en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张敏,女,1999年生。硕士研究生,主要从事构造地质学研究。E-mail: zhangmin03570@163.com。

通讯作者:

李瑞保,男,1982年生。博士,副教授,从事构造地质学与区域大地构造的教学与研究。E-mail: liruibao0971@163.com。

参考文献
Anderson T. 2003. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1~2): 59~79.
参考文献
Aldanmaz E, Pearce J A, Thirlwall M F, Mitchell J G. 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102: 67~95.
参考文献
Ba Jin, Chen Nengsong, Wang Qinyan, Wang Xinyu, Zhang Lu, Wang Shuqing. Nd-Sr-Pb isotopic compositions of cordierite granite on southern margin of the Qaidam block, NW China, and constraints on its petrogenesis, tectonic affinity of source region and tectonic implications. Earth Science, 37: 80~92.
参考文献
Bian Qiantao, Luo Xiaoquan, Li Hongsheng, Chen Haihong, Zhao Dasheng. 1999. Discovery of earlyPaleozoic and early Carboniferous-early Permian ophiolites in the Anemaqen, Qinghai Province, China. Scientia Geologica Sinica, 34(4): 523~524 (in Chinese with English abstract).
参考文献
Bian Qiantao, Li Dihui, Pospelov I, Yin Leiming, Li Hongsheng, Zhao Dasheng, Chang Chengfa, Luo Xiaoquan, Gao Shanlin, Astrakhantsev O, Chamov N. 2004. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 23: 577~596.
参考文献
Bi Hengze, Song Shuguang, Dong Jinlong. 2018. First discovery of coesite in eclogite from east Kunlun, northwest China. Science Bulletin, 23: 1536~1538.
参考文献
Boynton W V. 1984. Cosmo chemistry of the rare earth elements: Meteorite studies. Developments in Geochemistry, 2(2): 63~114.
参考文献
Chen Liang, Sun Yong, Pei Xianzhi, Gao Ming, Feng Tao, Zhang Zongqing, Chen Wen. 2001. 40Ar-39Ar age of Deerni ophiolite: The existence of Paleotethys Ocean in northern Tibet Plateau and the evidence for their extent. Chinese Science Bulletin, 46(45): 424~426 (in Chinese with English abstract).
参考文献
Chen Xuanhua, Yin An, George Gehrels, Li Li, Jiang Rongbao. 2011. Chemical geodynamics of granitic magmatism in the basement of the Eastern Qaidam basin, northern Qinghai-Tibet Plateau. Acta Geologica Sinica, 85(2): 157~171 (in Chinese with English abstract).
参考文献
Chen Youxin, Pei Xianzhi, Li Ruibao, Liu Zhanqing, Li Zuochen, Zhang Xiaofei. 2011. Zircon U-Pbage of Xiaomiao Formation of Proterozoic on the eastern section of the east Kunlun orogenic belt. Geoscience, 25(3): 510~521 (in Chinese with English abstract).
参考文献
Chen Jiajie, Fu Lebing, Wei Junhao, Tian Ning, Xiong Le, Zhao Yujing, Zhang Yujie, Qi Yueqing. 2016. Geochemical characteristics of Late Ordovician granodiorite in Gouli area, eastern Kunlun orogenic belt, Qinghai Province: Implications on the evolution of Proto-Tethys Ocean. Earth Science, 41(11): 1863~1882 (in Chinese with English abstract).
参考文献
Chen Jiajie, Fu Bile, Wei Junhao, David S, Zhang Daohan. 2019. Proto-Tethys magmatic evolution along northern Gondwana: Insights from Late Silurian-Middle Devonian A-type magmatism, east Kunlun Orogen, northern Tibetan Plateau, China. Lithos, https: //doi. org/10. 1016/j. lithos. 2019. 105304.
参考文献
Chen Nengsong, Sun Min, Zhang Kexin, Zhu Yunhai. 2000. The 40Ar-39Ar and U-Pb ages of meta-diorites in east Kunlun: The excess Argon and evidence of Early Paleozoic magmatic rocks in east Kunlun. Chinese Science Bulletin, 45(21): 2337~2342 (in Chinese with English abstract).
参考文献
Chen Guochao, Chen Xiaozhen, Pei Xianzhi, Wei Junqi, Zhang Yong, Li Ruibao, Li Zuochen, Chen Youxin, Liu Chengjun, Ji Xianjun, Wu Shukuan. 2022. Geochronology and petrogenesis of Hatu syenogranite and its constraint on the geological background of REE mineralization in the eastern part of east Kunlun. Acta Geologica Sinica, 96(3): 971~990 (in Chinese with English abstract).
参考文献
Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123: 387~411.
参考文献
Dilek Y, Furnes H. 2014. Ophiolites and their origins. Elements, 10: 93~100.
参考文献
Dong Guochen, Luo Mingfei, Mo Xuanxue, Zhao Zhidan, Dong Liangqiong, Yu Xuehui, Wang Xin, Li Xiaowei, Huang Xiongfei, Liu Yanbin. 2018b. Petrogenesis and tectonic implications of early Paleozoic granitoids in east Kunlun belt: Evidences from geochronology, geochemistry and isotopes. Geoscience Frontiers, 9(5): 1383~1397.
参考文献
Dong Yunpeng, He Dengfeng, Sun Shengsi, Liu Xiaoming, Zhou Xiaohu, Zhang Feifei, Yang Zhao, Cheng Bin, Zhao Guochun, Li Jianhua. 2018a. Subduction and accretionary tectonics of the east Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231~261.
参考文献
Dong Yunpeng, Sun Shengsi, Liu Xiaoming, He Dengfeng, Zhou Xiaohu, Zhang Feifei, Yang Zhao, Zhou Dingwu. 2019. Geochronology and geochemistry of the Yazidaban ophiolitic mélange in Qimantagh: Constraints on the Early Paleozoic back-arc basin of the east Kunlun Orogen, northern Tibetan Plateau. Journal of the Geological Society of London, 176: 306~322.
参考文献
Dong Yunpeng, Hui Bo, Sun Shengsi, Yang Zhao, Zhang Feifei, He Dengfeng, Sun Jiaopeng, Shi Xiaohui. 2022. Multiple orogeny and geodynamics from Proto-Tethys to Paleo-Tethys of the Central China orogenic belt. Acta Geologica Sinica, 96(10): 3426~3448 (in Chinese with English abstract).
参考文献
Feng Huibin, Meng Fancong, Li Shengrong, Jia Lihui. 2015. Characteristics and tectonic significance of chromites from Qingshuiquan serpentinite of east Kunlun, Northwest China. Acta Petrologica Sinica, 31(8): 2129~2144 (in Chinese with English abstract).
参考文献
Feng Juanping, Ooyang Zhengjian, Ma Haiyong, Fan Mengmeng, Ma Jing. 2020. U-Pb chronology, geochemical characteristics and significance of the Taojiayao basic dike swarms in the Zhongtiao Mountain, southeastern margin of North China craton. Acta Geologica Sinica, 94(2): 573~586 (in Chinese with English abstract).
参考文献
French J E, Heaman L M. 2010. Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar Craton, India: Implications for the existence of the Neoarchean supercraton belt. Precambrian Research, 183(3): 416~441.
参考文献
Gao Yanlin, Wu Xiangnong, Zuo Guochao. 1988. The geologic characteristics and tectonic significance of Qingshuiquan ophiolite in east Kunlun Range. Bulletin of Xi'an Institute of Geological Mineral Resource, Chinese Academy of Geological sciences, 21: 17~28 (in Chinese with English abstract).
参考文献
Girardi V A V, Costa P C, Teixeira W. 2012. Petrology and Sr-Nd characteristics of the Nova Lacerda dike swarm, SW Amazonian Craton: New insights regarding its subcontinental mantle source and Mesoproterozoic geodynamics. International Geology Review, 54: 165~182.
参考文献
Guillot M G, Escayola M, Acevedo R. 2011. Calc-alkaline rear-arc magmatism in the FuegianAndes: Implications for the mid-cretaceous tectonomagmatic evolution of southernmost south America. Journal of South American Earth Sciences, 31: 1~16.
参考文献
Guo Anlin, Zhang Guowei, Sun Yangui, Zheng Jiankang, Liu Ye, Wang Jianqi. 2006. The geochemistry and spatial feature of OIB and MORB in Animaqen ophiolitic zone: The evidence for the paleo hot spot of oceanic ridge. Science China (Earth sciences), 36(7): 618~629 (in Chinese with English abstract).
参考文献
Hart S R, Dunn T. l993. Experimental cpx/melt partitioning of trace elements. Contributions to Mineralogy and Petrology, 113(1): 1~8.
参考文献
Hawkesworth C J, Turner S P, McDermott F, Peate D W, vanCalsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276: 551~555.
参考文献
He Dengfeng, Dong Yunpeng, Liu Xiaoming, Yang Zhao, Sun Shengsi, Cheng Bin, Li Wei. 2016. Tectono-thermal events in east Kunlun, northern Tibetan Plateau: Evidence from zircon U-Pb geochronology. Gondwana Research, 30: 179~190.
参考文献
Ishizuka O, Kenichiro T, Reagan M K. 2014. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue. Elements, DOI: 10. 2113/gselements. 10. 2. 115.
参考文献
Jahn B M, Capdevila R, Liu Dunyi, Vernon A, Badarch G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23(5): 629~653.
参考文献
Jiang Chunfa. 2000. Opening-Closing Tectonics of Central orogenic belt in China. Beijing: Geological Publishing House, 1~50 (In Chinese).
参考文献
Khan T, Murata M, Karim T, Zafar M, Ozawa H. 2007. A Cretaceous dike swarm provides evidence of a spreading axis in the back-arc basin of the Kohistan paleo-island arc, northwestern Himalaya, Pakistan. Journal of Asian Earth Sciences, 29(2~3): 350~360.
参考文献
Le Bas M J, LeMaitre R W, Streckelsen A. 1986. A chemical classification of volcanic rocks based on the total alkli-slica diagram. Journal of Petrology, 27(6): 745~750.
参考文献
Li Rongshe, Ji Wenhua, Yang Yongcheng, Yu Pusheng, Zhao Zhenming, Chen Shoujian, Meng Yong, Pan Xiaoping. 2008. Thegeology of Kunlun Range and Adjacent Area. Beijing: Geological Publishing House, 1~400 (in Chinese).
参考文献
Li Ruibao, Pei Xianzhi, Li Zuochen. 2014. Geochemical characteristics of Gerizhuotuo OIB and its tectonic significance in Buqingshan tectonic mélange belt, southern margin of east Kunlun Orogen. Earth Science Frontiers, 21(1): 183~195 (in Chinese with English abstract).
参考文献
Li Ruibao, Pei Xianzhi, Li Zuochen, Pei Lei, Chen Guochao, Wei Bo, Chen Youxin, Liu Chengjun, Wang Meng. 2018. Cambrian (~510 Ma) ophiolites of the east Kunlun orogen, China: A case study from the Acite ophiolitic tectonic mélange. International Geology Review, 60(16): 2063~2083.
参考文献
Li Ruibao, Pei Xianzhi, Li Zuochen, Patias Daniel, Su Zhenguo, Pei Lei, Chen Guochao, Chen Youxin, Liu Chengjun. 2020. Late Silurian to Early Devonian volcanics in the east Kunlun orogen, northern Tibetan Plateau: Record of postcollisional magmatism related to the evolution of the Proto-Tethys Ocean. Journal of Geodynamics, doi. org/10. 1016/j. jog. 2020. 101780.
参考文献
Li Ruibao, Pei XianZhi, Wei Bo, Li Zuochen, Pei Lei, Chen Guochao, Chen Youxin, Liu Chengjun. 2021. Middle Cambrian-Early Ordovician ophiolites in the central fault of the east Kunlun Orogen: Implications for an epicontinental setting related to Proto-Tethyan Ocean subduction. Gondwana Research, 94: 243~258.
参考文献
Li Ruibao, Pei XianZhi, Zhou Renjie, Li Zuochen, Pei Lei, Chen Guochao, Chen Youxin, Liu Chengjun. 2023. Magmatic response to the closure of the Proto-Tethys Ocean: A case study from the middle Paleozoic granitoids in the Kunlun Orogen, western China. Journal of Asian Earth Sciences, 242, doi. org/10. 1016/j. jseaes. 2022. 105513.
参考文献
Li Shanzhong, Zhao Shujuan, Li Xiyao, Cao Huahua, Liu Xin, Guo Xiaoyu, Xiao Wenjiao, Lai Shaocong, Yan Zhen, Li Zhonghui, Yu Shengyao and Lan Haoyuan. 2016. Proto-Tehtys Ocean in east Asia (I): Northern and southern border faults and subduction polarity. Acta Petrologica Sinica, 32(9): 2609~2627 (in Chinese with English abstract).
参考文献
Li Wangye, Li Shuguang, Guo Anlin, Sun Yangui, Zhang Guowei. 2007. The zircon SHRIMP U-Pb age and trace elements geochemistry-constraints to the southern boundary of late Proterozoic-Early Ordovician archipelagic ocean. Science China (Earth sciences), 37(Sup I): 288~294 (in Chinese with English abstract).
参考文献
Li Wenyuan, Zhang Zhaowei, Wang Yalei. 2022. Tectonictrans formation of Proto-and Paleo-Tethys and the metallization of magmatic Ni-Cu-Co sufide deposits in Kunlun orogen, Northwest China. Journal of Earth Sciences and Environment, 44(01): 1~19 (in Chinese with English abstract).
参考文献
Liu Bin, Ma Changqian, Jiang Hongyin, Guo Pan, Zhang Jinyang, Xiong Fuhao. 2013. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the eastern Kunlun region: Evidence from Huxiaoqin mafic rocks. Acta Petrologica Sinica, 29(6): 2093~2106 (in Chinese with English abstract).
参考文献
Liu Bin, Wu Lianhua, Ma Changqian, Xu Yu, Li Fulin. 2022. Petrogenesis and tectonic implications of Silurian to Devonian intermediate rocks from the east part of the eastern Kunlun orogenic belt. Earth Science-Journal of China University of Geosciences, 48(6): 2398~2414 (in Chinese with English abstract).
参考文献
Liu Zhanqing, Pei Xianzhi, Li Ruibao. 2011. LA-ICP-MS aircon U-Pb geochronology of thetwo suites of ophiolites at the Buqingshan area of the Anyemaqen orogenic belt in the southern margin of east Kunlun and its tectonic implication. Acta Geologica Sinica, 85(2): 185~194 (in Chinese with English abstract).
参考文献
Long Xiaoping, Wang Lishe, Yu Neng. 2004. Geochemical characteristics of the Qingshuiquan mafic-ultramafic rocks, east Kunlun. Geological Bulletin of China, 23(7): 664~669 (in Chinese with English abstract).
参考文献
Luo Zhaohua, Wei Yang, Xin Houtian, Zhan Huaming, Ke Shan, Li Wentao. 2006. Petrogenesis of the post-orogenic dike complex—Constraints to lithosphere delamination. Acta Petrologica Sinica, 22(6): 1672~1684 (in Chinese with English abstract).
参考文献
Ma Changqian, Xiong Fuhao, Yin Shuo, Wang Lianxun, Gao Ke. 2015. Intensity and cyclicity of orogenic magmatism: An example from a Paleo-Tethyan granitoids batholith, eastern Kunlun, northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555~3568 (in Chinese with English abstract).
参考文献
MacLean W H. 1990. Mass change calculations in altered rock series. Mineralium Deposita, 25: 44~49.
参考文献
MacLean W H, Barrett T J. 1993. Litho-geochemical techniques using immobile elements. Journal of Geochemical Exploration, 48: 109~133.
参考文献
Meng Fancong, Cui Meihui, Jia Lihui, Ren Yufeng, Feng Huibin. 2015. Paleozoic continental collision of the east Kunlun orogen: Evidence from protoliths of the eclogites. Acta Petrologica Sinica, 31(12): 3581~3594 (in Chinese with English abstract).
参考文献
Miyashiro A. 1974, Volcanic rock series in island arcs and active continental margins: American Journal of Science, 274(4): 321~355.
参考文献
Pan Yusheng, Zhou Weiming, Xu Ronghua, Wang Dongan, Zhang Yuquan, Xie Yingwen, Chen Tingen, Luo Hui. 1996. The Early Paleozoic geologic feature and tectonic evolution in Kunlun Range. Science China (Earth sciences), 36(4): 302~307 (in Chinese with English abstract).
参考文献
Pearce J A. 2003. Supra-subduction zone ophiolites: The search for modern analogues. Special Papers-Geological Society of America, 269~294.
参考文献
Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100: 14~48.
参考文献
Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and PlanetarySciences, 23(1): 251~285.
参考文献
Pei Xianzhi, Hu Nan, Liu Chengjun, Li Ruibao, Li Zuochen, Chen Youxin, Pei Lei. 2015. Detrital composition, geochemical characteristics and provenance analysis for the Maerzheng formation sandstone in Gerizhuotuo area, southern margin of east Kunlun region. Earth Science Frontiers, 61(2): 307~323 (in Chinese with English abstract).
参考文献
Pei Xianzhi, Li Ruibao, Li Zuochen, Liu Chengjun, Chen Youxin, Pei Lei, Liu Zhanqing, Chen Guochao, Li Xiaobing, Wang Meng. 2018. Composition feature and formation process of Buqingshan composite accretionary mélange belt in southern margin of east Kunlun orogen. Earth Science, 43(12): 4498~4520 (in Chinese with English abstract).
参考文献
Qi Shengsheng. 2015. Petrotectonic assemblages and tectonic evolution of the east Kunlun orogenic belt in Qinghai Province. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English summary).
参考文献
Qi Shengsheng, Song Shuguang, Shi Lianchang, Cai Hangjia, Hu Jichun. 2014. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu-Suhaitu area, western part of the east Kunlun. Acta Petrologica Sinica, 30(11): 3345~3356 (in Chinese with English abstract).
参考文献
Qi Xiaopeng, Yang Jie, Fan Xiangang, Cui Jiantang, Cai Zhenfeng, Zeng Xianwen, Wei Wei, Qu Xiaoxiang, Zhai Liming. 2016. Age, geochemical characteristics and tectonic significance of Changshishan ophiolite in central east Kunlun tectonic mélange belt along the east section of east Kunlun Mountains. Geology in China, 43(3): 797~816 (in Chinese with English abstract).
