en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘忠宝,男,1978年生。高级工程师,博士,主要从事非常规油气地质、碳酸盐岩沉积储层及层序地层等方面的研究工作。E-mail:liuzb.syky@sinopec.com。

参考文献
Bai Jing, Xu Xingyou, Liu Weibin, Li Yaohua, Chen Shan, 2022. The breakthrough of continental shale gas in Lower Cretaceous Shahezi Formation of Songliao basin. Acta Geologica Sinica, 96(3): 1121~1123 (in Chinese with English abstract).
参考文献
Fu Jinhua, Niu Xiaobing, Li Mingrui, Liu Xinshe, Li Shixiang, Guo Qiheng, Zhou Xinping, Liu Xinyan. 2022. Breakthrough and significance of risk exploration in the 3rd sub-member, 7th Member of Yanchang Formation in Ordos basin. Acta Petroleum Sinica, 43(6): 760~769 (in Chinese with English abstract).
参考文献
Gao Yang, Ye Yiping, He Jixiang, Qian Genbao, Qin Jianhua, Li Yingyan. 2020. Development practice of continental shale oil in Jimsar sag in the Junggar basin. China Petroleum Exploration, 25(2): 133~141 (in Chinese with English abstract).
参考文献
Guo Qiulin, Mi Jingkui, Wang Jian, Li Jingkun, Li Yongxin, Yang Zhi. 2019. An improved hydrocarbon generation model of source rocks and key parameter templates. China Petroleum Exploration, 24(5): 661~669 (in Chinese with English abstract).
参考文献
Hu Zongquan, Du Wei, Liu Zhongbao. 2018. Source Reservoir Coupling Mechanism of Shale Gas and Its Application. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Jarvie D M, Hill R J, Ruble T E, Pollastro R M. 2007. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4): 475~499.
参考文献
Li Chunpeng, Sui Guimei, Liu Zhiguo, Yang Songlin, Yan Qinghua, Yin Chuan. 2017. Organic type identification for mature and postmature source rock. Geophysical and Geochemical Exploration, 41(2): 219~223 (in Chinese with English abstract).
参考文献
Li Lei. 2020. Characterization of shale pore and fracture and shale gas enrichment in Da'anzhai member in Yuanba area. Master's thesis of China University of Petroleum (Beijing) (in Chinese with English abstract).
参考文献
Li Qianwen, Liu Zhongbao, Chen Feiran, Liu Guangxiang, Zhang Dianwei, Li Peng, Wang Pengwei. 2022. Lithofacies types and reservoir characteristics of Jurassic shale in the Sichuan basin revealed by the Da'anzhai member, well Y2, Yuanba area. Marine Origin Petroleum Geology, 43(5): 1127~1140 (in Chinese with English abstract).
参考文献
Li Yingqiang, He Dengfa. 2014. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan basin and adjacent areas. Acta Petrolei Sinica, 35(2): 219~232 (in Chinese with English abstract).
参考文献
Liu Chunyan. 2009. Geochemical characteristics of Carboniferous source rocks in Santanghu basin. Master's thesis of Lanzhou University (in Chinese with English abstract).
参考文献
Liu Huimin. 2022. Exploration practice and prospect of shale oil in Jiyang depression. China Petroleum Exploration, 27(1): 73~87 (in Chinese with English abstract).
参考文献
Liu Miaomiao, Fu Xiaoping. 2020. Reevaluation of exploration potential of continental shale gas in the Yuanba area. Acta Geologica Sichuan, 40(3): 416~421 (in Chinese with English abstract).
参考文献
Liu Zhongbao, Liu Guangxiang, Hu Zongquan, Feng Dongjun, Zhu Tong, Bian Ruikang, Jiang Tao, Jin Zhiguang. 2019. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: A case study of the Middle and Lower Jurassic strata in the Sichuan basin. Natural Gas Industry, 39(12): 10~21 (in Chinese with English abstract).
参考文献
Liu Zhongbao, Hu Zongquan, Liu Guangxiang, Liu Zhujiang, Liu Haotian, Hao Jingyu, Wang Pengwei, Li Peng. 2021. Pore characteristics and controlling factors of continental shale reservoirs in the Lower Jurassic Ziliujing Formation, northeastern Sichuan basin. Oil & Gas Geology, 42(1): 136~145 (in Chinese with English abstract).
参考文献
Liu Zhongbao, Hu Zongquan, Liu Guangxiang, Li Peng, Wang Pengwei, Li Qianwen, Jin Zhiguang, Zhang Zhe. 2022. Source-reservoir coupling characteristics and development model of continental shale: Taking the Jurassic Ziliujing Formation in Sichuan basin as an example. Marine Origin Petroleum Geology, 27(3): 271~280 (in Chinese with English abstract).
参考文献
Ma Yongsheng, Cai Xunyu, Zhao Peirong, Hu Zongquan, Liu Huimin, Gao Bo, Wang Weiqing, Li Zhiming, Zhang Zilin, 2022. Geological characteristics and exploration practices of continental shale oil in China. Acta Geologica Sinica, 96(1): 155~171 (in Chinese with English abstract).
参考文献
Ni Kai. 2012. Shale-gas reservoir-forming conditions in Da'anzhai section, Yuanba area. Natural Gas Technology and Economy, 6(4): 13~16+77 (in Chinese with English abstract).
参考文献
Peng Changzi, Peng Jun, Chen Yanhui, Zhang Hanrong. 2014. Seismic prediction of sweet spots in the Da'anzhai shale play, Yuanba area, Sichuan basin. Natural Gas Industry, 34(6): 42~47 (in Chinese with English abstract).
参考文献
Wang Qingbo, Liu Ruobing, Wei Xiangfeng, Ni Kai, Gao Hongxian. 2013. Geologic condition of shale gas accumulation in continental facies and main controlling factors of enrichment and high production: Taking Yuanba district as an example. Fault-block Oil & Gas Field, 20(6): 698~703 (in Chinese with English abstract).
参考文献
Wei Xiangfeng, HuangJing, Li Yuping, Wang Qingbo, Liu Ruobing, Wen Zhidong. 2014. The main factors controlling the enrichment and high production of Da'anzhai member continental shale gas in Yuanba area. Geology in China, 41(3): 970~981 (in Chinese with English abstract).
参考文献
Xu Qiufeng. 2013. Shale gas evaluation and evaluation methods research in Yuanba block northeastern Sichuan. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Xu Xingyou, Liu Weibin, Chen Shan, Bai Jing, Li Yaohua. 2022. Breakthroughs in continental shale oil and gas exploration in the southern Songliao basin and its implications for carbon neutrality. Natural Gas Industry, 42(3): 12~20 (in Chinese with English abstract).
参考文献
Xu Yunlong. 2015. Geochemical characteristics and resource potential evaluation of the hydrocarbon source rocks in Jurassic in Puguang region. Master's thesis of Chengdu University of Technology (in Chinese with English abstract).
参考文献
Zhang Zhengchen. 2020. Potential assessment of shale gas resources in Da'anzhai member Lower Jurassic in Yuanba area northern Sichuan basin. Master's thesis of China University of Petroleum (Beijing) (in Chinese with English abstract).
参考文献
Zhou Dehua, Jiao Fangzheng, Guo Xusheng, Guo Tonglou, Wei Zhihong. 2013. Geologic analysis of Middle-Lower Jurassic shale reservoirs in Yuanba area, northeastern Sichuan basin. Petroleum Geology Experiment, 35(6): 596~600 (in Chinese with English abstract).
参考文献
Zhou Dehua, Sun Chuanxiang, Liu Zhongbao, Nie Haikuan. 2020. Geological characteristics of continental shale gas reservoir in the Jurassic Daanzhai member in the northeastern Sichuan basin. China Petroleum Exploration, 25(5): 32~42 (in Chinese with English abstract).
参考文献
Zhou Lihong, Chen Changwei, Han Guomeng, Yang Fei, Shi Qianru, Fu Dongli, Dong Yueqi, Zhao Yue, Sun Lili, Liang Chen. 2021. Enrichment conditions and exploration potential of shale gas in continental lake basins in Qikou sag, Bohai Bay basin. Natural Gas Industry, 41(5): 1~10 (in Chinese with English abstract).
参考文献
Zhu Yixiu, Jin Zhenkui, Jin Ke, Guo Maoheng, Wang Huan, Lv Ping, Wang Xinyao, Shi Yuan. 2021. Petrologic features and diagenetic evolution of fine-grained sedimentary rocks in continental lacustrine basins: A case study on the Lower Jurassic Da'anzhai Member of Yuanba area, Sichuan basin. Oil & Gas Geology, 42(2): 494~508 (in Chinese with English abstract).
参考文献
Zou Caineng, Yang Zhi, Wang Hongyan, Dong Dazong, Liu Honglin, Shi Zhensheng, Zhang Bin, Sun Shasha, Liu Deixun, Zhang Guizhong, Wu Songtao, Pang Zhenglian. 2019. “Exploring petroleum inside source kitchen”: Jurassic unconventional continental giant shale oil & gas field in Sichuan basin, China. Acta Geologica Sinica, 93(7): 1551~1562 (in Chinese with English abstract).
参考文献
白静, 徐兴友, 刘卫彬, 李耀华, 陈珊. 2022. 松辽盆地下白垩统沙河子组陆相页岩气首获高产突破. 地质学报, 96(3): 1121~1123.
参考文献
付金华, 牛小兵, 李明瑞, 刘新社, 李士祥, 郭芪恒, 周新平, 刘江艳. 2022. 鄂尔多斯盆地延长组7段3亚段页岩油风险勘探突破与意义. 石油学报, 43(6): 760~769.
参考文献
高阳, 叶义平, 何吉祥, 钱根葆, 覃建华, 李映艳. 2020. 准噶尔盆地吉木萨尔凹陷陆相页岩油开发实践. 中国石油勘探, 25(2): 133~141.
参考文献
郭秋麟, 米敬奎, 王建, 李景坤, 李永新, 杨智. 2019. 改进的烃源岩生烃潜力模型及关键参数模板. 中国石油勘探, 24(5): 661~669.
参考文献
胡宗全, 杜伟, 刘忠宝. 2018. 页岩气源储耦合机理及其应用. 北京: 地质出版社.
参考文献
李春鹏, 隋桂梅, 刘志国, 杨松岭, 闫青华, 尹川. 2017. 成熟—过成熟烃源岩有机质类型识别. 物探与化探, 41(2): 219~223.
参考文献
李磊. 2020. 元坝地区大安寨段泥页岩孔缝表征与页岩气富集规律研究. 中国石油大学(北京)硕士学位论文.
参考文献
李倩文, 刘忠宝, 陈斐然, 刘光祥, 张殿伟, 李鹏, 王鹏威. 2022. 四川盆地侏罗系页岩层系岩相类型及储集特征——以元坝地区Y2井大安寨段为例. 石油与天然气地质, 43(5): 1127~1140.
参考文献
李英强, 何登发. 2014. 四川盆地及邻区早侏罗世构造-沉积环境与原型盆地演化. 石油学报, 35(2): 219~232.
参考文献
刘春艳. 2009. 新疆三塘湖盆地石炭系烃源岩地球化学特征研究. 兰州大学硕士学位论文.
参考文献
刘惠民. 2022. 济阳坳陷页岩油勘探实践与前景展望. 中国石油勘探, 27(1): 73~87.
参考文献
刘苗苗, 付小平. 2020. 元坝地区陆相页岩气勘探潜力再评价. 四川地质学报, 40(3): 416~421.
参考文献
刘忠宝, 刘光祥, 胡宗全, 冯动军, 朱彤, 边瑞康, 姜涛, 金治光. 2019. 陆相页岩层系岩相类型、组合特征及其油气勘探意义——以四川盆地中下侏罗统为例. 天然气工业, 39(12): 10~21.
参考文献
刘忠宝, 胡宗全, 刘光祥, 刘珠江, 刘晧天, 郝景宇, 王鹏威, 李鹏. 2021. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素. 石油与天然气地质, 42(1): 136~145.
参考文献
刘忠宝, 胡宗全, 刘光祥, 李鹏, 王鹏威, 李倩文, 金治光, 张哲. 2022. 陆相页岩源-储耦合特征及发育模式——以四川盆地侏罗系自流井组为例. 海相油气地质, 27(3): 271~280.
参考文献
马永生, 蔡勋育, 赵培荣, 胡宗全, 刘惠民, 高波, 王伟庆, 李志明, 张子麟. 2022. 中国陆相页岩油地质特征与勘探实践. 地质学报, 93(1): 155~171.
参考文献
倪楷. 2012. 元坝地区大安寨段页岩气藏的形成条件. 天然气技术与经济, 6(4): 13~16+77.
参考文献
彭嫦姿, 彭俊, 陈燕辉, 张汉荣. 2014. 四川盆地元坝地区大安寨段页岩气“甜点”地震预测. 天然气工业, 34(6): 42~47.
参考文献
王庆波, 刘若冰, 魏祥峰, 倪楷, 高红贤. 2013. 陆相页岩气成藏地质条件及富集高产主控因素分析——以元坝地区为例. 断块油气田, 20(6): 698~703.
参考文献
魏祥峰, 黄静, 李宇平, 王庆波, 刘若冰, 文治东. 2014. 元坝地区大安寨段陆相页岩气富集高产主控因素. 中国地质, 41(3): 970~981.
参考文献
徐秋枫. 2013. 川东北元坝区块页岩气资源评价及方法探究. 中国地质大学(北京)硕士学位论文.
参考文献
徐兴友, 刘卫彬, 陈珊, 白静, 李耀华. 2022. 松辽盆地南部陆相页岩油气勘查突破及意义. 天然气工业, 42(3): 12~20.
参考文献
徐云龙. 2015. 普光地区侏罗系烃源岩地球化学特征及资源潜力评价. 成都理工大学硕士学位论文.
参考文献
张正辰. 2020. 川北元坝地区下侏罗统大安寨段页岩气资源潜力评价. 中国石油大学(北京)硕士学位论文.
参考文献
周德华, 焦方正, 郭旭升, 郭彤楼, 魏志红. 2013. 川东北元坝区块中下侏罗统页岩油气地质分析. 石油实验地质, 35(6): 596~600.
参考文献
周德华, 孙川翔, 刘忠宝, 聂海宽. 2020. 川东北地区大安寨段陆相页岩气藏地质特征. 中国石油勘探, 25(5): 32~42.
参考文献
周立宏, 陈长伟, 韩国猛, 杨飞, 石倩茹, 付东立, 董越崎, 赵玥, 孙莉莉, 梁晨. 2021. 渤海湾盆地歧口凹陷陆相湖盆页岩气富集条件及勘探潜力. 天然气工业, 41(5): 1~10.
参考文献
朱毅秀, 金振奎, 金科, 郭芪恒, 王欢, 吕品, 王昕尧, 师源. 2021. 中国陆相湖盆细粒沉积岩岩石学特征及成岩演化表征——以四川盆地元坝地区下侏罗统大安寨段为例. 石油与天然气地质, 42(2): 494~508.
参考文献
邹才能, 杨智, 王红岩, 董大忠, 刘洪林, 施振生, 张斌, 孙莎莎, 刘德勋, 张贵中, 吴松涛, 庞正炼. 2019. “进源找油”: 论四川盆地非常规陆相大型页岩油气田. 地质学报, 93(7): 1551~1562.
目录contents

