-
锂及其化合物在现代工业和科技领域中占有非常重要的地位,是未来绿色经济转型的关键金属。近年来随着新能源汽车的发展,锂的需求快速增长,预计到2030年全球锂需求将达到300万t(SPGCI,2022❶)。若依靠现有已建和在建锂矿项目,届时全球将面临近50%的需求缺口。2021年全球锂资源储量2200万t(金属量),其中盐湖卤水储量占比58%(USGS,2022❷)。资源禀赋好、锂离子浓度高的盐湖多采用沉淀法;而新开发的盐湖锂离子浓度低、利用难度大,开发方式和提锂工艺无法复制,整体发展较慢,产量增速小于矿石提锂,卤水提锂占全球锂产量的比重已由2015年的56%下降为2021年的43%。因此,探索适合不同盐湖特点的新技术和工艺路线,是保障未来锂需求和高效利用低品位卤水资源,实现新能源产业可持续发展的关键。
-
学者对盐湖卤水提锂过程进行了概括,其通常包括三阶段:富锂卤水制备、镁锂分离和碳酸锂沉淀(Li Baolan et al.,2020)。卤水通常经过10~20月太阳能蒸发和风力浓缩(Gmar and Chagnes,2019),使得石盐、钾芒硝、硼砂等矿物在一系列盐池中析出以去除大部分钠和钾,并使锂在卤水中聚集,获得富锂老卤(郑绵平等,2016)。此时,老卤中锂离子仍与大量碱金属、碱土金属离子共存,化学性质非常相近,使得其分离提取锂十分困难,镁锂分离是卤水提锂的主要瓶颈(肖小玲等,2005; 王晓丽和杨文胜,2021)。镁锂分离后的卤水锂浓度浓缩至20 g/L,使用碳酸钠沉淀得到碳酸锂,经洗涤干燥制得碳酸锂产品(An et al.,2012)。富集和沉锂工艺流程较为标准化,镁锂分离是盐湖提锂的核心。传统成熟的分离工艺沉淀法适用于优质富锂盐湖,而对低锂浓度、高镁锂比盐湖,学者和产业专家采用创新的技术和装置进行分离,如吸附、膜法、萃取和电化学法等。本文将将重点阐述这些提锂新工艺的研究现状和特点,探讨其发展方向,为促进提锂技术融合发展,提升产业规模和盐湖生产效率,保障锂资源供应提供参考。
-
1 吸附/离子交换法
-
吸附法采用特定的吸附剂,经吸附和脱附(解吸)两步将锂离子从卤水中提取并浓缩富集,以达到锂与其他杂质离子分离的目的(许乃才等,2017)。该方法的关键是选择吸附性能好、循环利用率高的吸附剂。根据吸附剂的性质,可分为有机和无机吸附剂(张艳等,2006; 董茜等,2007; 许乃才等,2017; 葛涛等,2021)。有机吸附剂主要为大环化合物冠醚和杯芳烃,但其直接用于卤水镁锂分离的并不多见。而铝基层状吸附剂、锰基和钛基离子筛型吸附剂(许乃才等,2017; Li Ling et al.,2018; 吴静等,2020; Mu Yingxin et al.,2021; 葛涛等,2021)均是未来比较有前途的无机吸附剂。离子筛型吸附剂是在无机化合物中导入锂离子生成复合氧化物,不改变其结晶结构用酸等将锂离子抽取出来,得到具有规则空隙的离子筛(图1),其空隙对锂离子具有特定的接受性(董茜等,2007)。
-
图1 离子筛(H4Ti5O12)Li+选择性吸附示意图(据Wei Shudan et al.,2020修改)
-
Fig.1 Schematic diagram of Li+ selective adsorption by ion sieve (H4Ti5O12) (modified from Wei Shudan et al., 2020)
-
1.1 铝基吸附剂
-
铝基吸附剂是从铝盐沉淀提锂发展而来,研制的一类含无定形氢氧化铝的吸附剂(LiCl·2Al(OH)3·nH2O)(张瑞等,2021a,2021b)。它将氯化锂插入到无定形氢氧化铝层中生成的插层化合物(Lee and Bauman,1978❸; 李杰和熊小波,2010),而较大碱金属及碱土金属离子因空间位阻效应不能进入,以实现镁锂分离。其吸附和脱附原理如式(1)所示。
-