参考文献
Reagan M K, Pearce J A, Katerina Petronotis, Renat R. Almeev, Aaron J. Avery, Claire Carvallo, Timothy Chapman, Gail L. Christeson, Eric C. Ferré, Marguerite Godard, Daniel E. Heaton, Maria Kirchenbaur, Walter Kurz, Steffen Kutterolf, Li Hongyyan, Li Yibing, Katsuyoshi Michibayashi, Sally Morgan, Wendy R. Nelson, Julie Prytulak, Marie Python, Alastair H. F. Robertson, Jeffrey G. Ryan, William W. Sager, Tetsuya Sakuyama, John W. Shervais, Kenji Shimizu, ScottA. Whattam. 2017. Subduction initiation and ophiolite crust: New insights from IODP drilling. International Geology Review, doi: 10. 1080/00206814. 2016. 1276482.
参考文献
Ren Junhu, Liu Yiqun, Feng Qiao, Han Wenzhong, Gao Hui, Zhou Dinwu. 2009. LA-ICP-MS U-Pb zircon dating and geochemical characteristics of diabase-dykes from the Qingshuiquan area, eastern Kunlun orogenic belt. Acta Petrologica Sinica, 25(5): 1135~1145 (in Chinese with English abstract).
参考文献
Sang Jizheng, Pei Xianzhi, Li Ruibao, Liu Chengjun, Chen Youxin, Li Zuochen, Chen Guochao, Yang Sen, Wang Xubin, Chen Gong, Deng Wenbing. 2016. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of gabbro in Qingshuiquan, east section of east Kunlun, and its tectonic significance. Geological Bulletin of China, 35(5): 700~710 (in Chinese with English abstract).
参考文献
Shervais J W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59: 101~108.
参考文献
Sisson V B, Poole A R, Harris N R, Burner H C, Pavlis T L, Copeland P, Donelick R A, McLelland W C. 2003. Geochemical and geochronological constraints for genesis of a tonalite-trondhjemite suite and associated mafic intrusive rocks in the eastern Chugach Mountains Alaska: A record of ridge-transform subduction. In: Sisson V B, Roeske S M, Pavlis T L, eds. Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin: Geological Society of America Special Paper, 371: 293~326.
参考文献
Song Shuguang, Bi Hengze, Qi Shengsheng, Yang Liming, Allen M B, Niu Yaoling, Su Li, Li Wufu. 2018. HP-UHP metamorphic belt in the East Kunlun orogen: Final closure of the Proto-Tethys Ocean and formation of the Pan-North-China continent. Journal of Petrology, 59(11): 2043~2060.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313~345.
参考文献
Sklyarov E V, Gladkochub D P, Mazukabzov A M, Menshagin Y V, Watanabe T, Pisarevsky S A. 2003. Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif (southern Siberian craton). Precambrian Research, 122: 122~359.
参考文献
Wang Guocan, Zhang Tianping, Liang Bin, Chen Nengsong, Zhu Yunhai, Zhu Jie. 1999. Composite ophiolitic mélange zone in central part of eastern section of eastern Kunlun orogenic zone and geological significance of “Fault belt in central part of eastern section of eastern Kunlun orogenic zone”. Earth Science, 24(2): 129~133 (in Chinese with English abstract).
参考文献
Wang Bingzhang, Zhang Zhiyong, Zhang Senqi, Zhu Yingtang, Cao Shengxiu. 2000. Geological features of lower Paleozoic ophiolite in Kuhai-Saishitang region, eastern section of eastern Kunlun. Earth Science, (6): 592~598 (in Chinese with English abstract).
参考文献
Wang Bingzhang, Pan Tong, Pen Haidong, Wang Tao, Zhao Zhiyi, Peng Jianping, Zhang Jinming. 2021. Cambrian Qimantagh island arc in the East Kunlun orogen: Evidences from zircon U-Pb ages, lithogeochemistry and Hf isotopes of high-Mg andesite/diorite from the Lalinggaolihe area. Earth Sciences Frontiers, 28(1): 318~333 (in Chinese with English abstract).
参考文献
Wang Bingzhang, Li Jiqing, Fu Changlei, Xu Haiquan, Li Wufu. 2022. Formation and evolutionary history of Burhan magmatic arc. Earth Sciences, 47(4): 1253~1270 (in Chinese with English abstract).
参考文献
Wang Yongbiao. 2005. The architecture and tectonic evolution of Permian seamounts in Bayahor and adjacent area. Science China (Earth sciences), 35(12): 1140~1149 (in Chinese with English abstract).
参考文献
Wang Qian, Zhao Jiao, Zhang Chuanlin, Yu Shengyao, Ye Xiantao, Liu Xiaoqiang. 2022. Paleozoic post-collisional magmatism and high-temperature granulite-facies metamorphism coupling with lithospheric delamination of the east Kunlun orogenic belt, NW China. Geoscience Frontiers, 2022, doi. org/10. 1016/j. gsf. 2021. 101271.
参考文献
Wilson M. 1989. Igneous Petrogenesis. Unwin Hyman, London: Springer, 1~466.
参考文献
Winchester J A, Floyd P A. 1977. Geochemical differentiation of different magma series and their differentiation products using immobile elements. Chemical Geology, 325~343.
参考文献
Windley B F, Xiao Wenjiao. 2018. Ridge subduction and slab windows in the Central Asian orogenic belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Research, 61: 73~87.
参考文献
Woodhead J D, Hergt J M, Davidson J P, Eggins S M. 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet. Sci. Lett. , 192: 331~346.
参考文献
Wood D A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50: 11~30.
参考文献
Wu Chen, YinAn, Zuza A V, Zhang Jinyu, Liu Wencan, Ding Lin. 2016. Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere, 8: 254~292.
参考文献
Wu Chen, Zuza A V, Zhou Zhiguang, YinAn, McRivette M W, Chen Xuanhua, Ding Lin, Geng Jianzhen. 2019. Mesozoic-Cenozoic evolution of the eastern Kunlun Range, central Tibet, and implications for basin evolution during the Indo-Asian collision. The Geological Society of America, 11(4): 524~550.
参考文献
Xiong Fuhao, Ma Changqian, Zhang Jinyang, Liu Bin. 2011. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in east Kunlun orogenic belt. Acta Petrologica Sinica, 27(11): 3350~3364 (in Chinese with English abstract).
参考文献
Xiong Fuhao, Ma Changqian, Jiang Hong'an, Liu Bin, Huang Jian. 2014. Geochronology and geochemistry of Middle Devonian mafic dykes in the east Kunlun orogenic belt, northern Tibet Plateau: Implications for the transition from Prototethys to Paleotethys orogeny. Geochemistry, 225~235.
参考文献
Xu Zhiqin, Yang Jingsui, Li Haibing, Yao Jianxin. 2006. The Early Paleozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central orogenic belt (COB). Acta Geologica Sinica, 80(12): 1793~1806 (in Chinese with English abstract).
参考文献
Xin Wei, Sun Fengyue, Li Liang, Yan Jiaming, Zhang Yuting, Wang Yingchao, Shen Tingshuo, Yang Yijun. 2018. The Wulonggou metaluminous A2-type granites in the eastern Kunlun orogenic belt, NW China: Rejuvenation of subduction-related felsic crust and implications for post-collision extension. Lithos, 312~313.
参考文献
Yan Zhen, Bian Qiantao, Korchagin O A. 2008. Provenance of Early Triassic Hongshuichuan Formation in the southern margin of the east Kunlun Mountains: Constrains from detrital framework, heavy mineral analysis and geochemistry. Acta Petrologica Sinica, 24(5): 1068~1078 (in Chinese with English abstract).
参考文献
Yan Zhen, Fu Changlei, Aitchison J C, Buckman S, Niu Manlan, Cao Bo, Sun Yi, Guo Xianping, Wang Zongqi, Zhou Renjie. 2019. Retro-foreland basin in the NE Tibet Plateau. Tectonics, 38: 4229~4248.
参考文献
Yang Jingsui, Robinson P T, Jiang Chunfa, Xu Zhiqin. 1996. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics, 258: 215~231.
参考文献
Yang Jingsui, Wang Xibin, Shi Rendeng, Xu Zhiqin, Wu Cailai. 2004. The Dur'ngoi ophiolite in east Kunlun, northern Qinghai-Tibet Plateau: A fragment of paleo-Tethyan oceanic crust. Geology in China, (3): 225~239 (in Chinese with English abstract).
参考文献
Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogeny. Annual Review of Earth and Planetary Sciences, 28: 211~280.
参考文献
Yu Neng, Jin Wei, Ge Wenchun, Long Xiaoping. 2005. Geochemical study on peraluminous granite from Jinshuikou in east Kunlun. Global Geology, 24(2): 123~128 (in Chinese with English abstract).
参考文献
Yu Miao, Dick J M, Feng Chenyou, Li Bin, Wang Hui. 2020. The tectonic evolution of the east Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model. Journal of Asian Earth Sciences, 191, doi. org/10. 1016/j. jseaes. 2019. 104168.
参考文献
Yuan Honglin, Gao Shan, Liu Xiaoming, Gunther D, Wu Fuyuan. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards & Geoanalytical Research, 28(3): 353~370.
参考文献
Zhang Kexin, Lin Qixiang, Zhu Yunhai, Yin Hongfu, Luo Mansheng, Chen Nengsong, Wang Guocan. 2004. New evidence for the age of East Kunlun mélange and its tectonic significance. Science China (Earth sciences), 24(3): 210~218 (in Chinese with English abstract).
参考文献
Zhang Zhiyong, Yin Hongfu, Wang Bingzhang, Wang Jin, Zhang Kexin. 2004. Presence and evidence of Kuhai-Saishitang branching ocean between Kunlun-Qinling mountains. Earth Science, 29(6): 691~696 (in Chinese with English abstract).
参考文献
Zhang Qi, Zhang Wei, Jiang Lili, Shi Yuruo, Jiao Shoutao, Wang Cunzhi, Wang Zhen. 2020. Orogenic peridotite and its significance. Geological Bulletin of China, 39(10): 1489~1506 (in Chinese with English abstract).
参考文献
Zhang Jinyang, Ma Changqian, Xiong Fuhao, Liu Bin, Li Jianwei, Pan Yuanming. 2014. Early Paleozoic high-Mg diorite-granodiorite in the eastern Kunlun orogen, western China: Response to continental collision and slab break-off. Lithos, 210~211.
参考文献
Zhang Jinyang, Lei Huanling, Ma Changqian, Li Jianwei, Pan Yuanming. 2021. Silurian-Devonian granites and associated intermediate-mafic rocks along the eastern Kunlun Orogen, western China: Evidence for a prolonged post-collisional lithospheric extension. Gondwana Research, 89: 131~146.
参考文献
Zhang Zhaochong, Mahoney J J, Mao Jingwen, Wang Fusheng. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997~2019.
参考文献
Zhao Guochun, Wang Yuejun, Huang Baochun, Dong Yunpeng, Li Sanzhong, Zhang Guowei, Yu Shan. 2018. Geological reconstructions of the east Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, doi. org/10. 1016/j. earscirev. 2018. 10. 003.
参考文献
Zhao Xu, Fu Lebing, Santosh M, Wei Junhao, Chen Jiajie. 2022. The growth and evolution of continental crust contributed by multiple sources in the east Kunlun Orogen during Early Paleozoic. Earth-Science Reviews, 233, doi. org/10. 1016/j. earscirev. 2022. 104190.
参考文献
Zhou Bo, Dong Yunpeng, Zhang Feifei, Yang Zhao, Sun Shengsi, He Dengfeng. 2016. Geochemistry and zircon U-Pb geochronology of granitoids in the east Kunlun orogenic belt, northern Tibetan Plateau: Origin and tectonic implications. Journal of Asian Earth Sciences, 130: 265~281.
参考文献
Zhu Yunhai, Zhang Kexin, Pan Yuanming, Chen Nengsong, Wang Guocan, Hou Guangjiu. 1999. Determination of different ophiolitic belts in eastern Kunlun orogenic zone and their tectonic significance. Earth Science (Journal of China University of Geosciences), 24(2): 134~138 (in Chinese with English abstract).
参考文献
巴金, 陈能松, 王勤燕, 王新宇, 张璐, 王树庆. 柴南缘堇青石花岗岩的Nd-Sr-Pb同位素组成及其对岩石成因、源区构造属性和构造演化的启示. 地球科学, 37: 80~92.
参考文献
边千韬, 罗小全, 李红生, 陈海泓, 赵大升. 1999. 阿尼玛卿山早古生代和早石炭—早二叠世蛇绿岩的发现. 地质科学, 34(4): 523~524.
参考文献
陈亮, 孙勇, 裴先治, 高明, 冯涛, 张宗清, 陈文. 2001. 德尔尼蛇绿岩40Ar-39Ar年龄: 青藏高原最北端古特提斯洋盆存在和延展的证据. 科学通报, 46(45): 424~426.
参考文献
陈宣华, 尹安, Gehrels GE, 李丽, 蒋荣宝. 2011. 柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学. 地质学报, 85(2): 157~171.
参考文献
陈有炘, 裴先治, 李瑞保, 刘战庆, 李佐臣, 张晓飞, 陈国超, 刘智刚, 丁仨平, 郭俊锋. 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质, 25(3): 510~521.
参考文献
陈加杰, 付乐兵, 魏俊浩, 田宁, 熊乐, 赵玉京, 张玉洁, 祁月清. 2016. 东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约. 地球科学, 41(11): 1863~1882.
参考文献
陈国超, 陈孝珍, 裴先治, 魏均启, 张勇, 李瑞保, 李佐臣, 陈有炘, 刘成军, 季宪军, 吴树宽. 2022. 哈图正长花岗岩年代学和成因及对东昆仑东段稀土元素成矿地质背景的约束. 地质学报, 96(3): 971~990.
参考文献
陈能松, 孙敏, 张克信, 朱去海. 2000. 东昆仑变闪长岩体的40Ar-39Ar和U-Pb年龄: 角闪石过剩Ar和东昆仑早古生代岩浆岩证据. 科学通报, 45(21): 2337~2342.
参考文献
董云鹏, 惠博, 孙圣思, 杨钊, 张菲菲, 何登峰, 孙娇鹏, 史小辉. 2022. 中国中央造山系原-古特提斯多阶段复合造山过程. 地质学报, 96(10): 3426~3448.
参考文献
冯惠彬, 孟繁聪, 李胜荣, 贾丽辉. 2015. 东昆仑清水泉蛇纹岩中铬铁矿特征及其构造意义. 岩石学报, 31(8): 2129~2144.
参考文献
冯娟萍, 欧阳征健, 马海勇, 范萌萌, 马静. 2020. 华北克拉通东南缘中条山陶家窑基性岩墙群U-Pb定年、地球化学特征及其构造环境. 地质学报, 94(2): 573~586.
参考文献
高延林, 吴向农, 左国朝. 1988. 东昆仑山清水泉蛇绿岩特征及其大地构造意义. 中国地质科学院西安地质矿产研究所所刊, 17~28.
参考文献
郭安林, 张国伟, 孙延贵, 郑健康, 刘晔, 王建其. 2006. 阿尼玛卿蛇绿岩带OIB和MORB的地球化学及空间分布特征: 玛积雪山古洋脊热点构造证据. 中国科学(D辑): 地球科学, 36(7): 618~629.
参考文献
姜春发. 2000. 中央造山带开合构造. 北京: 地质出版社.
参考文献
李荣杜, 计文化, 杨永成, 于浦生, 赵振明, 陈守建, 孟勇, 潘晓平. 2008. 昆仑山及邻区地质. 北京: 地质出版社.
参考文献
李瑞保, 裴先治, 李佐臣, 裴磊, 陈国超, 刘成军, 陈有炘, 刘战庆. 2014. 东昆仑南缘布青山构造混杂带哥日卓托洋岛玄武岩地球化学特征及构造意义. 地学前缘, 21(1): 183~195.
参考文献
李三忠, 赵淑娟, 李玺瑶, 曹花花, 刘鑫, 郭晓玉, 肖文交, 赖绍聪, 闫臻, 李宗会, 于胜尧, 兰浩圆. 2016. 东亚原特提斯洋(Ⅰ): 南北边界和俯冲极性. 岩石学报, 32(9): 2609~2627.
参考文献
李王晔, 李曙光, 郭安林, 孙延贵, 张国伟. 2007. 青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学-对“祁-柴-昆”晚新元古代-早奥陶世多岛洋南界的制约. 中国科学(D辑): 地球科学, 37(增刊I): 288~294.
参考文献
李文渊, 张照伟, 王亚磊, 张江伟, 尤敏鑫, 张志炳, 南卡俄吾. 2022. 东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用. 地球科学与环境学报, 44(1): 1~19.
参考文献
刘战庆, 裴先治, 李瑞保, 等. 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义. 地质学报, 85(2): 185~194.
参考文献
刘彬, 马昌前, 蒋红安, 郭盼, 张金阳, 熊富浩. 2013. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093~2106.
参考文献
刘彬, 伍炼华, 马昌前, 徐雨, 李福林. 2022. 东昆仑造山带东段志留纪-泥盆纪中性岩的成因及其构造意义.地球科学, 48(6): 2398~2414.
参考文献
龙晓平, 王立社, 余能. 2004. 东昆仑山清水泉镁铁质-超镁铁质岩的地球化学特征. 地质通报, 23(7): 664~669.
参考文献
罗照华, 魏阳, 辛后田, 詹华明, 柯珊, 李文韬. 2006. 造山后脉岩组合的岩石成因对岩石圈拆沉作用的约束. 岩石学报, 22(6): 1672~1684.
参考文献
马昌前, 熊富浩, 尹烁, 王连训, 高珂. 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555~3568.
参考文献
孟繁聪, 崔美慧, 贾丽辉, 任玉峰, 冯惠彬. 2015. 东昆仑造山带早古生代的大陆碰撞: 来自榴辉岩原岩性质的证据. 岩石学报, 31(12): 3581~3594.
参考文献
潘裕生, 周伟明, 许荣华, 王东安, 张玉泉, 谢应雯, 陈挺恩, 罗辉. 1996. 昆仑山早古生代地质特征与演化. 中国科学(D辑: 地球科学), 26 (04): 302~307.
参考文献
裴先治, 胡楠, 刘成军, 李瑞保, 李佐臣, 陈有炘, 裴磊, 刘战庆, 陈国超, 杨杰. 2015. 东昆仑南缘布青山地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析. 地质论评, 61(2): 307~323.
参考文献
裴先治, 李瑞保, 李佐臣, 刘成军, 陈有炘, 裴磊, 刘战庆, 陈国超, 李小兵, 王盟. 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程. 地球科学, 43(12): 4498~4520.
参考文献
祁生胜. 2015. 青海省东昆仑造山带火成岩岩石构造组合与构造演化. 中国地质大学(北京)博士学位论文.
参考文献
祁生胜, 宋述光, 史连昌, 才航加, 胡继春. 2014. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义. 岩石学报, 30(11): 3345~3356.
参考文献
祁晓鹏, 杨杰, 范显刚, 崔建堂, 蔡振锋, 曾献文, 魏伟, 屈小相, 翟黎明. 2016. 东昆仑东段东昆中构造混杂岩带长石山蛇绿岩年代学、地球化学特征及其构造意义. 中国地质, 43(03): 797~816.
参考文献
任军虎, 柳益群, 冯乔, 韩文中, 高辉, 周鼎武. 2009. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 岩石学报, 25(5): 1135~1145.
参考文献
桑继镇, 裴先治, 李瑞保, 刘成军, 陈有炘, 李佐臣, 陈国超, 杨森, 王旭斌, 陈功, 邓文兵. 2016. 东昆仑东段清水泉辉长岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义. 地质通报, 35(5): 700~710.
参考文献
王秉璋, 张智勇, 张森琦, 朱迎堂, 曹生秀. 2000. 东昆仑东端苦海-赛什塘地区晚古生代蛇绿岩的地质特征. 地球科学, (6): 592~598.
参考文献
王秉璋, 潘彤, 任海东, 王涛, 赵志逸, 封建平, 张金明. 2021. 东昆仑祁漫塔格寒武纪岛弧: 来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石年代学、地球化学和Hf同位素证据. 地学前缘, 28(1): 318~333.
参考文献
王秉璋, 李积清, 付长垒, 许海全, 李五福. 2022. 布尔汉布达早古生代岩浆弧的形成与演化初探. 地球科学, 47(4) : 1253~1270.
参考文献
王永标. 2005. 巴颜喀拉及邻区中二叠世古海山的结构与演化.中国科学(D辑): 地球科学, 35(12): 1140~1149.
参考文献
王国灿, 张天平, 梁斌, 陈能松, 朱云海, 朱杰. 1999. 东昆仑造山带东段昆中复合蛇绿混杂岩带及“东昆中断裂带”地质涵义. 地球科学, 24(2): 129~133.
参考文献
熊富浩, 马昌前, 张金阳, 刘彬. 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350~3364.
参考文献
许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793~1806.
参考文献
闫臻, 边千韬, Oleg A Lorchagin, Igor I. Pospelov, 李继亮, 王宗起. 2008. 东昆仑南缘早三叠世洪水川组的源区特征: 来自碎屑组成、重矿物和岩石地球化学的证据.岩石学报, 24(5): 1068~1078.
参考文献
杨经绥, 王希斌, 史仁灯, 许志琴, 吴才来. 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 225~239.
参考文献
余能, 金巍, 葛文春, 龙晓平. 2005. 东昆仑金水口过铝花岗岩的地球化学研究. 世界地质, 24(2): 123~128.
参考文献
张克信, 林启祥, 朱云海, 殷鸿福, 骆满生, 陈能松, 王国灿. 2004. 东昆仑东段混杂岩建造时代厘定的古生物新证据及其大地构造意义. 中国科学(D辑: 地球科学), 34(3): 210~218.
参考文献
张智勇, 殷鸿福, 王秉璋, 王瑾, 张克信. 2004. 昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据. 地球科学, 29(6): 691~696.
参考文献
朱云海, 张克信, Pan Yuanming, 陈能松, 王国灿, 侯光久. 1999. 东昆仑造山带不同蛇绿岩带的厘定及其构造意义. 地球科学, 24(2): 134~138.
参考文献
张旗, 张维, 姜丽莉, 石玉若, 焦守涛, 王存智, 王振. 2020. 造山橄榄岩及其意义. 地质通报, 39(10): 1489~1506.
目录contents