    摘要

    为查明川北地区大安寨段页岩油气烃源、储集特征及富集有利层段,以岩芯观察描述为基础,以岩石学与矿物学、有机地球化学及页岩储层表征等理论方法与技术为指导,开展了大安寨段二亚段纵向上4个小层岩相、烃源、储集特征的精细表征与差异性对比研究,优选出了页岩油气富集有利层段,并提出勘探研究建议。研究结果表明:大安寨段二亚段富含(泥质)介壳灰岩、(泥质纹层状)粉细砂岩2种夹层,低—中碳黏土质页岩、中碳纹层—薄层状介壳页岩、低碳(纹层状)粉砂质页岩、低碳粉砂质介壳灰质页岩4种页岩岩相;②小层以中碳黏土质页岩、中碳纹层状介壳页岩为主,夹层相对少,页岩连续性较好;而④小层以中碳纹层状介壳页岩夹介壳灰岩为主,不同尺度介壳灰岩夹层多。页岩有机显微组分整体以镜质组为主,②、④小层固体沥青较发育,自下而上有机质类型发生6次变化,依次为Ⅲ—Ⅱ2—Ⅲ—Ⅱ2—Ⅱ1—Ⅱ2;②小层与④小层生油气能力相对较好,④小层略好于②小层。页岩储集物性明显好于夹层,②小层和④小层页岩生烃能力相对好,有机质孔较发育,含气量相对高,页岩烃源—储集—含(油)气性匹配关系相对好,评价认为大安寨段二亚段上部④小层纹层状介壳页岩段为最佳页岩油气富集层段,其次为下部②小层黏土质页岩层段。基于研究区大安寨段二亚段沉积非均质性强、含油气性好的层段时空分布不稳定的特点,建议重视砂、泥、灰混积差异,加强以小层为单元的岩相(组合)时空分布规律研究;重视保存条件与含气性差异,加强常规—非常规一体油气勘探选区、选层研究。

    Abstract

    To find out the source and reservoir characteristics as well as favorable shale oil & gas enrichment intervals of the Da'anzhai Member in northern Sichuan, fine characterization and contrastive studies of lithofacies, source and reservoir characteristics aimed at the four sublayers of the second section of the Da'anzhai Member (hereinafter referred to as the J1da2) were carried out. It was based on core observation and description, guided by theoretical methods and technologies such as petrology and mineralogy, organic geochemistry and shale reservoir characterization. Then favorable intervals of shale oil and gas enrichment in vertical section were selected, and further exploration recommendation was proposed. Results suggest that: ① two interlayers are developed in J1da2, that is, (argillaceous) shell limestone and (argillaceous laminated) siltstone. Four shale lithofacies types are identified, including low-medium-TOC clayey shale, medium-TOC lamellar -thin shell shale, low-TOC (laminated) silty shale and low-TOC silty shell calcareous shale. The 2nd sublayer is mainly consisting of medium-TOC clayey shale lithofacies and medium-TOC lamellar shell shale lithofacies, with relatively few interlayers and good shale continuity. However, the 4th sublayer primarily contains medium-TOC lamellar shell shale lithofacies, interbedded with shell limestone interlayers in different scales. ② The organic macerals of J1da2 shale are mainly vitrinite. Solid asphalts are more developed in the 2nd and 4th sublayers. From bottom to top, organic matter types have changed six times, which are Ⅲ-Ⅱ2-Ⅲ-Ⅱ2-Ⅱ1-Ⅱ2 in turn. For the hydrocarbon generation capacity of J1da2 shale, the 2nd and 4th sublayers are relatively better than the others, and the 4th sublayer is slightly better than the 2nd sublayer. ③ Physical properties of J1da2 shale are obviously better than that of interlayers. Due to better hydrocarbon generation capacity, organic pores of the 2nd and 4th sublayers are more developed and the gas contents are relatively higher. Hence, the matching relationships of source-reservoir-(oil) gas bearing of the two sublayers are better. According to comprehensive evaluation, lamellar shell shale lithofacies in the 4th sublayer of J1da2 is regarded as the optimal shale oil and gas enrichment interval, followed by clayey shale lithofacies in the 2nd sublayer of J1da2. ④ In view of the strong heterogeneity in deposition and unstable distribution of good oil and gas bearing intervals in J1da2 of the study area, it is advised to focus on the differences of argillaceous, calcareous and silty sediments, strengthen the study of the spatiotemporal distribution patterns of lithofacies (combinations) based on sublayer as units; pay attention to the differences in preservation conditions and gas bearing properties, and enhance the research on the selection of oil and gas exploration areas and layers.

