHeng, Liu Yongsheng. 2012. Remelting of Neoproterozoic relict volcanic arcs in the Middle Jurassic: Implication for the formation of the Dexing porphyry copper deposit, Southeastern China. Lithos, 150: 85~100.
-
Liu Yongsheng, Gao Shan, Kelemen P B, Xu Wenliang. 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China craton. Geochimica et Cosmochimica Acta, 72: 2349~2376.
-
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1~2): 392~399.
-
Lv Qingtian, Dong Shuwen, Shi Danian, Tang Jingtian, Jiang Guoming, Zhang Yongqian. 2014. The lithosphere structure and metallogenic dynamics model of the middle and lower Yangtze ore-forming melt: A sinoprobe review. Acta Petrologica Sinica, 30(4): 889~906.
-
Lu Jianjun, Hua Renmin, Xu Zhaowen, Gao Jianfeng, Li Juan. 2003. Two-stage metallogenic model of Dongguashan cop-gold deposit in Tongling, Anhui Province. Geological Journal of China Universities, 9(4): 678~690 (in Chinese with English abstract).
-
Martin H, Smithies R, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79 (1): 1~24.
-
Ma Changqian, Ehlers C, Xu Changhai, Li Zhichang, Yang Kunguang. 2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: Constraints from geochemistry and Nd-Sr isotope systematics. Precambrian Research, 102(3): 279~301.
-
Mao Jianren, Li Zilong, Ye Haimin. 2014. Mesozoic tectono-magmatic activities in South China: Retrospect and prospect. Science China (Earth Sciences), 57(12): 2853~2877.
-
Mao Jingwen, Xie Guiqing, Li Xiaofeng, Zhang Changqing, Mei Yanxiong. 2004. Mesozoic large scale mineralization and multiple lithospheric extension in south China. Earth Science Fronticrs, 1: 45~55(in Chinese with English abstract).
-
Mao Jingwen, Shao Yongjun, Xie Guiqing, Zhang Jiandong, Chen Yuchuan. 2009. Copper polymetallic deposit model of Tongling ore concentration area in the middle and lower Yangtze River metallogenic belt. Mineral Deposits, 28(2): 109~119 (in Chinese with English abstract).
-
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3~4): 215~224.
-
Pan Lichuan, Hu Ruizhong, Wang Xinsong, Bi Xianwu, Zhu Jingjing, Li Chusi. 2016. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254-255: 118~130.
-
Pan Yuanming, Dong Ping. 1999. The Lower Changjiang (Yangzi/Yangtze river) metallogenic belt, east central China: Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15 (4): 177~242.
-
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956~983.
-
Pirajno F and Zhou Taofa. 2015. Intracontinental porphyry and porphyry-skarn mineral systems in Eastern China: Scrutiny of a special case “Made-in-China”. Economic Geology, 110 (3): 603~629.
-
Plank T, Langmuir C H. 1988. An evaluation of the global variations in the major element chemistry of arc basalts. Earth and Planetary Science Letters, 90(4): 349~370.
-
Richards J P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology, 37 (3): 247~250.
-
Rudnick R L and Gao Shan. 2003. 3. 01-Composition of the continental crust. Treatise on Geochemistry, 3: 1~64.
-
Richards J P and Kerrich R. 2007. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4): 537~576.
-
Scambelluri M, Miuntener O, Ottolini L, Pettke T T, Vannucci R. 2004. The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth and Planetary Science Letters, 222(1): 217~234.
-
Scherer E E, Cameron K L, Blichert-Toft J. 2000. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413~3432.
-
Sha L K, Chappell B W. 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861~3881.
-
Shi Ke, Du Jianguo, Wan Qiu, Chen Fang, Cai Yang, Cao Jingya, Wu Libin, Wang Limin, Tan Dexing. 2019. Study on metallogenic regularity and prospecting potential of Xilaokou ore-body in Shandong Province. Acta Geologica Sinica, 93(5): 1096~1112 (in Chinese with English abstract).
-
Sun Weidong, Mc Donough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.
-
Sun Weidong, Ding Xing, Hu Yanhua, Li Xianhua. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters, 262(3~4): 533~542.
-
Sun Weidong, Ling Mingxing, Yang Xiaoyong, Fan Weiming, Ding Xing, Liang Huaying. 2010. Oceanic ridge subduction and porphyry copper-gold mineralization. Science in China: Earth Sciences, 40(2): 127~137 (in Chinese with English abstract).
-
Tan Houmingrui, Huang Xiaowen, Qi Liang, Gao Jianfeng, Meng Yumiao, Xie Huan. 2022. The research progress of chemical composition of apatite: Tracing of diagenesis and mineralization process and its indication for mineral exploration. Acta Petrologica Sinica, 38(10): 3067~3087 (in Chinese with English abstract).
-
Tang Yongcheng, Wu Yanchang, Chu Guozheng, Xing Fengming, Wang Yongmin, Cao Fenyang, Chang Yinfo. 1998. Geology of copper-gold polymetallic deposit in Yanjiang area of Anhui Province. Beijing: Geological Publishing House, 1~351 (in Chinese with English abstract).
-
Tu Wei. 2014. The characteristics and genesis of the Zhaoshan skarn type gold deposit in Tongling, Anhui Province. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
-
Tang Ming, Wang Xiaolei, Xu Xisheng, Zhu Cheng, Cheng Tao, Yu Yao. 2012. Neoproterozoic subducted materials in the generation of Mesozoic Luzong volcanic rocks: Evidence from apatite geochemistry and Hf-Nd isotopic decoupling. Gondwana Research, 21: 266~280.
-
Tatsumi Y. 1986. Formation of the volcanic front in subduction zones. Geophysical Research Letters, 13(8): 717~720.
-
Van den Bleeken G, Koga K T. 2015. Experimentally determined distribution of fluorine and chlorine upon hydrous slab melting, and implications for F-Cl cycling through subduction zones. Eochimica et Cosmochimica Acta, 171: 353~373.