    摘要

    东昆仑造山带出露有一套奥陶纪基性岩墙,对研究东昆仑造山带早古生代活动大陆边缘与原特提斯洋相关的俯冲过程具有重要意义。本文对出露于东昆仑东段塔妥—清水泉地区的基性岩墙进行锆石U-Pb年代学、全岩地球化学及Sr-Nd同位素等研究。两件辉绿岩样品的锆石U-Pb测年结果表明该基性岩墙形成年龄为486~483 Ma,形成时代为早奥陶世。全岩地球化学结果表明该套基性岩墙具有低SiO2(50.06%~51.68%)、中等MgO(5.08%~6.77%)和TiO2(0.99%~1.20%)含量的特征,属于拉斑玄武岩系列。在微量和稀土元素方面,岩石呈现大离子亲石元素(Rb、Sr、Ba、Th、K)富集和高场强元素(Nb、Ta、Ti)为负异常的特点;球粒陨石标准化稀土元素配分图呈现轻稀土元素弱富集、重稀土元素亏损以及弱的Eu正异常特征。本研究中的样品具有高(87Sr/86Sr)i值(0.7126~0.7133)和相对低的εNd(t)同位素组成(-9.80~-4.31),综合研究表明该基性岩浆起源于俯冲带流体交代的富集地幔,形成于大洋俯冲带上盘的岩浆弧(伸展)构造环境。结合区域地质资料,本文认为东昆仑原特提斯洋在早古生代早期向北俯冲,并于早奥陶世俯冲大洋岩石圈板块后撤,进而导致俯冲带上盘出现伸展构造背景。

    Abstract

    Early Ordovician mafic dykes exposed in thenorth Kunlun are of great significance for understanding the subduction processes and dynamic background of the paleo-active continental margin. In this paper, we present detailed petrology, zircon U-Pb chronology, whole-rock geochemistry and Sr-Nd isotopes of the mafic dykes. Zircon U-Pb dating results show that the zircon U-Pb ages of these dykes range from 486 to 483 Ma, suggesting an Early Ordovician age. Whole-rock geochemical results show that the mafic dykes have low SiO2 (50.06%~51.68%), medium MgO (5.08%~6.77%) and TiO2 (0.99%~1.20%) content, and belong to the tholeiitic basalt series. Regarding trace and rare earth elements, the rocks are enriched in large-ion lithophile elements (e.g., Rb, Sr, Ba, Th, K) and depleted in high-field-strength elements (e.g., Nb, Ta, Ti). The chondrite-normalized REE diagrams are featured by weak enrichment of LREE and depletion of HREE, with weak Eu anomaly. In addition, the dykes show high (87Sr/86Sr)i (0.7126~0.7133) and relatively low εNd(t) isotopic composition (-9.80~-4.31) of the enriched lithospheric mantle. The petrogenesis research indicates that the basic magma originated from the enriched lithospheric mantle, was metamorphosed by fluids in the subduction zone, and subsequently experienced fractional crystallization mainly of olivine and clinopyroxene during the diagenetic processes. Based on the regional geological data, we argue that the Kunzhong Ocean subducted northward in early stages of the Early Paleozoic and formed a magmatic arc system. It may have experienced the retreat of the subducting oceanic slab at 486 Ma, leading to an extensional tectonic setting in the upper plate of the subduction zone and then generation of mafic dykes.

  • 基性岩墙代表伸展构造机制下的一类特殊构造岩浆事件。大陆造山带的基性岩墙(群)可形成于多种构造环境。第一类是与造山带蛇绿岩序列相关的基性岩墙,代表大洋中脊或弧前洋(弧)壳扩张的动力学背景,是大洋软流圈地幔或弧前地幔减压熔融的产物(Pearce et al.,20032008Dilek et al.,20112014Ishizuka et al.,2014Reagan et al.,2017张旗等,2020);第二类是后碰撞或板内构造演化阶段与岩石圈拆沉作用密切相关的基性岩墙,代表造山带坍塌和克拉通破坏相关的伸展构造环境(罗照华等,2006French and Heaman,2010; 冯娟萍等,2020);第三类是大陆造山带常见的形成于古活动大陆边缘背景下与岩浆弧裂解或弧后盆地相关的构造环境,通常与俯冲大洋岩石圈板片后撤(roll-back)有关(Khan et al.,2007Girardi et al.,2012熊富浩等,2011)。因此,研究大陆造山带基性岩墙的地幔源区属性、形成环境对探讨古洋壳俯冲过程及其动力学背景具有重要意义。

  • 东昆仑造山带位于原特提斯洋洋陆演化的关键地段,对研究特提斯洋开启、消减及早古生代冈瓦纳大陆北缘洋陆构造格局具有重要意义( 潘裕生等,1996Yang Jingsui et al.,1996王国灿等,1999朱云海等,1999陈能松等,2000闫臻等,2008马昌前等,2015孟繁聪等,2015裴先治等,20152018李三忠等,2016Wu Chen et al.,20162019李文渊等,2022陈国超等,2022Dong Yunpeng et al.,2018a2019Zhao Guochun et al.,2018)。前人研究表明,东昆仑造山带发育有东昆中蛇绿岩带和布青山构造混杂岩带共两条蛇绿混杂岩带(边千韬等,1999王国灿等,1999姜春发,2000Bian Qiantao et al.,2004; 杨经绥等,2004)。目前,学者有关布青山构造混杂岩带的形成时代基本已达成共识,具体包括寒武纪、奥陶纪及石炭纪等多期蛇绿岩(王秉璋等,2000陈亮等,2001杨经绥等,2004张智勇等,2004王永标等,2005郭安林等,2006李王晔等,2007刘战庆等,2011李瑞保等,2014),代表东昆仑地区古生代—早中生代的主洋盆(布青山洋)(Dong Yunpeng et al.,2018a董云鹏等,2022)。相应地,东昆中蛇绿岩主体形成于早古生代(高延林等,1988潘裕生等,1996Yang Jingsui et al.,1996龙晓平等,2004张克信等,2004;冯慧彬等,2015;祁晓鹏等,2016裴先治等,2018Li Ruibao et al.,20182021),可能代表布青山洋的早古生代弧后盆地(东昆中洋)。然而,有关东昆中洋在早古生代的俯冲过程至今仍存争议,包括东昆中洋向南俯冲(姜春发,2000Dong Guochen et al.,2018b)、向北俯冲(Yin An and Harrison 2000;许志琴等,2006Dong Yunpeng et al.,2018aSong Shuguang et al.,2018Li Ruibao et al.,20182021Yu Miao et al.,2020Zhao Xu et al.,2022)或双向俯冲(Yang Jingsui et al.,1996; 陈加杰等,2016王秉璋等,20212022)等不同的观点,并且对大洋板块北向俯冲细节及构造体制转化方式仍不清楚。

  • 近来,本文对出露于东昆中蛇绿岩带北侧的乌妥—清水泉地区基性岩墙进行了详细的锆石U-Pb年代学、全岩地球化学及Sr-Nd同位素研究,确定了其形成时代和源区特征,认为其形成于俯冲大洋板片后撤动力学背景下的岩浆弧或弧后地区伸展构造环境。该认识对重建东昆仑造山带早古生代早期的洋陆格架及洋壳北向俯冲细节提供进一步约束。

  • 1 地质背景

  • 东昆仑造山带位于青藏高原北缘,向西以阿尔金左行走滑断裂为界与西昆仑造山带相接,向东过瓦洪山断裂与西秦岭造山带相邻。以东昆北断裂、东昆中断裂(东昆中缝合带)和东昆南断裂为界,可将东昆仑造山带由北向南依次划分为北祁漫塔格构造带、东昆北构造带(昆北地体)、东昆南构造带(昆南地体)和布青山构造混杂岩带(图1a、b)(许志琴等,2006;李荣社等,2008;裴先治等,2018Dong Yunpeng et al.,2018a)。北祁漫塔格构造带主要位于东昆仑造山带西段,出露有古元古界白沙河岩组、中元古界小庙岩组、早古生界滩间山群、早泥盆系世契盖苏组和下石炭统大干沟组。

  • 东昆北构造带以大面积出露古老变质岩系为特征,主要由高角闪岩相变质的古元古界白沙河岩组、以变质石英质岩石为主的中元古界小庙岩组(Pt2x)和早古生代绿片岩相变质的纳赤台岩群(Pz1n)组成(陈有炘等,2011),区域上被上泥盆统牦牛山组(或称契盖苏组)磨拉石组合不整合覆盖(428~409 Ma,Li Ruibao et al.,2020)。此外,零星分布的早古生代晚期碰撞型花岗岩和大面积分布的晚二叠世—中三叠世花岗岩侵位于东昆北构造带变质基底及盖层岩系亦是其主要特征,因此也有学者称之为岩浆弧带(祁生胜等,20142015)。近年来,有学者在该带发现了具碰撞及后碰撞标志的志留纪—泥盆纪花岗岩及高压—超高压岩石组合(Xiong Fuhao et al.,2014Zhang Jinyang et al.,20142021孟繁聪等,2015Dong Guochen et al.,2018bSong Shuguang et al.,2018)。东昆南构造带主要包括少量古元古界白沙河岩组、中元古界苦海岩群、新元古界万宝沟岩群及寒武纪—奥陶纪变火山—沉积岩系(纳赤台岩群)、志留系赛什腾组复理石沉积及石炭纪—三叠纪与古特提斯洋相关的沉积岩系(图2)。布青山构造混杂岩带物质组成主要包括元古代—古生代不同类型的洋壳残片及早中二叠世的复理石基质岩系,其中洋壳残片记录了寒武纪和石炭纪多阶段的古大洋信息(刘战庆等,2011裴先治等,2018)。

  • 东昆中断裂带断续出露有一套镁铁—超镁铁质岩块及早古生代变火山沉积岩系,常常被称之为东昆中(蛇绿)构造混杂岩带或东昆中缝合带(图1、2)(姜春发,2000)。东昆中蛇绿混杂岩带自东向西出露的典型地区有吉日迈、塔妥、清水泉、乌妥、阿此特、哈图沟和西段的阿牙克库木湖等地。详细的地质填图表明,东昆中蛇绿岩块呈构造岩块状产于元古代变质岩或早古生代变火山—沉积岩系中。在清水泉—塔妥地区,蛇绿岩块主要包括蛇纹岩、堆晶岩和变辉长岩等,尤其发育高钛、碱性辉长岩、低钛辉长岩与难熔地幔橄榄岩组合,地质地球化学特征表明其源区具富集岩石圈地幔特征(潘裕生等,1996Yang Jingsui et al.,1996姜春发,2000龙晓平等,2004Li Ruibao et al.,2021)。此外,任军虎等(2009)在清水泉蛇绿岩北侧报道了一套基性岩墙,认为其形成时代为早志留世。

  • 图1 中央造山系大地构造位置(a)及东昆仑造山带构造格架简图(b)(据Dong Yunpeng et al.,2018a修改)

  • Fig.1 Tectonic location of Central orogenic belt (a) and tectonic framework of East Kunlun Orogen (b) (modified from DongYunpeng et al., 2018a)

  • ①—北祁漫塔格-香日的构造混杂带;②—东昆中蛇绿构造混杂带(东昆中缝合带);③—木孜塔格-布青山-阿尼玛卿构造混杂带

  • ①—North Qimantagh-Xiangride tectonic mélange belt; ②—Central Kunlun ophiolitic mélange belt; ③—Muztagh-Buqingshan tectonic mélange belt

  • 沿东昆北断裂带的北侧塔妥—清水泉地区出露有多条基性岩墙(图2)。该岩墙呈近东西向产出,走向约90°~100°;向南陡倾,倾角约60°~80°;单个岩墙宽度约40~60 cm。该岩墙风化面为灰色,新鲜面为深灰—灰黑色,岩性主要为辉绿岩和少量的辉长辉绿岩(图3c、d)。野外调研表明该基性岩墙以高角度侵位于大理岩之中(图3a、b),岩墙与大理岩的接触带可见明显的冷凝边构造,冷凝边宽约0.3~0.5 cm。根据区域资料,辉绿岩墙围岩可能为东昆仑造山带变质基底,变质级别达角闪岩相,同位素年龄表明其为古元古代(>2200 Ma,陈有炘等,2011He Dengfeng et al.,2016)。

  • 2 岩石学特征

  • 基性岩墙风化面为浅灰色,新鲜面为深灰色,辉绿结构或辉长辉绿结构,块状构造,岩性以辉长辉绿岩为主(图3e)。显微镜下可观察到岩石局部发育有少量斜长石和辉石斑晶,斜长石斑晶呈半自形-自形板柱状,发育聚片双晶,部分绢云母化;辉石为他形粒状,粒径约0.5 mm。基质主要由斜长石、辉石和少量磁铁矿构成间粒结构(图3f),其中斜长石多呈半自形板条状,粒径小于0.3 mm,表面发生轻微绢云母化,可见聚片双晶。斜长石杂乱分布或组成似三角格架(图3f);辉石多呈他形粒状,小于0.1 mm,分布在斜长石颗粒之间;磁铁矿多呈不规则粒状或半自形粒状,小于0.1 mm,褐黑色不透明,分布于斜长石颗粒之间。

  • 图2 东昆仑造山带地质简图(a)和地质剖面图(b)

  • Fig.2 Simplified geological map of eastern part of East Kunlun Orogen (a) and schematic cross section (b)

  • 3 分析方法

  • 3.1 锆石 LA-ICP-MS测年

  • 锆石U-Pb同位素年龄测试在西北大学大陆动力学国家重点实验室进行。分析仪器为Elan 6100DRC型四级杆质谱仪和Geolas 200M型激光剥蚀系统,激光器为193 nm ARF准分子激光器。激光剥蚀斑束直径为30 μm,激光剥蚀深度为20~40 μm。锆石年龄计算采用国际校准锆石91500作为外标,元素含量采用美国国家标准物质局人工合成硅酸盐玻璃NIST610作为外标,29Si作为内标元素进行校正。样品的同位素比值和元素含量采用GLITTER(4.0版本,Macquarie University)程序处理,采用Anderson软件对测试数据进行普通铅校正,年龄计算及谐和图绘制采用Isoplot(2.49版)(Anderson,2003)软件完成。详细的实验原理和测试流程及仪器参见相关文献(Yuan Honglin et al.,2004),分析测试结果见附表1和2。

  • 图3 东昆仑造山带基性岩墙野外宏观露头特征及显微镜下照片

  • Fig.3 Outcrop and microscopic photos showing petrographic feature in East Kunlun Orogen

  • (a)—基性岩墙产出状态;(b)—基性岩墙侵位于大理岩;(c)—基性岩墙露头特征;(d)—辉长辉绿结构(正交偏光);Pl—斜长石;Py—辉石

  • (a) —field occurrence of mafic dykes; (b) —mafic dykes intrude marbles; (c) —outcrop feature of mafic dykes; (d) —gabbro-diabasic texture (cross-polarized light) ; Pl—plagioclase; Py—pyroxene

  • 3.2 岩石地球化学测试

  • 用于岩石地球化学研究的基性岩墙样品采自东昆仑东段清水泉以北约1 km处(图2)。对样品分别进行主量元素和微量元素分析测试。全岩主量元素测试采用XRF法,分析测试在西北大学大陆动力学国家重点实验室进行,测定流程包括:① 计算烧失量:将坩锅在烘箱内150℃干燥3 h后,称其重量W1,加入约1 g样品,称样品重量W2;然后放入900℃的马弗炉中8 h,降温后放入干燥器静置20 min,随后称重得W3后计算出样品的烧失量(LOI);② 玻璃融熔法制样:主量元素测定时首先称取样品0.50 g,以无水四硼酸锂和硝酸铵为氧化剂,倒入铂金坩锅中,再加入适量溴化锂,在1200℃左右振荡熔融制成玻璃薄片,使用X射线荧光光谱仪测定。全岩稀土和微量元素分析采用电感耦合等离子体质谱仪,分析精度和准确度优于5%。将74 μm以下样品(500 mg)置于PTFE坩锅,加入添加剂(1.0 mL高纯HF和1.5 mL高纯HNO3),按照标准测试程序,反复添加、加热、冷却,最后在离心管中稀释到50 mL;将所得溶液在电感耦合等离子体质谱仪(ICP-MS)上完成测定。主微量分析测试结果见附表3,Sr-Nd同位素分析结果见附表4。

  • 4 分析结果

  • 4.1 锆石U-Pb年龄

  • 为了精确限定基性岩墙的形成时代,野外共采集2件辉长辉绿岩样品(样品号为XRD17006TW1, XRD17006TW8)进行了锆石U-Pb同位素年代学分析,样品的地理坐标为N35°42.22′,E98°06.27′。所分选出的辉长辉绿岩中的锆石晶体均呈浅黄色—无色透明,总体为自形程度稍高的长柱状或短柱状,粒径为100~300 μm,长宽比约2∶1~3∶1。多数锆石的CL图像具明显的岩浆生长环带,且环带较宽,表明其为岩浆结晶的产物。

  • 本论文对样品(XRD17006TW1)共分析了20个测点(附表1),其锆石Th含量介于5×10-6~119×10-6之间,U含量介于43×10-6~424×10-6之间,Th/U比值介于0.1~0.5之间,主体大于0.1,符合岩浆成因锆石的特征。在获得的20组数据中(附表1),剔除2个极度不谐和的数据,剩余18个数据206Pb/238U和207Pb/235U谐和性较好,所有测点均集中于一致线及其附近很小的区域内(图4a)。206Pb/238U 表面年龄介于506~480 Ma之间,206Pb/238U加权平均年龄为486.4±9.1 Ma(MSWD=0.21)(图4b)。样品(XRD17006TW8)共有21个测点(附表2)。所有锆石Th含量介于31×10-6~735×10-6之间,U含量介于230×10-6~2860×10-6之间,Th/U比值介于0.1~0.4之间,显示了岩浆成因锆石的特征。剔除1个不谐和数据,其余测试数据主体均位于谐和线上(图4c), 206Pb/238U表面年龄介于490~478 Ma之间,206Pb/238U加权平均年龄为482.7±2.3 Ma(MSWD=0.16)(图4d)。综上,本文认为基性岩墙的结晶年龄为486~483 Ma,表明其形成时代为早奥陶世。

  • 4.2 地球化学特征

  • 4.2.1 主量元素

  • 辉绿岩中SiO2表现出较窄的变化范围(附表3),其含量为50.06%~51.68%,平均值为50.82%,Na2O含量1.85%~2.54%,平均值为2.15%;K2O含量为0.45%~1.25%,平均值为0.75%;MgO含量介于5.08%~6.77%;TiO2含量介于0.99%~1.20%之间,平均值为1.11%,明显低于洋岛玄武岩和洋中脊玄武岩中的TiO2含量,而与岛弧岩浆岩TiO2含量相近。样品里特曼指数介于0.78~1.55之间。在SiO2-(Na2O+K2O)图解上(图5a),样品全部落入亚碱性玄武岩区域,亦与东昆北构造带南缘岛弧型岩浆岩特征一致,而与东昆南陆缘弧岩浆岩的岩石组合不同。在SiO2-TFe2O3/MgO图解上(图5b),样品落入拉斑玄武岩系列。在MgO和不同主量元素哈克图解上(图6),Cr、CaO和Al2O3与MgO均呈正相关关系,而FeO和TiO2与MgO呈现弱的负相关关系。