  • 近年来,我国非常规陆相页岩油气勘探开发力度不断加大,松辽、渤海湾、准噶尔、鄂尔多斯及四川盆地等大型含油气盆地陆相页岩油气勘探相继获得重大突破,非常规陆相页岩油气已成为石油地质行业倍受关注的热点领域之一(邹才能等,2019高阳等,2020周立宏等,2021马永生等,2022付金华等,2022刘惠民,2022徐兴友等,2022;白静等2022)。四川盆地发育下侏罗统自流井组东岳庙段、大安寨段及中侏罗统千佛崖组(凉高山组)3套浅湖—半深湖相富有机质页岩,普遍具有厚度较大,分布范围较广的特点,是陆相页岩油气勘探开发的重要层系(周德华等,2020)。四川盆地北部(以下简称川北)元坝地区侏罗系陆相页岩油气勘探起步较早,2010年开始,在常规老井复查的基础上,陆续在B11、L30、B101、B161等十多口钻井的大安寨段试获页岩油气流,其中2012年3月,在B21井自流井组大安寨段常规射孔测试,获得日产50.7×104 m3高产页岩气流(周德华等,2013),展示了川北地区大安寨段良好的页岩油气勘探潜力。但测试结果显示,多数钻井普遍具有初始产量低或初始产量高、递减快,稳产困难的特点,至今尚未建成规模开发产能阵地。

  • 前期针对川北地区大安寨段在页岩气资源潜力(徐秋枫,2013)、页岩岩石学特征、页岩储层物性与孔隙(倪楷,2012)、页岩气富集高产主控因素(魏祥峰等,2014)、甜点地震预测(彭嫦姿等,2014)及勘探潜力评价等方面均已开展过一些研究,认为大安寨段页岩具有厚度大、有机碳含量(TOC)高、有机质类型好、成熟度高,生烃量较大(王庆波等,2013张正辰,2020);储集物性及含气性好(王庆波等,2013刘苗苗等,2020),受沉积及成岩的控制,富有机质页岩和介壳页岩是最有利的储集岩(朱毅秀等,2021);构造简单、稳定,断裂不发育,保存条件良好,有利于烃类形成(周德华等,2013)。但受前期常规钻井页岩段取芯相对少,纵向上缺乏连续性及掌握资料程度有差异等因素的影响,针对大安寨段页岩层段页岩油气富集条件的研究仍缺乏系统性,导致不同研究者对于一些关键的地质条件的认识仍有不同,如对于页岩有机质类型、富有机质页岩发育连续性的优劣、页岩段中夹层物性及其对于油气储集的贡献,尤其是对于富有机质页岩层段纵向上岩相类型、烃源品质及储集性能的差异性尚未开展较为精细的研究,页岩油气富集有利层段尚不清楚,仍是制约研究区大安寨段页岩油气勘探部署进程的瓶颈问题。为此,本次研究以新钻页岩油气井——B2井(大安寨段页岩段连续取芯)为研究对象,在岩芯观察描述的基础上,综合采用岩矿(薄片、全岩X射线衍射)、有机地化(TOC、岩石热解、有机岩石学、干酪根碳同位素)、储层(氩离子抛光-扫描电镜、高压-压汞联测、物性测试)等多种实验分析测试方法,以小层为单元开展了岩相、烃源及储集特征精细表征,并基于页岩层段源-储匹配关系,优选出了页岩油气富集有利层段,并结合研究区实际地质特点、勘探研究与生产部署情况,提出了勘探研究方向及建议,旨在引起重视,早日获得油气大发现、大突破。

  • 1 研究区地质概况

  • 川北地区北靠米仓山,西邻龙门山褶皱带,东邻大巴山褶皱带。包括九龙山背斜、池溪凹陷、苍溪-巴中低缓构造带、通南巴背斜、通江凹陷5个次级、三级构造单元(李磊,2020)(图1)。下侏罗统自流井组自下而上发育珍珠冲段、东岳庙段、马鞍山段及大安寨段4个岩性段,大安寨段沉积期为弱伸展期,盆缘造山作用相对弱,盆地沉降速率大于陆源碎屑堆积速率,盆地范围内广泛发育浅湖—半深湖相暗色页岩(李英强等,2014李倩文等,2022)。川北地区大安寨段沉积期整体处于湖盆边缘与湖盆中心的过渡区,沉积厚度较大、岩性复杂,纵向上变化快,自下而上包括大三、大二(自下而上划分为4个小层:①~④)、大一3个亚段,其中大二亚段富有机质页岩较发育,为页岩油气富集勘探层段,大一亚段与大三亚段以发育介壳灰岩为主,是致密油勘探有利层段。

  • 图1 川北地区构造单元划分及目的层段储盖组合柱状图(据邹才能等,2019张正辰,2020修编)

  • Fig.1 Tectonic units division in northern Sichuan and reservoir-cap association column of the target layer (modified from Zou Cainen et al., 2019; Zhang Zhengchen, 2020)

  • 2 岩相类型及组合特征

  • 从岩芯观察描述来看,B2井大二亚段富含介壳灰岩、粉砂岩夹层,暗色页岩主要发育于②小层与④小层。页岩全岩X射线衍射测试数据(n=58)分析结果表明,页岩矿物组成以黏土矿物和石英为主,其次为方解石。其中黏土矿物含量介于28.4%~60.6%,平均值为45.2%;石英含量介于17.2%~57.4%,平均值为40.3%;方解石含量介于0.4%~34%,平均值为7.1%。从不同小层页岩矿物组成对比来看,②小层、④小层黏土矿物含量略高,平均值分别可达48.59%、45.12%,石英含量平均值基本相当;与②小层、④小层相比,③小层页岩黏土矿物含量略低,方解石含量略高;而①小层黏土矿物含量略低,石英含量明显较其他小层高,平均值可达46.3%。

  • 综合岩芯观察、全岩矿物组成、岩石薄片及钻(录)井资料,采用笔者建立的全岩矿物分区—TOC分级—矿物结构与沉积构造修正与完善的陆相页岩岩相划分方案(刘忠宝等,2019),以矿物含量大于50%确定岩相主名,矿物含量25%~50%确定“××质”作为主名前缀,以≤0.5%、0.5%~1.0%、1.0%~2.0%、2.0%~4.0%为TOC分级界线,分别定义为含碳、低碳、中碳、高碳,作为岩相名前缀。在川北B2井大二亚段识别出6种岩相类型,其中页岩岩相4种:低—中碳黏土质页岩、中碳纹层—薄层状介壳页岩、低碳(纹层状)粉砂质页岩、低碳粉砂质介壳灰质页岩;夹层2种:(泥质)介壳灰岩、(泥质纹层状)粉细砂岩。各类页岩及夹层岩相类型的典型岩芯、岩石薄片镜下发育特征及其在大二亚段各个小层中的分布情况详见图2。

  • 以页岩与夹层岩相类型识别为基础,对B2井大二亚段垂向上岩相类型及组合特征进行了精细的划分(图3),结果显示:大二亚段①小层下部岩相以含碳—低碳灰质页岩相与含碳—低碳粉砂质页岩相为主,中部为中碳纹层状介壳页岩相(介壳纹层与薄层20条)、低碳介壳灰质页岩相,上部为厚1.89 m的介壳灰岩相;②小层下部岩相以低—中碳介壳灰质页岩相为主,中部以低—中碳黏土质页岩相、低—中碳纹层状介壳页岩相(介壳纹层与薄层17条)夹1层厚0.47 m介壳灰岩相为主,上部主要为低—中碳粉砂质页岩、含泥—泥质粉砂岩相;③小层下部岩相以介壳灰岩相夹低碳介壳灰质页岩为主,中部以泥质纹层状粉砂岩相为主,上部为介壳灰岩相夹中碳介壳灰质页岩相;④小层中下部岩相为中碳纹层状介壳页岩相(介壳纹层与薄层57条)夹介壳灰岩相,上部以中碳介壳灰质页岩相夹中碳粉砂质页岩相为主。

  • 整体而言,B2井大二亚段以浅湖亚相沉积为主,且垂向上明显具有“砂、泥、灰”三元互层混积特征,其中两期次级湖侵控制了②小层与④小层两套半深湖相富有机质页岩层的发育,但两者仍有所差异,表现为②小层以中碳黏土质页岩、中碳纹层状介壳页岩为主,夹层相对少,页岩连续性较好;而④小层以中碳纹层状介壳页岩夹介壳灰岩为主,不同尺度介壳灰岩夹层多。

  • 3 页岩烃源特征

  • 研究区大安寨段大二亚段富有机质页岩发育受沉积相带控制,主要发育于浅湖—半深湖相区,厚度10~30 m不等(TOC>1.0%累计厚度)。前期采用L4、L30、B5、B102等钻井的页岩岩芯样品已开展过一些有机地球化学特征研究,认为大二亚段页岩TOC最高,平均值可达0.9%,大于1%的样品达到34%(李磊,2020张正辰,2020),但对于有机质类型及成熟度的认识仍存在差异,对于大二亚段纵向上不同层段生烃潜力的差异并未开展较为系统的研究。本次针对B2井大二亚段页岩较为系统地开展了TOC、岩石热解、有机岩石学及干酪根碳同位素等多项有机地球化学测试分析。研究结果表明,大二亚段TOC值主体介于0.5%~2.0%,平均值为1.18%,以④小层最高,平均值为1.24%。Ro平均值大于1.60%,已进入高成熟阶段。页岩有机显微组分整体以镜质组为主,②、④小层固体沥青较发育,大二亚段自下而上有机质类型发生6次变化,依次为Ⅲ—Ⅱ2—Ⅲ—Ⅱ2—Ⅱ1—Ⅱ2。综合分析认为,大二亚段②小层与④小层生油气能力相对较好,④小层略好于②小层。

  • 3.1 有机质丰度

  • B2井大二亚段58个页岩样品TOC统计分析结果表明,TOC值主体为0.5%~2.0%,平均值为1.18%,以1.0%~2.0%的页岩占比最高,可达57%。从大二亚段不同小层页岩TOC对比分析来看(图4a),TOC平均值均大于1%,明显高于大一亚段(0.11%~1.04%,平均0.59%)和大三亚段(0.19%~1.18%,平均0.8%)。其中暗色页岩纵向上连续性相对好的②小层页岩TOC平均值为1.09%,④小层页岩TOC平均值为1.24%,而对于①小层与③小层而言,尽管暗色页岩累积厚度小,纵向上连续性差,但局部仍发育有TOC相对高的富有机质页岩。

  • 图2 川北地区B2井大安寨段大二亚段典型岩相类型及发育特征

  • Fig.2 Typical lithofacies types and development characteristics of J1da2 for well B2 in northern Sichuan

  • 图3 川北地区B2井大二亚段页岩层系岩相组合特征综合柱状图

  • Fig.3 Comprehensive histogram of lithofacies association characteristics of J1da2 shale strata for well B2 in northern Sichuan

  • 图4 川北地区B2井大二亚段各小层页岩TOC与生烃潜量(PG)对比图

  • Fig.4 Comparison of TOC and PG among different sublayers of J1da2 for well B2 in northern Sichuan