-
Valley J W, Kinny P D, Schulze D J, Spicuzza M J. 1998. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contribution of Mineralogy and Petrology, 133: 1~11.
-
Wan Tianfeng, Zhao Qinle. 2012. Genesis of tectono-magmatism in eastern China. Science in China: Earth Sciences, 42(2): 155~163 (in Chinese with English abstract).
-
Wang Hairuo, Cai Keda, Sun Min, Wang Yannan, Lai Chunki, Wan Bo, Zhang Zhiyong. 2021. Magma evolution and Cu-Au mineralization potential of the upper Devonian-lower Carboniferous Tulasu basin, Western Tianshan orogen (NW China): Apatite U-Pb dating and geochemical perspectives. Ore Geology Reviews, 139(PB): 104526.
-
Wang Qiang, Xu Jifeng, Zhao Zhenhua, Xiong Xiaolin, Bao Zhiwei. 2003. Genesis of Yanshanian intrusive rocks and its constraints on deep dynamic processes in Tongling area, Anhui Province. Science in China (Series D: Earth Sciences), 4: 323~334 (in Chinese with English abstract).
-
Wang Qiang, Xu Jifeng, Zhao Zhenghua, Xiong Xiaolin, Bao Zhiwei. 2003b. Petrogenesis of the Mesozoic intrusive rocks in the Tongling area, Anhui Province, China and their constraint on geodynamic process. Science in China: Earth Sciences in English, 801~815.
-
Wang Qiang, Xu Jifeng, Jian Ping, Bao Zhiwei, Zhao Zhenghua, Li Chaofeng, Xiong Xiaolin, Ma Jinlong. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119~144.
-
Wang Qiang, Wyman Derek A, Xu Jifeng, Zhao Zhenhua, Jian Ping, Zi Feng. 2007. Partial melting of thickened or delaminated lower crust in the middle of eastern China: Implications for Cu-Au mineralization. Journal of Geology, 115(2): 149~161.
-
Wang Shiwei. 2015. Study on diagenesis and mineralization of porphyry deposits in the middle and lower Yangtze river metallogenic belt (Anhui section). Doctoral dissertation of Hefei University of Technology: 45~65 (in Chinese with English abstract).
-
Wang Shiwei, Zhou Taofa, Yuan Feng, Fan Yu, Zhang Lejn, Song Yulong. 2015. Petrogenesis of Dongguashan skarn-porphyry Cu-Au deposit related intrusion in the Tongling district, Eastern China: Geochronological, mineralogical, geochemical and Hf isotopic evidence. Ore Geology Reviews, 64: 53~70.
-
Wang Shiwei, Zhou Taofa, Yuan Feng, Fan Yu, David R C, Zhang Lejn, Fu Bin, White N C. 2016. Geochemical characteristics of the Shujiadian Cu deposit related intrusion in Tongling: Petrogenesis and implications for the formation of porphyry Cu systems in the middle-lower Yangtze river valley metallogenic belt, Eastern China. Lithos, 252~253: 185~199.
-
Wang Wei, Zhou Meifu. 2012. Sedimentary records of the Yangtze block (South China) and their correlation with equivalent Neoproterozoic sequences on adjacent continents. Sedimentary Geology, 265~266: 126~142.
-
Wang Xiaolei, Shu Liangshu, Xing Guangfu, Zhou Jincheng, Tang Ming, Shu Xujie, Qi Liang, Hu Yanhua. 2012. Post-orogenic extension in the castern part of the Jiangnan orogen: Evidence from ca. 800~760 Ma volcanic rocks. Precambrian Research, 2223: 404~423.
-
Wang Xiaolei, Zhou Jincheng, Wan Yusheng, Kitajima K, Wang Di, Bonamici C, Qiu Jiansheng, Sun Tao. 2013. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon. Earth and Planetary Science Letters, 366: 71~82.
-
Wang Xiaolei, Zhou Jincheng, Chen Xin, Zhang Fengfeng, Sun Ziming. 2017. Formation and evolution of the Jiangnan orogeny. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714~735 (in Chinese with English abstract).
-
Wang Yanbin, Liu Dunyi, Meng Yifeng, Zeng Pusheng, Yang Zhusen, Tian Shihong. 2004a. Zircon SHRIMP chronology of quartz diorite and diabase from Xinqiao Cu-S-Fe-Au deposit deposit in the Tongling ore district, Anhui. Geology in China, 31(2): 169~173 (in Chinese with English abstract).
-
Wang Yanbin, Liu Dunyi, Zeng Pusheng, Yang Zhusen, Tian Shihong. 2004b. SHRIMP zircon dating of Chaoshan pyroxene diorite from the age of mantle-derived magmatic basement invasion in Tongling area, Anhui Province. Acta Geologica Sinica, 25(4): 423~427 (in Chinese with English abstract).
-
Wang Yanbin, Liu Dunyi, Zeng Pusheng, Yang Zhusen, Meng Yifeng, Tian Shihong. 2004c. SHRIMP U-Pb age of zircon from Xiaotongguanshan quartz diorite in Tongling area and its genetic indication. Journal of Petrology and Mineralogy, 23(4): 298~304.
-
Wang Yang, Deng Jinfu, Ji Guangyi. 2004. Geotectonic setting and metallogenic significance of early Cretaceous adakite in the middle and lower reaches of Yangtze river. Acta Petrologica Sinica, 2: 297~314 (in Chinese with English abstract).
-
Wang Yangyang, Alfons van den Kerkhof, Xiao Yilin, Sun He, Yang Xiaoyong, Lai Jianqing, Wang Yinggeng. 2017. Geochemistry and fluid inclusions of scheelite-mineralized granodiorite porphyries from southern Anhui Province, China. Ore Geology Reviews, 89: 988~1005.
