en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周娇,女,1988年生。高级工程师,主要从事海洋地质和地质矿产研究。E-mail:464946523@qq.com。

通讯作者:

杨楚鹏,男,1980年生。博士,教授级高工,主要从事海洋地质研究。E-mail:gmgs_yang@foxmail.com。

参考文献
Bayliss N, Pickering K T. 2015. Transition from deep-marine lower-slope erosional channels to proximal basin-floor stacked channel-levée-overbank deposits, and syn-sedimentary growth structures, middle Eocene banastón system, Ainsa basin, Spanish Pyrenees. Earth-Science Reviews, 144: 23~46.
参考文献
Cai Guanqiang, Miao Li, Chen Hongjum, Sun Guihua, Wu Jiaoqi, Xu Yonghang. 2013. Grain size and geochemistry of surface sediments in northwestern continental shelf of the South China Sea. Environmental Earth Sciences, 70: 363~380.
参考文献
Chen Zhong, Yan Wen, Gu Senchang, Chen Muhong, Tang Xianzan. 2003. Prospecting division of heavy placer minerals in surface sediments of the southern Nansha trough and adjacent sea area. Marine Geology & Quaternary Geology, 23(1): 13~18 (in Chinese with English abstract).
参考文献
Chen Zhong, Yang Huining, Yan Wen, Gu Senchang. 2006. Distributions and divisions of mineral resources in the sea areas of China: Placer deposit and ferromanganese nodule/crust. Marine Geology & Quaternary Geology, 26(5): 101~108 (in Chinese with English abstract).
参考文献
Du Xiaoqin, Li Yan, Gao Shu. 2008. Characteristics of large sand waves, tidal structures and bedload transport in Taiwan shoal. Acta Oceanologica Sinica, 30(5): 124~136 (in Chinese with English abstract).
参考文献
Frihy O E, Lotfy M F, Komar P D. 1995. Spatial variations in heavy minerals and patterns of sediment sorting along the Nile Delta, Bgypt. Sedimentary Geology, 97: 33~41.
参考文献
Hu Jianyu, Kawamura H, Li Chunyan. 2010. Review on current and seawater volume transport through the Taiwan Strait. Journal of Oceanography, 66: 591~610.
参考文献
Hu Yi, Chen Jian, Xu Jiang, Wang Liming, Li Haidong, Liu Huaishan. 2013. Sand wave deposition in the Taiwan Shoal of China. Acta Oceanologica Sinica, 32(8): 28~36.
参考文献
Huang Long, Zhang Zhixun, Yang Huiliang. 2012. Formation conditions and metallogenic prospects of useful heavy sand resources in the northern part of the East China Sea shelf.
参考文献
Marine Geology Frontiers, 28(7): 10~16 (in Chinese with English abstract).
参考文献
Jin Binfu, Lin Zhenhong, Shi Zhenbo, Lin Xiaotong. 2004. Useful heavy minerals and their resource potential in Late Pleistocene sediments of the East China Sea Shelf. Acta Paleogeography, 6(3): 372~379 (in Chinese with English abstract).
参考文献
Komar P D. 2007. The entrainment, transport and sorting of heavy minerals by waves and currents. Developments in Sedimentology, 1(58): 3~48.
参考文献
Kou Yangqi, Du Deli. 1994. The fourth continental shelf in the northern South China Sea sedimentary characteristics of paleochannels in the 19th century. Acta Geologica Sinica, 68(3), 268~277 (in Chinese with English abstract).
参考文献
Li Xuejie, Liao Zhiliang, Tian Chenjing, Zhong Hexian, Zhang Jiangyong. 2022. Distribution pattern of volcanic glasses in the surficial sediments of the South China Sea and their provenance. Marine Geology & Quaternary Geology, 42(3): 1~8 (in Chinese with English abstract).
参考文献
Lin Mingkun, Lin Chuanshan, Pan Yanjun, Qi Wentao, Li Yi. 2016. Mineral characteristics and metallogenic conditions of zirconium-titanium sand in the shallow sea in eastern Hainan Province. Western Prospecting Engineering, 28(11): 141~143 (in Chinese with English abstract).
参考文献
Liu Jianguo, Xiang Rong, Chen Muhong, Chen Zong, Yan Wen, Liu Fang. 2011. Influence of the Kuroshio current intrusion on depositional environment in the Northern South China Sea: Evidence from surface sediment records. Marine Geology, 285: 59~68.
参考文献
Liu Jianguo, Yan Wen, Chen Zhong, Lu Jun. 2012. Sediment sources and their contribution along northern coast of the South China Sea: Evidence from clay minerals of surface sediments. Continental Shelf Research, 47: 156~164.
参考文献
Liu Jianguo, Xiang Rong, Chen Zhong, Chen Muhong, Yan Wen, Zhang Lanlan, Chen Han. 2013. Sources, transport and deposition of surface sediments from the South China Sea. Deepsea Research Part I, 71: 92~102.
参考文献
Lü Bingquan. 2008. Introduction to Marine Geology. Shanghai: Tongji University Press, 277~281 (in Chinese with English abstract).
参考文献
Marion A, Tregnaghi M. 2013. A new theoretical framework to model incipient motion of sediment grains and implications for the use of modern experimental techniques. In: Rowin'ski P, ed. Experimental and Computational Solutions of Hydraulic Problems. GeoPlanet: Earth and Planetary Sciences. Berlin, Heidelberg: Springer, 85~100.
参考文献
Pan Yanjun, Cui Ruyong, Lin Mingkun, Chen Fei, Hu Bangqi. 2017. Preliminary analysis of placer resources potential in Hainan Island offshore area. Marine Science Bulletin, 36(4): 458~467 (in Chinese with English abstract).
参考文献
Papista E, Dimitrakis D, Yiantsios S G. 2011. Direct numerical simulation of incipient sediment motion and hydraulic conveying. Industrial & Engineering Chemistry Research, 50: 630~638.
参考文献
Shen Ruohui, Zhou Dingcheng, Liao Lianzhao. 1999. High-grade distribution and prospecting significance of useful heavy sands on the seabed in the western Taiwan Strait. Taiwan Strait, 18(2): 131~139 (in Chinese with English abstract).
参考文献
Shi Qian, Zhang Junyuan, Cai Aizhi. 2009. Taiwan shoal—A huge sand resource repository. Journal of Natural Resources, 24(3): 507~513 (in Chinese with English abstract).
参考文献
Swart H, Yuan Bing. 2018. Dynamics of offshore tidal sand ridges, a review. Environmental Fluid Mechanics, 19: 1047~1071.
参考文献
Tan Qixin. 1998. Marine placer deposits in China. Chinese Geology, 251(4): 23~26 (in Chinese with English abstract).
参考文献
Tong Changliang. 2018. Classification and metallogenic characteristics of marine sand resources in Hainan Island. China Geological Survey, 5 (3): 74~80 (in Chinese with English abstract).
参考文献
Tong Changliang, Zhang Kuanghua, Chen Fei, Gou Pengfei. 2020. Potential evaluation of marine sand resources in the northern waters of Hainan Island. China Geology, 47(5): 1567~1575 (in Chinese with English abstract).
参考文献
Wang Dongxiao, Wang Qiang, Cai Shuqun, Shan Xiaodong, Peng Shiqiu, Shu Yeqiang, Xiao Jingen, Xie Xiaohui, Zhang Zhiwei, Liu Zhiqiang, Lan Jian, Chen Dake, Xue Huijie, Wang Guihua, Gan Jianping, Xie Xinong, Zhang Rui, Chen Hui, Yang Qingxuan. 2019. Research progress on the dynamic pattern and evolution mechanism in the middle and deep layers of the South China Sea. Science in China: Earth Science, 49(12): 1919~1932 (in Chinese with English abstract).
参考文献
Wang Shenjie, Liu Xiqing. 1997. Utilization potential of littoral-neritic sedimentary sand and gravel resources. Marine Geological Dynamics, 180(11): 1~3 (in Chinese with English abstract).
参考文献
Wang Shenjie, Liu Xiqing, Dai Qinfen, Li Xuejie, Chen Hong. 2003. Distribution characteristics of marine aggregate resources and potential prospect in China. Marine Geology & Quaternary Geology, 23(3): 83~89 (in Chinese with English abstract).
参考文献
Wu Chauron, Chao Shennyu, Hsu Chun. 2007. Transient, seasonal and interannual variability of the Taiwan Strait current. Journal of Oceanography, 63: 821~833.
参考文献
Yang Daofei. 1993. Distribution characteristics of coastal placer deposits in South China and prospecting in shallow seas. Marine Geology, (4): 1~22 (in Chinese with English abstract).
参考文献
Yang Qunhui, Li Mujun, Yang Shengxiong, Zhu Benduo, Ji Fuwu, Wang Hu, Zhou Huaiyang. 2013. Grain size characteristics and transport trend of surface sediments in the southwestern South China Sea. Marine Geology and Quaternary Geology, 33(6): 1~7 (in Chinese with English abstract).
参考文献
Ye Weiqiang, Li Guangdao, Pang Yanjun. 1990. Coastal placer deposits and geomorphological features in Guangxi Province. Transactions of Oceanology and Limnology, (2): 54~61 (in Chinese with English abstract).
参考文献
Zhang Ben. 1998. Hainan ocean resources and development. World Science and Technology Research and Development, 20(4): 106~110 (in Chinese with English abstract).
参考文献
Zhang Yanwei, Liu Zhifei, Zhao Yulong, Wang Wenguang, Li Jianru, Xu Jingping. 2014. Mesoscale eddies transport deep-sea sediments. Scientific Reports, 4: 5937.
参考文献
Zhang Zhiwei, Zhao Wei, Tian Jiwei, Liang Xinfeng. 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. Journal of Geophysical Research: Oceans, 118: 6479~6494.
参考文献
Zhang Zhongying. 1991. Distribution and enrichment law of coastal placer deposits in Leizhou Peninsula. Scientia Geographica Sinica, 11(2): 134~141 (in Chinese with English abstract).
参考文献
Zhong Lifeng, Li Gang, Yan Wei, Xia Bin, Feng Yuexing, Miao Li, Zhao Jianxin. 2017. Using zircon U-Pb ages to constrain the provenance and transport of heavy minerals within the northwestern shelf of the South China Sea. Journal of Asian Earth Sciences, 134: 176~190.
参考文献
Zhou Jiao, Yang Chupeng, Sun Guihua, Luo Weidong, Zhao Li. 2018. Potential analysis of useful heavy sand resources in the shallow waters of southwest Hainan Island. Geological Science and Technology Information, 37(2): 89~96 (in Chinese with English abstract).
参考文献
Zhou Jiao, Cai Guanqiang, Zou Liqi, Zhong Hexian, Huang Yongjian. 2021. Resource potential of useful heavy sand in the shallow sea in southeastern Hainan Island. Marine Geology Frontiers, 37(12): 58~65 (in Chinese with English abstract).
参考文献
Zhu Laiming, Gao Zhiyou, Yi Guan, Xu Jiang. 2007. Content and spatial change of rare earth element and trace element of surficial sediment in the South China Sea. Acta Petrologica Sinica, 23(11): 2963~2980 (in Chinese with English abstract).
参考文献
Zhuang Zhenye, Lin Zhenhong, Zhou Jiang, Liu Zhijie, Liu Yifei. 2004. Environmental conditions for the formation and development of shelf dunes (waves). Marine Geology Frontiers, 20(4): 5~10 (in Chinese with English abstract).
参考文献
陈忠, 颜文, 古森昌, 陈木宏, 汤贤赞. 2003. 南沙海槽南部表层重矿物及其成矿远景. 海洋地质与第四纪地质, 23(1): 13~18.
参考文献
陈忠, 杨慧宁, 颜文, 吴必豪, 陈木宏, 杨华平. 2006. 中国海域固体矿产资源分布及其区划——砂矿资源和铁锰(微)结核-结壳. 海洋地质与第四纪地质, 26(5): 101~108.
参考文献
杜晓琴, 李炎, 高抒. 2008. 台湾浅滩大型沙波、潮流结构和推移质输运特征. 海洋学报, 30(5): 124~136.
参考文献
黄龙, 张志珣, 杨慧良. 2012. 东海陆架北部表层有用重砂资源形成条件及成矿远景. 海洋地质前沿, 28(7): 10~16.
参考文献
金秉福, 林振宏, 时振波, 林晓彤. 2004. 东海外陆架晚更新世沉积物中的有用重矿物及其资源潜力. 古地理学报, 6(3): 372~379.
参考文献
寇养琦, 杜德莉. 1994. 南海北部陆架第四纪古河道的沉积特征. 地质学报, 68(3): 268~277.
参考文献
李学杰, 廖志良, 田成静, 钟和贤, 张江勇. 2022. 南海表层沉积物火山玻璃分布特征与源区分析. 海洋地质与第四纪地质, 42(3): 1~8.
参考文献
林明坤, 林川善, 潘燕俊, 齐文涛, 李一. 2016. 海南省东部浅海锆钛砂矿物特征及成矿条件浅析. 西部探矿工程, 28(11): 141~143.
参考文献
吕炳全. 2008. 海洋地质学概论. 上海: 同济大学出版社, 277~281.
参考文献
潘燕俊, 催汝勇, 林明坤, 陈飞, 胡邦琦. 2017. 海南岛周边浅海砂矿资源潜力浅析. 海洋通报, 36(4): 458~467.
参考文献
沈若慧, 周定成, 廖连招. 1999. 台湾海峡西部海底有用重砂高品位分布与找矿意义. 台湾海峡, 18(2): 131~139.
参考文献
石谦, 张君元, 蔡爱智. 2009. 台湾浅滩-巨大的砂资源库. 自然资源学报, 24(3): 507~513.
参考文献
谭启新. 1998. 中国的海洋砂矿. 中国地质, 251(4): 23~26.
参考文献
仝长亮. 2018. 海南岛海砂资源的分类特征及成矿特点分析. 中国地质调查, 5(3): 74~80.
参考文献
仝长亮, 张匡华, 陈飞, 苟鹏飞. 2020. 海南岛北部海域海砂资源潜力评价. 中国地质, 47(5): 1567~1575.
参考文献
王东晓, 王强, 蔡树群, 尚晓东, 彭世球, 舒业强, 肖劲根, 谢晓辉, 张志伟, 刘志强, 兰健, 陈大可, 薛惠洁, 王桂华, 甘剑平, 解习农, 张锐, 陈慧, 杨庆轩. 2019. 南海中深层动力格局与演变机制研究进展. 中国科学: 地球科学, 49(12): 1919~1932.
参考文献
王圣洁, 刘锡清. 1997. 滨浅海沉积砂、砾石资源的利用潜力. 海洋地质动态, 180(11): 1~3.
参考文献
王圣洁, 刘锡清, 戴勤奋, 李学杰, 陈弘. 2003. 中国海砂资源分布特征及找矿方向. 海洋地质与第四纪地质, 23(3): 83~89.
参考文献
杨道斐. 1993. 华南滨海砂矿分布特征和浅海找矿. 海洋地质, (4): 1~22.
参考文献
杨群慧, 李木军, 杨胜雄, 朱本铎, 季福武, 王虎, 周怀阳. 2013. 南海西南部表层沉积物粒度特征及输运趋势. 海洋地质与第四纪地质, 33(6): 1~7.
参考文献
叶维强, 黎广钊, 庞衍军. 1990. 广西滨海地貌特征及砂矿形成的研究. 海洋湖沼通报, (2): 54~61.
参考文献
张本. 1998. 海南海洋资源与开发. 世界科技研究与发展, 20(4): 106~110.
参考文献
张仲英. 1991. 雷州半岛滨海砂矿的分布富集规律. 地理科学, 11(2): 134~141.
参考文献
周娇, 杨楚鹏, 孙桂华, 罗伟东, 赵利. 2018. 海南岛西南浅海域有用重砂资源潜力分析. 地质科技情报, 37(2): 89~96.
参考文献
周娇, 蔡观强, 邹郦琦, 钟和贤, 黄永健. 2021. 海南岛东南部浅海有用重砂的资源潜力. 海洋地质前沿, 37(12): 58~65.
参考文献
朱赖民, 高志友, 尹观, 许江. 2007. 南海表层沉积物的稀土和微量元素的丰度及其空间变化. 岩石学报, 23(11): 2963~2979.
参考文献
庄振业, 林振宏, 周江, 刘志杰, 刘毅飞. 2004. 陆架沙丘(波)形成发育的环境条件. 海洋地质前沿, 20(4): 5~10.
目录contents