学者对铝基吸附剂的研究多集中在吸附能力和循环吸附效率方面(附表1)。Kotsupalo et al.(2013)合成的锂铝层状双氢氧化物(Li/Al-LDHs)吸附容量约为20.7 mg/g,在连续吸脱附中表现出稳定的选择性。Paranthaman et al.(2017)优化的Li/Al-LDHs对锂的选择性与钠和钾离子相比分别为47.8和212,可实现锂91%的回收。该吸附剂用于泰和地下卤水提锂,平均吸附和脱附容量分别为15.06 mg/g和14.11 mg/g(程鹏高等,2021)。陈程等(2018)制备的磁性铝盐吸附剂对锂离子选择性高,静态吸附容量可达4~5 mg/g。学者进一步研究了四氧化三铁纳米粒子含量对该磁性吸附剂吸附性能和镁锂分离的影响,结果表明吸附能力随其含量的增加而降低,但对解吸液具有明显的镁锂分离效果(Chen Jun et al.,2020)。张瑞等(2021b)研制的铝基吸附剂骨架疏松多孔,利于扩散,表现出了较好的吸附量(4.90 mg/g)(张瑞等,2021a)。在铝基吸附剂稳定性方面,钟静等(2021)提出了流速、温度和锂离子初始浓度的优化条件,以保持吸附剂的循环吸附容量,该Li/Al-LDHs吸附剂经过12次吸脱附循环其吸附能力保持不变,脱附液的镁锂比<0.43(Zhong Jing et al.,2021)。也有学者开展了其他铝盐对盐湖卤水吸附提锂的研究。以酸改高岭土对当雄错盐湖卤水进行锂吸附富集,其最大锂吸附量为4.51 mg/g,以氯化铝解吸,锂离子解吸率达到93.12%(李霞等,2017)。铝基吸附剂吸附容量小,但其制备过程简单、合成条件温和、控制好解吸条件多次循环仍保持良好的吸附结构和容量等优势使其成为唯一应用于工业化生产的提锂吸附剂(张瑞等,2021b)。
-
1.2 锰基离子筛型吸附剂
-
锰氧化物具有独特的尖晶石结构和三维网络通道,使其对锂具有良好的选择性和吸附性(叶流颖等,2019)。研究最多的锰氧化物锂离子筛分别是λ-MnO2(LiMn2O4)(括号内为离子筛对应的前驱体)、MnO2·0.31H2O(Li4Mn5O12)和MnO2·0.5H2O(Li1.6Mn1.6O4)(漆贵财等,2018)。从其理论交换容量看MnO2·0.5H2O最大(72.9 mg/g),MnO2·0.31H2O次之,λ-MnO2最小(杨珊珊等,2015),由于锂离子在脱出/嵌入过程中离子交换不完全、不彻底造成实际吸附量与理论值存在较大差距。
-
Sato et al.(1997)以α-Mn2O3和Li2CO3为原料固相合成LiMn2O4前驱体,尖晶石型空间结构决定了其对锂离子的选择吸附性。Zhang Qinhui et al.(2007)制备的多晶型MnO2离子筛,饱和吸附容量可达16.86 mg/g,表明其在卤水提锂方面具有广阔的应用前景。学者比较了不同方法制备λ-MnO2离子筛的吸附容量。Koyanaka et al.(2003)采用高温固相反应制得的离子筛对锂离子的最大吸附容量为26.5 mg/g。Wang Chang et al.(2014)测试了以上方法制得离子筛的锂吸附性能(30.9 mg/g)、萃取率(95%)以及锰溶损率(25%)。Özgür(2010)比较了两种方法制备的λ-MnO2离子筛的吸收容量和吸附时间,超声雾化热解制备的离子筛3 h的插入量(34.9 mg/g)约为其最大摄取量的94%,而固相反应离子筛获得相等的摄取量则需24 h。改进离子筛的成型也可提升其吸附容量和稳定性。孙淑英等(2010a)通过控制水热反应条件合成的一维纳米线离子筛具有较高的锂离子选择性,是高温焙烧样品的2.12倍。Zandevakili et al.(2014)制备的纳米结构的离子筛表现出较高的吸附容量和稳定性,其吸锂容量达到62 mg/g,3次吸脱附试验锰的溶损可以忽略不计,表明离子筛具有足够的稳定性(Zandevakili et al.,2014)。
-