  • B2井大二亚段35个页岩岩石热解数据统计分析表明(图4b),生烃潜量(PG=S1+S2)介于0.47~1.98 mg/g,平均值为0.69 mg/g。①小层至④小层页岩的生烃潜量具有增大趋势,④小层生烃潜量最高,平均值为0.93 mg/g,其余各小层生烃能力较④小层略差,但其内部均有个别样品生烃潜量超过1 mg/g。总体而言,大二亚段页岩生烃潜量(<2 mg/g)整体偏低,究其原因,一方面S1在实验测试过程中会受取样条件、岩样过分的冲洗和烘烤及油气运移的影响,轻烃组分会有损失;另一方面页岩内的残留烃量会随着热演化程度(Ro)的升高而不断减少,而B2井大二亚段页岩Ro较高,已进入高成熟阶段。

  • 基于S1可能会受到实验及轻烃挥发损失的影响,本次进一步对各小层S2含量进行了统计分析,结果表明S2含量介于0.13~1.29 mg/g之间,平均值为0.52 mg/g。页岩TOC含量和S2含量具有较好的正相关关系(图5),即随着TOC的增加,生烃潜力也相应的增大。采用TOC与S2含量关系图版(刘春艳,2009)进行不同小层烃源岩评价,认为④小层绝大多数样品为好烃源,其次为②小层,有约50%样品属好烃源岩。

  • 图5 川北地区B2井大二亚段各小层TOC与 S2含量关系图

  • Fig.5 Relationships between TOC and S2 among different sublayers of J1da2 for well B2 in northern Sichuan

  • 3.2 有机质成熟度

  • 前人针对川北地区大二亚段页岩镜质组反射率(Ro)的研究认为Ro主体值介于1.4%~1.8%之间(徐秋枫,2013魏祥峰等,2014)。B2井大二亚段5个页岩样品Ro值为1.10%~1.61%,平均值仅为1.33%。从40个岩石热解测试数据分析来看,最高热解峰温值(Tmax)介于472~496℃,4个小层页岩Tmax平均值可达488℃,依据陆相烃源岩有机质成烃演化阶段划分标准中Tmax值与Ro值的对应关系(徐云龙等,2015),页岩Ro值应明显高于上述页岩全岩镜质组反射率测试数据,这可能主要与页岩TOC含量不高,加之有机显微组分多样,导致部分样品测点数量相对少,测定Ro值精度受限。Jarvie et al.(2007)研究认为TmaxRo之间具有一定的线性关系,提出了Ro=aTmax-bab为回归系数,a=0.018,b=7.16,不适用于I型干酪根)的计算公式,结果表明B2井大二亚段①至④小层页岩Ro平均值依次为1.68%、1.66%、1.62%、1.50%,整体Ro平均值为1.61%。

  • 与川中、川东地区相比,川北地区大安寨段具有现今埋藏深度大、有机质成熟度相对高的特点,尤其是富有机质页岩发育的有利地区,埋藏深度均已大于3500 m,部分地区甚至大于4000 m。尽管不同研究者对研究区Ro值的测定仍存在一定差异(张正辰,2020),但平面上由北向南有机质成熟度逐渐升高,富有机质页岩主体区有机质成熟度已进入高成熟阶段的认识已形成共识。对于高成熟阶段而言,其特点就是既生油又生气,成熟度越高,生气量越大,越有利于有机质孔的生成,油气的可动性越好,有利于开采。因此,精确厘定页岩的有机质成熟度对于评价油气勘探开发潜力至关重要。但需要特别强调的是,目前针对这套页岩的镜质组反射率(Ro)测试结果精度有限,是客观存在的问题,因此研究中有必要采用全岩镜质组反射率、岩石热解峰温及其Ro值计算等多种方法进行有机质成熟度的厘定。此外,从四川盆地不同地区典型井页岩有机地化特征对比来看(图6),当Ro相同或相近时,页岩生烃潜量(PG)随TOC增大而增大;TOC相同时,Ro越大,PG越小,揭示出生烃潜量受TOC、有机质类型与Ro共同控制。

  • 3.3 有机显微组分与有机质类型

  • 前期针对B102、L30、L4、L175井大安寨段页岩干酪根镜检与干酪根碳同位素的研究,认为有机质类型以Ⅲ型和Ⅱ2型为主(李磊,2020),但纵向上有机显微组分与有机质类型的变化特征并不清楚。为此本次针对B2井大二亚段选取30个典型页岩样品开展有机岩石学分析。全岩光片有机显微组分镜下鉴定与定量统计结果表明,页岩有机显微组分具有多样性,主要有镜质体、丝质体、固体沥青。其中,镜质体(均质镜质体、结构镜质体)发育最为普遍,含量介于40%~92%,平均值为79.06%,占比最高;其次为丝质体,显微镜下颜色较镜质体(灰色—灰白色)更浅更亮,有凸起,含量介于3.3%~42.1%,平均值为13.70%;固体沥青(次生组分)分布不均,仅部分样品中含量较高,含量介于0~48%,平均值为9.81%。纵向上4个小层页岩有机显微组分含量存在明显的差异(图7),表现为显微镜下①、③小层页岩中基本无固体沥青发育,而②小层中下部、④小层页岩中固体沥青明显增多,平均含量超过10%,个别样品最高可达48%,次生固体沥青组分的分布差异,反映出②、④小层生油能力较①、③小层明显好,且2个小层个别样品在全岩光片中均见到反映还原环境的黄铁矿的发育,尤其是④小层见到了莓状黄铁矿集合体,这与上述岩相及沉积相分析认为②、④小层沉积水体相对深,具有较好的吻合性。

  • 图6 不同成熟度页岩TOC与生烃潜量关系图

  • Fig.6 Relationship between TOC and hydrocarbon generation potential of shale with different maturity

  • 在上述页岩有机显微组分分析的基础上,为进一步明确B2井大二亚段纵向上不同小层页岩有机质类型及差异,尤其是同样可见固体沥青组分发育的②、④小层,究竟哪个类型更好,有无细微的差异。进一步与有机岩石学配套开展了30个页岩样品的干酪根碳同位素测试,并采用三类四分法即:腐泥型(Ⅰ)、偏腐泥混合型(Ⅱ1)、偏腐殖混合型(Ⅱ2)、腐殖型(Ⅲ)的划分标准(李春鹏等,2017),对B2井有机质类型进行了综合评价与判别,结果表明大二亚段页岩Ⅱ1型、Ⅱ2型和Ⅲ型均有发育,自下而上有机质类型发生6次变化,依次为Ⅲ—Ⅱ2—Ⅲ—Ⅱ2—Ⅱ1—Ⅱ2(图8)。其中①小层以Ⅲ型为主,②小层以Ⅱ2型、Ⅲ型为主,③小层以Ⅲ型为主,④小层以Ⅱ1型和Ⅱ2型为主(图8)。综合分析认为,大二亚段②小层与④小层生油气能力相对较好,④小层略好于②小层。有机质类型的精确识别为分析与判断不同小层页岩有机质孔发育特征的差异奠定了重要的基础。

  • 4 页岩与夹层储集特征

  • 川北地区大二亚段以页岩与介壳灰岩、粉砂岩夹层频繁互层为特点,明确页岩与不同类型夹层的储集性能、差异及成因对于优选油气富集有利层段至关重要。研究表明,B2井大二亚段富有机质页岩层段储集物性明显好于夹层,是油气储集的主要岩相及勘探层段。纵向上②小层和④小层页岩储集物性相对较好,且有机质孔相对较发育,④小层整体略好于②小层,是页岩油气储集最有利层段。

  • 4.1 物性特征

  • 本次分别针对B2井大二亚段页岩、介壳灰岩、粉砂岩等3类岩性开展了物性测试分析,结果表明,页岩孔隙度介于2.4%~6.8%,平均为3.84%,渗透率介于0.00113×10-3~0.399×10-3 μm2,平均值为0.0606×10-3 μm2;介壳灰岩孔隙度介于0.7%~2.6%,平均为1.4%,渗透率介于0.00565×10-3~0.0418×10-3 μm2,平均值为0.0183×10-3 μm2;粉砂岩孔隙度介于0.9%~2.1%,平均为1.26%,渗透率介于0.000831×10-3~0.00348×10-3 μm2,平均值为0.00173×10-3 μm2(图9a、b)。反映出大二亚段页岩孔隙度与渗透率均好于介壳灰岩和粉砂岩夹层,介壳灰岩略好于粉砂岩,但2种夹层孔隙度平均值均小于1.5%,铸体薄片基本无孔隙发育也进一步说明夹层储集性能差。而从②小层和④小层页岩的物性特征对比来看,②小层页岩孔隙度介于2.4%~5.2%,平均为3.95%,④小层页岩孔隙度介于2.8%~6.8%,平均为4.29%。两个小层的孔隙度平均值均在4%左右,④小层页岩孔隙度与渗透率均略好于②小层(图9c、d)。

  • 4.2 页岩孔隙类型及特征

  • 对于四川盆地侏罗系陆相页岩储层孔隙的研究,已认识到页岩孔隙以无机孔为主,局部发育微裂缝与有机质孔(刘忠宝等,20212022),而不同层段中有机质孔的发育程度对于评价页岩油气的富集程度至关重要。因此,本次研究重点针对B2井大安寨段大二亚段不同小层页岩有机质孔发育程度进行了较为精细的对比研究,发现②小层和④小层页岩中有机质孔相对较发育,有利于页岩油气富集。

  • 图7 川北地区B2井大二亚段①小层(a)与④小层(b)页岩有机质显微组分特征

  • Fig.7 Organic matter macerals characteristics of the1st (a) and 4th (b) sublayers of J1da2 shale for well B2 in northern Sichuan

  • 图8 川北地区B2井大二亚段页岩有机地球化学综合柱状图

  • Fig.8 Comprehensive histogram of organic geochemistry of J1da2 shale for well B2 in northern Sichuan

  • (1)无机孔:B2井大安寨段大二亚段页岩富含黏土矿物与方解石(生物介壳),以发育黏土矿物层(晶)间孔与方解石粒内孔为主。页岩黏土矿物平均含量可达46%,4个小层页岩样品氩离子抛光-扫描电镜下黏土矿物层(晶)间孔极为发育,以狭缝形为主(图10a),宽几纳米~几十纳米为主,延展形态受黏土矿物类型及堆积方式控制,长短不一,局部可见三角形及不规则形孔隙。部分狭缝型黏土矿物层间孔中可见暗色有机质充填,揭示其在有机质生油前,受压实作用影响已基本形成并定形。介壳方解石粒内孔,形态呈多边形、不规则形及针孔状,其中部分较大孔隙中可见暗色有机质充填(图10b),揭示其对油气的储集具有一定贡献,以④小层中发育最好,其次为①小层和②小层的局部层段。