    摘要

    南海及邻域具有多样的地形地貌和丰富的物源,为海洋固体矿产资源的形成和分布提供了物质来源和堆积环境。为系统查明南海及邻域砂矿资源分布情况,本文通过对南海及邻域2606个站位表层沉积物样品进行粒度测试、碎屑矿物鉴定,以及重矿物的品位计算,分析了南海及邻域有用矿物砂矿资源以及建筑用砂资源分布特征并预测了远景区,总结了砂矿成矿模式。结果表明,南海及邻域具有远景的矿种主要有锆石、钛铁矿、金红石、锐钛矿、独居石和石榴子石等;重矿物高品位矿点主要集中在南海东北陆架、菲律宾海盆、南部陆架,重矿物异常区主要位于周缘陆架浅水区以及越东外陆架浅水海域、菲律宾海盆。锆石品位异常区的范围最大,达到工业品位的面积也最大;其次是磁铁矿、钛铁矿、独居石的异常区;锐钛矿、金红石异常区的面积相当;石榴子石品位异常范围最小。根据砂矿的分布规律、大地构造背景、成矿条件以及成矿元素特征,圈定了24个有用重矿物砂矿成矿远景区和6个成矿带。沉积物中砂(0.063~2 mm)含量大于50%的建筑用砂的远景区9个,主要分布于海南岛西南面到台湾海峡南部一线以北海域,其次为南海南部礼乐滩、万安滩、曾母暗沙附近海域,其余海域极为罕见。基于南海砂矿资源分布特征,初步建立了近岸型、潮流砂脊型、古河道埋藏型、峡口型、陆架坡折带型等五种砂矿成矿模式,为海砂资源进一步勘查提供方向和建议。

    Abstract

    The South China Sea and its adjacent areas have diverse topography and abundant provenance materials, which provide a material source and accumulation environment for the formation and distribution of marine solid mineral resources. In order to systematically find out the distribution of placer resources in the entire South China Sea and its adjacent areas, this paper analyzes the distribution characteristics and prospects of useful mineral placer resources and building sand resources, and summarizes the placer mineralization model through particle size and clastic mineral identification of surface sediment samples from 2606 stations in the South China Sea and adjacent areas. The results show that the promising minerals in the South China Sea and the adjacent areas mainly include zircon, ilmenite, rutile, anatase, monazite and garnet. High grade ore occurrences of heavy minerals are mainly concentrated in the northeastern and southern continental shelf of the South China Sea, and the Philippine basin. The anomalous areas of heavy minerals are mainly located in the shallow waters of the peripheral continental shelf of the South China Sea, the shallow waters of the outer shelf of Vietnam and the Philippine Sea basin. Among them, the anomalous range of zircon grades is the largest, and the area with industrial grades is also the largest; followed by magnetite, ilmenite, monazite; anatase and rutile are equivalent; garnet grades are the smallest. According to the distribution law of placer deposits, tectonic background, metallogenic conditions and characteristics of metallogenic elements delineate 24 useful heavy mineral placer metallogenic prospect areas and 6 metallogenic belts. There are 9 prospective areas of construction sand with a sand content of more than 50% in the sediments (0.063~2 mm), mainly distributed in the waters north of the line from the southwest of Hainan Island to the southern part of the Taiwan Strait, followed by Reed Beach and Wan'an in the southern part of the South China Sea. The sea area near Zengmu Shoal and Zengmu Shoal is extremely rare. Based on the distribution characteristics of placer resources in the South China Sea, five types of marine sand metallogenic models including near-shore type, tidal sand ridge type, buried paleochannel type, gorge type, and shelf slope break zone type have been initially established to provide guidance for understanding sand mineral resources in the South China Sea. They also provide reference significance, directions and suggestions for further exploration of sand mineral resources.