Xiao Jiali et al.(2015a)采用两步固相反应合成Li4Mn5O12前驱体,再酸化制备的球形离子筛锂抽出率>99%,锰溶损率2%,吸附容量达到39.56 mg/g。孙淑英等(2010b)采用水热合成和低温固相法相结合酸浸得到的低维纳米MnO2·0.31H2O离子筛最大吸附量达到45.81 mg/g。除改进合成方法外学者对离子筛掺杂不同元素以增强其吸附能力和结构稳定性。纪志永等(2015)采用固相法和水热法制得铝改性锂离子筛前驱体(LiAl0.5Mn4.5O12)具有较好的酸洗脱性能,锂迁出量随着铝掺入的增大(<0.5)而增加,而锰的溶损率逐渐降低,离子筛(Al-5-HMO)锂吸附性能为31.72 mg/g。Xiao Jiali et al.(2015b)通过反相悬浮聚合法制备了粒状聚丙烯酰胺锰离子筛(PAM-MnO2),其最大平衡吸附容量达到18.61 mg/g,且再生性良好,30次循环后锂离子吸附容量基本保持不变。而环氧树脂离子筛(EP/HMO)则表现出优异的吸附性能,其吸附容量为33.6 mg/g,在优化工作条件下,30次循环锂平均吸附率、解吸率和锰溶损率分别为83.2%、99.9%和0.12%(Lai Xianrong et al.,2020)。
-
MnO2·0.5H2O吸附选择性高、吸附时间短(解利昕和陈小棉,2014),其理论吸附容量达到72.9 mg/g(杨珊珊等,2015),但其合成方法有限。Chitrakar et al.(2000)采用水热低温固化合成的Li1.6Mn1.6O4前驱体,酸洗制得的离子筛吸附容量(52.06 mg/g)较λ-MnO2和MnO2·0.31H2O有显著提高。石西昌等(2013)在最优酸洗条件下获得的离子筛其锂迁出率为96.28%,多次循环后锰的溶损率由7.46%稳定为2.4%左右;但其在低锂(246.4 mg/L)高镁锂比(437.09)卤水中实际吸附容量仅为20 mg/g,为其理论容量的1/3。Shi Xichang et al.(2011)水热反应制备的离子筛最大吸附量为27.15 mg/g,吸附容量随着循环次数的增加而降低,10次循环后吸脱附能力仍>20 mg/g。学者也对Li1.6Mn1.6O4前驱体掺杂铁、铝等以提升锂吸附容量和降低锰的溶损,进而改善其循环性能。掺杂四氧化三铁的锰离子筛吸附能力为29.33 mg/g,大于未掺的离子筛(26.15 mg/g)(Xue Feng et al.,2019)。Chitrakar et al.(2014a)研究了不同掺杂铁比例的离子筛卤水提锂效果,在掺入铁锰比为0.1,450℃煅烧制备的前驱体最大锂吸附容量为28 mg/g,4次循环后锰溶损率由1.1%降低为0.70%。掺杂铝的离子筛具有较高的吸附容量(32.6 mg/g)而未掺杂的离子筛仅为27.6 mg/g;4次循环后掺铝离子筛仍保持较高的吸附容量(26.8 mg/g)且锰的溶损率(1.92%)也低于未掺杂的离子筛(2.06%)(Zhang Guotai et al.,2019)。使用包覆、制膜等手段可使锰基锂离子筛不受环境的强烈冲击,也可增强其吸附性能。Park et al.(2014)将离子筛暴露在纳米纤维表面,在其60%负载时,最大吸收量(10.3 mg/g)仅比无载体低4%。将Li1.6Mn1.6O4与PVDF杂化制膜,该膜的锂吸附容量为41 mg/g,5次降低为35 mg/g,解吸和锰溶损率为95%和3.5%(解利昕和陈小棉,2014),但该离子筛吸附速率较慢(12 h)。
-
1.3 钛基锂离子筛吸附剂
-
钛基锂离子筛通常以TiO2和Li2CO3为钛源和锂源合成前驱体,酸洗后获得离子筛。钛基锂离子筛中的钛氧键能较大,使得其结构更加稳定,不易溶损(Wei Shudan et al.,2020; 卞维柏和潘建明,2020; 路青强等,2021),弥补了锰基离子筛的不足。钛基锂离子筛根据其结构主要分为层状结构(H2TiO3)和尖晶石型(H4Ti5O12)两种(潘鑫等,2019; 路青强等,2021)。
-