  • 图4 东昆仑塔妥地区基性岩墙锆石U-Pb年龄谐和图(a,c)和加权平均年龄图(b,d)

  • Fig.4 Zircon U-Pb Concordia (a,c) and weighted mean diagrams (b,d) of mafic dykes, Tatuo region, East Kunlun

  • 4.2.2 微量元素和稀土元素

  • 基性岩墙LREE含量介于56.11×10-6~75.23×10-6之间,HREE含量介于9.69×10-6~13.76×10-6之间,∑REE介于68.01×10-6~88.98×10-6之间,LREE/HREE介于4.18~6.02之间(附表3)。δEu介于1.07~1.17之间,平均值为1.11。Eu表现为弱的正异常特征。(La/Sm)N介于2.03~2.81之间,(La/Yb)N介于3.49~5.10之间,(Gd/Yb)N介于1.17~1.29之间。在球粒陨石标准化稀土元素配分图解上表现为右倾,轻、重稀土元素分馏明显而重稀土部分分馏较弱的特征,基本落入东昆北岛弧岩浆岩区域(图7a)。微量元素原始地幔标准化图解显示大离子亲石元素(Rb、Ba、Th、U,K等)整体富集,高场强元素(Nb、Ta、Ti等)呈现负异常的特征(图7b),表现出俯冲带火山岩的特征。

  • 4.2.3 Sr-Nd同位素

  • 本次研究共分析了7件Sr-Nd同位素样品(附表4)。由附表4可知,样品87Sr/86Sr比值为0.714007~0.714498,初始Sr比值相对较高,(87Sr/86Sr)i介于0.712600~0.713273之间,εNdt)=486 Ma)变化相对较小,介于-9.80~-4.31之间。样品147Sm/144Sm比值介于0.1321~0.1474之间,二阶段模式年龄介于1.82~2.32 Ga之间。在Sr-Nd图解中(图8),样品与东昆仑造山带EM2型富集地幔值相当。

  • 5 讨论

  • 5.1 蚀变影响

  • 本研究中的辉绿岩样品具有相对低且恒定的烧失量,提示其没有发生明显的后期蚀变作用。此外,Zr常常被认为是在区域变质及后期热水蚀变过程中最稳定的元素,常常用来检验其他元素在蚀变过程的活动性(Winchester and Floyd,1977;MacLean,1990MacLean and Barrett,1993; Pearce and Peate,1995)。在Zr与K2O,Na2O,Rb,REE,HFSE双变量图解中(图略),具有很好的正相关性,暗示这些元素并没有受到明显的后期蚀变影响。因此,这些元素尤其高场强元素可以用来探讨辉绿岩岩浆源区特征。

  • 图5 东昆仑塔妥地区基性岩墙SiO2-(Na2O+K2O)图解(a,据Le Bas et al.,1986) 和SiO2-TFeO/MgO图解(b,据Miyashiro,1974

  • Fig.5 SiO2- (Na2O+K2O) (a, after Le Bas et al., 1986) and SiO2-TFeO/MgO plots (b, after Miyashiro, 1974) of mafic dykes, Tatuo region, East Kunlun

  • 数据来源:东昆南陆缘弧岩浆岩数据引自Chen Jiajie et al.,2016; Zhou Bo et al.,2016; Dong Guochen et al.,2018b; 东昆北岛弧岩浆岩引自桑继镇等,2016Li Ruibao et al.,2018王秉璋等,2021

  • Data source: magmatic arc data of south Kunlun from Chen Jiajie et al., 2016; Zhou Bo et al., 2016; Dong Guochen et al., 2018b; magmatic arc data of north Kunlun from Sang Jizhen et al., 2016; Li Ruibao et al., 2018; Wang Bingzhang et al., 2021

  • 图6 东昆仑塔妥地区基性岩墙哈克图解(a~f)

  • Fig.6 Harker diagrams (a~f) of mafic dykes, Tatuo region, East Kunlun

  • 5.2 岩浆源区

  • 为了讨论地幔源区的性质,首先判断岩浆上升途中是否存在陆壳混染。本文样品在SiO2-(87Sr/86Sr)i图解和SiO2Ndt)图解中的线性关系不明显(图9a、b),暗示地壳混染作用并不显著。为了进一步判断地壳有无混染及可能的混染比例,本文采用二元混合模型估算地壳组分加入的程度(Jahn et al.,2004)。估算用到的地幔和地壳Nd同位素值参数引自东昆仑造山带(余能等,2005熊富浩等,2011;巴金等,2012;刘彬等,2013),估算结果表明地壳混染比例<8%。

  • 地球化学特征方面,基性岩墙的MgO(5.08%~6.77%)、Cr(<74×10-6)和Ni(<8.78×10-6)含量远低于地幔原始岩浆的含量(Ni>235×10-6,Cr>400×10-6)(Wilson,1989),说明其经历了一定程度的分离结晶作用。在哈克图解中(图6),Cr与MgO呈正相关,表明橄榄石和辉石发生了一定程度的分离结晶。Sc/V和CaO与 MgO的正相关性进一步表明了单斜辉石是分离结晶的重要产物。Al2O3与MgO不存在负相关性说明斜长石很可能没有发生明显的分离结晶作用。另外,微量元素蛛网图也未见Eu和Sr的负异常,进一步说明斜长石的分离结晶作用不显著。FeO、TiO2和MgO的相关性不明显,说明钛铁氧化物分离结晶的作用不显著。

  • 图7 东昆仑塔妥地区基性岩墙球粒陨石标准化稀土元素配分图解(a)和原始地幔标准化微量元素蛛网图解(b)

  • Fig.7 Chondrite-normalized REE (a) and primitive mantle normalized trace elements patterns (b) for mafic dykes, Tatuo region, East Kunlun

  • 数据来源:球粒陨石数据引自Boynton,1984;原始地幔数值据Sun and McDonough et al.,1989

  • Data source: chondrite data from Boynton, 1984; primative mantle from Sun and McDonough et al., 1989

  • 图8 东昆仑塔妥地区基性岩年龄-εNdt)图解(a)和(87Sr/86Sr)iNdt)图解(b)

  • Fig.8 Age-εNd (t) diagram (a) and (87Sr/86Sr) iNd (t) diagram (b) for mafic dykes, Tatuo region, East Kunlun

  • 数据来源:东昆仑基底数据引自余能等,2005;东昆仑EM2富集地幔数据引自陈宣华等,2011;亏损地幔数据引自Bian Qiantao et al.,2004Li Ruibao et al.,2018

  • Data source: basement data of East Kunlun from Yu Neng et al., 2005; EM2 enriched mantle from Chen Xuanhua et al., 2011; depleted mantle from Bian Qiantao et al, 2004 and Li Ruibao et al., 2018

  • 图9 东昆仑塔妥地区基性岩墙SiO2Ndt)(a)和SiO2-(87Sr/86Sr)i图解(b)

  • Fig.9 SiO2Nd (t) (a) and SiO2- (87Sr/86Sr) i plots (b) of mafic dykes, Tatuo region, East Kunlun

  • 本文基性岩墙相对低硅(50.06%~51.68%)、高镁(5.08%~6.77%)的特征指示其来自于地幔橄榄岩的部分熔融(Sklyarov et al.,2003)。在稀土元素配分图解上,所有样品均表现为轻稀土元素富集而重稀土元素亏损的特征,指示该基性熔体来自于深部富集软流圈地幔或者遭受俯冲带组分改造的岩石圈地幔(Pearce and Peate,1995Pearce,2008)。起源于软流圈地幔的岩石通常不同程度地富集大离子亲石元素(LILE)和高场强元素(HFSE,Nb,Ta,Ti等),并具有亏损地幔特征的同位素组成。显然,本文基性岩墙不具备软流圈地幔起源的特征。在Nb/Yb-Th/Yb图解中(图10),样品全部落入MORB-OIB地幔阵列的上方,表明其地幔源区既不是地球深部的富集软流圈地幔(OIB型熔体),也不是亏损地幔源区(NMORB型),而很可能是俯冲带组分对地幔源区改造的重要信号(Th/Yb比值增大)(Pearce and Peate,1995Pearce,2008)。此外,样品的大离子亲石元素在微量元素蛛网图呈现富集,高场强元素(尤其Nb和Ta)呈现负异常的特征(图7b),进一步指示俯冲带起源组分可能加入并改造了地幔源区。俯冲带组分通常包括俯冲带起源流体和俯冲沉积物。这些不同类型俯冲带组分的加入会导致地幔熔出不同属性的熔体。俯冲流体改造的地幔,部分熔融形成熔体,一般是大离子亲石元素富集。高场强元素基本和MORB接近,这是因为HFSE在流体中不活动,而LILE在流体中活动的结果。本研究样品中的大离子亲石元素富集,而高场强元素基本与MORB相当,说明俯冲带流体对地幔改造起主导作用。此外,微量元素比值(Ba/Th,Th/Yb,Th/Nb等)也可以有效识别出俯冲带流体和俯冲带沉积物。本文基性岩墙样品具有相对较高的Ba/Th(213~396)和低的Th/Yb(0.8~1.3)比值,表明俯冲带组分是以俯冲带起源流体为主(Woodhead et al.,2001)。在Th-Ba/Th(图11a)和Ba/La-Th/Yb图解(图11b),均表现出俯冲带流体的影响趋势。以上特征基本表明本文基性熔体起源于遭受俯冲带流体改造的富集地幔。此外,样品相对均一且低的εNdt)值(-9.80~-4.31)与东昆仑地区富集地幔Ⅱ相似(熊富浩等,2011)(图8b)。

  • 图10 东昆仑塔妥地区基性岩墙Nb/Yb-Th/Yb源区判别图解 (底图据Pearce,2008;岛弧岩浆岩数据来源见图5)

  • Fig.10 Nb/Yb-Th/Yb plot of mafic dykes, Tatuo region, East Kunlun (Pearce, 2008;refer to Fig.5 for data source)

  • 图11 东昆仑塔妥地区基性岩墙Th-Ba/Th(a,底图据Hawkesworth et al.,1997)和 Ba/La-Th/Yb图解 (b,底图据Woodhead et al.,2001

  • Fig.11 Th-Ba/Th (a, modified from Hawkesworth et al., 1997) and Ba/La-Th/Yb plots (b, modified from Woodhead et al., 2001) for mafic dykes, Tatuo region, East Kunlun

  • 此外,源区地幔橄榄岩矿物组合及熔体的熔融程度可以用微量元素含量及其比值进行模拟。对于石榴子石来说,Yb是相容元素,而La和Sm是不相容元素,在熔融程度较低的情况下,La与Yb和Sm与Yb将发生强烈分馏。因此,石榴子石二辉橄榄岩在地幔源区部分熔融产生的熔体具有相对高的Sm/Yb和Dy/Yb比值,而尖晶石二辉橄榄岩地幔源区产生的基性熔体则具有相对较低的Sm/Yb和Dy/Yb比值,且具有较为平缓的稀土元素分配模式(Hart and Dunn,1993;Aldanmaz et al.,2000)。本文样品具有相对低的Sm/Yb和Dy/Yb比值,指示其源区可能以尖晶石为主(Aldanmaz et al.,2000)。在判断源区组成类型的半定量(Tb/Yb)P-(Yb/Sm)P图解中(图12)(Zhang Zhaochong et al.,2006),样品落入图解左侧尖晶石含量>90%的曲线上,指示其源区地幔橄榄岩相以尖晶石为主,并含有极少量的石榴子石(<10%)。该图解进一步表明源区经历了较低程度(约5%)的部分熔融。综上,本研究中基性岩墙的形成是受俯冲带流体交代的尖晶石地幔橄榄岩的低程度部分熔融有关,之后在岩浆演化过程中经历了以橄榄石和单斜辉石为主的分离结晶作用。

  • 5.3 构造环境

  • 造山带中出露的基性岩墙通常包括与蛇绿岩相关、与洋盆关闭后加厚岩石圈拆沉及造山带坍塌相关的基性岩浆活动(Pearce et al.,20032008罗照华等,2006French and Heaman,2010张旗等,2020Dilek et al.,20112014Reagan et al.,2017)。近年来,学者们陆续报道了大洋岩石圈板块俯冲背景下与岛弧系统伴生的基性岩墙,并用俯冲大洋板块后撤(roll back)模型进行了动力学解释,例如南美南端晚中生代—新生代岩浆弧及东昆仑造山带布尔汉布达山晚二叠世岩浆弧中发育的基性岩墙(熊富浩等,2011Guillot et al.,2011; 马昌前等,2015)。本文基性岩墙产出状态与蛇绿岩席状岩墙不同,显然不可能是蛇绿岩的组成单元。此外,前人研究表明东昆中原特提斯洋于中晚志留世关闭,随后形成了具碰撞及后碰撞属性的晚志留世—早泥盆世不同类型花岗岩(刘彬等,20132022Xiong Fuhao et al.,2014Xin Wei et al.,2018Zhang Jinyang et al.,2021Wang Qian et al.,2022Zhao Xu et al.,2022)及高压—超高压变质岩(祁生胜等,2014孟繁聪等,2015Bi Hengze et al.,2018)。本文基性岩墙的形成时代为早奥陶世,明显早于东昆中洋盆关闭的时限,因此可排除其形成于碰撞、后碰撞及造山带坍塌构造阶段。

  • 图12 东昆仑塔妥地区基性岩墙(Tb/Yb)P-(Yb/Sm)P 图解(底图据Zhang Zhaochong et al.,2006

  • Fig.12 (Tb/Yb) P- (Yb/Sm) P plot for mafic dykes (modified from Zhang Zhaochong et al., 2006) , Tatuo region, East Kunlun

  • 细线代表地幔源区组成,Gar∶Sp=0∶100,指示地幔源区石榴子石含量为0,尖晶石为100%,其余类同;粗线为熔融比例

  • Fine black Lines represent the mantle composition; Gar∶Sp=0∶100 means that garnet content is 0 in mantle source, and spinel content is 100; coarse lines indicate the melting percentage

  • 在地球化学特征方面,本文基性岩墙微量元素蛛网图具有典型的富集大离子亲石元素、亏损高场强元素(Nb,Ta)特征(图7b),与俯冲带弧岩浆岩地球化学特征非常相似(Pearce and Peate,1995Pearce,2008)。有关岩石成因的研究表明,俯冲带流体对基性岩墙的地幔源区进行了交代富集作用,同样表明洋壳板片俯冲是研究区主要的构造动力学背景。另外,本文利用微量元素判别图解进行构造环境的识别。在Ti-V图解(图13a)和Hf/3-Th-Ta图解上(图13b),样品落入岩浆弧区域,指示了与大洋板块俯冲相关的构造背景。有学者曾对研究区西侧志留纪基性岩墙进行了相关研究,认为其形成于弧后构造环境(任军虎等,2009)。前人研究表明,古俯冲增生造山带发育的基性岩墙多与俯冲带后撤或洋中脊斜向俯冲形成的局部伸展背景有关(Sisson et al.,2003Guillot et al.,2011Xiong Fuhao et al.,2011Ma Changqian et al.,2015Windley et al.,2018)。综上,本文认为该辉绿岩墙形成于大洋俯冲背景下岩浆弧或弧后地区伸展的构造环境,但也不能排除该次伸展是否与可能的洋脊斜向俯冲有关。

  • 5.4 地质意义

  • 东昆仑造山带(东段)自南向北包括布青山构造混杂岩带和东昆中蛇绿混杂岩带两条大地构造单元边界带。最新资料表明布青山构造混杂岩带具体包含寒武纪、奥陶纪及石炭纪等多期蛇绿岩(边千韬等,1999王秉璋等,2000; 陈亮等,2001王永标,2005郭安林等,2006李王晔等,2007刘战庆等,2011李瑞保等,2014裴先治等,20152018Dong Yunpeng et al.,2018a),记录了从新元古代晚期—早中生代长期演化的古大洋,代表东昆仑地区原—古特提斯洋的主大洋(布青山洋)(董云鹏等,2022)。相对应,东昆中蛇绿岩主体形成于早古生代(高延林等,1988潘裕生等,1996; Yang Jingsui et al.,1996张克信等,2004祁晓鹏等,2016裴先治等,2018Li Ruibao et al.,20182021),可能代表了布青山洋的早古生代弧后盆地(东昆中洋)。

  • 中寒武世以来,东昆中洋向南俯冲形成了出露于东昆南构造带的可可沙—智玉地区规模较大的中酸性侵入岩(花岗岩类),形成时限为501~438 Ma(图14)(陈能松等,2000陈加杰等,2016Zhou Bo et al.,2016Dong Guochen et al.,2018bChen Jiajie et al.,2019; 王秉璋等,2021)。有学者对该套中酸性侵入岩进行了系统研究,认为其是一个典型的安底斯型陆缘弧(王秉璋等,2021)。值得指出的是,东昆南大面积出露的中酸性弧岩浆岩也有可能是布青山洋早古生代向北俯冲的产物。此外,也有学者从区域构造角度分析认为东昆仑造山带及邻区早古生代古洋盆存在向北的俯冲极性(Yang Jingsui et al.,1996; 姜春发,2000Yin An et al.,2000许志琴等,2006Wu Chen et al.,20162019Dong Yunpeng et al.,2018a裴先治等,2018Song Shuguang et al.,2018Yan Zhen et al.,2019Yu Miao et al.,2020)。最近研究表明,东昆北构造带南缘(东昆中蛇绿构造混杂岩带)出露有520~510 Ma的“弧前玄武岩-玻安质熔岩-高镁安山岩-英安岩”组合,被认为是东昆中洋向北俯冲形成的洋内岛弧系统的产物(图14)(Yang Jingsui et al.,1996; Li Ruibao et al.,2018王秉璋等,2021)。区域上,有学者在东昆中蛇绿岩北侧的克和特—清水泉地区发现了晚奥陶世(454~452 Ma)岛弧型中基性杂岩体(祁晓鹏等,2016桑继镇等,2016)。本文辉绿岩墙空间位置处于东昆中蛇绿岩带北侧,并且形成于俯冲带上盘岩浆弧伸展构造环境,进一步说明东昆中洋于寒武纪—奥陶纪已处于向北俯冲状态。也就是说,东昆中洋于中寒武世(>520 Ma)向北俯冲形成岩浆弧及弧后伸展系统,随后于晚寒武世(>501 Ma)可能向南俯冲于东昆南地块之下形成了安第斯型陆缘岩浆弧体系(王秉璋等,2021)。

  • 图13 东昆仑塔妥地区基性岩墙V-Ti (a,底图据Shervais,1982) 和Hf-Th-Ta图解 (b,底图据Wood,1980)(数据来源见图5)

  • Fig.13 V-Ti (a, from Shervais, 1982) and Hf-Th-Ta diagrams (b, from Wood, 1980) for mafic dykes, Tatuo region, East Kunlun (refer to Fig.5 for data source)

  • 图14 东昆仑造山带早古生代构造-岩浆事件(修改自Li Ruibao et al.,2023

  • Fig.14 Early Paleozoic tectono-magmatic events in East Kunlun Orogen (modified from Li Ruibao et al., 2023)

  • 6 结论

  • (1)清水泉地区基性岩墙侵位于古元古代变质岩基底。基性岩墙锆石U-Pb年龄分别为486.4±9.1 Ma和482.7±2.3 Ma,表明其形成于早奥陶世。

  • (2)基性岩墙的地球化学特征具有低SiO2、中MgO、TiO2、富集大离子亲石元素(Rb、Sr、Ba、Th、K)和亏损高场强元素(Nb、Ta、Ti)以及富集εNdt)的同位素特征(-9.80~-4.31)。岩石成因研究表明该基性岩墙起源于俯冲带流体交代的富集岩石圈地幔。

  • (3)地质及地球化学资料表明基性岩墙形成于俯冲带上盘的伸展构造环境,可能与俯冲大洋板片后撤的动力学背景有关。

  • (4)结合区域地质资料,认为东昆中原特提斯洋至少在中寒武世开始向北俯冲形成了岩浆弧系统,大致在晚寒武世向南俯冲形成了陆缘岩浆弧。

  • 致谢:野外工作过程中得到了青海省第三地质勘查院王生明高级工程师的帮助。编辑和审稿专家为本文的修改完善提出了建设性的意见与建议。在此一并致以衷心的感谢。

  • 附件:本文附件(附表1~3)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202502092?st=article_issue

  • 参考文献

    • Anderson T. 2003. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1~2): 59~79.