  • 海洋砂矿主要是在海洋水动力等因素的作用下,具有工业价值的重矿物在有利于富集的海底地貌部位形成的一种固体矿产资源(谭启新,1998)。在滨(浅)海地带由于河流、波浪、海流和潮汐作用,具有工业价值的黑色金属矿物、有色金属矿物、稀有金属矿物以及非金属矿物等的颗粒富集于滨海沉积物中而形成次生富集矿床,常见矿种主要包括磁铁矿、金红石、钛铁矿、锆石、独居石、铬铁矿、石榴子石、金、锡石、铂、铌钽铁矿等(吕炳全,2008)。它们含有丰富的稀有元素和贵重金属元素,在高新技术与新材料开发中有重大作用,用途极其广泛(张仲英,1991)。

  • 20世纪50年代以来,很多学者对中国近海区重矿物砂矿资源分布进行了调查研究,并取得丰富成果。叶维强等(1990)研究广西滨海砂矿,发现矿产地144处,查明砂矿床22处;杨道斐(1993)总结了华南滨海砂矿特征,划分了5个主要成矿带;张本(1998)总结了海南省环岛砂矿资源特征,查明矿种为钛铁矿、锆石、独居石等,探明钛铁矿砂矿24 处,储量2096.4 万t,锆石砂矿28 处,独居石砂矿6 处。谭启新(1998)总结了我国的海洋砂矿,圈定锆石、钛铁矿、金红石(锐钛矿)、独居石等Ⅰ级异常区10个、Ⅱ级异常区20个,各级异常区共计49个,并划分了10余个成矿带,揭示了我国滨浅海砂矿分布规律;随后,沈若慧等(1999)陈忠等(2003)对台湾海峡西部、南沙海槽南部等部分浅海区表层重砂矿资源进行了预测及评价研究。

  • 王圣洁等(2003)总结了中国近岸及浅海海砂资源分布特征及潜在资源量。陈忠等(2006)编制了南海固体矿产资源评价图,粗略地划分了南海重矿物的异常区及高含量区,但没有对单矿种进行品位划分。近年来,林明坤等(2016)潘燕俊等(2017)周娇等(20182021)仝长亮(20182020)开展了海南岛周边浅海砂矿资源潜力调查与评价,提升了对海南岛周边浅海表层沉积物砂矿资源分布的认识。但是除了谭启新(1998)陈忠等(2006)对整个南海砂矿进行研究和总结外,系统研究和总结南海砂矿资源的成果甚少。

  • 南海面积约为3.5×106 km2,其广阔的海域,不仅流体矿产资源丰富,而且固体矿产资源亦富集。南海有经济价值的砂矿资源按用途可分为两大类,包括有用重矿物砂矿和建筑用砂,在南海滨岸及近海区域固体矿产分布普遍,其资源潜力较大。虽然已查明南海周围陆域分布从层状超微硫化物矿床到低温热液金矿床的一系列矿床,但对南海浅海及深水区域大部分海域均未进行砂矿资源的勘探与深入研究。

  • 本文基于南海及邻域实测的2606个站位表层沉积物粒度及矿物分析数据,结合前人研究结果,对南海砂矿远景区进行划分和预测,总结海砂资源成矿模式,对认识南海海砂资源具有参考意义,为海砂进一步勘查提供方向和建议。

  • 1 区域概况

  • 南海是西太平洋最大的一个边缘海,地处印度洋、太平洋和欧亚大陆三大板块的聚合地带,呈北东—南西向延伸的不规则菱形,北缘是欧亚大陆,东部为吕宋岛、巴拉望岛和台湾岛,西边为中南半岛和马来半岛,南邻加里曼丹岛(图1),因此其构造和地质演化受到周围岩石圈板块的极大影响。南海及邻域海底地形复杂,不但有广阔的陆架、陆坡及深海盆,而且还展布有许多岛、礁、海台、海山、海槽和海沟。南海从周边向中央依次分布着大陆架、岛架、大陆坡和岛坡、深海盆地等。陆架和岛架上次级地貌类型有水下浅滩、水下沙波、水下三角洲、麻坑、海底峡谷和水下阶地等。

  • 南海处于亚洲季风气候系统和热带复合带的交汇处,温度较高,降雨丰沛,有利于陆源物质发生风化作用;河流发育,湄公河、红河、珠江、高屏溪、曾文溪、韩江、鉴江、漠阳江、台湾岛河流是南海陆源碎屑的主要输送者,大量物质被河流搬运输入南海。南海海岸类型发育,波浪潮汐作用也会侵蚀大量海岸带基岩,因此南海接受了大量陆源物质沉积。

  • 南海大陆架表层沉积物是由现代沉积和残留沉积组成,0~500 m陆架区及其边缘以粗粒的砂砾沉积物为主,它们主要来自陆源(朱赖民等,2007李学杰等,2022)。沉积物类型丰富,粉砂质砂、砂质粉砂和含砾砂是南海陆架最主要的沉积物类型,主要分布在东北部台湾海峡至海南岛,以及北部湾沿中南半岛到西南部巽他陆架及部分陆坡区,此外,在东面吕宋岛沿岸和南面加里曼丹岛沿岸也广泛分布。

  • 在季风、海峡水体交换以及复杂地形影响下,南海环流呈现出独特的三层结构以及远强于大洋的混合特征(王东晓等,2019),孕育了季节性形态转变环流并具有多涡结构的上层系统(图1),南海上层环流并非由风生机制单独控制,而是一个风生、热盐、潮汐等多种动力过程耦合控制的环流系统。在海峡水体交换的驱动下,南海环流呈现出显著的上(表层到750 m)、中(750~2400 m)、下(2400 m以深)三层环流结构。具体而言,不仅太平洋水体能够通过巴士海峡的上层和下层进入并影响南海,同时南海水体亦能够通过巴士海峡中层水返回太平洋。基于2011年在南海北部的潜标资料,Zhang Zhiwei et al.(2013)发现南海北部中尺度涡能够从海表一直延伸到海底,即便在水深3000 m的近海底其流速仍可超过5 cm/s,从而对南海深海动力过程具有重要调控作用。2012年南海东北部潜标观测进一步表明,中尺度涡在近海底引起的强流能够对深层沉积物的搬运产生重要影响(Zhang Yanwei et al.,2014)。

  • 综上,南海具有良好的地形地貌、丰富的陆源物质和水动力系统,为滨浅海砂矿的富集、分布提供了丰富的物质来源和独特的成矿环境。

  • 2 样品采集与分析方法及品位计算

  • 2.1 样品采集与分析方法

  • 本次研究主要是基于广州海洋地质调查局1999~2016年采集资料的系统分析,对南海海域和台湾以东的西菲律宾海域共2606个站位表层沉积物样品,进行粒度测试、碎屑矿物鉴定。研究范围4°~24°N、108°~126°E,站位间距30 km×30 km,沉积物利用箱式取样器采集,全部测试在自然资源部海底矿产资源重点实验室测试中心完成。

  • 粒度分析方法按《海洋调查规范:海洋地质地球物理调查》(GB/T12763.8—2007)执行,根据样品颗粒的不同,分别采用筛析法、激光粒度仪法和综合法。取适量的沉积物样品中加入5 mL 30% 的H2O2 和0.25 mol/L 的HCl,去除有机质和碳酸盐;搅拌并静置加满蒸馏水的溶液以去除盐分至呈中性;超声波振荡分散后上机测试。

  • 图1 南海及邻域地形图及上层环流示意图(红色实线为取样范围;据王东晓等,2019修改)

  • Fig.1 Topographic map of the South China Sea and its adjacent areas showing the upper circulation (the red solid line is sampling range, the upper circulation modified from Wang Dongxiao et al., 2019)

  • 筛析法:0.063~2 mm颗粒样品采用筛析法,粒级间隔为1/4Φ(Φ=-Log2DD为颗粒粒径,单位mm)。将0.063~2 mm的物质烘干称量后做筛析分析,用孔径间隔为0.5Φ的筛子由粗到细振筛15 min,将各粒级组分在感量0.0001 g的天平上称量,求出各粒级的质量分数。内检数10%~20%,校正系数0.99~1.01,平均粒径0.15Φ,分选系数0.1。激光粒度仪法:小于 0.063 mm的颗粒用激光粒度仪法。采用的是英国马尔文激光衍射粒度分析仪(型号:Mastersizer 2000),激光主光源波长为633 nm,辅光源波长为466 nm,样品颗粒折射率为1.520,颗粒吸收率为0.1。样品分散用5%的六偏磷酸钠浸泡12 h,上机时再用超声波分散。内检数5%~10%,校正系数0.99~1.01,平均粒径0.15Φ,分选系数0.1。

  • 综合法:对含有粒径>2000 μm 的样品,采用传统筛分法和激光粒度仪测试结合方法,烘干称重后过1400 μm 孔径标准筛。激光粒度仪测试细颗粒部分,筛析法分析粗颗粒部分(1Φ 间隔),合并获得完整粒度数据。内检数20%~30%,校正系数0.95~1.05。

  • 碎屑矿物鉴定主要检测仪器为:LEICA M165C显微镜(SYM119),依据《海洋调查规范:海洋地质地球物理调查》(GB/T12763.8—2007)的要求,将沉积物样品烘干、称量、淘洗,选取0.25~0.063 mm粒级的组分作为分析鉴定对象,依据其物理性质进行分离,分出磁性矿物、电磁性矿物、重矿物及轻矿物等部分,然后在实体显微镜下鉴定矿物种类并估算其体积百分含量,最后换算为矿物重量占淘洗前沉积物样品总量的百分比。抽检误差小于20%。

  • 计算每一种矿物所占的百分含量,计算公式为:

  • η=R/Q
    (1)
  • 式中,η为矿物的重量百分含量(%);R为不同组分同一矿物的百分数之和;Q为分析重量(g)。

  • 2.2 品位计算及参考标准

  • 按照1975年《海洋调查规范》的公式计算独居石、钛铁矿、锆石和金红石(锐钛矿)的重量百分含量和品位,每立方米沉积物的干重以1800 kg计(金秉福等,2004;黄龙等2012)。参照地质矿产部1972年出版的《矿产工业要求参考手册》和国家矿产委员会1986年颁布的《金属砂矿工业要求及矿床规模标准》的砂矿品位评价要求,并根据研究区海域样品的实际情况,确定了各有用重砂矿物品位级别的划分方案(表1和表2)。

  • 表1 各有用重砂矿物划分标准

  • Table1 Classification standard of some valuable heavy sand minerals

  • 3 结果

  • 3.1 有用重矿物砂矿资源分布特征

  • 3.1.1 有用重矿物砂矿资源分布特征

  • 根据有用重砂矿物异常区及品位划分标准(表1和表2),南海具有远景的有用重矿物矿种主要有锆石、钛铁矿、金红石、锐钛矿、独居石、磁铁矿和石榴子石等。在圈定砂矿异常区时,应考虑其面积、矿种类型和矿产品位。数据经计算换算得出各矿物的品位,具体特征如下。

  • 表2 南海浅海重砂异常区矿物品位分级(g/m3

  • Table2 Classification of mining locations in the abnormal areas of heavy sands in the shallow sea of the South China Sea (g/m3)

  • 注:根据《矿产资源储量规模划分标准》(中华人民共和国国土资源部,2000)和《海洋调查规范》(国家质量监督检验检疫总局,国家标准化管理委员会,2007)进行分级。

  • (1)钛铁矿。钛铁矿达到异常品位及以上的站位有115个,其中达工业品位有34个,达到边界品位有14个。品位异常值为2509.55~160291.75 g/m3,平均品位为15105.66 g/m3,达工业品位面积为59823 km2,达边界品位面积为58711 km2。钛铁矿品位异常区分布于南海东北陆架区和西南部陆坡区、菲律宾海盆、西沙群岛南部海域,海南岛周边海域零星分布(图2a);高值区集中台湾岛西部海域以及巽他陆架西南海域。

  • (2)磁铁矿。磁铁矿达到异常品位及以上的站位有234个,其中达工业品位有58个,达到边界品位有61个。品位异常值介于2564.34~140010.12 g/m3之间,平均品位为18256.86 g/m3;达工业品位面积为45498 km2,达边界品位面积为93946 km2。异常区主要呈片状、斑点状分布在南海东北陆架、菲律宾海盆,以及平行海岸线呈斑块状分布于中南半岛东部、南海西南部(图2b)。