Li2TiO3离子筛对碱金属、碱土金属溶液中的锂具有特殊选择吸附能力,对富锂溶液最高吸附能力达到94.5 mg/g,远高于其他吸附剂(Lawagon et al.,2016)。不同晶型的钛和锂原料、配比和不同方法合成的前体存在性能上的差异。钟辉和殷辉安(2003)将纯TiO2与Li2CO3或LiOH·H2O高温固相制得Li2TiO3,盐酸洗脱获得离子筛的饱和交换容量为29.4 mg/g。张丽芬等(2010)以TiO2∶Li2CO3=1∶1,采用固相合成和盐酸洗脱得到H2TiO3吸附剂,锂的抽出率达到98.86%,钛几乎不溶损(<0.1%),对锂的吸附容量为39.8 mg/g。Tang Dahai et al.(2015)在锂钛摩尔比2.5,优化条件下制备的吸附剂在锂溶液(2 g/L)中的吸附容量为27.8 mg/g,多次循环后其吸附容量仍保持在23~24 mg/g。而以乙酸锂和正钛酸丁酯为原料,溶胶凝胶酸化制得的H2TiO3吸附剂锂抽出率为78.9%,钛溶损率<0.07%,最大锂吸附容量为49.38 mg/g(Zhang Liyuan et al.,2016)。除以上条件外,前人研究表明锂溶液浓度、温度、pH、酸种类及浓度、反应时间等也可影响离子筛吸附能力(Chitrakar et al.,2014b; Zhang Liyuan et al.,2016; Wang Shulei et al.,2017; Gu Donglei et al.,2018)。像锰基离子筛一样,学者也采用掺杂和包覆等手段以提升H2TiO3吸附剂的吸附性能和吸附速率。Zhang Liyuan et al.(2018)以硫酸钛为钛源采用无机沉淀胶溶法制备的H2TiO3离子筛,在1 h和8 h的吸附容量已达到29.96 mg/g和33.35 mg/g,提升了吸附速度。掺入铁的钛基吸附剂对锂具有很高的选择性,其吸附容量(53.3 mg/g)高于未掺入的吸附剂(50.5 mg/g; Wang Shulei et al.,2018)。Lawagon et al.(2019)研究表明聚丙烯腈是H2TiO3最合适的载体,该吸附剂(H2TiO3/PAN)的亲水性和纳米纤维结构使其最大吸附容量达到72.75 mg/g,循环稳定性和耐久性也证明其为高效的锂离子吸附剂。Xu Xin et al.(2017)制备的3D多孔H2TiO3吸附剂的饱和吸附能力为76.3 mg/g,5次循环后其仍保持良好的稳定性,吸附能力>64 mg/g,以上指标均远高于普通层状钛吸附剂。
-
对于H4Ti5O12离子筛,颜辉等(2014)分析了锂钛比对吸附性能的影响,在锂钛质量比0.83,高温热力学重结晶制得的吸附剂饱和交换容量达到32.29 mg/g。董殿权等(2007)考察了采用溶胶凝胶法合成前驱体(Li4Ti5O12)的耐酸性及阳离子抽出情况,离子筛的饱和交换容量为42.30 mg/g。除在制备方面外,学者也用负载基质材料提升离子筛暴露以提升其吸附性。Li Na et al.(2018)制备的蛋黄壳结构的离子筛(C@H4Ti5O12)具有高比表面积(201.74 m2/g),吸附容量达28.46 mg/g,为具有相似尺寸和表面积层状离子筛的8倍。Moazeni et al.(2015)制备的具有纳米管形态的离子筛,其吸附容量为39.43 mg/g。董殿权等(2012)合成的三维有序大孔前驱体酸稳定性好、对锂选择性高,饱和交换容量达56.70 mg/g,为理论值的94%。采用静电纺丝和煅烧相结合制备的多孔纳米纤维钛离子筛(P-H4Ti5O12-NF)增加了吸附位点的暴露,其吸附容量达到59.1 mg/g,6次循环后仍保持86.5%的吸附能力,钛溶损小(0.6%)(Wei Shudan et al.,2020)。
-