    • Aldanmaz E, Pearce J A, Thirlwall M F, Mitchell J G. 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102: 67~95.

    • Ba Jin, Chen Nengsong, Wang Qinyan, Wang Xinyu, Zhang Lu, Wang Shuqing. Nd-Sr-Pb isotopic compositions of cordierite granite on southern margin of the Qaidam block, NW China, and constraints on its petrogenesis, tectonic affinity of source region and tectonic implications. Earth Science, 37: 80~92.

    • Bian Qiantao, Luo Xiaoquan, Li Hongsheng, Chen Haihong, Zhao Dasheng. 1999. Discovery of earlyPaleozoic and early Carboniferous-early Permian ophiolites in the Anemaqen, Qinghai Province, China. Scientia Geologica Sinica, 34(4): 523~524 (in Chinese with English abstract).

    • Bian Qiantao, Li Dihui, Pospelov I, Yin Leiming, Li Hongsheng, Zhao Dasheng, Chang Chengfa, Luo Xiaoquan, Gao Shanlin, Astrakhantsev O, Chamov N. 2004. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 23: 577~596.

    • Bi Hengze, Song Shuguang, Dong Jinlong. 2018. First discovery of coesite in eclogite from east Kunlun, northwest China. Science Bulletin, 23: 1536~1538.

    • Boynton W V. 1984. Cosmo chemistry of the rare earth elements: Meteorite studies. Developments in Geochemistry, 2(2): 63~114.

    • Chen Liang, Sun Yong, Pei Xianzhi, Gao Ming, Feng Tao, Zhang Zongqing, Chen Wen. 2001. 40Ar-39Ar age of Deerni ophiolite: The existence of Paleotethys Ocean in northern Tibet Plateau and the evidence for their extent. Chinese Science Bulletin, 46(45): 424~426 (in Chinese with English abstract).

    • Chen Xuanhua, Yin An, George Gehrels, Li Li, Jiang Rongbao. 2011. Chemical geodynamics of granitic magmatism in the basement of the Eastern Qaidam basin, northern Qinghai-Tibet Plateau. Acta Geologica Sinica, 85(2): 157~171 (in Chinese with English abstract).

    • Chen Youxin, Pei Xianzhi, Li Ruibao, Liu Zhanqing, Li Zuochen, Zhang Xiaofei. 2011. Zircon U-Pbage of Xiaomiao Formation of Proterozoic on the eastern section of the east Kunlun orogenic belt. Geoscience, 25(3): 510~521 (in Chinese with English abstract).

    • Chen Jiajie, Fu Lebing, Wei Junhao, Tian Ning, Xiong Le, Zhao Yujing, Zhang Yujie, Qi Yueqing. 2016. Geochemical characteristics of Late Ordovician granodiorite in Gouli area, eastern Kunlun orogenic belt, Qinghai Province: Implications on the evolution of Proto-Tethys Ocean. Earth Science, 41(11): 1863~1882 (in Chinese with English abstract).

    • Chen Jiajie, Fu Bile, Wei Junhao, David S, Zhang Daohan. 2019. Proto-Tethys magmatic evolution along northern Gondwana: Insights from Late Silurian-Middle Devonian A-type magmatism, east Kunlun Orogen, northern Tibetan Plateau, China. Lithos, https: //doi. org/10. 1016/j. lithos. 2019. 105304.

    • Chen Nengsong, Sun Min, Zhang Kexin, Zhu Yunhai. 2000. The 40Ar-39Ar and U-Pb ages of meta-diorites in east Kunlun: The excess Argon and evidence of Early Paleozoic magmatic rocks in east Kunlun. Chinese Science Bulletin, 45(21): 2337~2342 (in Chinese with English abstract).

    • Chen Guochao, Chen Xiaozhen, Pei Xianzhi, Wei Junqi, Zhang Yong, Li Ruibao, Li Zuochen, Chen Youxin, Liu Chengjun, Ji Xianjun, Wu Shukuan. 2022. Geochronology and petrogenesis of Hatu syenogranite and its constraint on the geological background of REE mineralization in the eastern part of east Kunlun. Acta Geologica Sinica, 96(3): 971~990 (in Chinese with English abstract).

    • Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123: 387~411.

    • Dilek Y, Furnes H. 2014. Ophiolites and their origins. Elements, 10: 93~100.

    • Dong Guochen, Luo Mingfei, Mo Xuanxue, Zhao Zhidan, Dong Liangqiong, Yu Xuehui, Wang Xin, Li Xiaowei, Huang Xiongfei, Liu Yanbin. 2018b. Petrogenesis and tectonic implications of early Paleozoic granitoids in east Kunlun belt: Evidences from geochronology, geochemistry and isotopes. Geoscience Frontiers, 9(5): 1383~1397.

    • Dong Yunpeng, He Dengfeng, Sun Shengsi, Liu Xiaoming, Zhou Xiaohu, Zhang Feifei, Yang Zhao, Cheng Bin, Zhao Guochun, Li Jianhua. 2018a. Subduction and accretionary tectonics of the east Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231~261.

    • Dong Yunpeng, Sun Shengsi, Liu Xiaoming, He Dengfeng, Zhou Xiaohu, Zhang Feifei, Yang Zhao, Zhou Dingwu. 2019. Geochronology and geochemistry of the Yazidaban ophiolitic mélange in Qimantagh: Constraints on the Early Paleozoic back-arc basin of the east Kunlun Orogen, northern Tibetan Plateau. Journal of the Geological Society of London, 176: 306~322.

    • Dong Yunpeng, Hui Bo, Sun Shengsi, Yang Zhao, Zhang Feifei, He Dengfeng, Sun Jiaopeng, Shi Xiaohui. 2022. Multiple orogeny and geodynamics from Proto-Tethys to Paleo-Tethys of the Central China orogenic belt. Acta Geologica Sinica, 96(10): 3426~3448 (in Chinese with English abstract).

    • Feng Huibin, Meng Fancong, Li Shengrong, Jia Lihui. 2015. Characteristics and tectonic significance of chromites from Qingshuiquan serpentinite of east Kunlun, Northwest China. Acta Petrologica Sinica, 31(8): 2129~2144 (in Chinese with English abstract).

    • Feng Juanping, Ooyang Zhengjian, Ma Haiyong, Fan Mengmeng, Ma Jing. 2020. U-Pb chronology, geochemical characteristics and significance of the Taojiayao basic dike swarms in the Zhongtiao Mountain, southeastern margin of North China craton. Acta Geologica Sinica, 94(2): 573~586 (in Chinese with English abstract).

    • French J E, Heaman L M. 2010. Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar Craton, India: Implications for the existence of the Neoarchean supercraton belt. Precambrian Research, 183(3): 416~441.

    • Gao Yanlin, Wu Xiangnong, Zuo Guochao. 1988. The geologic characteristics and tectonic significance of Qingshuiquan ophiolite in east Kunlun Range. Bulletin of Xi'an Institute of Geological Mineral Resource, Chinese Academy of Geological sciences, 21: 17~28 (in Chinese with English abstract).

    • Girardi V A V, Costa P C, Teixeira W. 2012. Petrology and Sr-Nd characteristics of the Nova Lacerda dike swarm, SW Amazonian Craton: New insights regarding its subcontinental mantle source and Mesoproterozoic geodynamics. International Geology Review, 54: 165~182.

    • Guillot M G, Escayola M, Acevedo R. 2011. Calc-alkaline rear-arc magmatism in the FuegianAndes: Implications for the mid-cretaceous tectonomagmatic evolution of southernmost south America. Journal of South American Earth Sciences, 31: 1~16.

    • Guo Anlin, Zhang Guowei, Sun Yangui, Zheng Jiankang, Liu Ye, Wang Jianqi. 2006. The geochemistry and spatial feature of OIB and MORB in Animaqen ophiolitic zone: The evidence for the paleo hot spot of oceanic ridge. Science China (Earth sciences), 36(7): 618~629 (in Chinese with English abstract).

    • Hart S R, Dunn T. l993. Experimental cpx/melt partitioning of trace elements. Contributions to Mineralogy and Petrology, 113(1): 1~8.

    • Hawkesworth C J, Turner S P, McDermott F, Peate D W, vanCalsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276: 551~555.

    • He Dengfeng, Dong Yunpeng, Liu Xiaoming, Yang Zhao, Sun Shengsi, Cheng Bin, Li Wei. 2016. Tectono-thermal events in east Kunlun, northern Tibetan Plateau: Evidence from zircon U-Pb geochronology. Gondwana Research, 30: 179~190.

    • Ishizuka O, Kenichiro T, Reagan M K. 2014. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue. Elements, DOI: 10. 2113/gselements. 10. 2. 115.

    • Jahn B M, Capdevila R, Liu Dunyi, Vernon A, Badarch G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23(5): 629~653.

    • Jiang Chunfa. 2000. Opening-Closing Tectonics of Central orogenic belt in China. Beijing: Geological Publishing House, 1~50 (In Chinese).

    • Khan T, Murata M, Karim T, Zafar M, Ozawa H. 2007. A Cretaceous dike swarm provides evidence of a spreading axis in the back-arc basin of the Kohistan paleo-island arc, northwestern Himalaya, Pakistan. Journal of Asian Earth Sciences, 29(2~3): 350~360.

    • Le Bas M J, LeMaitre R W, Streckelsen A. 1986. A chemical classification of volcanic rocks based on the total alkli-slica diagram. Journal of Petrology, 27(6): 745~750.

    • Li Rongshe, Ji Wenhua, Yang Yongcheng, Yu Pusheng, Zhao Zhenming, Chen Shoujian, Meng Yong, Pan Xiaoping. 2008. Thegeology of Kunlun Range and Adjacent Area. Beijing: Geological Publishing House, 1~400 (in Chinese).

    • Li Ruibao, Pei Xianzhi, Li Zuochen. 2014. Geochemical characteristics of Gerizhuotuo OIB and its tectonic significance in Buqingshan tectonic mélange belt, southern margin of east Kunlun Orogen. Earth Science Frontiers, 21(1): 183~195 (in Chinese with English abstract).

    • Li Ruibao, Pei Xianzhi, Li Zuochen, Pei Lei, Chen Guochao, Wei Bo, Chen Youxin, Liu Chengjun, Wang Meng. 2018. Cambrian (~510 Ma) ophiolites of the east Kunlun orogen, China: A case study from the Acite ophiolitic tectonic mélange. International Geology Review, 60(16): 2063~2083.

    • Li Ruibao, Pei Xianzhi, Li Zuochen, Patias Daniel, Su Zhenguo, Pei Lei, Chen Guochao, Chen Youxin, Liu Chengjun. 2020. Late Silurian to Early Devonian volcanics in the east Kunlun orogen, northern Tibetan Plateau: Record of postcollisional magmatism related to the evolution of the Proto-Tethys Ocean. Journal of Geodynamics, doi. org/10. 1016/j. jog. 2020. 101780.

    • Li Ruibao, Pei XianZhi, Wei Bo, Li Zuochen, Pei Lei, Chen Guochao, Chen Youxin, Liu Chengjun. 2021. Middle Cambrian-Early Ordovician ophiolites in the central fault of the east Kunlun Orogen: Implications for an epicontinental setting related to Proto-Tethyan Ocean subduction. Gondwana Research, 94: 243~258.

    • Li Ruibao, Pei XianZhi, Zhou Renjie, Li Zuochen, Pei Lei, Chen Guochao, Chen Youxin, Liu Chengjun. 2023. Magmatic response to the closure of the Proto-Tethys Ocean: A case study from the middle Paleozoic granitoids in the Kunlun Orogen, western China. Journal of Asian Earth Sciences, 242, doi. org/10. 1016/j. jseaes. 2022. 105513.

    • Li Shanzhong, Zhao Shujuan, Li Xiyao, Cao Huahua, Liu Xin, Guo Xiaoyu, Xiao Wenjiao, Lai Shaocong, Yan Zhen, Li Zhonghui, Yu Shengyao and Lan Haoyuan. 2016. Proto-Tehtys Ocean in east Asia (I): Northern and southern border faults and subduction polarity. Acta Petrologica Sinica, 32(9): 2609~2627 (in Chinese with English abstract).

    • Li Wangye, Li Shuguang, Guo Anlin, Sun Yangui, Zhang Guowei. 2007. The zircon SHRIMP U-Pb age and trace elements geochemistry-constraints to the southern boundary of late Proterozoic-Early Ordovician archipelagic ocean. Science China (Earth sciences), 37(Sup I): 288~294 (in Chinese with English abstract).

    • Li Wenyuan, Zhang Zhaowei, Wang Yalei. 2022. Tectonictrans formation of Proto-and Paleo-Tethys and the metallization of magmatic Ni-Cu-Co sufide deposits in Kunlun orogen, Northwest China. Journal of Earth Sciences and Environment, 44(01): 1~19 (in Chinese with English abstract).

    • Liu Bin, Ma Changqian, Jiang Hongyin, Guo Pan, Zhang Jinyang, Xiong Fuhao. 2013. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the eastern Kunlun region: Evidence from Huxiaoqin mafic rocks. Acta Petrologica Sinica, 29(6): 2093~2106 (in Chinese with English abstract).

    • Liu Bin, Wu Lianhua, Ma Changqian, Xu Yu, Li Fulin. 2022. Petrogenesis and tectonic implications of Silurian to Devonian intermediate rocks from the east part of the eastern Kunlun orogenic belt. Earth Science-Journal of China University of Geosciences, 48(6): 2398~2414 (in Chinese with English abstract).

    • Liu Zhanqing, Pei Xianzhi, Li Ruibao. 2011. LA-ICP-MS aircon U-Pb geochronology of thetwo suites of ophiolites at the Buqingshan area of the Anyemaqen orogenic belt in the southern margin of east Kunlun and its tectonic implication. Acta Geologica Sinica, 85(2): 185~194 (in Chinese with English abstract).

    • Long Xiaoping, Wang Lishe, Yu Neng. 2004. Geochemical characteristics of the Qingshuiquan mafic-ultramafic rocks, east Kunlun. Geological Bulletin of China, 23(7): 664~669 (in Chinese with English abstract).

    • Luo Zhaohua, Wei Yang, Xin Houtian, Zhan Huaming, Ke Shan, Li Wentao. 2006. Petrogenesis of the post-orogenic dike complex—Constraints to lithosphere delamination. Acta Petrologica Sinica, 22(6): 1672~1684 (in Chinese with English abstract).

    • Ma Changqian, Xiong Fuhao, Yin Shuo, Wang Lianxun, Gao Ke. 2015. Intensity and cyclicity of orogenic magmatism: An example from a Paleo-Tethyan granitoids batholith, eastern Kunlun, northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555~3568 (in Chinese with English abstract).

    • MacLean W H. 1990. Mass change calculations in altered rock series. Mineralium Deposita, 25: 44~49.

    • MacLean W H, Barrett T J. 1993. Litho-geochemical techniques using immobile elements. Journal of Geochemical Exploration, 48: 109~133.

    • Meng Fancong, Cui Meihui, Jia Lihui, Ren Yufeng, Feng Huibin. 2015. Paleozoic continental collision of the east Kunlun orogen: Evidence from protoliths of the eclogites. Acta Petrologica Sinica, 31(12): 3581~3594 (in Chinese with English abstract).

    • Miyashiro A. 1974, Volcanic rock series in island arcs and active continental margins: American Journal of Science, 274(4): 321~355.

    • Pan Yusheng, Zhou Weiming, Xu Ronghua, Wang Dongan, Zhang Yuquan, Xie Yingwen, Chen Tingen, Luo Hui. 1996. The Early Paleozoic geologic feature and tectonic evolution in Kunlun Range. Science China (Earth sciences), 36(4): 302~307 (in Chinese with English abstract).

    • Pearce J A. 2003. Supra-subduction zone ophiolites: The search for modern analogues. Special Papers-Geological Society of America, 269~294.

    • Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100: 14~48.

    • Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and PlanetarySciences, 23(1): 251~285.

    • Pei Xianzhi, Hu Nan, Liu Chengjun, Li Ruibao, Li Zuochen, Chen Youxin, Pei Lei. 2015. Detrital composition, geochemical characteristics and provenance analysis for the Maerzheng formation sandstone in Gerizhuotuo area, southern margin of east Kunlun region. Earth Science Frontiers, 61(2): 307~323 (in Chinese with English abstract).

    • Pei Xianzhi, Li Ruibao, Li Zuochen, Liu Chengjun, Chen Youxin, Pei Lei, Liu Zhanqing, Chen Guochao, Li Xiaobing, Wang Meng. 2018. Composition feature and formation process of Buqingshan composite accretionary mélange belt in southern margin of east Kunlun orogen. Earth Science, 43(12): 4498~4520 (in Chinese with English abstract).

    • Qi Shengsheng. 2015. Petrotectonic assemblages and tectonic evolution of the east Kunlun orogenic belt in Qinghai Province. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English summary).

    • Qi Shengsheng, Song Shuguang, Shi Lianchang, Cai Hangjia, Hu Jichun. 2014. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu-Suhaitu area, western part of the east Kunlun. Acta Petrologica Sinica, 30(11): 3345~3356 (in Chinese with English abstract).

    • Qi Xiaopeng, Yang Jie, Fan Xiangang, Cui Jiantang, Cai Zhenfeng, Zeng Xianwen, Wei Wei, Qu Xiaoxiang, Zhai Liming. 2016. Age, geochemical characteristics and tectonic significance of Changshishan ophiolite in central east Kunlun tectonic mélange belt along the east section of east Kunlun Mountains. Geology in China, 43(3): 797~816 (in Chinese with English abstract).

    • Reagan M K, Pearce J A, Katerina Petronotis, Renat R. Almeev, Aaron J. Avery, Claire Carvallo, Timothy Chapman, Gail L. Christeson, Eric C. Ferré, Marguerite Godard, Daniel E. Heaton, Maria Kirchenbaur, Walter Kurz, Steffen Kutterolf, Li Hongyyan, Li Yibing, Katsuyoshi Michibayashi, Sally Morgan, Wendy R. Nelson, Julie Prytulak, Marie Python, Alastair H. F. Robertson, Jeffrey G. Ryan, William W. Sager, Tetsuya Sakuyama, John W. Shervais, Kenji Shimizu, ScottA. Whattam. 2017. Subduction initiation and ophiolite crust: New insights from IODP drilling. International Geology Review, doi: 10. 1080/00206814. 2016. 1276482.

    • Ren Junhu, Liu Yiqun, Feng Qiao, Han Wenzhong, Gao Hui, Zhou Dinwu. 2009. LA-ICP-MS U-Pb zircon dating and geochemical characteristics of diabase-dykes from the Qingshuiquan area, eastern Kunlun orogenic belt. Acta Petrologica Sinica, 25(5): 1135~1145 (in Chinese with English abstract).

    • Sang Jizheng, Pei Xianzhi, Li Ruibao, Liu Chengjun, Chen Youxin, Li Zuochen, Chen Guochao, Yang Sen, Wang Xubin, Chen Gong, Deng Wenbing. 2016. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of gabbro in Qingshuiquan, east section of east Kunlun, and its tectonic significance. Geological Bulletin of China, 35(5): 700~710 (in Chinese with English abstract).