  • (3)锆石。磁铁矿达到异常品位及以上的站位有230个,其中达工业品位有118个,达到边界品位有42个。品位异常值介于254.20~73906.41 g/m3之间,平均品位为6486.46 g/m3;达工业品位面积为144941 km2,达边界品位面积为67545 km2。异常区主要呈片状大面积分布在南海东北陆架、吕宋岛西部海域,在南海西南部呈条带状平行海岸线展布;其次分布在台湾岛东部海域,在海南岛西南部和东南部海域呈斑点状零星分布(图2c)。

  • (4)独居石。独居石达到异常品位及以上的站位有35个,其中达工业品位有26个,达到边界品位有8个。品位异常值介于88.50~4425.47 g/m3之间,平均品位为1257.88 g/m3;达工业品位面积为59174 km2,达边界品位面积为50902 km2。异常区主要分布在南海南部,呈片状展布;其次是南海东北部海域,呈斑点状零散分布(图2d)。

  • (5)金红石。金红石达到异常品位及以上的站位有39个,其中达工业品位有6个,达到边界品位有14个。品位异常值介于286.24~5442.46 g/m3之间,平均品位为1246.94 g/m3;达工业品位面积为4196 km2,达边界品位面积为6435.7 km2。主要分布在南海南部,呈斑块状展布;呈斑点状零散分布于南海东北部海域以及台湾岛东部(图2e)。

  • (6)锐钛矿。锐钛矿达到异常品位及以上的站位有53个,其中达工业品位有12个,达到边界品位有24个。品位异常值介于250.45~21615.88 g/m3之间,平均品位为1143.49 g/m3;达工业品位面积为7006 km2,达边界品位面积为11775 km2。主要分布在南海东南部和南海北部陆架,呈块状、串珠状展布;零散分布于海南岛西北部、东北部海域(图2f)。

  • (7)石榴子石。根据研究区有用矿物异常区及品位划分标准,石榴子石分布站位仅50个,其中11个站位达到异常品位,品位异常值介于1001.35~3038.03 g/m3之间,平均品位为1588.34 g/m3。分布在南海西南部,呈块状展布(图2g)。

  • 3.1.2 有用重砂矿远景区及成矿带

  • 砂矿成矿主要受母岩类型、气候和水动力条件、海岸和地貌类型、沉积作用和成矿时代以及构造运动与海平面变化等的综合控制。通过对南海百万区调调查资料的整理,根据砂矿的分布规律、大地构造背景、成矿条件以及成矿元素特征,圈定了24个成矿远景区,6个成矿带(表3,图3)。

  • (1)南海北部重矿物砂矿成矿带:南海北部海域的调查程度及研究程度均较高,矿产类型为锆石(Zr)-磁铁矿(MFe)-钛铁矿(TiFe)-独居石(Ce)砂矿复合砂矿(Zr·MFe·TiFe·Ce),包括ZS1~ZS4四个远景区。该成矿带矿种最为丰富且品位高,矿种主要为锆石、磁铁矿、钛铁矿、独居石、锐钛矿、金红石等,锆石最高品位达73906.41 g/m3,钛铁矿最高品位可达160291.75 g/m3,独居石最高品位可达4088.44 g/m3,磁铁矿最高品位达80031.21 g/m3,都达到了 Ⅰ级~Ⅱ级异常,且Ⅰ级异常为主。该远景区主要集中在南海北部陆架浅海海域,大部分水深15~1200 m以内,不同水深海区均有分布,远景区总面积约为136612 km2,Ⅰ级异常区面积为106237 km2。矿床类型为浅滩或水下岸坡堆积砂矿,表层沉积物类型主要为含砾砂、粉砂、砂质粉砂、粉砂质砂,含砂量(0.063~2 mm)较高,可达80%,水动力强,沉积物质主要来源于珠江、韩江、台湾岛等。

  • 图2 南海及邻域有用重矿物品位异常分布图

  • Fig.2 Anomaly distribution map of useful heavy minerals in the South China Sea and its adjacent areas

  • (a)—钛铁矿;(b)—磁铁矿;(c)—锆石;(d)—独居石;(e)—金红石;(f)—锐钛矿;(g)—石榴子石

  • (a) —ilmenite; (b) —magnetite; (c) —zircon; (d) —monazite; (e) —rutile; (f) —anatase; (g) —garnet

  • 表3 南海及邻域重砂矿物远景区表

  • Table3 The prospect of heavy sand minerals in the South China Sea and its adjacent areas

  • 续表3

  • 注:级别以每种矿种最高级别统计。

  • (2)海南岛重矿物砂矿成矿带:矿产类型为锆石-锐钛矿-钛铁矿复合砂矿(Zr·Ti·TiFe),包括ZS5~ZS10六个远景区,矿种主要为锆石、锐钛矿,其次为金红石、钛铁矿等,除锆石最高品位达21246.38 g/m3,锐钛矿最高品位可达21615.88 g/m3,金红石品位为1462.23 g/m3,属于Ⅰ级异常外,其余为 Ⅳ~Ⅴ级异常。该远景区主要集中在海南岛西南部、东南部浅海区,水深一般在25~100 m,呈斑点状围绕海南岛四周海域零星分布,远景区面积相对较小,总面积约为20752 km2,Ⅰ级异常区面积为5083 km2。物源主要为海南岛主干河流入口的邻近陆架区,来自于岛内河流携带的物质,表层沉积物类型主要为含砾泥质砂、粉砂、粉砂质砂、含砾泥、泥质砂,含砂量(0.063~2 mm)可达50%左右。

  • (3)南海西部锆石-磁铁矿砂矿成矿带:主要为ZS11远景区,矿产类型为锆石-磁铁矿砂矿(Zr ·MFe),矿种为锆石和磁铁矿,锆石最高品位为2095.28 g/m3,磁铁矿最高品位为10293.42 g/m3,都达到了Ⅰ级异常。该远景区集中在南海西部,水深2000~4300 m,呈斑点状零散分布,总面积约为45904 km2,其中Ⅰ级异常区面积1548 km2,高含量区的有用矿物可能与沿岸流有关。表层沉积物类型主要为粉砂质黏土,含砂量(0.063~2 mm)可达小于10%左右。

  • (4)南海南部重矿物砂矿成矿带:矿产类型为锆石-独居石-钛铁矿-磁铁矿砂矿复合砂矿(Zr·Ce ·TiFe·MFe),包括ZS12~ZS16五个远景区,矿种主要为锆石、独居石、钛铁矿、磁铁矿、锐钛矿、金红石、石榴子石等。该远景区由西南向东南,高含量区由平行海岸线分布变为垂直海岸线分布,由多矿种、多高含量区向单矿种、少高含量区转变。锆石、独居石、钛铁矿、金红石、锐钛矿都达到了Ⅰ级异常,磁铁矿主要为Ⅱ级异常,石榴子石主要为Ⅲ级异常。品位由南海西南部到东南部降低,由平行岸线向垂直岸线方向降低,锆石最高品位达46800 g/m3,独居石最高品位达4425.47 g/m3,钛铁矿最高品位达38746.96 g/m3,位于南海西南部。该成矿带水深一般在100~2000 m以内,远景区总面积最大,约为188210 km2,Ⅰ级异常区面积也最大,为130215 km2。该成矿带磁铁矿、钛矿物、锆石等可能是由湄公河携带而来,在入海口附近高含量点多、含量也高,而远离入海口,高含量点少、含量也低。石榴子石相比钛矿物、锆石,高含量点少、含量低。表层沉积物类型主要为含砾砂、泥、砂质粉砂,含砂量(0.063~2 mm)小于10%。

  • (5)南海东部磁铁矿-锆石砂矿成矿带:矿产类型主要为锆石(Zr)及磁铁矿,只有三个站位达到高品位点,包括ZS17、ZS18、ZS19、ZS20四个远景区。该远景区位于吕宋岛西部的南海东部次海盆海山上,呈斑块状展布,水深在3000 m左右,总面积约为25197 km2,其中Ⅰ级异常区面积1897 km2;磁铁矿达高品位的站位只有两个,品位分别为31044.27 g/m3、12846.14 g/m3;锆石达高品位的站位只有1个,品位为1325.93 g/m3。沉积物类型主要为砂质粉砂、钙质黏土,含砂量(0.063~2 mm)小于30%,可能受吕宋岛物质、海底火山喷发物源以及台湾物源影响。

  • 图3 南海及邻域重矿物砂矿远景区

  • Fig.3 Prospective area of heavy mineral placer in the South China Sea and its adjacent areas

  • (6)台湾岛东南部重矿物砂矿成矿带:包括ZS21、ZS22、ZS23、ZS24四个远景区,矿产类型为磁铁矿-锆石-金红石-钛铁矿砂矿复合砂矿(MFe ·Zr·Ti ·TiFe),矿种主要为磁铁矿、锆石、金红石、钛铁矿、石榴子石等。该远景区分布于台西南岛坡、菲律宾海,呈东西向不规则状展布,水深变化较大,介于1000~6000 m之间;从近岸到远岸,由多矿种、多高含量点向单矿种、少高含量点转变。磁铁矿最高品位达140010.12 g/m3,锆石最高品位可达1694.74 g/m3,金红石最高品位可达1422.27 g/m3,磁铁矿、锆石、金红石都达到了Ⅰ级异常,钛铁矿主要为Ⅲ级异常,远景区总面积约为131359 km2,Ⅰ级异常区面积为69544 km2。主要物源来自台湾岛,表层沉积物类型主要为含硅质含钙质黏土,颗粒总体较细,水动力弱,含砂量(0.063~2 mm)小于10%。

  • 3.2 建筑用海砂资源

  • 建筑用海砂是指分布于海岸和近海、以中砂和粗砂为主、包括部分细砂和砾石的砂质堆积。海砂分选良好,品质优良,可以作为海洋工程用料使用,经脱盐后的海砂可作为建筑集料使用,广泛用于城市建设、公路、铁路和桥梁等混凝土结构建筑(王圣洁等,1997)。

  • 南海海域砂含量为0~100%,平均含量为22.33%。本文建筑用砂主要是指砂(0.063~2 mm)含量>50%的沉积物,共划分了9个建筑用砂远景区。主要分布于南海北部海南岛西南面到台湾海峡南部一线以北海域,其次为南部礼乐滩、万安滩、曾母暗沙附近海域,在其余海域较罕见,总面积为246397 km2(图4)。主要用于建筑和填料,广东、广西、海南、福建近海区域均有对海砂的开采和利用。建筑用砂远景区按地理位置顺序编号,各区的主要特征见表4。

  • 表4 南海建筑用砂远景区分布情况

  • Table4 Distribution of construction sand prospect areas in the South China Sea

  • 4 讨论

  • 滨(浅)海砂矿的成矿作用过程中,物源条件是前提,适宜的气候-水动力、海岸和地貌类型及相对稳定的海平面是砂矿形成的必要条件。基于南海砂矿资源分布特征,初步建立五种海洋砂矿成矿模式。