  • (2)微裂缝:岩芯观察及氩离子抛光-扫描电镜鉴定结果表明,大二亚段页岩中发育3种不同尺度的微裂缝:一是毫米级微裂缝,②小层下部3911.52~3915.35 m可见大量页理缝,浸水后放置几分钟后连续—断续状水痕明显(图10c),部分被方解石充填,反映地下曾为开启状态,沉积与成岩叠加成因;④小层页岩与介壳灰岩夹层岩性转换处附近可见被方解石全充填的毫米级水平微裂缝发育,受岩性组合与构造活动控制。二是微米级近水平微裂缝,②、④小层页岩的氩离子抛光-扫描电镜下普遍发育该类微裂缝,多呈微齿状(图10d),应为页理缝。三是纳米级有机质边缘缝,主要发育于条带状、块状及丝带状等有形态的暗色有机质的边缘(图10e),生烃-成岩收缩成因。

  • 图9 川北地区B2井大二亚段物性特征对比图

  • Fig.9 Physical properties comparison of rocks in J1da2 for well B2 in northern Sichuan

  • 图10 川北地区B2井大二亚段页岩无机孔与微裂缝发育特征

  • Fig.10 Characteristics of inorganic pores and microfractures in J1da2 shales of well B2 in northern Sichuan

  • (a)—黏土矿物层间孔,宽可达90 nm,局部沥青充填,3901.54 m;(b)—介壳方解石粒内孔,④小层,介壳页岩,3890.22 m;(c)—微米级裂缝,④小层,含介壳页岩,3889.35 m;(d)—纳米级裂缝,④小层,含介壳页岩,3889.35 m;(e)—毫米级裂缝,3913.89 m

  • (a) —clay mineral interlayer pore, up to 90 nm wide, partially filled with asphalt, 3901.54 m; (b) —shell calcite particle inner hole, ④ small layer, shell shale, 3890.22 m; (c) —micron scale fractures, ④ small layer, containing shell shale, 3889.35 m; (d) —nano scale fractures, ④ small layer, containing shell shale, 3889.35 m; (e) —millimeter scale fractures, 3913.89 m

  • (3)有机质孔:B2井大二亚段30个页岩氩离子抛光-扫描电镜鉴定结果表明,页岩中整体以无孔有机质为主,部分样品同时发育无孔有机质与有孔有机质。结合全岩光片有机显微组分类型分析来看,页岩中普遍发育的有固定形态的无孔有机质,主要为镜质体,而个别无固定形态有孔有机质,为次生固体沥青组分,原油固化裂解生气形成有机质孔。有机质孔以不规则形、蜂窝状为主,个别样品呈椭圆形,孔径几十纳米—几百纳米。大二亚段4个小层的对比研究显示(图11),①小层与③小层页岩基本不发育有机质孔,而②小层与④小层页岩中有机质孔发育程度相对好,有机质孔的发育与纵向上不同小层有机显微组分与有机质类型的差异变化密切相关,①小层与③小层页岩有机质类型为Ⅲ型,以生气为主,而②小层与④小层为Ⅱ1、Ⅱ2型,有机质类型相对好,既生油又生气,尤其是④小层为Ⅱ1型有机质,生油能力应相对更好,生油高峰期后,随着热演化程度的不断升高(B2井Ro为1.6%),液态原油开始不断固化裂解生气,形成相对较多的有机质孔。

  • 图11 川北地区B2井大二亚段①小层(a)与②小层(b)页岩有机显微组分特征

  • Fig.11 Organic macerals characteristics of the1st (a) and 2nd (b) sublayers of J1da2 shales for well B2 in northern Sichuan

  • 5 页岩油气富集层段及勘探建议

  • 页岩油气以源储一体为特性,对于非均质性极强的陆相页岩层段而言,源(有机显微组分)的组成与储(孔隙类型)的组成明显较海相页岩更为复杂,页岩油气富集层段优选与提高单井产量难度大。通常情况下对同一口钻井的同一层段而言,页岩储层受压实强度、有机质成熟度、压力系数等影响油气富集的条件基本相同,精细判识烃源、储集有效性及其两者之间的匹配关系就显得尤为重要。研究发现陆相页岩有机质孔的发育明显受到有机显微组分类型的控制,有机质孔的发育程度决定了源对储贡献的大小,是源-储耦合关系的核心(刘忠宝等,2022)。因此在评价过程中如何体现有机显微组分(有机质类型)差异对于页岩油气选层至关重要。B2井大二亚段①、③小层页岩有机质显微组分以镜质体为主,固体沥青极少发育,有机质孔基本不发育,而②、④小层固体沥青相对较多,有机质孔发育相对好,反映出②、④生烃能力强,有效储集能力强,源-储匹配关系好,是页岩油气富集的有利层段。在此定性评价的基础上,如何进一步实现定量评价,使得评价结果更为精准,②、④小层究竟哪一层更有利?为此,借鉴胡宗全等(2018)提出的海相源-储耦合系数计算公式,即海相页岩源-储耦合系数=有机碳含量×孔隙度×10000,为突出有机质类型差异对陆相页岩烃源品质与储集品质的控制作用,基于郭秋麟等(2019)对于国内外多个大型陆相盆地不同干酪根类型页岩原始氢指数(IHo)分布范围及主体值的确定,Ⅰ型为600~1000 mg/g(主体值800 mg/g)、Ⅱ1型为400~650 mg/g(主体值550 mg/g)、Ⅱ2 型为100~400 mg/g(主体值300 mg/g)、Ⅲ型主体值为160 mg/g,提出了引入原始氢指数比,建立了陆相页岩油气源-储耦合系数计算公式,陆相页岩油气源-储耦合系数=有机碳含量×原始氢指数比×孔隙度×10000,其中原始氢指数比=各类型页岩原始氢指数主体值/Ⅱ2型原始氢指数主体值,可得出上述4类有机质类型页岩层段原始氢指数比依次为:2.67、1.83、1.00、0.53。并进一步对陆相页岩油气源-储耦合系数数据累积占比开展了统计分析,将源-储耦合系数>15(占比20%)、10~15(占比20%)、5~10(占比20%)、<5(占比40%)依次作为1类、2类、3类及4类页岩油气富集层段评价标准(图12)。采用陆相页岩油气源-储耦合系数评价方法,并结合纵向上不同层段含气性差异,对B2井大安寨段大二亚段开展了页岩油气富集有利层段评价(图13)。结果表明大二亚段上部④小层纹层状介壳页岩段源-储匹配关系最好,以发育页岩油气富集1类、2类层段为主,气测全烃最好,测井解释含气量平均可达4 m3/t;其次为②小层中下部黏土质页岩层段,以发育页岩油气富集3类层段为主,尤其下部现场测试个别样品含气量相对也较高;而①、③小层与②小层上部,基本为4类,发育较多的粉砂岩类与介壳灰岩类夹层,烃源品质、储集能力及油气勘探开发潜力相对差。

  • 图12 陆相页岩油气源储耦合系数累积曲线及富集层段评价标准

  • Fig.12 Cumulative curve of source-reservoir coupling coefficient and evaluation standard of enriched intervals for the continental shale oil and gas

  • 研究区大安寨段已开展了十几年的页岩油气研究与勘探实践,常规井直井压裂测试、页岩油气水平井压裂测试均不同程度获得油气,且页岩、夹层中均含油气,十分复杂,油气富集规律仍不清楚。长期以来,纵向上定甜点层、平面上定甜点区仍是制约勘探进程的难题,基于前期对于部分常规老井、B2井、横向油气富集有利层段的预测研究及一直以来的勘探部署思路,提两点初浅的建议:

  • (1)重视砂、泥、灰混积差异,加强以小层为单元的岩相(组合)时空分布规律研究。从区域沉积特征及已有钻(录)井资料来看,研究区处于盆地北缘碎屑物源区与盆地中心之间的过渡区,具有砂质、泥质、灰质沉积物混积的特点,岩相及组合类型复杂,区域上应具有由北向南沉积水体变深,受陆源碎屑影响变弱的规律,但在研究区南部钻探的B2井(预测为相对深水半深湖沉积)大二亚段沉积仍受到了北部陆源碎屑沉积物的影响,陆源粉砂的输入对于纵向上页岩发育的连续性、页岩烃源品质影响较大。导致大二亚段发育②、④小层两套富有机质页岩层段,且岩相及组合仍有差异。进一步从不同地区的其它钻井来看,页岩层段内夹层(灰岩、砂岩)类型、层数、层厚等均有差异,反映出沉积的复杂性,应加强以小层为单元岩相及组合类型精细研究,开展平面编图,查明岩相及组合的时空分布规律。

  • 图13 川北地区B2井大安寨段大二亚段页岩油气富集层段综合评价图

  • Fig.13 Comprehensive evaluation of oil and gas enrichment zones of J1da2 shale strata for well B2 in northern Sichuan

  • (2)重视保存条件与含气性差异,加强常规—非常规一体油气勘探选区、选层研究。以B21井-B101井-B102井-B2井-B11井对比研究为例,可见大二亚段不同井区气测全烃显示均存在明显的差异,B102井、B2井④小层气测均较高,为页岩油气富集层段,但B102井区②小层与B2井区相比含气性较低,而B101井区②小层、③小层页岩含气性较好,而④小层含气性较差(图14)。可见研究区大二亚段内含油气性好的层段并不稳定,除了岩相差异的影响外,还应与保存条件差异有关,尤其是裂缝的不均一分布,如B21井的①小层页岩、③小层灰岩的高气测段,均具有尖峰特征,应主要受裂缝发育的影响,因此,以岩相时空分布为框架,先点后面开展裂缝的精细刻画研究,查明裂缝对于源内油气储集与保存的影响,加强不同地区、不同小层、不同岩相(组合)类型含气性的差异分析,加强常规—非常规一体油气勘探选区与选层研究。

  • 图14 川北地区B21井-B 101井-B 102井一B2井-B11井大安寨段页岩油气富集层段横向对比剖面图

  • Fig.14 Horizontal comparison profile of J1da2 shale oil and gas enrichment intervals for well B21-well B101-well B102-well B2-well B11 in northern Sichuan