采用吸附剂提锂操作简单,具有广泛的应用前景,但需要找到易于制备且吸附容量高的吸收剂。对比上述吸附剂吸附性能,从实际吸附能力来看(图2):铝基吸附剂平均吸附能力仅为6.60 mg/g,明显小于锰基和钛基吸附剂;锰基吸附剂平均值位于29.57~34.40 mg/g之间,三者的实际吸附能力相差不大;H2TiO3和H4Ti5O12平均吸附容量分别为42.00 mg/g和43.06 mg/g。钛基离子筛吸附能力大于锰基,但两者实际吸附能力均小于其理论吸附能力,未来仍需探索制备更利于吸附过程和吸附能力的离子筛(杨珊珊等,2015)。从洗脱来看(图2),锰基和钛基吸附剂需酸洗脱,盐酸是普遍使用的洗脱剂,并且其阳离子洗脱率与酸的浓度和温度等相关,其平均洗脱率>95%,高于铝基吸附剂;铝基吸附剂可使用去离子水洗脱,其平均洗脱率为88.65%。从溶损来看(图2),铝基和锰基吸附剂有较高的溶损率,特别是MnO2·0.5H2O离子筛,其平均溶损率为3.44%,显著地高于钛基吸附剂;H2TiO3和H4Ti5O12吸附剂平均溶损率分别仅为0.31%和0.44%。从吸附剂适用环境来看,铝基吸附剂只适用于中性环境,碱性或酸性环境会破坏吸附剂的结构(路青强等,2021);对锰和钛基离子筛学者选择初始溶液pH的范围分别为6.6~13和6.5~13.86,表明在中性或碱性溶液中这两类吸附剂对锂离子具有较强吸附能力。铝基吸附剂已有工业化应用,适用于分布广泛的氯化物型以及硫酸镁亚型盐湖,但在生产过程中应注意其流动性和渗透性较差的缺陷(郭敏等,2016)。相对于铝基吸附剂,锰基离子筛吸附容量相对较高,但也易溶损,保持结构的稳定性、降低溶损将决定其未来工业化前景。钛基离子筛吸附能力强、耐溶损、稳定性较好,但是离子固相传质较慢,导致吸附平衡时间较长(卞维柏和潘建明,2020)。钛基吸附剂目前仅在中国西藏扎布耶盐湖进行了中试,但其效果未见报道。
-
图2 吸附剂锂吸附性能比较
-
Fig.2 Comparison of adsorption properties of adsorbents for lithium
-
2 萃取法
-
溶剂萃取法利用有机溶剂对锂的特殊萃取性能,以达到提取锂的目的(图3),其关键是合适的萃取剂(朱华芳等,2010)。萃取法最早由Nelli et al.(1968)❹提出,其构建了80%二异丁基酮-20%磷酸三丁酯(TBP)的萃取体系。之后几十年学者对溶液或卤水萃取提锂进行了较多的研究(附表2),按萃取剂和萃取体系主要分为:磷酸脂类、酰胺类和双酮类等(张金才等,2005; 朱华芳等,2010; 李丽娟等,2018; 赵汝真等,2021)。
-
2.1 磷酸脂类萃取体系
-
中性磷类是最常用的锂萃取剂(张金才等,2005),主要有:磷酸三丁酯(TBP)、三辛基氧化膦(TOPO)、丁基膦酸二丁酯(DBBP)。朱慎林等(2000)对比了这些萃取剂的提锂效果,TBP的萃取率最高。黄师强等(1987)❺提出了TBP-煤油的萃取提锂的工艺。Shi Dong et al.(2019)分析了TBP浓度、铁锂摩尔比、卤水酸度对高镁锂比盐湖卤水的提锂效率,表明在最优条件下单级萃取效率为67.7%,镁锂分离系数为435.5。曾小毛和樊磊(2017)将煤油改为溶剂油,构建了70%TBP-30%200#溶剂油的萃取体系,并设计了5级逆流萃取—3级逆流洗涤—2级逆流反萃的提锂工艺流程,该流程镁锂分离系数达到141.42,反萃液中锂浓度达到25.35 g/L。张永兴等(2019)以磺化煤油为稀释剂,构建了30%TBP-磺化煤油的萃取体系对盐湖老卤中的锂进行分离提取和反萃,其单级萃取和反萃取效率分别为75%和51%。将FeCl3引入,孙淑英等(2011)构建了75%TBP-煤油-FeCl3的萃取体系,最佳工艺条件下其单级萃取率达到88%左右,反萃后锂离子浓度为11.5 g/L,锂离子回收率为60%。而蒋应平等(2021)发现萃取体系中TBP浓度较高对萃取设备的腐蚀也较强,而浓度低于50%时易出现第三相;并且TBP在高酸条件下易降解,循环能力降低。为了降低TBP对设备的腐蚀,Zhou Zhiyou et al.(2013)建议将与TBP无相互作用的极性溶剂用于TBP和FeCl3萃取锂的工业过程,以获得更大的分配系数。Zhou Zhiyou et al.