  • 4.1 近岸型

  • 近岸型海砂(图5),其主控因素是受海岸带复合作用,包括了河流、沿岸流等综合因素,因此其海砂矿床主要沿岸分布。该模式主要适用有用重矿物砂矿的成矿模式。典型代表为南海西北陆架上近海系列砂矿床和湄公河口砂矿。这些重矿物砂矿主要分布在近海地区,中、外陆架的砂质沉积物中重矿物含量相对较低。这是由于低海平面时期的古海岸具有很高的重矿物发育潜力,而现代海侵可能破坏古海岸附近的重矿物矿床,并倾向于将重矿物由陆地输运到海岸和近海地区。非常重的矿物,如钛铁矿和锆石,更集中在海滩沉积物中。波浪和海平面海侵的横扫作用被认为是导致海滩沉积物分选和重矿物富集的原因(Komar,2007)。在沉积物供给量大的陆架上,重矿物砂矿倾向于沿大江大河的古三角洲发育。在以小型河流为主的陆架上,在海侵晚期和高海平面时期,重矿物砂矿倾向于在海岸外发育。滨海型砂矿主要在地形平坦处堆积,这是由于海进、海退形成的海岸线的变迁、河流的侧蚀作用对地貌进行改造,形成了较为宽阔的、适宜砂矿堆积的广阔场所,是海砂矿床形成和富集的重要条件。

  • 事实上,海洋的沿岸流动力作用在滨海近岸型砂矿的成矿中起到了关键作用。对南海北部陆架沉积物输移的黏土矿物分析和块体岩石地球化学的研究,表明表层和深层水流,包括广东沿岸流(GDLC)、南海暖流(SCSWC)、黑潮的南海支流(SCSBK)和黑潮北太平洋深水洋流(BNPDWC)的分支,是将沉积物从不同来源输送到南海北部的最重要水动力(Liu Jianguo et al.,201120122013Cai Guanqiang et al.,2013)。然而,沉积物中轻矿物颗粒和重矿物颗粒的水动力特性的差异会导致水流的不同输运机制。南海北部内、外陆架特征矿物组合的差异进一步表明,不同地区存在不同的输导机制。重矿物具有较高密度和通常较细的粒度,这使其更难被挟带,加上其较高的沉降速度,导致其通常作为推移质运移(Komar,2007Papista et al.,2011Marion et al.,2013)。所以,重矿物在内部冲浪带内发育最好,通常在海岸线处最多,往往集中在海滩侵蚀区域,向近海方向的总体下降(Frihy et al.,1995)。Zhong Lifeng et al.(2017)利用碎屑锆石U-Pb年龄探讨南海西北陆架表层沉积物输移机制,认为区内这些砂质沉积物在搬运过程中至少涉及3种水力条件。在内陆架,广东沿岸流可能是输送砂质沉积物的最重要的水动力流,而从广东沿岸流到雷琼海峡以东的气旋涡可以将剑河和南渡河的沉积物输送到雷州和沙巴之间的水域。然而,广东沿岸流并未到达外大陆架,这表明存在其他水力条件必须对沉积物向该区域的输送负责起作用。

  • 图4 南海建筑用砂远景区分布图

  • Fig.4 Distribution map of construction sand prospect area in the South China Sea

  • 4.2 潮流沙脊型

  • 潮汐沙脊是在陆架海的近海部分观察到的具有大型沉积韵律的集合沙体,具有丰富的可用砂矿资源(图5),主要适用于建筑用砂成矿模式。连续沙脊之间的间隔可达几千米,它们在百年时间尺度上演化,并且其波峰相对于主要潮流的方向作周期性旋转(Swart et al.,2018)。

  • 图5 南海砂矿资源成矿模式示意图

  • Fig.5 Schematic diagram of the metallogenic model of marine sand resources in the South China Sea

  • 1 —夏季表层环流;2—冬季表层环流;3—暖涡;4—南海西边界流

  • 1 —surface circulation in summer; 2—surface circulation in winter; 3—warm vortex; 4—west boundary current of South China Sea

  • 南海潮流砂脊主要见于海南岛东方海域、乐东海域,福建近海海域及琼州海峡出口区。大多数潮流砂脊形成主要是受控于水动力作用及其反馈机制的综合影响。其中海南岛东方海域潮流砂脊具有沙垄东侧推移质和残流物质向南推移,而西侧推移质和残流物质向北推移的特点,这种差异与沙丘的不对称性和迁移相吻合。跨脊输送较弱,主要集中在两侧沙脊的顶部。沙脊两侧推移质输移不平衡,导致沙脊不对称和波峰扭结。在该系统中,相邻沙垄之间的交叉沟输运非常重要,有助于构建沟中的推移质输运循环。沙垄的推移质输运也会使洼地发生积沙。事实上,波浪转换对沙脊的长期演化有着重要的影响,另外,长期和短期的天气条件对沙脊的变化也有影响,特别是短期极端天气条件,如风暴潮、台风等(Swart et al.,2018)。

  • 4.3 古河道埋藏型

  • 古河道埋藏型砂体(图5),主要受控于古河流的发育,适用于建筑用砂成矿模式。分布在南海北部的珠江口外陆架区,在浅层沉积中常见晚更新世末—全新世初形成的古河道。南海北部晚更新世末—全新世初的古河道主要分布于内陆架区(水深60 m内),部分分布于现代河口外海区(水深10 m)。少量大型古河道可以向外陆架延伸(水深最大可达100 m),部分甚至越过外陆架到达陆架边缘。在内陆架区,根据其形成时代不同,埋藏在海底之下深度不等,多与上覆地层呈不整合接触;在外陆架乃至陆架边缘,由于活跃的古波浪和底流冲刷作用,全新世沉积层很薄或缺失,同期形成的古河道则直接暴露于海底,或者由于低水位河流作用与海进作用的共同影响,使河流搬运而来的粗碎屑重新搬运沉积,形成沙丘、沙波。沙丘、沙波的迁移又可掩埋古河道,并破坏古河道的形态和沉积上的完整性(寇养琦等,1994)。总体上古河道具有从曲流河向网状河的发展变化趋势。在纵剖面上,古河道最明显的几何外形为半透镜体。由于河流在发展过程中的多期垂向下切和侧向侵蚀作用,并伴以充填堆积和侧向加积作用,因此在河床内部主要是冲槽叠复充填型和侧向加积型沉积结构。此外,由于河流体系在发展中的变化,沉积亚相带横向更替和复杂的纵向叠置,也引起古河道几何外形、内部结构的差异。如点砂坝的强振幅、粗而短的丘状地震相位不位于河道的两侧,而是出现在河漫滩强一中振幅、中频率、连续反射的席状水平层、平缓小斜层内等(寇养琦等,1994)。古河道物质组成遵循下粗上细的特征,其物质成分是随着河流的不同位置发生快速相变的。垂向上河道的沉积结构变化,这与环境的变迁或者构造作用有关(Bayliss et al.,2015

  • 4.4 峡口型

  • 峡口型是指发育于海峡处的砂矿资源(图5),沉积物经过狭长的海峡至峡口处突然进入宽阔的水域,水动力作用突然减弱,导致海砂快速沉积。主要适用于建筑用砂资源的形成,典型代表为台湾浅滩。

  • 台湾浅滩区域的海底沙波沉积明显受到峡口水动力作用影响,与近岸海底沙波有明显的特征差异。近岸海底沙波随着水深的增加而出现,而在台湾浅滩地区沙波出现频率较高,且随深度增加而消失。近岸沙波高度变化较台湾浅滩区小,前者一般变化范围为5~10 m,而台湾浅滩区的变化范围为10~20 m(Hu Yi et al.,2013)。另外,台湾浅滩区的沙波发育模式也较为特殊且向海沙波比向陆沙波平缓,与近岸地区相反,这表明不同的动力影响沙波的形成。台湾浅滩区域海面洋流方向随风的变化而变化,但底流几乎全年向北(Wu et al.,2007; Hu Jianyu et al.,2010)。杜晓琴等(2008)使用声学多普勒流速剖面仪(ADCP)研究潮汐台湾浅滩的水流,结果表明沙波形态会受到潮汐作用影响。然而,潮汐泥沙输送量与风暴期间运输量相比较小。这个地区经常受到夏季台风的影响,当台风速度达到30~50 m/s时,波高可达10~12 m。即使在冬季,当东北风速超过16~20 m/s时,海浪高度也可以达到9~10 m,波长120~150 m(石谦等,2009)。总体上,通过海水底流与表层流对比,发现沙波结构受底流流速的控制较大(庄振业等,2004石谦等,2009)。

  • 4.5 陆架坡折带型

  • 陆架坡折带型海砂主要是指位于陆架坡折带处的海砂资源。主要适用于重矿物砂矿的形成,典型代表为南海南部万安滩海域。该海域碎屑物来源丰富,主要来自巽他陆架和加里曼丹岛的南部陆源物质等多个不同物源方向的汇入,并通过陆架坡折带被输送进入南薇西和北康陆坡盆地。在海底地形坡折带,也会发生阵发性的浊流等异常沉积事件(杨群慧等,2013),造成大量沉积物质在坡折带堆积。陆架坡折带及陆坡由于距物源较远,搬运距离长,残留物质常以细砂为主。巽他陆架是除两极地区外最宽广的陆架,地形梯度极为平缓,陆架坡折带水深、地形变化梯度较大,沉积物以粉砂、砂为主,是混合沉积区至现代远源陆坡沉积区的过渡沉积区,动力条件介于外陆架与陆坡区低海平面时期(末次盛冰期),陆架及坡折区沉积物主要来源于古巽他等河流沉积物,洋流的影响仅限于陆坡区(Liu Jianguo et al.,2011),为残留沉积和现代沉积的混合沉积环境。

  • 5 结论

  • (1)南海浅海海域具有远景的矿种主要有锆石、钛铁矿、金红石、锐钛矿、独居石和石榴子石等。根据砂矿的分布规律、大地构造背景、成矿条件以及成矿元素特征,圈定了24个重砂矿成矿远景区6个成矿带,包括位于南海北部陆架区锆石-磁铁矿-钛铁矿-独居石砂矿成矿带、海南岛周边海域锆石-锐钛矿-钛铁矿砂矿成矿带、南海西部锆石-磁铁矿成矿带、南海南部锆石-独居石-钛铁矿-磁铁矿砂矿成矿带、南海东部磁铁矿-锆石砂矿成矿带、台湾岛东南部海域磁铁矿-锆石-金红石-钛铁矿砂矿成矿带。主要位于南海的周缘陆架浅水区以及越东外陆架浅水海域和菲律宾海盆。

  • (2)划分砂(0.063~2 mm)含量大于50%的建筑用砂的远景区9个,主要分布海南岛西南面到台湾海峡南部一线以北海域,其次为南部礼乐滩、万安滩、曾母暗沙附近海域,其余海域极为罕见。

  • (3)基于南海海砂资源分布特征,初步建立近岸型、潮流砂脊型、古河道埋藏型、峡口型、陆架坡折带型等五种海砂成矿模式。

  • 注释

  • ❶ 中华人民共和国国土资源部.2002.《砂矿(金属矿产)地质勘查规范》(DZ/T 0208—2002).地质出版社.