  • 6 结论

  • (1)川北地区大安寨段大二亚段富含(泥质)介壳灰岩、(泥质纹层状)粉细砂岩2种夹层,低—中碳黏土质页岩、中碳纹层—薄层状介壳页岩、低碳(纹层状)粉砂质页岩、低碳粉砂质介壳灰质页岩4种页岩岩相,②小层以中碳黏土质页岩、中碳纹层状介壳页岩为主,夹层相对少,页岩连续性较好。而④小层以中碳纹层状介壳页岩夹介壳灰岩为主,不同尺度介壳灰岩夹层多。

  • (2)大安寨段页岩有机显微组分整体以镜质体为主,②、④小层固体沥青较发育,自下而上有机质类型发生6次变化,依次为Ⅲ—Ⅱ2—Ⅲ—Ⅱ2—Ⅱ1—Ⅱ2,②小层与④小层生油气能力相对较好,④小层略好于②小层。

  • (3)大安寨段页岩储集物性明显好于夹层,②小层和④小层页岩生烃能力相对好,有机质孔较发育,含气量相对高,页岩烃源—储集—含(油)气性匹配关系相对好;陆相页岩油气源-储耦合系数定量评价认为大二亚段上部④小层纹层状介壳页岩段为最佳页岩油气富集层段,其次为下部②小层黏土质页岩层段。

  • (4)基于研究区大二亚段沉积非均质性强、含油气性好的层段时空分布不稳定的特点,建议重视砂、泥、灰混积差异,加强以小层为单元的岩相(组合)时空分布规律研究;重视保存条件与含气性差异,加强常规—非常规一体油气勘探选区、选层研究。

  • 参考文献

    • Bai Jing, Xu Xingyou, Liu Weibin, Li Yaohua, Chen Shan, 2022. The breakthrough of continental shale gas in Lower Cretaceous Shahezi Formation of Songliao basin. Acta Geologica Sinica, 96(3): 1121~1123 (in Chinese with English abstract).

    • Fu Jinhua, Niu Xiaobing, Li Mingrui, Liu Xinshe, Li Shixiang, Guo Qiheng, Zhou Xinping, Liu Xinyan. 2022. Breakthrough and significance of risk exploration in the 3rd sub-member, 7th Member of Yanchang Formation in Ordos basin. Acta Petroleum Sinica, 43(6): 760~769 (in Chinese with English abstract).

    • Gao Yang, Ye Yiping, He Jixiang, Qian Genbao, Qin Jianhua, Li Yingyan. 2020. Development practice of continental shale oil in Jimsar sag in the Junggar basin. China Petroleum Exploration, 25(2): 133~141 (in Chinese with English abstract).

    • Guo Qiulin, Mi Jingkui, Wang Jian, Li Jingkun, Li Yongxin, Yang Zhi. 2019. An improved hydrocarbon generation model of source rocks and key parameter templates. China Petroleum Exploration, 24(5): 661~669 (in Chinese with English abstract).

    • Hu Zongquan, Du Wei, Liu Zhongbao. 2018. Source Reservoir Coupling Mechanism of Shale Gas and Its Application. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Jarvie D M, Hill R J, Ruble T E, Pollastro R M. 2007. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4): 475~499.

    • Li Chunpeng, Sui Guimei, Liu Zhiguo, Yang Songlin, Yan Qinghua, Yin Chuan. 2017. Organic type identification for mature and postmature source rock. Geophysical and Geochemical Exploration, 41(2): 219~223 (in Chinese with English abstract).

    • Li Lei. 2020. Characterization of shale pore and fracture and shale gas enrichment in Da'anzhai member in Yuanba area. Master's thesis of China University of Petroleum (Beijing) (in Chinese with English abstract).

    • Li Qianwen, Liu Zhongbao, Chen Feiran, Liu Guangxiang, Zhang Dianwei, Li Peng, Wang Pengwei. 2022. Lithofacies types and reservoir characteristics of Jurassic shale in the Sichuan basin revealed by the Da'anzhai member, well Y2, Yuanba area. Marine Origin Petroleum Geology, 43(5): 1127~1140 (in Chinese with English abstract).

    • Li Yingqiang, He Dengfa. 2014. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan basin and adjacent areas. Acta Petrolei Sinica, 35(2): 219~232 (in Chinese with English abstract).

    • Liu Chunyan. 2009. Geochemical characteristics of Carboniferous source rocks in Santanghu basin. Master's thesis of Lanzhou University (in Chinese with English abstract).

    • Liu Huimin. 2022. Exploration practice and prospect of shale oil in Jiyang depression. China Petroleum Exploration, 27(1): 73~87 (in Chinese with English abstract).

    • Liu Miaomiao, Fu Xiaoping. 2020. Reevaluation of exploration potential of continental shale gas in the Yuanba area. Acta Geologica Sichuan, 40(3): 416~421 (in Chinese with English abstract).

    • Liu Zhongbao, Liu Guangxiang, Hu Zongquan, Feng Dongjun, Zhu Tong, Bian Ruikang, Jiang Tao, Jin Zhiguang. 2019. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: A case study of the Middle and Lower Jurassic strata in the Sichuan basin. Natural Gas Industry, 39(12): 10~21 (in Chinese with English abstract).

    • Liu Zhongbao, Hu Zongquan, Liu Guangxiang, Liu Zhujiang, Liu Haotian, Hao Jingyu, Wang Pengwei, Li Peng. 2021. Pore characteristics and controlling factors of continental shale reservoirs in the Lower Jurassic Ziliujing Formation, northeastern Sichuan basin. Oil & Gas Geology, 42(1): 136~145 (in Chinese with English abstract).

    • Liu Zhongbao, Hu Zongquan, Liu Guangxiang, Li Peng, Wang Pengwei, Li Qianwen, Jin Zhiguang, Zhang Zhe. 2022. Source-reservoir coupling characteristics and development model of continental shale: Taking the Jurassic Ziliujing Formation in Sichuan basin as an example. Marine Origin Petroleum Geology, 27(3): 271~280 (in Chinese with English abstract).

    • Ma Yongsheng, Cai Xunyu, Zhao Peirong, Hu Zongquan, Liu Huimin, Gao Bo, Wang Weiqing, Li Zhiming, Zhang Zilin, 2022. Geological characteristics and exploration practices of continental shale oil in China. Acta Geologica Sinica, 96(1): 155~171 (in Chinese with English abstract).

    • Ni Kai. 2012. Shale-gas reservoir-forming conditions in Da'anzhai section, Yuanba area. Natural Gas Technology and Economy, 6(4): 13~16+77 (in Chinese with English abstract).

    • Peng Changzi, Peng Jun, Chen Yanhui, Zhang Hanrong. 2014. Seismic prediction of sweet spots in the Da'anzhai shale play, Yuanba area, Sichuan basin. Natural Gas Industry, 34(6): 42~47 (in Chinese with English abstract).

    • Wang Qingbo, Liu Ruobing, Wei Xiangfeng, Ni Kai, Gao Hongxian. 2013. Geologic condition of shale gas accumulation in continental facies and main controlling factors of enrichment and high production: Taking Yuanba district as an example. Fault-block Oil & Gas Field, 20(6): 698~703 (in Chinese with English abstract).

    • Wei Xiangfeng, HuangJing, Li Yuping, Wang Qingbo, Liu Ruobing, Wen Zhidong. 2014. The main factors controlling the enrichment and high production of Da'anzhai member continental shale gas in Yuanba area. Geology in China, 41(3): 970~981 (in Chinese with English abstract).

    • Xu Qiufeng. 2013. Shale gas evaluation and evaluation methods research in Yuanba block northeastern Sichuan. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Xu Xingyou, Liu Weibin, Chen Shan, Bai Jing, Li Yaohua. 2022. Breakthroughs in continental shale oil and gas exploration in the southern Songliao basin and its implications for carbon neutrality. Natural Gas Industry, 42(3): 12~20 (in Chinese with English abstract).

    • Xu Yunlong. 2015. Geochemical characteristics and resource potential evaluation of the hydrocarbon source rocks in Jurassic in Puguang region. Master's thesis of Chengdu University of Technology (in Chinese with English abstract).

    • Zhang Zhengchen. 2020. Potential assessment of shale gas resources in Da'anzhai member Lower Jurassic in Yuanba area northern Sichuan basin. Master's thesis of China University of Petroleum (Beijing) (in Chinese with English abstract).

    • Zhou Dehua, Jiao Fangzheng, Guo Xusheng, Guo Tonglou, Wei Zhihong. 2013. Geologic analysis of Middle-Lower Jurassic shale reservoirs in Yuanba area, northeastern Sichuan basin. Petroleum Geology Experiment, 35(6): 596~600 (in Chinese with English abstract).

    • Zhou Dehua, Sun Chuanxiang, Liu Zhongbao, Nie Haikuan. 2020. Geological characteristics of continental shale gas reservoir in the Jurassic Daanzhai member in the northeastern Sichuan basin. China Petroleum Exploration, 25(5): 32~42 (in Chinese with English abstract).

    • Zhou Lihong, Chen Changwei, Han Guomeng, Yang Fei, Shi Qianru, Fu Dongli, Dong Yueqi, Zhao Yue, Sun Lili, Liang Chen. 2021. Enrichment conditions and exploration potential of shale gas in continental lake basins in Qikou sag, Bohai Bay basin. Natural Gas Industry, 41(5): 1~10 (in Chinese with English abstract).

    • Zhu Yixiu, Jin Zhenkui, Jin Ke, Guo Maoheng, Wang Huan, Lv Ping, Wang Xinyao, Shi Yuan. 2021. Petrologic features and diagenetic evolution of fine-grained sedimentary rocks in continental lacustrine basins: A case study on the Lower Jurassic Da'anzhai Member of Yuanba area, Sichuan basin. Oil & Gas Geology, 42(2): 494~508 (in Chinese with English abstract).

    • Zou Caineng, Yang Zhi, Wang Hongyan, Dong Dazong, Liu Honglin, Shi Zhensheng, Zhang Bin, Sun Shasha, Liu Deixun, Zhang Guizhong, Wu Songtao, Pang Zhenglian. 2019. “Exploring petroleum inside source kitchen”: Jurassic unconventional continental giant shale oil & gas field in Sichuan basin, China. Acta Geologica Sinica, 93(7): 1551~1562 (in Chinese with English abstract).

    • 白静, 徐兴友, 刘卫彬, 李耀华, 陈珊. 2022. 松辽盆地下白垩统沙河子组陆相页岩气首获高产突破. 地质学报, 96(3): 1121~1123.