-
Wang Yuanlong, Wang Yan, Zhang Qi, Jia Xiuqin, Han Song. 2004. Geochemical characteristics and metallogenic significance of Mesozoic intermediate-acid intrusive rocks in Tongling Area. Acta Petrologica Sinica, 20(2): 325~338 (in Chinese with English abstract).
-
Wu Cailai, Chen Songyong, Shi Rendeng, Hao Meiying. 2003. Characteristics and genesis of Mesozoic intermediate-acid intrusive rocks in Tongling. Journal of Earth Sciences, 24(1): 41~48 (in Chinese with English abstract).
-
Wu Cailai, Gao Qianming, Guo Heping, Guo Xiangyan, Liu Lianggen, Gao Yuanhong, Lei Min, Qin Haipeng. 2010. Genesis and zircon SHRIMP U-Pb dating of intermediate-acid intrusive rocks in Tongling. Acta Petrologica Sinica, 26(8): 2630~2652 (in Chinese with English abstract).
-
Wu Di, Yu Bingsong, Wu Cailai, Lei Min, Xu Nan, Zheng Kun. 2020. Zircon U-Pb dating, Hf isotopic characteristics and genesis of intrusive rocks in Tongling Jiaochong ore field, Anhui Province. Geology in China, 47(4): 1069~1091 (in Chinese with English abstract).
-
Wu Ganguo, Zhang Da, Di Yongjun, Zang Wenshuan, Zhang Xiangxin, Song Biao, Zhang Zhongyi. 2008. SHRIMP zircon U-Pb age and its deep dynamic background of intrusive rocks in Tongling ore concentration area. Science in China (Series D: Earth Sciences), (5): 630~645 (in Chinese with English abstract).
-
Wu Rongxin, Zheng Yongfei, Wu Yuanbao. 2005. Zircon U-Pb dating and geochemistry of elements and oxygen isotopes of Neoproterozoic granodiorite in southern Anhui. Acta Petrologica Sinica, 21(3): 587~606 (in Chinese with English abstract).
-
Wu Rongxin, Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Zhang Shaobin, Liu Xuan, Wu Fuyuan. 2006. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 146 (3): 179~212.
-
Wyllie P J, Cox K G, Biggar G M. 1962. The habit of apatite in synthetic systems and igneous rocks. Jour Petrol, (2): 2.
-
Xiao Xin, Zhou Taofa, Noel C. White, Fan Yu, Zhang Lejun, Chen Xuefeng. 2021. Porphyry Cu mineralization processes of Xinqiao deposit, Tongling ore district: Constraints from the geochronology and geochemistry of zircon, apatite, and rutile. Ore Geology Reviews, 138: 104340.
-
Xie Guiqing, Mao Jingwen, Zhao Haijie. 2011. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of late Mesozoic intrusions in the southeast Hubei Province, middle-lower Yangtze river belt (MLYRB), East China. Lithos, 125(1~2): 693~710.
-
Xie Jiancheng. 2008. Diagenesis and mineralization of Mesozoic magmatic rocks in Tongling area, Anhui Province. Doctor degree thesis of University of Science and Technology of China, 1~213 (in Chinese with English abstract).
-
Xie Jiancheng, Yang Xiaoyong, Du Jianguo, Sun Weidong. 2008. Zircon U-Pb geochronology of the Mesozoic intrusive rocks in the Tongling region: Implications for copper-gold mineralization. Acta Petrologica Sinica, 24: 1782~1800 (in Chinese with English abstract).
-
Xie Jiancheng, Chen Si, Sun Weidong, Yang Xiaoyong. 2012. Geochemistry of early Cretaceous adakite in Tongling, Anhui: Diagenetic and metallogenic constraints. Acta Petrologica Sinica, 28(10): 3181~3196 (in Chinese with English abstract).
-
Xie Jiancheng, Tang Dawei, Xia Dongmei, Wang Yu, Li Quanzhong, Yang Xiaoyong, Sun Weidong. 2019. Geochronological and geochemical constraints on the formation of Chizhou Cu-Mo polymetallic deposits, middle and lower Yangtze metallogenic belt, eastern China. Ore Geology Reviews, 109: 322~347.
-
Xing Fengming, Xu Xiang. 1995. Basic characteristics of Mesozoic magmatic rocks along the Yangtze river in Anhui Province. Acta Petrologica Sinica, 11(4): 409~422 (in Chinese with English abstract).
-
Xing Fengming, Xu Xiang. 1996. AFC mixing and genesis of intrusive rocks in Tongling area. Journal of Petrology and Mineralogy, 1: 10~20 (in Chinese with English abstract).
-
Xing Kai, Shu Qihai, Zhao Hesen, Xu Haonan. 2018. Geochemical characteristics and geological significance of apatite in Pulang porphyry copper deposit, Western Yunnan. Acta Petrologica Sinica, 34 (5): 1427~1440 (in Chinese with English abstract).
-
Xiong Yanyun. 2022. Deposit geology and genesis of the Yaojialing“Multistory building” Zn polymetallic skarn deposit in Tongling district, Anhui province. Doctoral dissertation of Hefei University of Technology: 1~118(in Chinese with English abstract).
-
Xiong Yanyun, Zhou Taofa, Fan Yu, Chen Jing, Liu Jun. 2020. Chemistry and geochronology of the causative intrusion and a new genetic model study of the Yaojialing polymetallic skarn deposit, Tongling district, China. Acta Geologica Sinica, 94(6): 1997~2011 (in Chinese with English abstract).
-
Xu Keqin, Zhu Jinchu. 1978. Genesis of sedimentary (or volcanic)-hydrothermal superposition iron copper deposits in several fault depressions in southeast China. Fujian Geological Science Information, (4): 1~68 (in Chinese with English abstract).
-
Xu Xisheng, Fan Qincheng, O'Reilly, Jiang Shaoyong, Griffin W L, Wang Rucheng, Qiu Zhansheng. 2004. Zircon U-Pb dating and genesis of quartz diorite and its inclusions in Tongguanshan, Anhui Province. Chinese Science Bulletin, 18: 1883~1891 (in Chinese with English abstract).