  • ❷ 中华人民共和国国土资源部.2000.矿产资源储量规模划分标准([2000]133号).

  • ❸ 国家质量监督检验检疫总局,国家标准化管理委员会.2007.《海洋调查规范第8部分:海洋地质地球物理调查》(GB/T12763.8—2007).中国标准出版社.

  • 参考文献

    • Bayliss N, Pickering K T. 2015. Transition from deep-marine lower-slope erosional channels to proximal basin-floor stacked channel-levée-overbank deposits, and syn-sedimentary growth structures, middle Eocene banastón system, Ainsa basin, Spanish Pyrenees. Earth-Science Reviews, 144: 23~46.

    • Cai Guanqiang, Miao Li, Chen Hongjum, Sun Guihua, Wu Jiaoqi, Xu Yonghang. 2013. Grain size and geochemistry of surface sediments in northwestern continental shelf of the South China Sea. Environmental Earth Sciences, 70: 363~380.

    • Chen Zhong, Yan Wen, Gu Senchang, Chen Muhong, Tang Xianzan. 2003. Prospecting division of heavy placer minerals in surface sediments of the southern Nansha trough and adjacent sea area. Marine Geology & Quaternary Geology, 23(1): 13~18 (in Chinese with English abstract).

    • Chen Zhong, Yang Huining, Yan Wen, Gu Senchang. 2006. Distributions and divisions of mineral resources in the sea areas of China: Placer deposit and ferromanganese nodule/crust. Marine Geology & Quaternary Geology, 26(5): 101~108 (in Chinese with English abstract).

    • Du Xiaoqin, Li Yan, Gao Shu. 2008. Characteristics of large sand waves, tidal structures and bedload transport in Taiwan shoal. Acta Oceanologica Sinica, 30(5): 124~136 (in Chinese with English abstract).

    • Frihy O E, Lotfy M F, Komar P D. 1995. Spatial variations in heavy minerals and patterns of sediment sorting along the Nile Delta, Bgypt. Sedimentary Geology, 97: 33~41.

    • Hu Jianyu, Kawamura H, Li Chunyan. 2010. Review on current and seawater volume transport through the Taiwan Strait. Journal of Oceanography, 66: 591~610.

    • Hu Yi, Chen Jian, Xu Jiang, Wang Liming, Li Haidong, Liu Huaishan. 2013. Sand wave deposition in the Taiwan Shoal of China. Acta Oceanologica Sinica, 32(8): 28~36.

    • Huang Long, Zhang Zhixun, Yang Huiliang. 2012. Formation conditions and metallogenic prospects of useful heavy sand resources in the northern part of the East China Sea shelf.

    • Marine Geology Frontiers, 28(7): 10~16 (in Chinese with English abstract).

    • Jin Binfu, Lin Zhenhong, Shi Zhenbo, Lin Xiaotong. 2004. Useful heavy minerals and their resource potential in Late Pleistocene sediments of the East China Sea Shelf. Acta Paleogeography, 6(3): 372~379 (in Chinese with English abstract).

    • Komar P D. 2007. The entrainment, transport and sorting of heavy minerals by waves and currents. Developments in Sedimentology, 1(58): 3~48.

    • Kou Yangqi, Du Deli. 1994. The fourth continental shelf in the northern South China Sea sedimentary characteristics of paleochannels in the 19th century. Acta Geologica Sinica, 68(3), 268~277 (in Chinese with English abstract).

    • Li Xuejie, Liao Zhiliang, Tian Chenjing, Zhong Hexian, Zhang Jiangyong. 2022. Distribution pattern of volcanic glasses in the surficial sediments of the South China Sea and their provenance. Marine Geology & Quaternary Geology, 42(3): 1~8 (in Chinese with English abstract).

    • Lin Mingkun, Lin Chuanshan, Pan Yanjun, Qi Wentao, Li Yi. 2016. Mineral characteristics and metallogenic conditions of zirconium-titanium sand in the shallow sea in eastern Hainan Province. Western Prospecting Engineering, 28(11): 141~143 (in Chinese with English abstract).

    • Liu Jianguo, Xiang Rong, Chen Muhong, Chen Zong, Yan Wen, Liu Fang. 2011. Influence of the Kuroshio current intrusion on depositional environment in the Northern South China Sea: Evidence from surface sediment records. Marine Geology, 285: 59~68.

    • Liu Jianguo, Yan Wen, Chen Zhong, Lu Jun. 2012. Sediment sources and their contribution along northern coast of the South China Sea: Evidence from clay minerals of surface sediments. Continental Shelf Research, 47: 156~164.

    • Liu Jianguo, Xiang Rong, Chen Zhong, Chen Muhong, Yan Wen, Zhang Lanlan, Chen Han. 2013. Sources, transport and deposition of surface sediments from the South China Sea. Deepsea Research Part I, 71: 92~102.

    • Lü Bingquan. 2008. Introduction to Marine Geology. Shanghai: Tongji University Press, 277~281 (in Chinese with English abstract).

    • Marion A, Tregnaghi M. 2013. A new theoretical framework to model incipient motion of sediment grains and implications for the use of modern experimental techniques. In: Rowin'ski P, ed. Experimental and Computational Solutions of Hydraulic Problems. GeoPlanet: Earth and Planetary Sciences. Berlin, Heidelberg: Springer, 85~100.

    • Pan Yanjun, Cui Ruyong, Lin Mingkun, Chen Fei, Hu Bangqi. 2017. Preliminary analysis of placer resources potential in Hainan Island offshore area. Marine Science Bulletin, 36(4): 458~467 (in Chinese with English abstract).

    • Papista E, Dimitrakis D, Yiantsios S G. 2011. Direct numerical simulation of incipient sediment motion and hydraulic conveying. Industrial & Engineering Chemistry Research, 50: 630~638.

    • Shen Ruohui, Zhou Dingcheng, Liao Lianzhao. 1999. High-grade distribution and prospecting significance of useful heavy sands on the seabed in the western Taiwan Strait. Taiwan Strait, 18(2): 131~139 (in Chinese with English abstract).

    • Shi Qian, Zhang Junyuan, Cai Aizhi. 2009. Taiwan shoal—A huge sand resource repository. Journal of Natural Resources, 24(3): 507~513 (in Chinese with English abstract).

    • Swart H, Yuan Bing. 2018. Dynamics of offshore tidal sand ridges, a review. Environmental Fluid Mechanics, 19: 1047~1071.

    • Tan Qixin. 1998. Marine placer deposits in China. Chinese Geology, 251(4): 23~26 (in Chinese with English abstract).

    • Tong Changliang. 2018. Classification and metallogenic characteristics of marine sand resources in Hainan Island. China Geological Survey, 5 (3): 74~80 (in Chinese with English abstract).

    • Tong Changliang, Zhang Kuanghua, Chen Fei, Gou Pengfei. 2020. Potential evaluation of marine sand resources in the northern waters of Hainan Island. China Geology, 47(5): 1567~1575 (in Chinese with English abstract).

    • Wang Dongxiao, Wang Qiang, Cai Shuqun, Shan Xiaodong, Peng Shiqiu, Shu Yeqiang, Xiao Jingen, Xie Xiaohui, Zhang Zhiwei, Liu Zhiqiang, Lan Jian, Chen Dake, Xue Huijie, Wang Guihua, Gan Jianping, Xie Xinong, Zhang Rui, Chen Hui, Yang Qingxuan. 2019. Research progress on the dynamic pattern and evolution mechanism in the middle and deep layers of the South China Sea. Science in China: Earth Science, 49(12): 1919~1932 (in Chinese with English abstract).

    • Wang Shenjie, Liu Xiqing. 1997. Utilization potential of littoral-neritic sedimentary sand and gravel resources. Marine Geological Dynamics, 180(11): 1~3 (in Chinese with English abstract).

    • Wang Shenjie, Liu Xiqing, Dai Qinfen, Li Xuejie, Chen Hong. 2003. Distribution characteristics of marine aggregate resources and potential prospect in China. Marine Geology & Quaternary Geology, 23(3): 83~89 (in Chinese with English abstract).

    • Wu Chauron, Chao Shennyu, Hsu Chun. 2007. Transient, seasonal and interannual variability of the Taiwan Strait current. Journal of Oceanography, 63: 821~833.

    • Yang Daofei. 1993. Distribution characteristics of coastal placer deposits in South China and prospecting in shallow seas. Marine Geology, (4): 1~22 (in Chinese with English abstract).

    • Yang Qunhui, Li Mujun, Yang Shengxiong, Zhu Benduo, Ji Fuwu, Wang Hu, Zhou Huaiyang. 2013. Grain size characteristics and transport trend of surface sediments in the southwestern South China Sea. Marine Geology and Quaternary Geology, 33(6): 1~7 (in Chinese with English abstract).

    • Ye Weiqiang, Li Guangdao, Pang Yanjun. 1990. Coastal placer deposits and geomorphological features in Guangxi Province. Transactions of Oceanology and Limnology, (2): 54~61 (in Chinese with English abstract).

    • Zhang Ben. 1998. Hainan ocean resources and development. World Science and Technology Research and Development, 20(4): 106~110 (in Chinese with English abstract).

    • Zhang Yanwei, Liu Zhifei, Zhao Yulong, Wang Wenguang, Li Jianru, Xu Jingping. 2014. Mesoscale eddies transport deep-sea sediments. Scientific Reports, 4: 5937.

    • Zhang Zhiwei, Zhao Wei, Tian Jiwei, Liang Xinfeng. 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. Journal of Geophysical Research: Oceans, 118: 6479~6494.

    • Zhang Zhongying. 1991. Distribution and enrichment law of coastal placer deposits in Leizhou Peninsula. Scientia Geographica Sinica, 11(2): 134~141 (in Chinese with English abstract).

    • Zhong Lifeng, Li Gang, Yan Wei, Xia Bin, Feng Yuexing, Miao Li, Zhao Jianxin. 2017. Using zircon U-Pb ages to constrain the provenance and transport of heavy minerals within the northwestern shelf of the South China Sea. Journal of Asian Earth Sciences, 134: 176~190.

    • Zhou Jiao, Yang Chupeng, Sun Guihua, Luo Weidong, Zhao Li. 2018. Potential analysis of useful heavy sand resources in the shallow waters of southwest Hainan Island. Geological Science and Technology Information, 37(2): 89~96 (in Chinese with English abstract).