    • Shervais J W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59: 101~108.

    • Sisson V B, Poole A R, Harris N R, Burner H C, Pavlis T L, Copeland P, Donelick R A, McLelland W C. 2003. Geochemical and geochronological constraints for genesis of a tonalite-trondhjemite suite and associated mafic intrusive rocks in the eastern Chugach Mountains Alaska: A record of ridge-transform subduction. In: Sisson V B, Roeske S M, Pavlis T L, eds. Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin: Geological Society of America Special Paper, 371: 293~326.

    • Song Shuguang, Bi Hengze, Qi Shengsheng, Yang Liming, Allen M B, Niu Yaoling, Su Li, Li Wufu. 2018. HP-UHP metamorphic belt in the East Kunlun orogen: Final closure of the Proto-Tethys Ocean and formation of the Pan-North-China continent. Journal of Petrology, 59(11): 2043~2060.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313~345.

    • Sklyarov E V, Gladkochub D P, Mazukabzov A M, Menshagin Y V, Watanabe T, Pisarevsky S A. 2003. Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif (southern Siberian craton). Precambrian Research, 122: 122~359.

    • Wang Guocan, Zhang Tianping, Liang Bin, Chen Nengsong, Zhu Yunhai, Zhu Jie. 1999. Composite ophiolitic mélange zone in central part of eastern section of eastern Kunlun orogenic zone and geological significance of “Fault belt in central part of eastern section of eastern Kunlun orogenic zone”. Earth Science, 24(2): 129~133 (in Chinese with English abstract).

    • Wang Bingzhang, Zhang Zhiyong, Zhang Senqi, Zhu Yingtang, Cao Shengxiu. 2000. Geological features of lower Paleozoic ophiolite in Kuhai-Saishitang region, eastern section of eastern Kunlun. Earth Science, (6): 592~598 (in Chinese with English abstract).

    • Wang Bingzhang, Pan Tong, Pen Haidong, Wang Tao, Zhao Zhiyi, Peng Jianping, Zhang Jinming. 2021. Cambrian Qimantagh island arc in the East Kunlun orogen: Evidences from zircon U-Pb ages, lithogeochemistry and Hf isotopes of high-Mg andesite/diorite from the Lalinggaolihe area. Earth Sciences Frontiers, 28(1): 318~333 (in Chinese with English abstract).

    • Wang Bingzhang, Li Jiqing, Fu Changlei, Xu Haiquan, Li Wufu. 2022. Formation and evolutionary history of Burhan magmatic arc. Earth Sciences, 47(4): 1253~1270 (in Chinese with English abstract).

    • Wang Yongbiao. 2005. The architecture and tectonic evolution of Permian seamounts in Bayahor and adjacent area. Science China (Earth sciences), 35(12): 1140~1149 (in Chinese with English abstract).

    • Wang Qian, Zhao Jiao, Zhang Chuanlin, Yu Shengyao, Ye Xiantao, Liu Xiaoqiang. 2022. Paleozoic post-collisional magmatism and high-temperature granulite-facies metamorphism coupling with lithospheric delamination of the east Kunlun orogenic belt, NW China. Geoscience Frontiers, 2022, doi. org/10. 1016/j. gsf. 2021. 101271.

    • Wilson M. 1989. Igneous Petrogenesis. Unwin Hyman, London: Springer, 1~466.

    • Winchester J A, Floyd P A. 1977. Geochemical differentiation of different magma series and their differentiation products using immobile elements. Chemical Geology, 325~343.

    • Windley B F, Xiao Wenjiao. 2018. Ridge subduction and slab windows in the Central Asian orogenic belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Research, 61: 73~87.

    • Woodhead J D, Hergt J M, Davidson J P, Eggins S M. 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet. Sci. Lett. , 192: 331~346.

    • Wood D A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50: 11~30.

    • Wu Chen, YinAn, Zuza A V, Zhang Jinyu, Liu Wencan, Ding Lin. 2016. Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere, 8: 254~292.

    • Wu Chen, Zuza A V, Zhou Zhiguang, YinAn, McRivette M W, Chen Xuanhua, Ding Lin, Geng Jianzhen. 2019. Mesozoic-Cenozoic evolution of the eastern Kunlun Range, central Tibet, and implications for basin evolution during the Indo-Asian collision. The Geological Society of America, 11(4): 524~550.

    • Xiong Fuhao, Ma Changqian, Zhang Jinyang, Liu Bin. 2011. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in east Kunlun orogenic belt. Acta Petrologica Sinica, 27(11): 3350~3364 (in Chinese with English abstract).

    • Xiong Fuhao, Ma Changqian, Jiang Hong'an, Liu Bin, Huang Jian. 2014. Geochronology and geochemistry of Middle Devonian mafic dykes in the east Kunlun orogenic belt, northern Tibet Plateau: Implications for the transition from Prototethys to Paleotethys orogeny. Geochemistry, 225~235.

    • Xu Zhiqin, Yang Jingsui, Li Haibing, Yao Jianxin. 2006. The Early Paleozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central orogenic belt (COB). Acta Geologica Sinica, 80(12): 1793~1806 (in Chinese with English abstract).

    • Xin Wei, Sun Fengyue, Li Liang, Yan Jiaming, Zhang Yuting, Wang Yingchao, Shen Tingshuo, Yang Yijun. 2018. The Wulonggou metaluminous A2-type granites in the eastern Kunlun orogenic belt, NW China: Rejuvenation of subduction-related felsic crust and implications for post-collision extension. Lithos, 312~313.

    • Yan Zhen, Bian Qiantao, Korchagin O A. 2008. Provenance of Early Triassic Hongshuichuan Formation in the southern margin of the east Kunlun Mountains: Constrains from detrital framework, heavy mineral analysis and geochemistry. Acta Petrologica Sinica, 24(5): 1068~1078 (in Chinese with English abstract).

    • Yan Zhen, Fu Changlei, Aitchison J C, Buckman S, Niu Manlan, Cao Bo, Sun Yi, Guo Xianping, Wang Zongqi, Zhou Renjie. 2019. Retro-foreland basin in the NE Tibet Plateau. Tectonics, 38: 4229~4248.

    • Yang Jingsui, Robinson P T, Jiang Chunfa, Xu Zhiqin. 1996. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics, 258: 215~231.

    • Yang Jingsui, Wang Xibin, Shi Rendeng, Xu Zhiqin, Wu Cailai. 2004. The Dur'ngoi ophiolite in east Kunlun, northern Qinghai-Tibet Plateau: A fragment of paleo-Tethyan oceanic crust. Geology in China, (3): 225~239 (in Chinese with English abstract).

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogeny. Annual Review of Earth and Planetary Sciences, 28: 211~280.

    • Yu Neng, Jin Wei, Ge Wenchun, Long Xiaoping. 2005. Geochemical study on peraluminous granite from Jinshuikou in east Kunlun. Global Geology, 24(2): 123~128 (in Chinese with English abstract).

    • Yu Miao, Dick J M, Feng Chenyou, Li Bin, Wang Hui. 2020. The tectonic evolution of the east Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model. Journal of Asian Earth Sciences, 191, doi. org/10. 1016/j. jseaes. 2019. 104168.

    • Yuan Honglin, Gao Shan, Liu Xiaoming, Gunther D, Wu Fuyuan. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards & Geoanalytical Research, 28(3): 353~370.

    • Zhang Kexin, Lin Qixiang, Zhu Yunhai, Yin Hongfu, Luo Mansheng, Chen Nengsong, Wang Guocan. 2004. New evidence for the age of East Kunlun mélange and its tectonic significance. Science China (Earth sciences), 24(3): 210~218 (in Chinese with English abstract).

    • Zhang Zhiyong, Yin Hongfu, Wang Bingzhang, Wang Jin, Zhang Kexin. 2004. Presence and evidence of Kuhai-Saishitang branching ocean between Kunlun-Qinling mountains. Earth Science, 29(6): 691~696 (in Chinese with English abstract).

    • Zhang Qi, Zhang Wei, Jiang Lili, Shi Yuruo, Jiao Shoutao, Wang Cunzhi, Wang Zhen. 2020. Orogenic peridotite and its significance. Geological Bulletin of China, 39(10): 1489~1506 (in Chinese with English abstract).

    • Zhang Jinyang, Ma Changqian, Xiong Fuhao, Liu Bin, Li Jianwei, Pan Yuanming. 2014. Early Paleozoic high-Mg diorite-granodiorite in the eastern Kunlun orogen, western China: Response to continental collision and slab break-off. Lithos, 210~211.

    • Zhang Jinyang, Lei Huanling, Ma Changqian, Li Jianwei, Pan Yuanming. 2021. Silurian-Devonian granites and associated intermediate-mafic rocks along the eastern Kunlun Orogen, western China: Evidence for a prolonged post-collisional lithospheric extension. Gondwana Research, 89: 131~146.

    • Zhang Zhaochong, Mahoney J J, Mao Jingwen, Wang Fusheng. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997~2019.

    • Zhao Guochun, Wang Yuejun, Huang Baochun, Dong Yunpeng, Li Sanzhong, Zhang Guowei, Yu Shan. 2018. Geological reconstructions of the east Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, doi. org/10. 1016/j. earscirev. 2018. 10. 003.

    • Zhao Xu, Fu Lebing, Santosh M, Wei Junhao, Chen Jiajie. 2022. The growth and evolution of continental crust contributed by multiple sources in the east Kunlun Orogen during Early Paleozoic. Earth-Science Reviews, 233, doi. org/10. 1016/j. earscirev. 2022. 104190.

    • Zhou Bo, Dong Yunpeng, Zhang Feifei, Yang Zhao, Sun Shengsi, He Dengfeng. 2016. Geochemistry and zircon U-Pb geochronology of granitoids in the east Kunlun orogenic belt, northern Tibetan Plateau: Origin and tectonic implications. Journal of Asian Earth Sciences, 130: 265~281.

    • Zhu Yunhai, Zhang Kexin, Pan Yuanming, Chen Nengsong, Wang Guocan, Hou Guangjiu. 1999. Determination of different ophiolitic belts in eastern Kunlun orogenic zone and their tectonic significance. Earth Science (Journal of China University of Geosciences), 24(2): 134~138 (in Chinese with English abstract).

    • 巴金, 陈能松, 王勤燕, 王新宇, 张璐, 王树庆. 柴南缘堇青石花岗岩的Nd-Sr-Pb同位素组成及其对岩石成因、源区构造属性和构造演化的启示. 地球科学, 37: 80~92.

    • 边千韬, 罗小全, 李红生, 陈海泓, 赵大升. 1999. 阿尼玛卿山早古生代和早石炭—早二叠世蛇绿岩的发现. 地质科学, 34(4): 523~524.

    • 陈亮, 孙勇, 裴先治, 高明, 冯涛, 张宗清, 陈文. 2001. 德尔尼蛇绿岩40Ar-39Ar年龄: 青藏高原最北端古特提斯洋盆存在和延展的证据. 科学通报, 46(45): 424~426.

    • 陈宣华, 尹安, Gehrels GE, 李丽, 蒋荣宝. 2011. 柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学. 地质学报, 85(2): 157~171.

    • 陈有炘, 裴先治, 李瑞保, 刘战庆, 李佐臣, 张晓飞, 陈国超, 刘智刚, 丁仨平, 郭俊锋. 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质, 25(3): 510~521.

    • 陈加杰, 付乐兵, 魏俊浩, 田宁, 熊乐, 赵玉京, 张玉洁, 祁月清. 2016. 东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约. 地球科学, 41(11): 1863~1882.

    • 陈国超, 陈孝珍, 裴先治, 魏均启, 张勇, 李瑞保, 李佐臣, 陈有炘, 刘成军, 季宪军, 吴树宽. 2022. 哈图正长花岗岩年代学和成因及对东昆仑东段稀土元素成矿地质背景的约束. 地质学报, 96(3): 971~990.

    • 陈能松, 孙敏, 张克信, 朱去海. 2000. 东昆仑变闪长岩体的40Ar-39Ar和U-Pb年龄: 角闪石过剩Ar和东昆仑早古生代岩浆岩证据. 科学通报, 45(21): 2337~2342.

    • 董云鹏, 惠博, 孙圣思, 杨钊, 张菲菲, 何登峰, 孙娇鹏, 史小辉. 2022. 中国中央造山系原-古特提斯多阶段复合造山过程. 地质学报, 96(10): 3426~3448.

    • 冯惠彬, 孟繁聪, 李胜荣, 贾丽辉. 2015. 东昆仑清水泉蛇纹岩中铬铁矿特征及其构造意义. 岩石学报, 31(8): 2129~2144.

    • 冯娟萍, 欧阳征健, 马海勇, 范萌萌, 马静. 2020. 华北克拉通东南缘中条山陶家窑基性岩墙群U-Pb定年、地球化学特征及其构造环境. 地质学报, 94(2): 573~586.

    • 高延林, 吴向农, 左国朝. 1988. 东昆仑山清水泉蛇绿岩特征及其大地构造意义. 中国地质科学院西安地质矿产研究所所刊, 17~28.

    • 郭安林, 张国伟, 孙延贵, 郑健康, 刘晔, 王建其. 2006. 阿尼玛卿蛇绿岩带OIB和MORB的地球化学及空间分布特征: 玛积雪山古洋脊热点构造证据. 中国科学(D辑): 地球科学, 36(7): 618~629.

    • 姜春发. 2000. 中央造山带开合构造. 北京: 地质出版社.

    • 李荣杜, 计文化, 杨永成, 于浦生, 赵振明, 陈守建, 孟勇, 潘晓平. 2008. 昆仑山及邻区地质. 北京: 地质出版社.

    • 李瑞保, 裴先治, 李佐臣, 裴磊, 陈国超, 刘成军, 陈有炘, 刘战庆. 2014. 东昆仑南缘布青山构造混杂带哥日卓托洋岛玄武岩地球化学特征及构造意义. 地学前缘, 21(1): 183~195.

    • 李三忠, 赵淑娟, 李玺瑶, 曹花花, 刘鑫, 郭晓玉, 肖文交, 赖绍聪, 闫臻, 李宗会, 于胜尧, 兰浩圆. 2016. 东亚原特提斯洋(Ⅰ): 南北边界和俯冲极性. 岩石学报, 32(9): 2609~2627.

    • 李王晔, 李曙光, 郭安林, 孙延贵, 张国伟. 2007. 青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学-对“祁-柴-昆”晚新元古代-早奥陶世多岛洋南界的制约. 中国科学(D辑): 地球科学, 37(增刊I): 288~294.

    • 李文渊, 张照伟, 王亚磊, 张江伟, 尤敏鑫, 张志炳, 南卡俄吾. 2022. 东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用. 地球科学与环境学报, 44(1): 1~19.

    • 刘战庆, 裴先治, 李瑞保, 等. 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义. 地质学报, 85(2): 185~194.

    • 刘彬, 马昌前, 蒋红安, 郭盼, 张金阳, 熊富浩. 2013. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093~2106.

    • 刘彬, 伍炼华, 马昌前, 徐雨, 李福林. 2022. 东昆仑造山带东段志留纪-泥盆纪中性岩的成因及其构造意义.地球科学, 48(6): 2398~2414.

    • 龙晓平, 王立社, 余能. 2004. 东昆仑山清水泉镁铁质-超镁铁质岩的地球化学特征. 地质通报, 23(7): 664~669.

    • 罗照华, 魏阳, 辛后田, 詹华明, 柯珊, 李文韬. 2006. 造山后脉岩组合的岩石成因对岩石圈拆沉作用的约束. 岩石学报, 22(6): 1672~1684.

    • 马昌前, 熊富浩, 尹烁, 王连训, 高珂. 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555~3568.

    • 孟繁聪, 崔美慧, 贾丽辉, 任玉峰, 冯惠彬. 2015. 东昆仑造山带早古生代的大陆碰撞: 来自榴辉岩原岩性质的证据. 岩石学报, 31(12): 3581~3594.

    • 潘裕生, 周伟明, 许荣华, 王东安, 张玉泉, 谢应雯, 陈挺恩, 罗辉. 1996. 昆仑山早古生代地质特征与演化. 中国科学(D辑: 地球科学), 26 (04): 302~307.

    • 裴先治, 胡楠, 刘成军, 李瑞保, 李佐臣, 陈有炘, 裴磊, 刘战庆, 陈国超, 杨杰. 2015. 东昆仑南缘布青山地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析. 地质论评, 61(2): 307~323.

    • 裴先治, 李瑞保, 李佐臣, 刘成军, 陈有炘, 裴磊, 刘战庆, 陈国超, 李小兵, 王盟. 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程. 地球科学, 43(12): 4498~4520.

    • 祁生胜. 2015. 青海省东昆仑造山带火成岩岩石构造组合与构造演化. 中国地质大学(北京)博士学位论文.

    • 祁生胜, 宋述光, 史连昌, 才航加, 胡继春. 2014. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义. 岩石学报, 30(11): 3345~3356.

    • 祁晓鹏, 杨杰, 范显刚, 崔建堂, 蔡振锋, 曾献文, 魏伟, 屈小相, 翟黎明. 2016. 东昆仑东段东昆中构造混杂岩带长石山蛇绿岩年代学、地球化学特征及其构造意义. 中国地质, 43(03): 797~816.

    • 任军虎, 柳益群, 冯乔, 韩文中, 高辉, 周鼎武. 2009. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 岩石学报, 25(5): 1135~1145.

    • 桑继镇, 裴先治, 李瑞保, 刘成军, 陈有炘, 李佐臣, 陈国超, 杨森, 王旭斌, 陈功, 邓文兵. 2016. 东昆仑东段清水泉辉长岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义. 地质通报, 35(5): 700~710.

    • 王秉璋, 张智勇, 张森琦, 朱迎堂, 曹生秀. 2000. 东昆仑东端苦海-赛什塘地区晚古生代蛇绿岩的地质特征. 地球科学, (6): 592~598.

    • 王秉璋, 潘彤, 任海东, 王涛, 赵志逸, 封建平, 张金明. 2021. 东昆仑祁漫塔格寒武纪岛弧: 来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石年代学、地球化学和Hf同位素证据. 地学前缘, 28(1): 318~333.

    • 王秉璋, 李积清, 付长垒, 许海全, 李五福. 2022. 布尔汉布达早古生代岩浆弧的形成与演化初探. 地球科学, 47(4) : 1253~1270.

    • 王永标. 2005. 巴颜喀拉及邻区中二叠世古海山的结构与演化.中国科学(D辑): 地球科学, 35(12): 1140~1149.

    • 王国灿, 张天平, 梁斌, 陈能松, 朱云海, 朱杰. 1999. 东昆仑造山带东段昆中复合蛇绿混杂岩带及“东昆中断裂带”地质涵义. 地球科学, 24(2): 129~133.

    • 熊富浩, 马昌前, 张金阳, 刘彬. 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350~3364.

    • 许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793~1806.

    • 闫臻, 边千韬, Oleg A Lorchagin, Igor I. Pospelov, 李继亮, 王宗起. 2008. 东昆仑南缘早三叠世洪水川组的源区特征: 来自碎屑组成、重矿物和岩石地球化学的证据.岩石学报, 24(5): 1068~1078.

    • 杨经绥, 王希斌, 史仁灯, 许志琴, 吴才来. 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 225~239.

    • 余能, 金巍, 葛文春, 龙晓平. 2005. 东昆仑金水口过铝花岗岩的地球化学研究. 世界地质, 24(2): 123~128.

    • 张克信, 林启祥, 朱云海, 殷鸿福, 骆满生, 陈能松, 王国灿. 2004. 东昆仑东段混杂岩建造时代厘定的古生物新证据及其大地构造意义. 中国科学(D辑: 地球科学), 34(3): 210~218.

    • 张智勇, 殷鸿福, 王秉璋, 王瑾, 张克信. 2004. 昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据. 地球科学, 29(6): 691~696.