-
Xu Xiaochun, Lu Sanming, Xie Qiaoqin, Berlin, Chu Guozheng. 2008. SHRIMP dating of magmatic zircons from Shizishan ore field in Tongling and its genetic significance. Acta Geologica Sinica, 82(4): 500~510 (in Chinese with English abstract).
-
Xu Xiaochun, Lou Jinwei, Liang Jianfeng, Xiao Qiuxiang, Zhang Zanzan, Liu Qineng, Wang Ping. 2011. Latest progress in ore deposit exploration and geological research in the Tongling ore concentration area, Anhui. Geology of Anhui, 21(2): 119~130(in Chinese with English abstract).
-
Xu Xiaochun, Bai Ruyu, Xie Qiaoqin, Lou Jinwei, Zhang Zanzan, Liu Qineng, Chen Liwei. 2012. Geological characteristics and geochemical characteristics of Mesozoic intrusive rocks in Tongling, Anhui Province. Acta Petrologica Sinica, 28(10): 3139~3169 (in Chinese with English abstract).
-
Xu Xiaochun, Liu Zheng, Fu Zhongyang, Xu Xinyue, Xie Qiaoqin. 2019. Sr-Nd-Hf-O isotope restriction of quartz diorite-granodiorite genesis in Tongling ore concentration area, Anhui Province. Chinese Journal of Geology, 54(3): 711~735 (in Chinese with English abstract).
-
Xu Jifeng, Ryuichi S, Marc J, Wang Qiang, Robert P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust. Geology, 30: 1111~1114.
-
Xu Yigang. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9~10): 747~757.
-
Xue Huaimin. 2021. Discussion on the geochronology, geochemistry and stratospheric interaction of late Mesozoic granites near the Anhui/Zhejiang boundary in the eastern Jiangnan orogenic belt. Acta Petrologica Sinica, 37(2): 433~461 (in Chinese with English abstract).
-
Yan Jiayong, Lv Qingtian, Zhang Yongqian, Liu Weiqiang, Wang Xu, Chen Changxin, Xu Changxin, Liu Jiahao. 2022. The deep boundary of Jiangnan orogenic belt and its metallogenic regularity: A case study from comprehensive geophysics. Acta Petrologica Sinica, 38(2): 544~558 (in Chinese with English abstract).
-
Yan Jun, Chen Jiangfeng, Yu Gang, Qian Hui, Zhou Taixi. 2003. Lead isotope characteristics of late Mesozoic mesobasic rocks in the middle and lower reaches of Yangtze river: Evidence for mantle enrichment. Geological Journal of China Universities, 9(2): 195~206 (in Chinese with English abstract).
-
Yan Jun, Chen Jiangfeng, Xu Xisheng. 2008. Geochemistry of Cretaceous mafic rocks from the lower Yangtze region, eastern China: Characteristics and evolution of the lithospheric mantle. Journal of Asian Earth Sciences, 33: 177~193.
-
Yan Jun, Liu Jianmin, Li Quanzhong, Xing Guangfu, Liu Xiaoqiang, Xie Jiancheng, Chu Xiaoqiang, Chen Zhihong. 2015. In situ zircon Hf-O isotopic analyses of late Mesozoic magmatic rocks in the lower Yangtze river belt, central eastern China: Implications for petrogenesis and geodynamic evolution. Lithos, 227: 57~76.
-
Yan Jun, Liu Xiaoqiang, Wang Sinuo, Xie Jiancheng, Liu Jianmin. 2021. Metallogenic type controlled by magma source and tectonic regime: Geochemical comparisons of Mesozoic magmatism between the middle-lower Yangtze river belt and the Dabie orogen, Eastern China. Ore Geology Reviews, 133: 104095.
-
Yao Jinlong, Peter A, Cawood, Shu Liangshu, Zhao Guochun. 2019. Jiangnan orogen, South China: A ~970~820 Ma Rodinia margin accretionary belt. Earth-Science Reviews, 196: 102872~102872.
-
Yang Chao, Yan Jun, Wang Sinuo, Li Quanzhong, Song Shiming, Zhang Dingyuan, Zhang Xiang. 2020. Geochronology and geochemistry of the I ate Mesozoic magmatic rocks in the Chizhou Area, lower Yangtze river metallogenic belt: Constraints on petrogenesis and tectonic setting. Journal of Geochemical Exploration, 213: 106515.
-
Yang Wei, Zhang Hongfu. 2012. Zircon geochronology and Hf isotopic composition of Mesozoic magmatic rocks from Chizhou, the lower Yangtze region: Constraints on their relationship with Cu-Au mineralization. Lithos, 150: 37~48.
-
Yang Xiaonan, Xu Zhaowen, Xu Xisheng, Ling Hongfei, Liu Suming, Zhang Jun, Li Haiyong. 2008. Zircon U-Pb age of magmatic rocks in Shizishan ore field, Tongling, Anhui Province. Acta Geologica Sinica, (4): 510~516.
-
Yang Yanchao. 2014. Characteristics and genesis of the Tiebaodushan pluton in Tongling Anhui. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
-
Yang Yizeng. 2015. Geochemistry of copper-forming Adakite and post-mineralization magmatic rocks in the middle and lower reaches of Yangtze river. Doctor degree thesisof University of Science and Technology of China, 1~234 (in Chinese with English abstract).
-
Yang Yizeng, Chen Fukun, Siebel W, Zhang He, Long Qun, He Jianfeng, Hou Zhenhui, Zhu Xiyan. 2014. Age and composition of Cu-Au related rocks from the lower Yangtze river belt: Constraints on paleo-Pacific slab roll-back beneath eastern China. Lithos, 202: 331~346.