    • Zhou Jiao, Cai Guanqiang, Zou Liqi, Zhong Hexian, Huang Yongjian. 2021. Resource potential of useful heavy sand in the shallow sea in southeastern Hainan Island. Marine Geology Frontiers, 37(12): 58~65 (in Chinese with English abstract).

    • Zhu Laiming, Gao Zhiyou, Yi Guan, Xu Jiang. 2007. Content and spatial change of rare earth element and trace element of surficial sediment in the South China Sea. Acta Petrologica Sinica, 23(11): 2963~2980 (in Chinese with English abstract).

    • Zhuang Zhenye, Lin Zhenhong, Zhou Jiang, Liu Zhijie, Liu Yifei. 2004. Environmental conditions for the formation and development of shelf dunes (waves). Marine Geology Frontiers, 20(4): 5~10 (in Chinese with English abstract).

    • 陈忠, 颜文, 古森昌, 陈木宏, 汤贤赞. 2003. 南沙海槽南部表层重矿物及其成矿远景. 海洋地质与第四纪地质, 23(1): 13~18.

    • 陈忠, 杨慧宁, 颜文, 吴必豪, 陈木宏, 杨华平. 2006. 中国海域固体矿产资源分布及其区划——砂矿资源和铁锰(微)结核-结壳. 海洋地质与第四纪地质, 26(5): 101~108.

    • 杜晓琴, 李炎, 高抒. 2008. 台湾浅滩大型沙波、潮流结构和推移质输运特征. 海洋学报, 30(5): 124~136.

    • 黄龙, 张志珣, 杨慧良. 2012. 东海陆架北部表层有用重砂资源形成条件及成矿远景. 海洋地质前沿, 28(7): 10~16.

    • 金秉福, 林振宏, 时振波, 林晓彤. 2004. 东海外陆架晚更新世沉积物中的有用重矿物及其资源潜力. 古地理学报, 6(3): 372~379.

    • 寇养琦, 杜德莉. 1994. 南海北部陆架第四纪古河道的沉积特征. 地质学报, 68(3): 268~277.

    • 李学杰, 廖志良, 田成静, 钟和贤, 张江勇. 2022. 南海表层沉积物火山玻璃分布特征与源区分析. 海洋地质与第四纪地质, 42(3): 1~8.

    • 林明坤, 林川善, 潘燕俊, 齐文涛, 李一. 2016. 海南省东部浅海锆钛砂矿物特征及成矿条件浅析. 西部探矿工程, 28(11): 141~143.

    • 吕炳全. 2008. 海洋地质学概论. 上海: 同济大学出版社, 277~281.

    • 潘燕俊, 催汝勇, 林明坤, 陈飞, 胡邦琦. 2017. 海南岛周边浅海砂矿资源潜力浅析. 海洋通报, 36(4): 458~467.

    • 沈若慧, 周定成, 廖连招. 1999. 台湾海峡西部海底有用重砂高品位分布与找矿意义. 台湾海峡, 18(2): 131~139.

    • 石谦, 张君元, 蔡爱智. 2009. 台湾浅滩-巨大的砂资源库. 自然资源学报, 24(3): 507~513.

    • 谭启新. 1998. 中国的海洋砂矿. 中国地质, 251(4): 23~26.

    • 仝长亮. 2018. 海南岛海砂资源的分类特征及成矿特点分析. 中国地质调查, 5(3): 74~80.

    • 仝长亮, 张匡华, 陈飞, 苟鹏飞. 2020. 海南岛北部海域海砂资源潜力评价. 中国地质, 47(5): 1567~1575.

    • 王东晓, 王强, 蔡树群, 尚晓东, 彭世球, 舒业强, 肖劲根, 谢晓辉, 张志伟, 刘志强, 兰健, 陈大可, 薛惠洁, 王桂华, 甘剑平, 解习农, 张锐, 陈慧, 杨庆轩. 2019. 南海中深层动力格局与演变机制研究进展. 中国科学: 地球科学, 49(12): 1919~1932.

    • 王圣洁, 刘锡清. 1997. 滨浅海沉积砂、砾石资源的利用潜力. 海洋地质动态, 180(11): 1~3.

    • 王圣洁, 刘锡清, 戴勤奋, 李学杰, 陈弘. 2003. 中国海砂资源分布特征及找矿方向. 海洋地质与第四纪地质, 23(3): 83~89.

    • 杨道斐. 1993. 华南滨海砂矿分布特征和浅海找矿. 海洋地质, (4): 1~22.

    • 杨群慧, 李木军, 杨胜雄, 朱本铎, 季福武, 王虎, 周怀阳. 2013. 南海西南部表层沉积物粒度特征及输运趋势. 海洋地质与第四纪地质, 33(6): 1~7.

    • 叶维强, 黎广钊, 庞衍军. 1990. 广西滨海地貌特征及砂矿形成的研究. 海洋湖沼通报, (2): 54~61.

    • 张本. 1998. 海南海洋资源与开发. 世界科技研究与发展, 20(4): 106~110.

    • 张仲英. 1991. 雷州半岛滨海砂矿的分布富集规律. 地理科学, 11(2): 134~141.

    • 周娇, 杨楚鹏, 孙桂华, 罗伟东, 赵利. 2018. 海南岛西南浅海域有用重砂资源潜力分析. 地质科技情报, 37(2): 89~96.

    • 周娇, 蔡观强, 邹郦琦, 钟和贤, 黄永健. 2021. 海南岛东南部浅海有用重砂的资源潜力. 海洋地质前沿, 37(12): 58~65.

    • 朱赖民, 高志友, 尹观, 许江. 2007. 南海表层沉积物的稀土和微量元素的丰度及其空间变化. 岩石学报, 23(11): 2963~2979.

    • 庄振业, 林振宏, 周江, 刘志杰, 刘毅飞. 2004. 陆架沙丘(波)形成发育的环境条件. 海洋地质前沿, 20(4): 5~10.

  • 参考文献

    • Bayliss N, Pickering K T. 2015. Transition from deep-marine lower-slope erosional channels to proximal basin-floor stacked channel-levée-overbank deposits, and syn-sedimentary growth structures, middle Eocene banastón system, Ainsa basin, Spanish Pyrenees. Earth-Science Reviews, 144: 23~46.

    • Cai Guanqiang, Miao Li, Chen Hongjum, Sun Guihua, Wu Jiaoqi, Xu Yonghang. 2013. Grain size and geochemistry of surface sediments in northwestern continental shelf of the South China Sea. Environmental Earth Sciences, 70: 363~380.

    • Chen Zhong, Yan Wen, Gu Senchang, Chen Muhong, Tang Xianzan. 2003. Prospecting division of heavy placer minerals in surface sediments of the southern Nansha trough and adjacent sea area. Marine Geology & Quaternary Geology, 23(1): 13~18 (in Chinese with English abstract).

    • Chen Zhong, Yang Huining, Yan Wen, Gu Senchang. 2006. Distributions and divisions of mineral resources in the sea areas of China: Placer deposit and ferromanganese nodule/crust. Marine Geology & Quaternary Geology, 26(5): 101~108 (in Chinese with English abstract).

    • Du Xiaoqin, Li Yan, Gao Shu. 2008. Characteristics of large sand waves, tidal structures and bedload transport in Taiwan shoal. Acta Oceanologica Sinica, 30(5): 124~136 (in Chinese with English abstract).

    • Frihy O E, Lotfy M F, Komar P D. 1995. Spatial variations in heavy minerals and patterns of sediment sorting along the Nile Delta, Bgypt. Sedimentary Geology, 97: 33~41.

    • Hu Jianyu, Kawamura H, Li Chunyan. 2010. Review on current and seawater volume transport through the Taiwan Strait. Journal of Oceanography, 66: 591~610.

    • Hu Yi, Chen Jian, Xu Jiang, Wang Liming, Li Haidong, Liu Huaishan. 2013. Sand wave deposition in the Taiwan Shoal of China. Acta Oceanologica Sinica, 32(8): 28~36.

    • Huang Long, Zhang Zhixun, Yang Huiliang. 2012. Formation conditions and metallogenic prospects of useful heavy sand resources in the northern part of the East China Sea shelf.

    • Marine Geology Frontiers, 28(7): 10~16 (in Chinese with English abstract).

    • Jin Binfu, Lin Zhenhong, Shi Zhenbo, Lin Xiaotong. 2004. Useful heavy minerals and their resource potential in Late Pleistocene sediments of the East China Sea Shelf. Acta Paleogeography, 6(3): 372~379 (in Chinese with English abstract).

    • Komar P D. 2007. The entrainment, transport and sorting of heavy minerals by waves and currents. Developments in Sedimentology, 1(58): 3~48.

    • Kou Yangqi, Du Deli. 1994. The fourth continental shelf in the northern South China Sea sedimentary characteristics of paleochannels in the 19th century. Acta Geologica Sinica, 68(3), 268~277 (in Chinese with English abstract).

    • Li Xuejie, Liao Zhiliang, Tian Chenjing, Zhong Hexian, Zhang Jiangyong. 2022. Distribution pattern of volcanic glasses in the surficial sediments of the South China Sea and their provenance. Marine Geology & Quaternary Geology, 42(3): 1~8 (in Chinese with English abstract).

    • Lin Mingkun, Lin Chuanshan, Pan Yanjun, Qi Wentao, Li Yi. 2016. Mineral characteristics and metallogenic conditions of zirconium-titanium sand in the shallow sea in eastern Hainan Province. Western Prospecting Engineering, 28(11): 141~143 (in Chinese with English abstract).

    • Liu Jianguo, Xiang Rong, Chen Muhong, Chen Zong, Yan Wen, Liu Fang. 2011. Influence of the Kuroshio current intrusion on depositional environment in the Northern South China Sea: Evidence from surface sediment records. Marine Geology, 285: 59~68.

    • Liu Jianguo, Yan Wen, Chen Zhong, Lu Jun. 2012. Sediment sources and their contribution along northern coast of the South China Sea: Evidence from clay minerals of surface sediments. Continental Shelf Research, 47: 156~164.

    • Liu Jianguo, Xiang Rong, Chen Zhong, Chen Muhong, Yan Wen, Zhang Lanlan, Chen Han. 2013. Sources, transport and deposition of surface sediments from the South China Sea. Deepsea Research Part I, 71: 92~102.

    • Lü Bingquan. 2008. Introduction to Marine Geology. Shanghai: Tongji University Press, 277~281 (in Chinese with English abstract).

    • Marion A, Tregnaghi M. 2013. A new theoretical framework to model incipient motion of sediment grains and implications for the use of modern experimental techniques. In: Rowin'ski P, ed. Experimental and Computational Solutions of Hydraulic Problems. GeoPlanet: Earth and Planetary Sciences. Berlin, Heidelberg: Springer, 85~100.