(2011)研究了TBP与三种稀释剂(甲基异丁基酮(MIBK)、煤油和2-辛醇)对锂萃取效果的影响,结果表明TBP-MIBK和TBP-煤油远大于TBP-2-辛醇和FeCl3为共萃剂的体系,并随着TBP体积分数的增大,锂分配系数和镁锂分离系数随之增大(时东等,2013)。Zhou Zhiyou et al.(2012)构建了TBP-MIBK-FeCl3萃取体系,分析了TBP浓度、铁锂摩尔比、相比等因素对萃取效率的影响。随后Xiang Wei et al.(2016)对该体系构建了包含萃取、洗涤、反萃和再生四个阶段的10级萃取工艺流程(图3),14个循环后锂回收率>98%,镁锂比由94.8降低为0.03(Xiang Wei et al.,2017)。学者也将琥珀酸二乙酯(Zhou Zhiyong et al.,2020)、协萃剂A(张丽芬等,2021)、丁酸乙酯(EB)(石成龙等,2020)、邻苯二甲酸二辛酯(Ji Lianmin et al.,2016)等作为共萃剂或溶剂引入萃取体系(附表2),以找到合适的TBP混合体系提升萃取效率和镁锂分离系数。
-
2.2 酰胺类萃取体系
-
TBP水溶性大、腐蚀性强和易降解,并非工业上萃取锂的最佳选择。N,N-二(1-甲庚基)乙酰胺(N503)羰基的氧原子对H+或金属离子具有较强的配位能力(朱华芳等,2010),其对盐湖饱和氯化镁卤水中锂的萃取能力仅次于TBP(赵汝真等,2021)。因此,酰胺类萃取剂,特别是N503早期曾广泛用于萃取分离领域(时东等,2013)。许仁庆(1979)对比了9种萃取体系,优选了20%N503-20%TBP-200#煤油的萃取体系对饱和氯化镁溶液提锂,经4级逆流萃取,锂的回收率达90%左右。时东(2013)发现新型酰胺类萃取剂N,N-二(2-乙基乙基)乙酰胺(N523),主碳链个数的减少降低了其黏度和密度,利于萃取的分相过程,使其锂萃取性能优于N503,单级萃取率(80%)优于其他酰胺类萃取剂(李丽娟等,2018)。时东(2013)构建了N523-磺化煤油的萃取体系,分析了其在最佳条件下锂单级萃取率为74.94%,经3级逆流萃取锂回收率可达96%,锂与钠、钾、镁的分离效果好。但该过程存在萃取操作范围窄、易出现界面物、分相时间长、串级效应不明显等缺陷。将TBP作为协萃剂和分相助剂加入该体系能消除界面物、缩短分相时间,明显改善分离效果,最佳的TBP添加量为30%。随后针对中国青海高镁锂比盐湖卤水,时东等(2013)提出了20%N523-30%TBP-50%磺化煤油的新萃取体系,对洗涤、反萃、转相工艺的研究,确定了8级萃取工艺流程,其锂萃取率达96%,反萃液中氯化锂纯度>99%,多次循环萃取剂无溶损,萃取性能良好。对含硼卤水该课题组又构建了N523-TBP-FeCl3的萃取体系,在优化条件下经萃取-洗涤-反萃-再生13级流程,锂萃取率达96%,萃取液锂含量28 g/L(Shi Dong et al.,2018)。使用该萃取体系对中国青海不同盐湖老卤进行了萃取试验,其锂萃取回收率>90%,说明其具有广泛的适用性(李丽娟等,2018)。该萃取体系已经过中试,在中国青海大柴旦盐湖进行工业化示范,并且运行正常。
-
图3 TBP-MIBK-FeCl3萃取体系10级萃取工艺流程(据Xiang Wei et al.,2017修改)
-
Fig.3 Ten stage extraction process flow of TBP-MIBK-FeCl3 extraction system (modified from Xiang Wei et al., 2017)
-
2.3 双酮类萃取体系
-