    • 朱云海, 张克信, Pan Yuanming, 陈能松, 王国灿, 侯光久. 1999. 东昆仑造山带不同蛇绿岩带的厘定及其构造意义. 地球科学, 24(2): 134~138.

    • 张旗, 张维, 姜丽莉, 石玉若, 焦守涛, 王存智, 王振. 2020. 造山橄榄岩及其意义. 地质通报, 39(10): 1489~1506.

  • 参考文献

    • Anderson T. 2003. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1~2): 59~79.

    • Aldanmaz E, Pearce J A, Thirlwall M F, Mitchell J G. 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102: 67~95.

    • Ba Jin, Chen Nengsong, Wang Qinyan, Wang Xinyu, Zhang Lu, Wang Shuqing. Nd-Sr-Pb isotopic compositions of cordierite granite on southern margin of the Qaidam block, NW China, and constraints on its petrogenesis, tectonic affinity of source region and tectonic implications. Earth Science, 37: 80~92.

    • Bian Qiantao, Luo Xiaoquan, Li Hongsheng, Chen Haihong, Zhao Dasheng. 1999. Discovery of earlyPaleozoic and early Carboniferous-early Permian ophiolites in the Anemaqen, Qinghai Province, China. Scientia Geologica Sinica, 34(4): 523~524 (in Chinese with English abstract).

    • Bian Qiantao, Li Dihui, Pospelov I, Yin Leiming, Li Hongsheng, Zhao Dasheng, Chang Chengfa, Luo Xiaoquan, Gao Shanlin, Astrakhantsev O, Chamov N. 2004. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 23: 577~596.

    • Bi Hengze, Song Shuguang, Dong Jinlong. 2018. First discovery of coesite in eclogite from east Kunlun, northwest China. Science Bulletin, 23: 1536~1538.

    • Boynton W V. 1984. Cosmo chemistry of the rare earth elements: Meteorite studies. Developments in Geochemistry, 2(2): 63~114.

    • Chen Liang, Sun Yong, Pei Xianzhi, Gao Ming, Feng Tao, Zhang Zongqing, Chen Wen. 2001. 40Ar-39Ar age of Deerni ophiolite: The existence of Paleotethys Ocean in northern Tibet Plateau and the evidence for their extent. Chinese Science Bulletin, 46(45): 424~426 (in Chinese with English abstract).

    • Chen Xuanhua, Yin An, George Gehrels, Li Li, Jiang Rongbao. 2011. Chemical geodynamics of granitic magmatism in the basement of the Eastern Qaidam basin, northern Qinghai-Tibet Plateau. Acta Geologica Sinica, 85(2): 157~171 (in Chinese with English abstract).

    • Chen Youxin, Pei Xianzhi, Li Ruibao, Liu Zhanqing, Li Zuochen, Zhang Xiaofei. 2011. Zircon U-Pbage of Xiaomiao Formation of Proterozoic on the eastern section of the east Kunlun orogenic belt. Geoscience, 25(3): 510~521 (in Chinese with English abstract).

    • Chen Jiajie, Fu Lebing, Wei Junhao, Tian Ning, Xiong Le, Zhao Yujing, Zhang Yujie, Qi Yueqing. 2016. Geochemical characteristics of Late Ordovician granodiorite in Gouli area, eastern Kunlun orogenic belt, Qinghai Province: Implications on the evolution of Proto-Tethys Ocean. Earth Science, 41(11): 1863~1882 (in Chinese with English abstract).

    • Chen Jiajie, Fu Bile, Wei Junhao, David S, Zhang Daohan. 2019. Proto-Tethys magmatic evolution along northern Gondwana: Insights from Late Silurian-Middle Devonian A-type magmatism, east Kunlun Orogen, northern Tibetan Plateau, China. Lithos, https: //doi. org/10. 1016/j. lithos. 2019. 105304.

    • Chen Nengsong, Sun Min, Zhang Kexin, Zhu Yunhai. 2000. The 40Ar-39Ar and U-Pb ages of meta-diorites in east Kunlun: The excess Argon and evidence of Early Paleozoic magmatic rocks in east Kunlun. Chinese Science Bulletin, 45(21): 2337~2342 (in Chinese with English abstract).

    • Chen Guochao, Chen Xiaozhen, Pei Xianzhi, Wei Junqi, Zhang Yong, Li Ruibao, Li Zuochen, Chen Youxin, Liu Chengjun, Ji Xianjun, Wu Shukuan. 2022. Geochronology and petrogenesis of Hatu syenogranite and its constraint on the geological background of REE mineralization in the eastern part of east Kunlun. Acta Geologica Sinica, 96(3): 971~990 (in Chinese with English abstract).

    • Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123: 387~411.

    • Dilek Y, Furnes H. 2014. Ophiolites and their origins. Elements, 10: 93~100.

    • Dong Guochen, Luo Mingfei, Mo Xuanxue, Zhao Zhidan, Dong Liangqiong, Yu Xuehui, Wang Xin, Li Xiaowei, Huang Xiongfei, Liu Yanbin. 2018b. Petrogenesis and tectonic implications of early Paleozoic granitoids in east Kunlun belt: Evidences from geochronology, geochemistry and isotopes. Geoscience Frontiers, 9(5): 1383~1397.

    • Dong Yunpeng, He Dengfeng, Sun Shengsi, Liu Xiaoming, Zhou Xiaohu, Zhang Feifei, Yang Zhao, Cheng Bin, Zhao Guochun, Li Jianhua. 2018a. Subduction and accretionary tectonics of the east Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231~261.

    • Dong Yunpeng, Sun Shengsi, Liu Xiaoming, He Dengfeng, Zhou Xiaohu, Zhang Feifei, Yang Zhao, Zhou Dingwu. 2019. Geochronology and geochemistry of the Yazidaban ophiolitic mélange in Qimantagh: Constraints on the Early Paleozoic back-arc basin of the east Kunlun Orogen, northern Tibetan Plateau. Journal of the Geological Society of London, 176: 306~322.

    • Dong Yunpeng, Hui Bo, Sun Shengsi, Yang Zhao, Zhang Feifei, He Dengfeng, Sun Jiaopeng, Shi Xiaohui. 2022. Multiple orogeny and geodynamics from Proto-Tethys to Paleo-Tethys of the Central China orogenic belt. Acta Geologica Sinica, 96(10): 3426~3448 (in Chinese with English abstract).

    • Feng Huibin, Meng Fancong, Li Shengrong, Jia Lihui. 2015. Characteristics and tectonic significance of chromites from Qingshuiquan serpentinite of east Kunlun, Northwest China. Acta Petrologica Sinica, 31(8): 2129~2144 (in Chinese with English abstract).

    • Feng Juanping, Ooyang Zhengjian, Ma Haiyong, Fan Mengmeng, Ma Jing. 2020. U-Pb chronology, geochemical characteristics and significance of the Taojiayao basic dike swarms in the Zhongtiao Mountain, southeastern margin of North China craton. Acta Geologica Sinica, 94(2): 573~586 (in Chinese with English abstract).

    • French J E, Heaman L M. 2010. Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar Craton, India: Implications for the existence of the Neoarchean supercraton belt. Precambrian Research, 183(3): 416~441.

    • Gao Yanlin, Wu Xiangnong, Zuo Guochao. 1988. The geologic characteristics and tectonic significance of Qingshuiquan ophiolite in east Kunlun Range. Bulletin of Xi'an Institute of Geological Mineral Resource, Chinese Academy of Geological sciences, 21: 17~28 (in Chinese with English abstract).

    • Girardi V A V, Costa P C, Teixeira W. 2012. Petrology and Sr-Nd characteristics of the Nova Lacerda dike swarm, SW Amazonian Craton: New insights regarding its subcontinental mantle source and Mesoproterozoic geodynamics. International Geology Review, 54: 165~182.

    • Guillot M G, Escayola M, Acevedo R. 2011. Calc-alkaline rear-arc magmatism in the FuegianAndes: Implications for the mid-cretaceous tectonomagmatic evolution of southernmost south America. Journal of South American Earth Sciences, 31: 1~16.

    • Guo Anlin, Zhang Guowei, Sun Yangui, Zheng Jiankang, Liu Ye, Wang Jianqi. 2006. The geochemistry and spatial feature of OIB and MORB in Animaqen ophiolitic zone: The evidence for the paleo hot spot of oceanic ridge. Science China (Earth sciences), 36(7): 618~629 (in Chinese with English abstract).

    • Hart S R, Dunn T. l993. Experimental cpx/melt partitioning of trace elements. Contributions to Mineralogy and Petrology, 113(1): 1~8.

    • Hawkesworth C J, Turner S P, McDermott F, Peate D W, vanCalsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276: 551~555.

    • He Dengfeng, Dong Yunpeng, Liu Xiaoming, Yang Zhao, Sun Shengsi, Cheng Bin, Li Wei. 2016. Tectono-thermal events in east Kunlun, northern Tibetan Plateau: Evidence from zircon U-Pb geochronology. Gondwana Research, 30: 179~190.

    • Ishizuka O, Kenichiro T, Reagan M K. 2014. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue. Elements, DOI: 10. 2113/gselements. 10. 2. 115.

    • Jahn B M, Capdevila R, Liu Dunyi, Vernon A, Badarch G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23(5): 629~653.

    • Jiang Chunfa. 2000. Opening-Closing Tectonics of Central orogenic belt in China. Beijing: Geological Publishing House, 1~50 (In Chinese).

    • Khan T, Murata M, Karim T, Zafar M, Ozawa H. 2007. A Cretaceous dike swarm provides evidence of a spreading axis in the back-arc basin of the Kohistan paleo-island arc, northwestern Himalaya, Pakistan. Journal of Asian Earth Sciences, 29(2~3): 350~360.

    • Le Bas M J, LeMaitre R W, Streckelsen A. 1986. A chemical classification of volcanic rocks based on the total alkli-slica diagram. Journal of Petrology, 27(6): 745~750.

    • Li Rongshe, Ji Wenhua, Yang Yongcheng, Yu Pusheng, Zhao Zhenming, Chen Shoujian, Meng Yong, Pan Xiaoping. 2008. Thegeology of Kunlun Range and Adjacent Area. Beijing: Geological Publishing House, 1~400 (in Chinese).

    • Li Ruibao, Pei Xianzhi, Li Zuochen. 2014. Geochemical characteristics of Gerizhuotuo OIB and its tectonic significance in Buqingshan tectonic mélange belt, southern margin of east Kunlun Orogen. Earth Science Frontiers, 21(1): 183~195 (in Chinese with English abstract).

    • Li Ruibao, Pei Xianzhi, Li Zuochen, Pei Lei, Chen Guochao, Wei Bo, Chen Youxin, Liu Chengjun, Wang Meng. 2018. Cambrian (~510 Ma) ophiolites of the east Kunlun orogen, China: A case study from the Acite ophiolitic tectonic mélange. International Geology Review, 60(16): 2063~2083.

    • Li Ruibao, Pei Xianzhi, Li Zuochen, Patias Daniel, Su Zhenguo, Pei Lei, Chen Guochao, Chen Youxin, Liu Chengjun. 2020. Late Silurian to Early Devonian volcanics in the east Kunlun orogen, northern Tibetan Plateau: Record of postcollisional magmatism related to the evolution of the Proto-Tethys Ocean. Journal of Geodynamics, doi. org/10. 1016/j. jog. 2020. 101780.

    • Li Ruibao, Pei XianZhi, Wei Bo, Li Zuochen, Pei Lei, Chen Guochao, Chen Youxin, Liu Chengjun. 2021. Middle Cambrian-Early Ordovician ophiolites in the central fault of the east Kunlun Orogen: Implications for an epicontinental setting related to Proto-Tethyan Ocean subduction. Gondwana Research, 94: 243~258.

    • Li Ruibao, Pei XianZhi, Zhou Renjie, Li Zuochen, Pei Lei, Chen Guochao, Chen Youxin, Liu Chengjun. 2023. Magmatic response to the closure of the Proto-Tethys Ocean: A case study from the middle Paleozoic granitoids in the Kunlun Orogen, western China. Journal of Asian Earth Sciences, 242, doi. org/10. 1016/j. jseaes. 2022. 105513.

    • Li Shanzhong, Zhao Shujuan, Li Xiyao, Cao Huahua, Liu Xin, Guo Xiaoyu, Xiao Wenjiao, Lai Shaocong, Yan Zhen, Li Zhonghui, Yu Shengyao and Lan Haoyuan. 2016. Proto-Tehtys Ocean in east Asia (I): Northern and southern border faults and subduction polarity. Acta Petrologica Sinica, 32(9): 2609~2627 (in Chinese with English abstract).

    • Li Wangye, Li Shuguang, Guo Anlin, Sun Yangui, Zhang Guowei. 2007. The zircon SHRIMP U-Pb age and trace elements geochemistry-constraints to the southern boundary of late Proterozoic-Early Ordovician archipelagic ocean. Science China (Earth sciences), 37(Sup I): 288~294 (in Chinese with English abstract).

    • Li Wenyuan, Zhang Zhaowei, Wang Yalei. 2022. Tectonictrans formation of Proto-and Paleo-Tethys and the metallization of magmatic Ni-Cu-Co sufide deposits in Kunlun orogen, Northwest China. Journal of Earth Sciences and Environment, 44(01): 1~19 (in Chinese with English abstract).

    • Liu Bin, Ma Changqian, Jiang Hongyin, Guo Pan, Zhang Jinyang, Xiong Fuhao. 2013. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the eastern Kunlun region: Evidence from Huxiaoqin mafic rocks. Acta Petrologica Sinica, 29(6): 2093~2106 (in Chinese with English abstract).

    • Liu Bin, Wu Lianhua, Ma Changqian, Xu Yu, Li Fulin. 2022. Petrogenesis and tectonic implications of Silurian to Devonian intermediate rocks from the east part of the eastern Kunlun orogenic belt. Earth Science-Journal of China University of Geosciences, 48(6): 2398~2414 (in Chinese with English abstract).

    • Liu Zhanqing, Pei Xianzhi, Li Ruibao. 2011. LA-ICP-MS aircon U-Pb geochronology of thetwo suites of ophiolites at the Buqingshan area of the Anyemaqen orogenic belt in the southern margin of east Kunlun and its tectonic implication. Acta Geologica Sinica, 85(2): 185~194 (in Chinese with English abstract).

    • Long Xiaoping, Wang Lishe, Yu Neng. 2004. Geochemical characteristics of the Qingshuiquan mafic-ultramafic rocks, east Kunlun. Geological Bulletin of China, 23(7): 664~669 (in Chinese with English abstract).

    • Luo Zhaohua, Wei Yang, Xin Houtian, Zhan Huaming, Ke Shan, Li Wentao. 2006. Petrogenesis of the post-orogenic dike complex—Constraints to lithosphere delamination. Acta Petrologica Sinica, 22(6): 1672~1684 (in Chinese with English abstract).

    • Ma Changqian, Xiong Fuhao, Yin Shuo, Wang Lianxun, Gao Ke. 2015. Intensity and cyclicity of orogenic magmatism: An example from a Paleo-Tethyan granitoids batholith, eastern Kunlun, northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555~3568 (in Chinese with English abstract).

    • MacLean W H. 1990. Mass change calculations in altered rock series. Mineralium Deposita, 25: 44~49.

    • MacLean W H, Barrett T J. 1993. Litho-geochemical techniques using immobile elements. Journal of Geochemical Exploration, 48: 109~133.

    • Meng Fancong, Cui Meihui, Jia Lihui, Ren Yufeng, Feng Huibin. 2015. Paleozoic continental collision of the east Kunlun orogen: Evidence from protoliths of the eclogites. Acta Petrologica Sinica, 31(12): 3581~3594 (in Chinese with English abstract).

    • Miyashiro A. 1974, Volcanic rock series in island arcs and active continental margins: American Journal of Science, 274(4): 321~355.

    • Pan Yusheng, Zhou Weiming, Xu Ronghua, Wang Dongan, Zhang Yuquan, Xie Yingwen, Chen Tingen, Luo Hui. 1996. The Early Paleozoic geologic feature and tectonic evolution in Kunlun Range. Science China (Earth sciences), 36(4): 302~307 (in Chinese with English abstract).

    • Pearce J A. 2003. Supra-subduction zone ophiolites: The search for modern analogues. Special Papers-Geological Society of America, 269~294.

    • Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100: 14~48.

    • Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and PlanetarySciences, 23(1): 251~285.

    • Pei Xianzhi, Hu Nan, Liu Chengjun, Li Ruibao, Li Zuochen, Chen Youxin, Pei Lei. 2015. Detrital composition, geochemical characteristics and provenance analysis for the Maerzheng formation sandstone in Gerizhuotuo area, southern margin of east Kunlun region. Earth Science Frontiers, 61(2): 307~323 (in Chinese with English abstract).

    • Pei Xianzhi, Li Ruibao, Li Zuochen, Liu Chengjun, Chen Youxin, Pei Lei, Liu Zhanqing, Chen Guochao, Li Xiaobing, Wang Meng. 2018. Composition feature and formation process of Buqingshan composite accretionary mélange belt in southern margin of east Kunlun orogen. Earth Science, 43(12): 4498~4520 (in Chinese with English abstract).

    • Qi Shengsheng. 2015. Petrotectonic assemblages and tectonic evolution of the east Kunlun orogenic belt in Qinghai Province. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English summary).

    • Qi Shengsheng, Song Shuguang, Shi Lianchang, Cai Hangjia, Hu Jichun. 2014. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu-Suhaitu area, western part of the east Kunlun. Acta Petrologica Sinica, 30(11): 3345~3356 (in Chinese with English abstract).

    • Qi Xiaopeng, Yang Jie, Fan Xiangang, Cui Jiantang, Cai Zhenfeng, Zeng Xianwen, Wei Wei, Qu Xiaoxiang, Zhai Liming. 2016. Age, geochemical characteristics and tectonic significance of Changshishan ophiolite in central east Kunlun tectonic mélange belt along the east section of east Kunlun Mountains. Geology in China, 43(3): 797~816 (in Chinese with English abstract).

    • Reagan M K, Pearce J A, Katerina Petronotis, Renat R. Almeev, Aaron J. Avery, Claire Carvallo, Timothy Chapman, Gail L. Christeson, Eric C. Ferré, Marguerite Godard, Daniel E. Heaton, Maria Kirchenbaur, Walter Kurz, Steffen Kutterolf, Li Hongyyan, Li Yibing, Katsuyoshi Michibayashi, Sally Morgan, Wendy R. Nelson, Julie Prytulak, Marie Python, Alastair H. F. Robertson, Jeffrey G. Ryan, William W. Sager, Tetsuya Sakuyama, John W. Shervais, Kenji Shimizu, ScottA. Whattam. 2017. Subduction initiation and ophiolite crust: New insights from IODP drilling. International Geology Review, doi: 10. 1080/00206814. 2016. 1276482.

    • Ren Junhu, Liu Yiqun, Feng Qiao, Han Wenzhong, Gao Hui, Zhou Dinwu. 2009. LA-ICP-MS U-Pb zircon dating and geochemical characteristics of diabase-dykes from the Qingshuiquan area, eastern Kunlun orogenic belt. Acta Petrologica Sinica, 25(5): 1135~1145 (in Chinese with English abstract).

    • Sang Jizheng, Pei Xianzhi, Li Ruibao, Liu Chengjun, Chen Youxin, Li Zuochen, Chen Guochao, Yang Sen, Wang Xubin, Chen Gong, Deng Wenbing. 2016. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of gabbro in Qingshuiquan, east section of east Kunlun, and its tectonic significance. Geological Bulletin of China, 35(5): 700~710 (in Chinese with English abstract).

    • Shervais J W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59: 101~108.

    • Sisson V B, Poole A R, Harris N R, Burner H C, Pavlis T L, Copeland P, Donelick R A, McLelland W C. 2003. Geochemical and geochronological constraints for genesis of a tonalite-trondhjemite suite and associated mafic intrusive rocks in the eastern Chugach Mountains Alaska: A record of ridge-transform subduction. In: Sisson V B, Roeske S M, Pavlis T L, eds. Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin: Geological Society of America Special Paper, 371: 293~326.