    • Pan Yanjun, Cui Ruyong, Lin Mingkun, Chen Fei, Hu Bangqi. 2017. Preliminary analysis of placer resources potential in Hainan Island offshore area. Marine Science Bulletin, 36(4): 458~467 (in Chinese with English abstract).

    • Papista E, Dimitrakis D, Yiantsios S G. 2011. Direct numerical simulation of incipient sediment motion and hydraulic conveying. Industrial & Engineering Chemistry Research, 50: 630~638.

    • Shen Ruohui, Zhou Dingcheng, Liao Lianzhao. 1999. High-grade distribution and prospecting significance of useful heavy sands on the seabed in the western Taiwan Strait. Taiwan Strait, 18(2): 131~139 (in Chinese with English abstract).

    • Shi Qian, Zhang Junyuan, Cai Aizhi. 2009. Taiwan shoal—A huge sand resource repository. Journal of Natural Resources, 24(3): 507~513 (in Chinese with English abstract).

    • Swart H, Yuan Bing. 2018. Dynamics of offshore tidal sand ridges, a review. Environmental Fluid Mechanics, 19: 1047~1071.

    • Tan Qixin. 1998. Marine placer deposits in China. Chinese Geology, 251(4): 23~26 (in Chinese with English abstract).

    • Tong Changliang. 2018. Classification and metallogenic characteristics of marine sand resources in Hainan Island. China Geological Survey, 5 (3): 74~80 (in Chinese with English abstract).

    • Tong Changliang, Zhang Kuanghua, Chen Fei, Gou Pengfei. 2020. Potential evaluation of marine sand resources in the northern waters of Hainan Island. China Geology, 47(5): 1567~1575 (in Chinese with English abstract).

    • Wang Dongxiao, Wang Qiang, Cai Shuqun, Shan Xiaodong, Peng Shiqiu, Shu Yeqiang, Xiao Jingen, Xie Xiaohui, Zhang Zhiwei, Liu Zhiqiang, Lan Jian, Chen Dake, Xue Huijie, Wang Guihua, Gan Jianping, Xie Xinong, Zhang Rui, Chen Hui, Yang Qingxuan. 2019. Research progress on the dynamic pattern and evolution mechanism in the middle and deep layers of the South China Sea. Science in China: Earth Science, 49(12): 1919~1932 (in Chinese with English abstract).

    • Wang Shenjie, Liu Xiqing. 1997. Utilization potential of littoral-neritic sedimentary sand and gravel resources. Marine Geological Dynamics, 180(11): 1~3 (in Chinese with English abstract).

    • Wang Shenjie, Liu Xiqing, Dai Qinfen, Li Xuejie, Chen Hong. 2003. Distribution characteristics of marine aggregate resources and potential prospect in China. Marine Geology & Quaternary Geology, 23(3): 83~89 (in Chinese with English abstract).

    • Wu Chauron, Chao Shennyu, Hsu Chun. 2007. Transient, seasonal and interannual variability of the Taiwan Strait current. Journal of Oceanography, 63: 821~833.

    • Yang Daofei. 1993. Distribution characteristics of coastal placer deposits in South China and prospecting in shallow seas. Marine Geology, (4): 1~22 (in Chinese with English abstract).

    • Yang Qunhui, Li Mujun, Yang Shengxiong, Zhu Benduo, Ji Fuwu, Wang Hu, Zhou Huaiyang. 2013. Grain size characteristics and transport trend of surface sediments in the southwestern South China Sea. Marine Geology and Quaternary Geology, 33(6): 1~7 (in Chinese with English abstract).

    • Ye Weiqiang, Li Guangdao, Pang Yanjun. 1990. Coastal placer deposits and geomorphological features in Guangxi Province. Transactions of Oceanology and Limnology, (2): 54~61 (in Chinese with English abstract).

    • Zhang Ben. 1998. Hainan ocean resources and development. World Science and Technology Research and Development, 20(4): 106~110 (in Chinese with English abstract).

    • Zhang Yanwei, Liu Zhifei, Zhao Yulong, Wang Wenguang, Li Jianru, Xu Jingping. 2014. Mesoscale eddies transport deep-sea sediments. Scientific Reports, 4: 5937.

    • Zhang Zhiwei, Zhao Wei, Tian Jiwei, Liang Xinfeng. 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. Journal of Geophysical Research: Oceans, 118: 6479~6494.

    • Zhang Zhongying. 1991. Distribution and enrichment law of coastal placer deposits in Leizhou Peninsula. Scientia Geographica Sinica, 11(2): 134~141 (in Chinese with English abstract).

    • Zhong Lifeng, Li Gang, Yan Wei, Xia Bin, Feng Yuexing, Miao Li, Zhao Jianxin. 2017. Using zircon U-Pb ages to constrain the provenance and transport of heavy minerals within the northwestern shelf of the South China Sea. Journal of Asian Earth Sciences, 134: 176~190.

    • Zhou Jiao, Yang Chupeng, Sun Guihua, Luo Weidong, Zhao Li. 2018. Potential analysis of useful heavy sand resources in the shallow waters of southwest Hainan Island. Geological Science and Technology Information, 37(2): 89~96 (in Chinese with English abstract).

    • Zhou Jiao, Cai Guanqiang, Zou Liqi, Zhong Hexian, Huang Yongjian. 2021. Resource potential of useful heavy sand in the shallow sea in southeastern Hainan Island. Marine Geology Frontiers, 37(12): 58~65 (in Chinese with English abstract).

    • Zhu Laiming, Gao Zhiyou, Yi Guan, Xu Jiang. 2007. Content and spatial change of rare earth element and trace element of surficial sediment in the South China Sea. Acta Petrologica Sinica, 23(11): 2963~2980 (in Chinese with English abstract).

    • Zhuang Zhenye, Lin Zhenhong, Zhou Jiang, Liu Zhijie, Liu Yifei. 2004. Environmental conditions for the formation and development of shelf dunes (waves). Marine Geology Frontiers, 20(4): 5~10 (in Chinese with English abstract).

    • 陈忠, 颜文, 古森昌, 陈木宏, 汤贤赞. 2003. 南沙海槽南部表层重矿物及其成矿远景. 海洋地质与第四纪地质, 23(1): 13~18.

    • 陈忠, 杨慧宁, 颜文, 吴必豪, 陈木宏, 杨华平. 2006. 中国海域固体矿产资源分布及其区划——砂矿资源和铁锰(微)结核-结壳. 海洋地质与第四纪地质, 26(5): 101~108.

    • 杜晓琴, 李炎, 高抒. 2008. 台湾浅滩大型沙波、潮流结构和推移质输运特征. 海洋学报, 30(5): 124~136.

    • 黄龙, 张志珣, 杨慧良. 2012. 东海陆架北部表层有用重砂资源形成条件及成矿远景. 海洋地质前沿, 28(7): 10~16.

    • 金秉福, 林振宏, 时振波, 林晓彤. 2004. 东海外陆架晚更新世沉积物中的有用重矿物及其资源潜力. 古地理学报, 6(3): 372~379.

    • 寇养琦, 杜德莉. 1994. 南海北部陆架第四纪古河道的沉积特征. 地质学报, 68(3): 268~277.

    • 李学杰, 廖志良, 田成静, 钟和贤, 张江勇. 2022. 南海表层沉积物火山玻璃分布特征与源区分析. 海洋地质与第四纪地质, 42(3): 1~8.

    • 林明坤, 林川善, 潘燕俊, 齐文涛, 李一. 2016. 海南省东部浅海锆钛砂矿物特征及成矿条件浅析. 西部探矿工程, 28(11): 141~143.

    • 吕炳全. 2008. 海洋地质学概论. 上海: 同济大学出版社, 277~281.

    • 潘燕俊, 催汝勇, 林明坤, 陈飞, 胡邦琦. 2017. 海南岛周边浅海砂矿资源潜力浅析. 海洋通报, 36(4): 458~467.

    • 沈若慧, 周定成, 廖连招. 1999. 台湾海峡西部海底有用重砂高品位分布与找矿意义. 台湾海峡, 18(2): 131~139.

    • 石谦, 张君元, 蔡爱智. 2009. 台湾浅滩-巨大的砂资源库. 自然资源学报, 24(3): 507~513.

    • 谭启新. 1998. 中国的海洋砂矿. 中国地质, 251(4): 23~26.

    • 仝长亮. 2018. 海南岛海砂资源的分类特征及成矿特点分析. 中国地质调查, 5(3): 74~80.

    • 仝长亮, 张匡华, 陈飞, 苟鹏飞. 2020. 海南岛北部海域海砂资源潜力评价. 中国地质, 47(5): 1567~1575.

    • 王东晓, 王强, 蔡树群, 尚晓东, 彭世球, 舒业强, 肖劲根, 谢晓辉, 张志伟, 刘志强, 兰健, 陈大可, 薛惠洁, 王桂华, 甘剑平, 解习农, 张锐, 陈慧, 杨庆轩. 2019. 南海中深层动力格局与演变机制研究进展. 中国科学: 地球科学, 49(12): 1919~1932.

    • 王圣洁, 刘锡清. 1997. 滨浅海沉积砂、砾石资源的利用潜力. 海洋地质动态, 180(11): 1~3.

    • 王圣洁, 刘锡清, 戴勤奋, 李学杰, 陈弘. 2003. 中国海砂资源分布特征及找矿方向. 海洋地质与第四纪地质, 23(3): 83~89.

    • 杨道斐. 1993. 华南滨海砂矿分布特征和浅海找矿. 海洋地质, (4): 1~22.

    • 杨群慧, 李木军, 杨胜雄, 朱本铎, 季福武, 王虎, 周怀阳. 2013. 南海西南部表层沉积物粒度特征及输运趋势. 海洋地质与第四纪地质, 33(6): 1~7.

    • 叶维强, 黎广钊, 庞衍军. 1990. 广西滨海地貌特征及砂矿形成的研究. 海洋湖沼通报, (2): 54~61.

    • 张本. 1998. 海南海洋资源与开发. 世界科技研究与发展, 20(4): 106~110.

    • 张仲英. 1991. 雷州半岛滨海砂矿的分布富集规律. 地理科学, 11(2): 134~141.

    • 周娇, 杨楚鹏, 孙桂华, 罗伟东, 赵利. 2018. 海南岛西南浅海域有用重砂资源潜力分析. 地质科技情报, 37(2): 89~96.

    • 周娇, 蔡观强, 邹郦琦, 钟和贤, 黄永健. 2021. 海南岛东南部浅海有用重砂的资源潜力. 海洋地质前沿, 37(12): 58~65.

    • 朱赖民, 高志友, 尹观, 许江. 2007. 南海表层沉积物的稀土和微量元素的丰度及其空间变化. 岩石学报, 23(11): 2963~2979.

    • 庄振业, 林振宏, 周江, 刘志杰, 刘毅飞. 2004. 陆架沙丘(波)形成发育的环境条件. 海洋地质前沿, 20(4): 5~10.