双酮类萃取剂的羟基或羰基可与锂离子形成较为稳定的螯合结构,在协萃剂的作用下形成相应萃合物,使锂得到分离(葛涛等,2021)。学者主要研究的是β-双酮类,包括噻吩甲酰三氟丙酮(TTA)、苯甲酰三氟丙酮(HBTA)、苯酰丙酮等,其萃取体系的提锂机理如下(图4)(赵汝真等,2021)。该体系从水相中萃取锂要求含锂溶液为碱性,且双酮萃取剂对锂萃取时效果较差,加入共萃剂后萃取效果提升明显。以TTA为萃取剂、TOPO为协萃剂实现了微量锂的萃取(Kim et al.,2003)。学者也研究了2-噻吩甲酰三氟丙酮(Ishimori et al.,2002)、吡唑酮(郭宏杰和黄师强,1991)等对锂的选择性萃取,但仅停留在实验室阶段。对于HBTA萃取提锂的研究,李丽娟等(2018)分析得到其与TOPO协同萃取锂的效果最好。Zhang Licheng et al.(2017)研究了该协同萃取体系优化条件下对低锂含量模拟盐水的锂萃取率达到95%;后经盐酸洗涤和反萃,萃取液锂浓度为13.6 g/L。随后其又构建了HBTA-TOPO-煤油的萃取体系,采用7级萃取流程对有机相进行了30 h稳定性试验,3级萃取率达95%,全流程锂回收率达96%,反萃溶液锂含量为15 g/L(Zhang Licheng et al.,2018),初步证明了该工艺的稳定性和可靠性,为将来工业化奠定了基础。
-
溶剂萃取法对于高镁锂比盐湖卤水具有较高的选择性,是一种有效的提锂方法,具有较好的工业前景。学者对以上三类萃取体系的研究集中在选择高效的锂萃取剂及萃取体系、优化萃取和反萃条件、设计萃取-洗涤-反萃-转相全流程工艺及参数(附表2)三方面。对比三类萃取体系可以看出:磷脂类的关注最高,研究较多的是TBP-FeCl3-煤油的萃取体系,学者从相比、铁锂摩尔比、酸度、反应时间等方面优化萃取条件,其平均单级萃取率及反萃率分别为89.94%和85.85%(图5)。该萃取体系研究应重点解决TBP对设备的腐蚀和出现第三相,或选择适合极性溶剂的萃取体系是其实现工业化要解决的主要问题。酰胺类萃取体系对设备无腐蚀,具有较高的萃取和反萃效率(~95%)(图5),目前仅在中国大柴旦氯化物型盐湖实现了工业化生产,但萃取剂的稳定性需长期关注。学者对双酮类萃取体系研究较少,其对锂也有较高的萃取率和反萃率(~90%),但合成工艺复杂、成本高,在碱性条件下水溶性较大,目前研究仅限于实验研究阶段。萃取法工艺流程较长,需要处理的卤水量大,酸碱消耗高,需进一步加强高选择性萃取剂及萃取体系、酸的循环利用等方面的研究,并注意萃取剂及反萃剂对生态环境的影响。
-
图4 β-双酮类萃取体系提锂机理(S,协萃剂)(据赵汝真等,2021)
-
Fig.4 Lithium extraction mechanism of β-diketone extraction system (S, conextractant) (after Zhao Ruzhen et al., 2021)
-
图5 溶剂萃取法萃取和反萃效率比较
-
Fig.5 Extraction and stripping efficiency comparison of solvent extraction method
-
3 膜法
-
膜法是选用具有选择透过性能的薄膜,在外力推动下对双组分或多组分溶质和溶剂进行分离、提纯、浓缩的方法(李增荣等,2017)。压力驱动的膜分离包括微滤、超滤、纳滤、反渗透技术。纳滤精度介于反渗透和超滤之间,对分子在1 nm以上或相对分子量为200~1000的物质具有较强的截留能力,对离子具有选择性,有优异的截留二价和多价离子而透过单价离子的性能(张秀峰等,2017),因此纳滤是高镁锂比盐湖卤水回收锂和降低镁锂比的有效方法(Bi Qiuyan et al.,2014)。Wen Xianming et al.(2006)将纳滤膜(Desal-5 DL)用于盐湖卤水提锂,但发现膜的锂通量和回收效率均不理想,此后的研究多集中在制备高效稳定的锂分离膜和优化镁锂分离工作条件方面。
-
3.1 复合选择性分离膜
-