-
Yang Yizeng, Wang Yan, Ye Risheng, Li Shuangqing, He Jianfeng, Siebel W, Chen Fukun. 2017. Petrology and geochemistry of early Cretaceous A-type granitoids and Mesozoic mafic dikes and their relationship to adakitic intrusions in the lower Yangtze river belt, Southeast China. International Geology Review, 59 (1): 62~79.
-
Yang Zhaoyao, Jiang Shaoyong. 2018. Diverse lamprophyres origins corresponding to lithospheric thinning: A case study in the Jiurui district of middle-lower Yangtze river belt, South China Craton. Gondwana Research, 54: 62~80.
-
Yang Zhijian. 1987. A paleofault belt across Southeast China. Scientia Geologica Sinica, 3: 221~230 (in Chinese with English abstract).
-
Ye Meifang, Li Xianhua, Li Wuxian, Liu Ying, Li Zhengxiang. 2007. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze block. Gondwana Research, 12(1~2): 144~156.
-
Yuan Lingling, Wang Yifan, Liu Jianping, Shao Yongjun, Liu Zhongfa, Li Bin, Zheng Xu, Ding Tao, Zhang Tiandong. 2022. Study on the geochemical characteristics of the late Jurassic high differentiation granites in Xianghueling, Hunan province. Acta Petrologica Sinica, 38(7): 2113~2138.
-
Zafar T, Leng Chengbiao, Zhang Xingchun, Hafiz Ur Rehman. 2019. Geochemical attributes of magmatic apatite in the Kukaazi granite from western Kunlun orogenic belt, NW China: Implications for granite petrogenesis and Pb-Zn(-Cu-W) mineralization. Journal of Geochemical Exploration, 204: 256~269.
-
Zhai Yusheng, Yao Shuzhen, Lin Xinduo. 1992. Metallogenic Regularity of Iron Copper (Au) in the Middle and Lower Reaches of Yangtze River. Beijing: Geological Publishing House, 1~235.
-
Zhang Aimei, Wang Yuejun, Fan Weiming, Zhang Yuzhi, Yang Joe. 2012. Earliest Neoproterozoic (1. 0 Ga) arc-back-arc basin nature along the northern YunkaiDomain of the Cathaysia block: Geochronological and geochemical evidence from the metabasite. Precambrian Research, 220~221: 217~233.
-
Zhang Qi, Wang Yan, Qian Qing, Yang Jinhui, Wang Yuanlong, Zhao Taiping, Guo Guangjun. 2001. Characteristics of Yanshanian adakite and its tectono-metallogenic significance in eastern China. Acta Petrologica Sinica, 2: 236~244 (in Chinese with English abstract).
-
Zhang Shaobing, Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Gao Shan, Wu Fuyuan. 2006. Zircon isotope evidence for ≥3. 5 Ga continental crust in the Yangtze craton of China. Precambrian Research, 146(1): 16~34.
-
Zhang Shaobing, Zheng Yongfei. 2013. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Research, 23: 1241~1260.
-
Zhao Guochun, Peter A. Cawood. 2012. Precambrian geology of China. Precambrian Research, 222~223: 13~54.
-
Zhao Zhenhua. 2007. Some problems about the application of discrimination diagram of rock trace elements tectonic environment. Geotectonics and Metallogeny, 1: 92~103 (in Chinese with English abstract).
-
Zhao Zifu, Zheng Yongfei. 2009. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt. Science in China Series D: Earth Sciences, 52(9): 1295~1318.
-
Zhao Zifu, Dai Liqun, Zheng Yongfei. 2013. Postcollisional mafic igneous rocks record crust mantle interaction during continental deep subduction. Scientific Reports, 3(1): 3413.
-
Zheng Yongfei, Wu Rongxin, Wu Yuanbao, Zhang Shaobing, Yuan Honglun, Wu Fuyuan. 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research, 163 (3): 351~383.
-
Zheng Yongfei, Xiao Wenjiao, Zhao Guochun. 2013. Introduction to tectonics of China. Gondwana Research, 23: 1189~1206.
-
Zheng Yongfei, Chen Yixiang, Dai Liqun, Zhao Zifu. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Science China: Earth Sciences, 58(7): 1045~1069.
-
Zhou Meifu, Ma Yuxiao, Yan Danping, Xia Xiaoping, Zhao Junhong, Sun Min. 2005. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze block. Precambrian Research, 144(1): 19~38.
-
Zhou Taofa, Wang Shiwei, Yuan Feng, Fan Yu, Zhang Dayu, Chang Yinfu, White N C. 2016. Diagenesis and mineralization of intracontinental porphyry deposits in the middle and lower Yangtze river metallogenic belt. Acta Petrologica Sinica, 32(2): 271~288 (in Chinese with English abstract).
-
Zhou Taofa, Fan Yu, Wang Shiwei, Noel C WHITE. 2017. Metallogenic regularity and metallogenic model of the middle and lower Yangtze river metallogenic belt. Acta Petrologica Sinica, 33(11): 3353~3372 (in Chinese with English abstract).
-
Zhou Xinmin, Li Wuxian. 2000. Origin of the late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269~287.
-
Zorpi M J, Coulon C, Orsini J B, Cocirta C. 1989. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics, 157: 315~329.
-
常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铁铜成矿带. 北京: 地质出版社, 1~363.
-
常印佛, 董树文, 黄德志. 1996. 论中-下扬子“一盖多底”格局与演化. 火山地质与矿产, 17(1~2): 1~15.
-
陈江峰, 周泰禧, 李学明, Foland K A, 黄承义, 卢伟. 1993. 安徽南部燕山期中酸性侵入岩的源区锶、钕同位素制约. 地球化学, 3: 261~268.
-
陈江峰, 谢智, 张巽, 周泰禧. 2001. 安徽的地壳演化: Sr, Nd同位素证据. 安徽地质, 2: 123~130.
-
陈龙. 2016. 长江中下游地区晚中生代火山岩地球化学研究. 中国科学技术大学博士毕业论文.