    • 付金华, 牛小兵, 李明瑞, 刘新社, 李士祥, 郭芪恒, 周新平, 刘江艳. 2022. 鄂尔多斯盆地延长组7段3亚段页岩油风险勘探突破与意义. 石油学报, 43(6): 760~769.

    • 高阳, 叶义平, 何吉祥, 钱根葆, 覃建华, 李映艳. 2020. 准噶尔盆地吉木萨尔凹陷陆相页岩油开发实践. 中国石油勘探, 25(2): 133~141.

    • 郭秋麟, 米敬奎, 王建, 李景坤, 李永新, 杨智. 2019. 改进的烃源岩生烃潜力模型及关键参数模板. 中国石油勘探, 24(5): 661~669.

    • 胡宗全, 杜伟, 刘忠宝. 2018. 页岩气源储耦合机理及其应用. 北京: 地质出版社.

    • 李春鹏, 隋桂梅, 刘志国, 杨松岭, 闫青华, 尹川. 2017. 成熟—过成熟烃源岩有机质类型识别. 物探与化探, 41(2): 219~223.

    • 李磊. 2020. 元坝地区大安寨段泥页岩孔缝表征与页岩气富集规律研究. 中国石油大学(北京)硕士学位论文.

    • 李倩文, 刘忠宝, 陈斐然, 刘光祥, 张殿伟, 李鹏, 王鹏威. 2022. 四川盆地侏罗系页岩层系岩相类型及储集特征——以元坝地区Y2井大安寨段为例. 石油与天然气地质, 43(5): 1127~1140.

    • 李英强, 何登发. 2014. 四川盆地及邻区早侏罗世构造-沉积环境与原型盆地演化. 石油学报, 35(2): 219~232.

    • 刘春艳. 2009. 新疆三塘湖盆地石炭系烃源岩地球化学特征研究. 兰州大学硕士学位论文.

    • 刘惠民. 2022. 济阳坳陷页岩油勘探实践与前景展望. 中国石油勘探, 27(1): 73~87.

    • 刘苗苗, 付小平. 2020. 元坝地区陆相页岩气勘探潜力再评价. 四川地质学报, 40(3): 416~421.

    • 刘忠宝, 刘光祥, 胡宗全, 冯动军, 朱彤, 边瑞康, 姜涛, 金治光. 2019. 陆相页岩层系岩相类型、组合特征及其油气勘探意义——以四川盆地中下侏罗统为例. 天然气工业, 39(12): 10~21.

    • 刘忠宝, 胡宗全, 刘光祥, 刘珠江, 刘晧天, 郝景宇, 王鹏威, 李鹏. 2021. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素. 石油与天然气地质, 42(1): 136~145.

    • 刘忠宝, 胡宗全, 刘光祥, 李鹏, 王鹏威, 李倩文, 金治光, 张哲. 2022. 陆相页岩源-储耦合特征及发育模式——以四川盆地侏罗系自流井组为例. 海相油气地质, 27(3): 271~280.

    • 马永生, 蔡勋育, 赵培荣, 胡宗全, 刘惠民, 高波, 王伟庆, 李志明, 张子麟. 2022. 中国陆相页岩油地质特征与勘探实践. 地质学报, 93(1): 155~171.

    • 倪楷. 2012. 元坝地区大安寨段页岩气藏的形成条件. 天然气技术与经济, 6(4): 13~16+77.

    • 彭嫦姿, 彭俊, 陈燕辉, 张汉荣. 2014. 四川盆地元坝地区大安寨段页岩气“甜点”地震预测. 天然气工业, 34(6): 42~47.

    • 王庆波, 刘若冰, 魏祥峰, 倪楷, 高红贤. 2013. 陆相页岩气成藏地质条件及富集高产主控因素分析——以元坝地区为例. 断块油气田, 20(6): 698~703.

    • 魏祥峰, 黄静, 李宇平, 王庆波, 刘若冰, 文治东. 2014. 元坝地区大安寨段陆相页岩气富集高产主控因素. 中国地质, 41(3): 970~981.

    • 徐秋枫. 2013. 川东北元坝区块页岩气资源评价及方法探究. 中国地质大学(北京)硕士学位论文.

    • 徐兴友, 刘卫彬, 陈珊, 白静, 李耀华. 2022. 松辽盆地南部陆相页岩油气勘查突破及意义. 天然气工业, 42(3): 12~20.

    • 徐云龙. 2015. 普光地区侏罗系烃源岩地球化学特征及资源潜力评价. 成都理工大学硕士学位论文.

    • 张正辰. 2020. 川北元坝地区下侏罗统大安寨段页岩气资源潜力评价. 中国石油大学(北京)硕士学位论文.

    • 周德华, 焦方正, 郭旭升, 郭彤楼, 魏志红. 2013. 川东北元坝区块中下侏罗统页岩油气地质分析. 石油实验地质, 35(6): 596~600.

    • 周德华, 孙川翔, 刘忠宝, 聂海宽. 2020. 川东北地区大安寨段陆相页岩气藏地质特征. 中国石油勘探, 25(5): 32~42.

    • 周立宏, 陈长伟, 韩国猛, 杨飞, 石倩茹, 付东立, 董越崎, 赵玥, 孙莉莉, 梁晨. 2021. 渤海湾盆地歧口凹陷陆相湖盆页岩气富集条件及勘探潜力. 天然气工业, 41(5): 1~10.

    • 朱毅秀, 金振奎, 金科, 郭芪恒, 王欢, 吕品, 王昕尧, 师源. 2021. 中国陆相湖盆细粒沉积岩岩石学特征及成岩演化表征——以四川盆地元坝地区下侏罗统大安寨段为例. 石油与天然气地质, 42(2): 494~508.

    • 邹才能, 杨智, 王红岩, 董大忠, 刘洪林, 施振生, 张斌, 孙莎莎, 刘德勋, 张贵中, 吴松涛, 庞正炼. 2019. “进源找油”: 论四川盆地非常规陆相大型页岩油气田. 地质学报, 93(7): 1551~1562.

  • 参考文献

    • Bai Jing, Xu Xingyou, Liu Weibin, Li Yaohua, Chen Shan, 2022. The breakthrough of continental shale gas in Lower Cretaceous Shahezi Formation of Songliao basin. Acta Geologica Sinica, 96(3): 1121~1123 (in Chinese with English abstract).

    • Fu Jinhua, Niu Xiaobing, Li Mingrui, Liu Xinshe, Li Shixiang, Guo Qiheng, Zhou Xinping, Liu Xinyan. 2022. Breakthrough and significance of risk exploration in the 3rd sub-member, 7th Member of Yanchang Formation in Ordos basin. Acta Petroleum Sinica, 43(6): 760~769 (in Chinese with English abstract).

    • Gao Yang, Ye Yiping, He Jixiang, Qian Genbao, Qin Jianhua, Li Yingyan. 2020. Development practice of continental shale oil in Jimsar sag in the Junggar basin. China Petroleum Exploration, 25(2): 133~141 (in Chinese with English abstract).

    • Guo Qiulin, Mi Jingkui, Wang Jian, Li Jingkun, Li Yongxin, Yang Zhi. 2019. An improved hydrocarbon generation model of source rocks and key parameter templates. China Petroleum Exploration, 24(5): 661~669 (in Chinese with English abstract).

    • Hu Zongquan, Du Wei, Liu Zhongbao. 2018. Source Reservoir Coupling Mechanism of Shale Gas and Its Application. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Jarvie D M, Hill R J, Ruble T E, Pollastro R M. 2007. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4): 475~499.

    • Li Chunpeng, Sui Guimei, Liu Zhiguo, Yang Songlin, Yan Qinghua, Yin Chuan. 2017. Organic type identification for mature and postmature source rock. Geophysical and Geochemical Exploration, 41(2): 219~223 (in Chinese with English abstract).

    • Li Lei. 2020. Characterization of shale pore and fracture and shale gas enrichment in Da'anzhai member in Yuanba area. Master's thesis of China University of Petroleum (Beijing) (in Chinese with English abstract).

    • Li Qianwen, Liu Zhongbao, Chen Feiran, Liu Guangxiang, Zhang Dianwei, Li Peng, Wang Pengwei. 2022. Lithofacies types and reservoir characteristics of Jurassic shale in the Sichuan basin revealed by the Da'anzhai member, well Y2, Yuanba area. Marine Origin Petroleum Geology, 43(5): 1127~1140 (in Chinese with English abstract).

    • Li Yingqiang, He Dengfa. 2014. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan basin and adjacent areas. Acta Petrolei Sinica, 35(2): 219~232 (in Chinese with English abstract).

    • Liu Chunyan. 2009. Geochemical characteristics of Carboniferous source rocks in Santanghu basin. Master's thesis of Lanzhou University (in Chinese with English abstract).

    • Liu Huimin. 2022. Exploration practice and prospect of shale oil in Jiyang depression. China Petroleum Exploration, 27(1): 73~87 (in Chinese with English abstract).

    • Liu Miaomiao, Fu Xiaoping. 2020. Reevaluation of exploration potential of continental shale gas in the Yuanba area. Acta Geologica Sichuan, 40(3): 416~421 (in Chinese with English abstract).

    • Liu Zhongbao, Liu Guangxiang, Hu Zongquan, Feng Dongjun, Zhu Tong, Bian Ruikang, Jiang Tao, Jin Zhiguang. 2019. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: A case study of the Middle and Lower Jurassic strata in the Sichuan basin. Natural Gas Industry, 39(12): 10~21 (in Chinese with English abstract).

    • Liu Zhongbao, Hu Zongquan, Liu Guangxiang, Liu Zhujiang, Liu Haotian, Hao Jingyu, Wang Pengwei, Li Peng. 2021. Pore characteristics and controlling factors of continental shale reservoirs in the Lower Jurassic Ziliujing Formation, northeastern Sichuan basin. Oil & Gas Geology, 42(1): 136~145 (in Chinese with English abstract).

    • Liu Zhongbao, Hu Zongquan, Liu Guangxiang, Li Peng, Wang Pengwei, Li Qianwen, Jin Zhiguang, Zhang Zhe. 2022. Source-reservoir coupling characteristics and development model of continental shale: Taking the Jurassic Ziliujing Formation in Sichuan basin as an example. Marine Origin Petroleum Geology, 27(3): 271~280 (in Chinese with English abstract).