    • Song Shuguang, Bi Hengze, Qi Shengsheng, Yang Liming, Allen M B, Niu Yaoling, Su Li, Li Wufu. 2018. HP-UHP metamorphic belt in the East Kunlun orogen: Final closure of the Proto-Tethys Ocean and formation of the Pan-North-China continent. Journal of Petrology, 59(11): 2043~2060.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313~345.

    • Sklyarov E V, Gladkochub D P, Mazukabzov A M, Menshagin Y V, Watanabe T, Pisarevsky S A. 2003. Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif (southern Siberian craton). Precambrian Research, 122: 122~359.

    • Wang Guocan, Zhang Tianping, Liang Bin, Chen Nengsong, Zhu Yunhai, Zhu Jie. 1999. Composite ophiolitic mélange zone in central part of eastern section of eastern Kunlun orogenic zone and geological significance of “Fault belt in central part of eastern section of eastern Kunlun orogenic zone”. Earth Science, 24(2): 129~133 (in Chinese with English abstract).

    • Wang Bingzhang, Zhang Zhiyong, Zhang Senqi, Zhu Yingtang, Cao Shengxiu. 2000. Geological features of lower Paleozoic ophiolite in Kuhai-Saishitang region, eastern section of eastern Kunlun. Earth Science, (6): 592~598 (in Chinese with English abstract).

    • Wang Bingzhang, Pan Tong, Pen Haidong, Wang Tao, Zhao Zhiyi, Peng Jianping, Zhang Jinming. 2021. Cambrian Qimantagh island arc in the East Kunlun orogen: Evidences from zircon U-Pb ages, lithogeochemistry and Hf isotopes of high-Mg andesite/diorite from the Lalinggaolihe area. Earth Sciences Frontiers, 28(1): 318~333 (in Chinese with English abstract).

    • Wang Bingzhang, Li Jiqing, Fu Changlei, Xu Haiquan, Li Wufu. 2022. Formation and evolutionary history of Burhan magmatic arc. Earth Sciences, 47(4): 1253~1270 (in Chinese with English abstract).

    • Wang Yongbiao. 2005. The architecture and tectonic evolution of Permian seamounts in Bayahor and adjacent area. Science China (Earth sciences), 35(12): 1140~1149 (in Chinese with English abstract).

    • Wang Qian, Zhao Jiao, Zhang Chuanlin, Yu Shengyao, Ye Xiantao, Liu Xiaoqiang. 2022. Paleozoic post-collisional magmatism and high-temperature granulite-facies metamorphism coupling with lithospheric delamination of the east Kunlun orogenic belt, NW China. Geoscience Frontiers, 2022, doi. org/10. 1016/j. gsf. 2021. 101271.

    • Wilson M. 1989. Igneous Petrogenesis. Unwin Hyman, London: Springer, 1~466.

    • Winchester J A, Floyd P A. 1977. Geochemical differentiation of different magma series and their differentiation products using immobile elements. Chemical Geology, 325~343.

    • Windley B F, Xiao Wenjiao. 2018. Ridge subduction and slab windows in the Central Asian orogenic belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Research, 61: 73~87.

    • Woodhead J D, Hergt J M, Davidson J P, Eggins S M. 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet. Sci. Lett. , 192: 331~346.

    • Wood D A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50: 11~30.

    • Wu Chen, YinAn, Zuza A V, Zhang Jinyu, Liu Wencan, Ding Lin. 2016. Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere, 8: 254~292.

    • Wu Chen, Zuza A V, Zhou Zhiguang, YinAn, McRivette M W, Chen Xuanhua, Ding Lin, Geng Jianzhen. 2019. Mesozoic-Cenozoic evolution of the eastern Kunlun Range, central Tibet, and implications for basin evolution during the Indo-Asian collision. The Geological Society of America, 11(4): 524~550.

    • Xiong Fuhao, Ma Changqian, Zhang Jinyang, Liu Bin. 2011. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in east Kunlun orogenic belt. Acta Petrologica Sinica, 27(11): 3350~3364 (in Chinese with English abstract).

    • Xiong Fuhao, Ma Changqian, Jiang Hong'an, Liu Bin, Huang Jian. 2014. Geochronology and geochemistry of Middle Devonian mafic dykes in the east Kunlun orogenic belt, northern Tibet Plateau: Implications for the transition from Prototethys to Paleotethys orogeny. Geochemistry, 225~235.

    • Xu Zhiqin, Yang Jingsui, Li Haibing, Yao Jianxin. 2006. The Early Paleozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central orogenic belt (COB). Acta Geologica Sinica, 80(12): 1793~1806 (in Chinese with English abstract).

    • Xin Wei, Sun Fengyue, Li Liang, Yan Jiaming, Zhang Yuting, Wang Yingchao, Shen Tingshuo, Yang Yijun. 2018. The Wulonggou metaluminous A2-type granites in the eastern Kunlun orogenic belt, NW China: Rejuvenation of subduction-related felsic crust and implications for post-collision extension. Lithos, 312~313.

    • Yan Zhen, Bian Qiantao, Korchagin O A. 2008. Provenance of Early Triassic Hongshuichuan Formation in the southern margin of the east Kunlun Mountains: Constrains from detrital framework, heavy mineral analysis and geochemistry. Acta Petrologica Sinica, 24(5): 1068~1078 (in Chinese with English abstract).

    • Yan Zhen, Fu Changlei, Aitchison J C, Buckman S, Niu Manlan, Cao Bo, Sun Yi, Guo Xianping, Wang Zongqi, Zhou Renjie. 2019. Retro-foreland basin in the NE Tibet Plateau. Tectonics, 38: 4229~4248.

    • Yang Jingsui, Robinson P T, Jiang Chunfa, Xu Zhiqin. 1996. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics, 258: 215~231.

    • Yang Jingsui, Wang Xibin, Shi Rendeng, Xu Zhiqin, Wu Cailai. 2004. The Dur'ngoi ophiolite in east Kunlun, northern Qinghai-Tibet Plateau: A fragment of paleo-Tethyan oceanic crust. Geology in China, (3): 225~239 (in Chinese with English abstract).

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogeny. Annual Review of Earth and Planetary Sciences, 28: 211~280.

    • Yu Neng, Jin Wei, Ge Wenchun, Long Xiaoping. 2005. Geochemical study on peraluminous granite from Jinshuikou in east Kunlun. Global Geology, 24(2): 123~128 (in Chinese with English abstract).

    • Yu Miao, Dick J M, Feng Chenyou, Li Bin, Wang Hui. 2020. The tectonic evolution of the east Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model. Journal of Asian Earth Sciences, 191, doi. org/10. 1016/j. jseaes. 2019. 104168.

    • Yuan Honglin, Gao Shan, Liu Xiaoming, Gunther D, Wu Fuyuan. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards & Geoanalytical Research, 28(3): 353~370.

    • Zhang Kexin, Lin Qixiang, Zhu Yunhai, Yin Hongfu, Luo Mansheng, Chen Nengsong, Wang Guocan. 2004. New evidence for the age of East Kunlun mélange and its tectonic significance. Science China (Earth sciences), 24(3): 210~218 (in Chinese with English abstract).

    • Zhang Zhiyong, Yin Hongfu, Wang Bingzhang, Wang Jin, Zhang Kexin. 2004. Presence and evidence of Kuhai-Saishitang branching ocean between Kunlun-Qinling mountains. Earth Science, 29(6): 691~696 (in Chinese with English abstract).

    • Zhang Qi, Zhang Wei, Jiang Lili, Shi Yuruo, Jiao Shoutao, Wang Cunzhi, Wang Zhen. 2020. Orogenic peridotite and its significance. Geological Bulletin of China, 39(10): 1489~1506 (in Chinese with English abstract).

    • Zhang Jinyang, Ma Changqian, Xiong Fuhao, Liu Bin, Li Jianwei, Pan Yuanming. 2014. Early Paleozoic high-Mg diorite-granodiorite in the eastern Kunlun orogen, western China: Response to continental collision and slab break-off. Lithos, 210~211.

    • Zhang Jinyang, Lei Huanling, Ma Changqian, Li Jianwei, Pan Yuanming. 2021. Silurian-Devonian granites and associated intermediate-mafic rocks along the eastern Kunlun Orogen, western China: Evidence for a prolonged post-collisional lithospheric extension. Gondwana Research, 89: 131~146.

    • Zhang Zhaochong, Mahoney J J, Mao Jingwen, Wang Fusheng. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997~2019.

    • Zhao Guochun, Wang Yuejun, Huang Baochun, Dong Yunpeng, Li Sanzhong, Zhang Guowei, Yu Shan. 2018. Geological reconstructions of the east Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, doi. org/10. 1016/j. earscirev. 2018. 10. 003.

    • Zhao Xu, Fu Lebing, Santosh M, Wei Junhao, Chen Jiajie. 2022. The growth and evolution of continental crust contributed by multiple sources in the east Kunlun Orogen during Early Paleozoic. Earth-Science Reviews, 233, doi. org/10. 1016/j. earscirev. 2022. 104190.

    • Zhou Bo, Dong Yunpeng, Zhang Feifei, Yang Zhao, Sun Shengsi, He Dengfeng. 2016. Geochemistry and zircon U-Pb geochronology of granitoids in the east Kunlun orogenic belt, northern Tibetan Plateau: Origin and tectonic implications. Journal of Asian Earth Sciences, 130: 265~281.

    • Zhu Yunhai, Zhang Kexin, Pan Yuanming, Chen Nengsong, Wang Guocan, Hou Guangjiu. 1999. Determination of different ophiolitic belts in eastern Kunlun orogenic zone and their tectonic significance. Earth Science (Journal of China University of Geosciences), 24(2): 134~138 (in Chinese with English abstract).

    • 巴金, 陈能松, 王勤燕, 王新宇, 张璐, 王树庆. 柴南缘堇青石花岗岩的Nd-Sr-Pb同位素组成及其对岩石成因、源区构造属性和构造演化的启示. 地球科学, 37: 80~92.

    • 边千韬, 罗小全, 李红生, 陈海泓, 赵大升. 1999. 阿尼玛卿山早古生代和早石炭—早二叠世蛇绿岩的发现. 地质科学, 34(4): 523~524.

    • 陈亮, 孙勇, 裴先治, 高明, 冯涛, 张宗清, 陈文. 2001. 德尔尼蛇绿岩40Ar-39Ar年龄: 青藏高原最北端古特提斯洋盆存在和延展的证据. 科学通报, 46(45): 424~426.

    • 陈宣华, 尹安, Gehrels GE, 李丽, 蒋荣宝. 2011. 柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学. 地质学报, 85(2): 157~171.

    • 陈有炘, 裴先治, 李瑞保, 刘战庆, 李佐臣, 张晓飞, 陈国超, 刘智刚, 丁仨平, 郭俊锋. 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质, 25(3): 510~521.

    • 陈加杰, 付乐兵, 魏俊浩, 田宁, 熊乐, 赵玉京, 张玉洁, 祁月清. 2016. 东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约. 地球科学, 41(11): 1863~1882.

    • 陈国超, 陈孝珍, 裴先治, 魏均启, 张勇, 李瑞保, 李佐臣, 陈有炘, 刘成军, 季宪军, 吴树宽. 2022. 哈图正长花岗岩年代学和成因及对东昆仑东段稀土元素成矿地质背景的约束. 地质学报, 96(3): 971~990.

    • 陈能松, 孙敏, 张克信, 朱去海. 2000. 东昆仑变闪长岩体的40Ar-39Ar和U-Pb年龄: 角闪石过剩Ar和东昆仑早古生代岩浆岩证据. 科学通报, 45(21): 2337~2342.

    • 董云鹏, 惠博, 孙圣思, 杨钊, 张菲菲, 何登峰, 孙娇鹏, 史小辉. 2022. 中国中央造山系原-古特提斯多阶段复合造山过程. 地质学报, 96(10): 3426~3448.

    • 冯惠彬, 孟繁聪, 李胜荣, 贾丽辉. 2015. 东昆仑清水泉蛇纹岩中铬铁矿特征及其构造意义. 岩石学报, 31(8): 2129~2144.

    • 冯娟萍, 欧阳征健, 马海勇, 范萌萌, 马静. 2020. 华北克拉通东南缘中条山陶家窑基性岩墙群U-Pb定年、地球化学特征及其构造环境. 地质学报, 94(2): 573~586.

    • 高延林, 吴向农, 左国朝. 1988. 东昆仑山清水泉蛇绿岩特征及其大地构造意义. 中国地质科学院西安地质矿产研究所所刊, 17~28.

    • 郭安林, 张国伟, 孙延贵, 郑健康, 刘晔, 王建其. 2006. 阿尼玛卿蛇绿岩带OIB和MORB的地球化学及空间分布特征: 玛积雪山古洋脊热点构造证据. 中国科学(D辑): 地球科学, 36(7): 618~629.

    • 姜春发. 2000. 中央造山带开合构造. 北京: 地质出版社.

    • 李荣杜, 计文化, 杨永成, 于浦生, 赵振明, 陈守建, 孟勇, 潘晓平. 2008. 昆仑山及邻区地质. 北京: 地质出版社.

    • 李瑞保, 裴先治, 李佐臣, 裴磊, 陈国超, 刘成军, 陈有炘, 刘战庆. 2014. 东昆仑南缘布青山构造混杂带哥日卓托洋岛玄武岩地球化学特征及构造意义. 地学前缘, 21(1): 183~195.

    • 李三忠, 赵淑娟, 李玺瑶, 曹花花, 刘鑫, 郭晓玉, 肖文交, 赖绍聪, 闫臻, 李宗会, 于胜尧, 兰浩圆. 2016. 东亚原特提斯洋(Ⅰ): 南北边界和俯冲极性. 岩石学报, 32(9): 2609~2627.

    • 李王晔, 李曙光, 郭安林, 孙延贵, 张国伟. 2007. 青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学-对“祁-柴-昆”晚新元古代-早奥陶世多岛洋南界的制约. 中国科学(D辑): 地球科学, 37(增刊I): 288~294.

    • 李文渊, 张照伟, 王亚磊, 张江伟, 尤敏鑫, 张志炳, 南卡俄吾. 2022. 东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用. 地球科学与环境学报, 44(1): 1~19.

    • 刘战庆, 裴先治, 李瑞保, 等. 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义. 地质学报, 85(2): 185~194.

    • 刘彬, 马昌前, 蒋红安, 郭盼, 张金阳, 熊富浩. 2013. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093~2106.

    • 刘彬, 伍炼华, 马昌前, 徐雨, 李福林. 2022. 东昆仑造山带东段志留纪-泥盆纪中性岩的成因及其构造意义.地球科学, 48(6): 2398~2414.

    • 龙晓平, 王立社, 余能. 2004. 东昆仑山清水泉镁铁质-超镁铁质岩的地球化学特征. 地质通报, 23(7): 664~669.

    • 罗照华, 魏阳, 辛后田, 詹华明, 柯珊, 李文韬. 2006. 造山后脉岩组合的岩石成因对岩石圈拆沉作用的约束. 岩石学报, 22(6): 1672~1684.

    • 马昌前, 熊富浩, 尹烁, 王连训, 高珂. 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555~3568.

    • 孟繁聪, 崔美慧, 贾丽辉, 任玉峰, 冯惠彬. 2015. 东昆仑造山带早古生代的大陆碰撞: 来自榴辉岩原岩性质的证据. 岩石学报, 31(12): 3581~3594.

    • 潘裕生, 周伟明, 许荣华, 王东安, 张玉泉, 谢应雯, 陈挺恩, 罗辉. 1996. 昆仑山早古生代地质特征与演化. 中国科学(D辑: 地球科学), 26 (04): 302~307.

    • 裴先治, 胡楠, 刘成军, 李瑞保, 李佐臣, 陈有炘, 裴磊, 刘战庆, 陈国超, 杨杰. 2015. 东昆仑南缘布青山地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析. 地质论评, 61(2): 307~323.

    • 裴先治, 李瑞保, 李佐臣, 刘成军, 陈有炘, 裴磊, 刘战庆, 陈国超, 李小兵, 王盟. 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程. 地球科学, 43(12): 4498~4520.

    • 祁生胜. 2015. 青海省东昆仑造山带火成岩岩石构造组合与构造演化. 中国地质大学(北京)博士学位论文.

    • 祁生胜, 宋述光, 史连昌, 才航加, 胡继春. 2014. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义. 岩石学报, 30(11): 3345~3356.

    • 祁晓鹏, 杨杰, 范显刚, 崔建堂, 蔡振锋, 曾献文, 魏伟, 屈小相, 翟黎明. 2016. 东昆仑东段东昆中构造混杂岩带长石山蛇绿岩年代学、地球化学特征及其构造意义. 中国地质, 43(03): 797~816.

    • 任军虎, 柳益群, 冯乔, 韩文中, 高辉, 周鼎武. 2009. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 岩石学报, 25(5): 1135~1145.

    • 桑继镇, 裴先治, 李瑞保, 刘成军, 陈有炘, 李佐臣, 陈国超, 杨森, 王旭斌, 陈功, 邓文兵. 2016. 东昆仑东段清水泉辉长岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义. 地质通报, 35(5): 700~710.

    • 王秉璋, 张智勇, 张森琦, 朱迎堂, 曹生秀. 2000. 东昆仑东端苦海-赛什塘地区晚古生代蛇绿岩的地质特征. 地球科学, (6): 592~598.

    • 王秉璋, 潘彤, 任海东, 王涛, 赵志逸, 封建平, 张金明. 2021. 东昆仑祁漫塔格寒武纪岛弧: 来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石年代学、地球化学和Hf同位素证据. 地学前缘, 28(1): 318~333.

    • 王秉璋, 李积清, 付长垒, 许海全, 李五福. 2022. 布尔汉布达早古生代岩浆弧的形成与演化初探. 地球科学, 47(4) : 1253~1270.

    • 王永标. 2005. 巴颜喀拉及邻区中二叠世古海山的结构与演化.中国科学(D辑): 地球科学, 35(12): 1140~1149.

    • 王国灿, 张天平, 梁斌, 陈能松, 朱云海, 朱杰. 1999. 东昆仑造山带东段昆中复合蛇绿混杂岩带及“东昆中断裂带”地质涵义. 地球科学, 24(2): 129~133.

    • 熊富浩, 马昌前, 张金阳, 刘彬. 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350~3364.

    • 许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793~1806.

    • 闫臻, 边千韬, Oleg A Lorchagin, Igor I. Pospelov, 李继亮, 王宗起. 2008. 东昆仑南缘早三叠世洪水川组的源区特征: 来自碎屑组成、重矿物和岩石地球化学的证据.岩石学报, 24(5): 1068~1078.

    • 杨经绥, 王希斌, 史仁灯, 许志琴, 吴才来. 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 225~239.

    • 余能, 金巍, 葛文春, 龙晓平. 2005. 东昆仑金水口过铝花岗岩的地球化学研究. 世界地质, 24(2): 123~128.

    • 张克信, 林启祥, 朱云海, 殷鸿福, 骆满生, 陈能松, 王国灿. 2004. 东昆仑东段混杂岩建造时代厘定的古生物新证据及其大地构造意义. 中国科学(D辑: 地球科学), 34(3): 210~218.

    • 张智勇, 殷鸿福, 王秉璋, 王瑾, 张克信. 2004. 昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据. 地球科学, 29(6): 691~696.

    • 朱云海, 张克信, Pan Yuanming, 陈能松, 王国灿, 侯光久. 1999. 东昆仑造山带不同蛇绿岩带的厘定及其构造意义. 地球科学, 24(2): 134~138.

    • 张旗, 张维, 姜丽莉, 石玉若, 焦守涛, 王存智, 王振. 2020. 造山橄榄岩及其意义. 地质通报, 39(10): 1489~1506.