-
邓晋福, 戴圣潜, 赵海玲, 杜建国. 2002. 铜陵Cu-Au(Ag)成矿区岩浆流体-成矿系统和亚系统的识别. 矿床地质, 21(4): 317~322.
-
狄永军, 赵海玲, 吴淦国, 张达, 臧文拴, 刘清华. 2005. 铜陵地区燕山期侵入岩成因与三端元岩浆混合作用. 地质论评, (5): 50~60.
-
范子良. 2016. 安徽铜陵矿集区中生代侵入岩成岩机制及狮子山矿田成矿模式. 合肥工业大学博士毕业论文: 1~214.
-
杜杨松, 李顺庭, 曹毅, 秦新龙, 楼亚儿. 2007. 安徽铜陵铜官山矿区中生代侵入岩的形成过程—岩浆底侵、同化混染和分离结晶. 现代地质, 21(1): 71~77.
-
高庚, 徐兆文, 杨小男, 王云健, 张军, 蒋少涌, 凌洪飞. 2006. 安徽铜陵白芒山辉石闪长岩体的成因: Sr-Nd-Pb-O同位素制约. 南京大学学报(自然科学版), 3: 269~279.
-
郭维民, 陆建军, 蒋少涌, 章荣清, 招湛杰. 2013. 安徽铜陵狮子山矿田岩浆岩年代学、Hf同位素、地球化学及岩石成因. 中国科学: 地球科学, 43(8): 1268~1286.
-
郭文魁. 1957. 论安徽省铜官山铜矿. 地质学报, 37(3): 317~332.
-
郭宗山. 1957. 扬子江下游某些矽卡岩型铜矿床. 地质学报, 37(1): 1~10.
-
侯增谦, 潘小菲, 杨志明, 曲晓明. 2007. 初论大陆环境斑岩铜矿. 现代地质, 2: 332~351.
-
赖小东, 杨晓勇, 孙卫东, 曹晓生. 2012. 铜陵舒家店岩体年代学、岩石地球化学特征及成矿意义. 地质学报, 86(3): 470~485.
-
李进文, 裴荣富, 张德全, 梅燕雄, 臧文拴, 孟贵祥, 曾普胜, 李铁军, 狄永军. 2007. 铜陵矿集区燕山期中酸性侵入岩地球化学特征及其地质意义. 地球学报, (1): 11~22.
-
李文达. 1989. 论扬子型铜矿床及其成因. 中国地质科学院南京地质矿产研究所所刊, 2: 1~14.
-
陆建军, 华仁民, 徐兆文, 高剑峰, 李娟. 2003. 安徽铜陵冬瓜山铜、金矿床两阶段成矿模式. 高校地质学报, 9(4): 678~690.
-
吕庆田, 董树文, 史大年, 汤井田, 江国明, 张永谦. 2014. 长江中下游成矿带岩石圈结构与成矿动力学模型-深部探测(Sinoprobe)综述. 岩石学报, 30(4): 889~906.
-
毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 1: 45~55.
-
毛景文, 邵拥军, 谢桂青, 张建东, 陈毓川. 2009. 长江中下游成矿带铜陵矿集区铜多金属矿床模型. 矿床地质, 28(2): 109~119.
-
施珂, 杜建国, 万秋, 陈芳, 蔡杨, 曹荆亚, 吴礼彬, 王利民, 谭德兴. 2009. 安徽铜陵矿集区中生代侵入岩体年代学研究及其成矿指示意义. 地质学报, 93(5): 1096~1112.
-
孙卫东, 凌明星, 杨晓勇, 范蔚茗, 丁兴, 梁华英. 2010. 洋脊俯冲与斑岩铜金矿成矿. 中国科学: 地球科学, 40(2): 127~137.
-
谭侯铭睿, 黄小文, 漆亮, 高剑峰, 孟郁苗, 谢欢. 2022. 磷灰石化学组成研究进展: 成岩成矿过程示踪及对矿产勘查的指示. 岩石学报, 38(10): 3067~3087.
-
唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社, 1~351.
-
涂伟. 2014. 安徽铜陵朝山矽卡岩型金矿的特征和成因. 中国地质大学(北京)硕士毕业论文.
-
万天丰和赵庆乐. 2012. 中国东部构造-岩浆作用的成因. 中国科学: 地球科学, 42(2): 155~163.
-
王强, 许继峰, 赵振华, 熊小林, 包志伟. 2003. 安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约. 中国科学(D辑: 地球科学), 04: 323~334.
-
王强, 孙燕, 张雪辉, 张世铭, 王瑜亮, 张春茂. 2012. 江西省村前铜多金属矿床斜长花岗斑岩 LA-ICP-MS 锆石 U-Pb 年龄及地质意义. 中国地质, 39(5): 1143~1150.
-
王世伟. 2015. 长江中下游成矿带(安徽段)斑岩型矿床成岩成矿作用研究. 合肥工业大学博士毕业论文: 45~65.
-
王孝磊, 周金城, 陈昕, 张凤凤, 孙梓铭. 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714~735.
-
王彦斌, 刘敦一, 蒙义峰, 曾普胜, 杨竹森, 田世洪. 2004a. 安徽铜陵新桥铜-硫-铁-金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义. 中国地质, 31(2): 169~173.
-
王彦斌, 刘敦一, 曾普胜, 杨竹森, 田世洪. 2004b. 安徽铜陵地区幔源岩浆底侵作用的时代—朝山辉石闪长岩锆石SHRIMP定年. 地球学报, 25(4): 423~427.
-
王彦斌, 刘敦一, 曾普胜, 杨竹森, 蒙义峰, 田世洪. 2004c. 铜陵地区小铜官山石英闪长岩锆石SHRIMP的U-Pb年龄及其成因指示. 岩石矿物学杂志, 23(4): 298~304.