    • Ma Yongsheng, Cai Xunyu, Zhao Peirong, Hu Zongquan, Liu Huimin, Gao Bo, Wang Weiqing, Li Zhiming, Zhang Zilin, 2022. Geological characteristics and exploration practices of continental shale oil in China. Acta Geologica Sinica, 96(1): 155~171 (in Chinese with English abstract).

    • Ni Kai. 2012. Shale-gas reservoir-forming conditions in Da'anzhai section, Yuanba area. Natural Gas Technology and Economy, 6(4): 13~16+77 (in Chinese with English abstract).

    • Peng Changzi, Peng Jun, Chen Yanhui, Zhang Hanrong. 2014. Seismic prediction of sweet spots in the Da'anzhai shale play, Yuanba area, Sichuan basin. Natural Gas Industry, 34(6): 42~47 (in Chinese with English abstract).

    • Wang Qingbo, Liu Ruobing, Wei Xiangfeng, Ni Kai, Gao Hongxian. 2013. Geologic condition of shale gas accumulation in continental facies and main controlling factors of enrichment and high production: Taking Yuanba district as an example. Fault-block Oil & Gas Field, 20(6): 698~703 (in Chinese with English abstract).

    • Wei Xiangfeng, HuangJing, Li Yuping, Wang Qingbo, Liu Ruobing, Wen Zhidong. 2014. The main factors controlling the enrichment and high production of Da'anzhai member continental shale gas in Yuanba area. Geology in China, 41(3): 970~981 (in Chinese with English abstract).

    • Xu Qiufeng. 2013. Shale gas evaluation and evaluation methods research in Yuanba block northeastern Sichuan. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Xu Xingyou, Liu Weibin, Chen Shan, Bai Jing, Li Yaohua. 2022. Breakthroughs in continental shale oil and gas exploration in the southern Songliao basin and its implications for carbon neutrality. Natural Gas Industry, 42(3): 12~20 (in Chinese with English abstract).

    • Xu Yunlong. 2015. Geochemical characteristics and resource potential evaluation of the hydrocarbon source rocks in Jurassic in Puguang region. Master's thesis of Chengdu University of Technology (in Chinese with English abstract).

    • Zhang Zhengchen. 2020. Potential assessment of shale gas resources in Da'anzhai member Lower Jurassic in Yuanba area northern Sichuan basin. Master's thesis of China University of Petroleum (Beijing) (in Chinese with English abstract).

    • Zhou Dehua, Jiao Fangzheng, Guo Xusheng, Guo Tonglou, Wei Zhihong. 2013. Geologic analysis of Middle-Lower Jurassic shale reservoirs in Yuanba area, northeastern Sichuan basin. Petroleum Geology Experiment, 35(6): 596~600 (in Chinese with English abstract).

    • Zhou Dehua, Sun Chuanxiang, Liu Zhongbao, Nie Haikuan. 2020. Geological characteristics of continental shale gas reservoir in the Jurassic Daanzhai member in the northeastern Sichuan basin. China Petroleum Exploration, 25(5): 32~42 (in Chinese with English abstract).

    • Zhou Lihong, Chen Changwei, Han Guomeng, Yang Fei, Shi Qianru, Fu Dongli, Dong Yueqi, Zhao Yue, Sun Lili, Liang Chen. 2021. Enrichment conditions and exploration potential of shale gas in continental lake basins in Qikou sag, Bohai Bay basin. Natural Gas Industry, 41(5): 1~10 (in Chinese with English abstract).

    • Zhu Yixiu, Jin Zhenkui, Jin Ke, Guo Maoheng, Wang Huan, Lv Ping, Wang Xinyao, Shi Yuan. 2021. Petrologic features and diagenetic evolution of fine-grained sedimentary rocks in continental lacustrine basins: A case study on the Lower Jurassic Da'anzhai Member of Yuanba area, Sichuan basin. Oil & Gas Geology, 42(2): 494~508 (in Chinese with English abstract).

    • Zou Caineng, Yang Zhi, Wang Hongyan, Dong Dazong, Liu Honglin, Shi Zhensheng, Zhang Bin, Sun Shasha, Liu Deixun, Zhang Guizhong, Wu Songtao, Pang Zhenglian. 2019. “Exploring petroleum inside source kitchen”: Jurassic unconventional continental giant shale oil & gas field in Sichuan basin, China. Acta Geologica Sinica, 93(7): 1551~1562 (in Chinese with English abstract).

    • 白静, 徐兴友, 刘卫彬, 李耀华, 陈珊. 2022. 松辽盆地下白垩统沙河子组陆相页岩气首获高产突破. 地质学报, 96(3): 1121~1123.

    • 付金华, 牛小兵, 李明瑞, 刘新社, 李士祥, 郭芪恒, 周新平, 刘江艳. 2022. 鄂尔多斯盆地延长组7段3亚段页岩油风险勘探突破与意义. 石油学报, 43(6): 760~769.

    • 高阳, 叶义平, 何吉祥, 钱根葆, 覃建华, 李映艳. 2020. 准噶尔盆地吉木萨尔凹陷陆相页岩油开发实践. 中国石油勘探, 25(2): 133~141.

    • 郭秋麟, 米敬奎, 王建, 李景坤, 李永新, 杨智. 2019. 改进的烃源岩生烃潜力模型及关键参数模板. 中国石油勘探, 24(5): 661~669.

    • 胡宗全, 杜伟, 刘忠宝. 2018. 页岩气源储耦合机理及其应用. 北京: 地质出版社.

    • 李春鹏, 隋桂梅, 刘志国, 杨松岭, 闫青华, 尹川. 2017. 成熟—过成熟烃源岩有机质类型识别. 物探与化探, 41(2): 219~223.

    • 李磊. 2020. 元坝地区大安寨段泥页岩孔缝表征与页岩气富集规律研究. 中国石油大学(北京)硕士学位论文.

    • 李倩文, 刘忠宝, 陈斐然, 刘光祥, 张殿伟, 李鹏, 王鹏威. 2022. 四川盆地侏罗系页岩层系岩相类型及储集特征——以元坝地区Y2井大安寨段为例. 石油与天然气地质, 43(5): 1127~1140.

    • 李英强, 何登发. 2014. 四川盆地及邻区早侏罗世构造-沉积环境与原型盆地演化. 石油学报, 35(2): 219~232.

    • 刘春艳. 2009. 新疆三塘湖盆地石炭系烃源岩地球化学特征研究. 兰州大学硕士学位论文.

    • 刘惠民. 2022. 济阳坳陷页岩油勘探实践与前景展望. 中国石油勘探, 27(1): 73~87.

    • 刘苗苗, 付小平. 2020. 元坝地区陆相页岩气勘探潜力再评价. 四川地质学报, 40(3): 416~421.

    • 刘忠宝, 刘光祥, 胡宗全, 冯动军, 朱彤, 边瑞康, 姜涛, 金治光. 2019. 陆相页岩层系岩相类型、组合特征及其油气勘探意义——以四川盆地中下侏罗统为例. 天然气工业, 39(12): 10~21.

    • 刘忠宝, 胡宗全, 刘光祥, 刘珠江, 刘晧天, 郝景宇, 王鹏威, 李鹏. 2021. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素. 石油与天然气地质, 42(1): 136~145.

    • 刘忠宝, 胡宗全, 刘光祥, 李鹏, 王鹏威, 李倩文, 金治光, 张哲. 2022. 陆相页岩源-储耦合特征及发育模式——以四川盆地侏罗系自流井组为例. 海相油气地质, 27(3): 271~280.

    • 马永生, 蔡勋育, 赵培荣, 胡宗全, 刘惠民, 高波, 王伟庆, 李志明, 张子麟. 2022. 中国陆相页岩油地质特征与勘探实践. 地质学报, 93(1): 155~171.

    • 倪楷. 2012. 元坝地区大安寨段页岩气藏的形成条件. 天然气技术与经济, 6(4): 13~16+77.

    • 彭嫦姿, 彭俊, 陈燕辉, 张汉荣. 2014. 四川盆地元坝地区大安寨段页岩气“甜点”地震预测. 天然气工业, 34(6): 42~47.

    • 王庆波, 刘若冰, 魏祥峰, 倪楷, 高红贤. 2013. 陆相页岩气成藏地质条件及富集高产主控因素分析——以元坝地区为例. 断块油气田, 20(6): 698~703.

    • 魏祥峰, 黄静, 李宇平, 王庆波, 刘若冰, 文治东. 2014. 元坝地区大安寨段陆相页岩气富集高产主控因素. 中国地质, 41(3): 970~981.

    • 徐秋枫. 2013. 川东北元坝区块页岩气资源评价及方法探究. 中国地质大学(北京)硕士学位论文.

    • 徐兴友, 刘卫彬, 陈珊, 白静, 李耀华. 2022. 松辽盆地南部陆相页岩油气勘查突破及意义. 天然气工业, 42(3): 12~20.

    • 徐云龙. 2015. 普光地区侏罗系烃源岩地球化学特征及资源潜力评价. 成都理工大学硕士学位论文.

    • 张正辰. 2020. 川北元坝地区下侏罗统大安寨段页岩气资源潜力评价. 中国石油大学(北京)硕士学位论文.

    • 周德华, 焦方正, 郭旭升, 郭彤楼, 魏志红. 2013. 川东北元坝区块中下侏罗统页岩油气地质分析. 石油实验地质, 35(6): 596~600.

    • 周德华, 孙川翔, 刘忠宝, 聂海宽. 2020. 川东北地区大安寨段陆相页岩气藏地质特征. 中国石油勘探, 25(5): 32~42.

    • 周立宏, 陈长伟, 韩国猛, 杨飞, 石倩茹, 付东立, 董越崎, 赵玥, 孙莉莉, 梁晨. 2021. 渤海湾盆地歧口凹陷陆相湖盆页岩气富集条件及勘探潜力. 天然气工业, 41(5): 1~10.

    • 朱毅秀, 金振奎, 金科, 郭芪恒, 王欢, 吕品, 王昕尧, 师源. 2021. 中国陆相湖盆细粒沉积岩岩石学特征及成岩演化表征——以四川盆地元坝地区下侏罗统大安寨段为例. 石油与天然气地质, 42(2): 494~508.

    • 邹才能, 杨智, 王红岩, 董大忠, 刘洪林, 施振生, 张斌, 孙莎莎, 刘德勋, 张贵中, 吴松涛, 庞正炼. 2019. “进源找油”: 论四川盆地非常规陆相大型页岩油气田. 地质学报, 93(7): 1551~1562.