-
汪洋, 邓晋福, 姬广义. 2004. 长江中下游地区早白垩世埃达克质岩的大地构造背景及其成矿意义. 岩石学报, 2: 297~314.
-
王元龙, 王焰, 张旗, 贾秀琴, 韩松. 2004. 铜陵地区中生代中酸性侵入岩的地球化学特征及其成矿—地球动力学意义. 岩石学报, 20(2): 325~338.
-
吴才来, 陈松永, 史仁灯, 郝美英. 2003. 铜陵中生代中酸性侵入岩特征及成因. 地球学报. 24(1): 41~48.
-
吴才来, 高前明, 国和平, 郭祥炎, 刘良根, 郜源红, 雷敏, 秦海鹏. 2010. 铜陵中酸性侵入岩成因及锆石SHRIMP U-Pb定年. 岩石学报, 26(8): 2630~2652.
-
吴迪, 于炳松, 吴才来, 雷敏, 徐楠, 郑坤. 2020. 安徽铜陵焦冲矿田侵入岩锆石U-Pb定年、Hf同位素特征及成因. 中国地质, 47(4): 1069~1091.
-
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 2: 185~220.
-
吴淦国, 张达, 狄永军, 臧文拴, 张祥信, 宋彪, 张忠义. 2008. 铜陵矿集区侵入岩SHRIMP锆石U-Pb年龄及其深部动力学背景. 中国科学(D辑: 地球科学), (5): 630~645.
-
吴荣新, 郑永飞, 吴元保. 2005. 皖南新元古代花岗闪长岩体锆石U-Pb定年以及元素和氧同位素地球化学研究. 岩石学报, 21(3): 587~606.
-
谢建成. 2008. 安徽铜陵地区中生代岩浆岩成岩和成矿作用研究. 合肥: 中国科学技术大学博士学位论文, 1~213.
-
谢建成, 杨晓勇, 杜建国, 孙卫东. 2008. 铜陵地区中生代侵入岩LA-ICP-MS锆石U-Pb年代学及Cu-Au成矿指示意义. 岩石学报, 24(08): 1782~1800.
-
谢建成, 陈思, 孙卫东, 杨晓勇. 2012. 安徽铜陵早白垩世埃达克质岩地球化学: 成岩成矿制约. 岩石学报, 28(10): 3181~3196.
-
邢凤鸣和徐祥. 1995. 安徽沿江地区中生代岩浆岩的基本特点. 岩石学报, 11(4): 409~422.
-
邢凤鸣和徐祥. 1996. AFC混合与铜陵地区侵入岩的成因. 岩石矿物学杂志, 1: 10~20.
-
邢凯, 舒启海, 赵鹤森, 徐浩楠. 2018. 滇西普朗斑岩铜矿床中磷灰石的地球化学特征及其地质意义. 岩石学报, 34 (5): 1427~1440.
-
熊燕云. 2022. 安徽铜陵矿集区姚家岭“多层楼”式锌多金属矽卡岩矿床地质特征与成因研究. 合肥工业大学博士毕业论文: 1~118.
-
徐克勤和朱金初. 1978. 我国东南部几个断裂凹陷带中沉积(或火山沉积)-热液叠加类铁铜矿床成因探讨. 福建地质科学情报, (4): 1~68.
-
徐夕生, 范钦成, O'Reilly S Y, 蒋少涌, Griffin W L, 王汝成, 邱检生. 2004. 安徽铜官山石英闪长岩及其包体锆石U-Pb定年与成因探讨. 科学通报, 18: 1883~1891.
-
徐晓春, 陆三明, 谢巧勤, 柏林, 储国正. 2008. 铜陵狮子山矿田岩浆岩锆石SHRIMP定年及其成因意义. 地质学报, 82(4): 500~510.
-
徐晓春, 楼金伟, 梁建峰, 肖秋香, 张赞赞, 刘启能, 王萍. 2011. 安徽铜陵矿集区矿床勘查与地质研究新进展. 安徽地质, 21(2): 119~130.
-
徐晓春, 白茹玉, 谢巧勤, 楼金伟, 张赞赞, 刘启能, 陈莉薇. 2012. 安徽铜陵中生代侵入岩地质地球化学特征再认识及成因讨论. 岩石学报, 28(10): 3139~3169.
-
徐晓春, 刘政, 傅仲阳, 许心悦, 谢巧勤. 2019. 安徽铜陵矿集区石英闪长岩—花岗闪长岩成因的Sr-Nd-Hf-O同位素制约. 地质科学, 54(3): 711~735.
-
薛怀民. 2021. 江南造山带东段皖浙交界附近晚中生代花岗岩类的年代学、地球化学与层圈相互作用讨论. 岩石学报, 37(2): 433~461.
-
严加永, 吕庆田, 张永谦, 刘卫强, 王栩, 陈昌昕, 徐峣, 刘家豪. 2022. 江南造山带深部边界及成矿制约: 来自综合地球物理的认识. 岩石学报, 38(2): 544~558.
-
闫峻, 陈江峰, 喻钢, 钱卉, 周泰禧. 2003. 长江中下游晚中生代中基性岩的铅同位素特征: 富集地幔的证据. 高校地质学报, 9(2): 195~206.
-
杨彦超. 2014. 安徽铜陵天鹅抱蛋山岩体特征和成因. 中国地质大学(北京)硕士论文.
-
杨一增. 2015. 长江中下游地区成铜埃达克质岩及成矿期后岩浆岩的地球化学研究. 中国科学技术大学博士学位论文, 1~234.
-
杨志坚. 1987. 横贯中国东南部的一条古断裂带. 地质科学, 3: 221~230.
-
袁玲玲, 王祎帆, 刘建平, 邵拥军, 刘忠法, 李斌, 郑旭, 丁涛, 张天栋. 2022. 湖南香花岭晚侏罗世高分异花岗岩的岩石地球化学特征: 岩石成因与稀有金属成矿效应. 岩石学报, 38(7): 2113~2138.
-
翟裕生, 姚书振, 林新多. 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社, 1~235.
-
赵振华. 2007. 关于岩石微量元素构造环境判别图解使用的有关问题. 大地构造与成矿学, (1): 92~103.
-
张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵太平, 郭光军. 2001. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 2: 236~244.
-
周涛发, 王世伟, 袁峰, 范裕, 张达玉, 常印佛, White N C. 2016. 长江中下游成矿带陆内斑岩型矿床的成岩成矿作用. 岩石学报, 32(2): 271~288.
-
周涛发, 范裕, 王世伟, White N C. 2017. 长江中下游成矿带成矿规律和成矿模式. 岩石学报, 33(11): 3353~3372.
-
摘要
安徽铜陵矿集区广泛发育中生代中酸性侵入岩,与区内铜金多金属成矿关系密切。关于其成因已有大量研究成果发表,但仍存在争议。本文选择区内铜官山和冬瓜山石英闪长岩以及凤凰山和胡村花岗闪长岩为研究对象,在全岩主微量元素和Sr-Nd同位素地球化学研究基础上开展锆石Hf-O同位素以及磷灰石主微量元素地球化学研究,进一步探讨铜陵地区中生代中酸性侵入岩的成因机制。综合前人研究资料和本次工作成果推断,区内中酸性侵入岩主微量元素和稀土元素组成特征基本一致,指示其均属高钾钙碱性岩石系列,具有岛弧型岩浆岩和埃达克岩的特征且富集Sr-Nd同位素。侵入岩体中具有的镁铁质微粒包体以及斜长石反环带结构等岩石学特征,指示这些中酸性侵入岩为壳幔岩浆混合成因。本次工作测得岩石中的锆石εHf(t)值介于-20.5~-5.1之间,对应两阶段Hf模式年龄(tDM2)为2.9~1.5 Ga,δ18O值介于5.93‰~8.85‰之间,且发现较多年龄分别集中在1.0~0.8 Ga和2.4~2.0 Ga的继承锆石;磷灰石具有高Cl 含量(平均值为0.3%)和Cl/F比值、较高 REE含量(1714×10-6~5903×10-6)及负铕异常(δEu=0.26~0.68)。基于全岩主微量元素、稀土元素和同位素地球化学特征以及上述锆石和磷灰石地球化学特征,结合区域地质背景和构造演化,本文对前人有关区内中酸性侵入岩不同成因观点进行深入解析,并提出新的成因观点。本研究认为,铜陵矿集区中生代中酸性侵入岩起源于壳幔岩浆混合,即富集岩石圈地幔源岩浆与新元古代新生岛弧地壳源岩浆的混合,上升过程中可能混入了少量古元古代—中元古代古老地壳物质。其中,富集岩石圈地幔源岩浆并非起源于古太平洋俯冲洋壳或俯冲洋壳析出流体交代的上覆岩石圈地幔,而是新元古代华夏洋俯冲析出流体交代扬子板块岩石圈地幔形成的。中生代古太平洋板块俯冲之后的回卷是导致古老造山带加厚再伸展、岩石圈地幔减薄和熔融的地球动力学机制。
Abstract
Mesozoic intermediate-acid intrusive rocks are widespread in the Tongling ore concentration area of Anhui Province and are closely related to polymetallic-copper mineralization. Although numerous studies have investigated the genesis of these intrusions, controversies remain. This study focuses on Tongguanshan and Dongguashan quartz diorite and Fenghuangshan and Hucun granodiorite to further explore their genetic mechanisms. We conducted a comprehensive geochemical analysis, including major and trace element compositions, Sr-Nd isotopic ratios, and zircon and apatite geochemistry. Integrating these data with previous research, we propose a refined model for the origin of these intrusive rocks. Our findings indicate that the Mesozoic intermediate-acid intrusive rocks share similar major and trace element compositions, classifying them as high-K calc-alkaline rocks with characteristics of both arc magmatic and adakitic-like rocks. They also exhibit enriched Sr-Nd isotopic compositions. These geochemical characteristics, coupled with petrological observations of mafic microgranular enclaves (MMEs) and antiband structures of amphibole and plagioclase, indicate that their parental magma originated from the mixing of mafic and felsic magmas. Our new analytical results provide further insights into the petrogenesis of these intrusions. Inherited zircon U-Pb ages predominantly cluster within two ranges: 1.0~0.8 Ga and 2.4~2.0 Ga. Corresponding εHf(t) values range from -20.5 to -5.1, indicating two-stage Hf model ages between 1.5 and 2.9 Ga. Zircon δ18O values fall between 5.93 ‰ and 8.85 ‰. Apatite geochemistry reveals high Cl contents (average 0.3%) with relatively high Cl/F ratios (0.052~0.244), high REE contents (1714×10-6~5903×10-6), and negative δEu values (0.26~0.68). Based on combined geochemical characteristics of whole rocks, zircon, and apatite, and considering regional geological tectonic evolution, we challenge existing views on the genesis of these intrusions and propose a new model. We suggest that the Mesozoic intermediate-acid intrusive rocks in the Tongling ore concentration area originated from a mixture of crust-derived and mantle-derived magmas. Specifically, this involved the mixing of enriched lithospheric mantle-derived magma with Neoproterozoic juvenile arc crustal-derived magma. A minor contribution from ancient crustal materials, dating back to the Paleo-Proterozoic to Meso-Proterozoic, was also incorporated during magma ascent. The enriched lithospheric mantle source magma was derived from the subducted oceanic crust or the fluid metasomatic overlying lithospheric mantle when the Cathaysia oceanic slab subducted beneath the Yangtze craton in the Neoproterozoic era, rather than the Mesozoic Paleo-Pacific slab subducting beneath the South China plate. The rollback of the Mesozoic Paleo-Pacific slab triggered the extension and thickening of the ancient orogenic belt, leading to lithospheric mantle thinning and melting.