在制备高效稳定分离膜方面(附表3),Ma et al.(2007)尝试了不同载体和载体组合的支撑液膜(SLM),发现LIX54和TOPO载体的组合对锂萃取最有效,其锂协同萃取方程如式(2)所示,最佳萃取效率>95%,系统稳定达3天,但显著地低于PVC杂化膜(78天)(Zhang Chengyi et al.,2020a)。采用甲基磺酸和硫酸混合溶剂制备的PEEK膜,反萃取通量为3.1×10-9 mol/cm2/s,稳定性可达125天(Huang Tao et al.,2019)。Song Jianfeng et al.(2014)利用PES与SPPESK混合制备的无孔离子交换膜用于液液萃取锂的屏障膜,其锂离子通量为1.67×10-8 mol/cm2/s,而后该课题组制备的新型耐溶剂膜(EVAL)将锂离子通量提升为2.7×10-8 mol/cm2/s(Xing Lixin et al.,2016)。Lu Jian et al.(2018)研制的高选择性多层锂离子印迹膜,在低锂离子浓度下锂钠比和锂钾比的相对选择性系数和渗透系数均高于已有文献结果。学者也将吸附剂和萃取剂引入膜制备过程以提升锂提取效率。将TBP-FeCl3萃取体系引入聚氯乙烯基聚合物包合膜(PIM),与液液萃取相比,PIM膜的锂离子萃取率提高了20%,锂镁分离系数提高了5%(Zhang Chengyi et al.,2020b),其锂转移如图6所示。Sun Dongshu et al.(2016)制备的新型锂离子筛膜(LISM)锂离子通量为9.7 mL/cm/min,最大锂离子吸附能力27.8 mg/g/h,锂镁分离系数4.76。Zhang Jie et al.(2019)将HMO和HMO-S嵌入SPEEK基质中制备了两种具有高选择性锂离子杂化膜,其中所制备的SP/HMO-S-20膜较商业膜获得了更优异的锂离子通量(8.99×10-8mol/cm2/s)、热稳定性和机械稳定性。
-
图6 PIM膜Li+转移示意图(据Zhang Chengyi et al.,2020b修改)
-
Fig.6 Schematic diagram of Li+ transfer in PIM membrane (modified from Zhang Chengyi et al., 2020b)
-
3.2 纳滤膜
-
纳滤膜可将不同组成卤水中的镁锂分离(康为清等,2014),学者对其影响因素进行了深入的研究(附表4)。Yang Gang et al.(2011)发现工作压力和渗透通量对DK纳滤膜的镁锂分离效果影响显著。提高压力会提高膜通量和锂回收率,但会降低镁的截留率(邢红等,2016)。同时,镁锂离子截留率及镁锂分离效果均随初始溶液镁锂比的增加而降低(李燕等,2021)。除此之外,Sun Shuying et al.(2015)也得到pH对膜镁锂分离效果影响显著。Pramanik et al.(2019)得出随着pH的增加(3~11),两种纳滤膜(NF90和NF270)对锂的排斥均呈现降低的趋势。由从以上研究可知,影响纳滤膜镁锂分离的主要因素有:工作压力、初始溶液镁锂比和pH。邢红等(2016)采用两级纳滤膜去除盐湖卤水中的镁和钙离子,并用反渗透膜对卤水进行浓缩,当浓缩至6倍时,膜通量下降明显,锂离子浓度富集至2.66 g/L,表明纳滤膜与反渗透组合工艺对于盐湖卤水提锂是可行的。
-
膜分离技术在盐湖提锂中应用主要是镁锂分离和锂的浓缩。与液液萃取相比,膜从盐湖卤水中分离锂离子是一种绿色工艺(Huang Tao et al.,2019),但膜法工艺对膜的质量、性能要求较高。在膜制备方面,学者将聚合物、吸附剂、萃取剂等引入,以提升选择性分离膜的锂离子通量、镁锂分离系数和稳定性。纳滤膜用于高镁锂比盐湖卤水镁锂分离的研究日渐增多,显示出了较强的应用潜力(张秀峰等,2017)。现有的膜法分离技术不适合深度除镁,与其他方法相结合能达到逐步分离、提取锂的目的,如“吸附+膜法”已成功应用于中国察尔汗盐湖卤水提锂,但该方法在纳滤前需对含锂卤水大幅稀释,而后又将含锂卤水再次浓缩后沉锂,这个过程要消耗大量的淡水资源。
-
4 电化学法
-
电化学提锂避免了离子筛再生洗脱剂的使用,降低了水的消耗和废弃化学品的产生,具有适用低品位卤水、环境友好等优势(Battistel et al.,2020; 郭志远等,2020),近年来引起了人们的广泛关注。该方法最早由Kanoh et al.(1993)根据电池工作原理提出,通过充放电使得锂离子在固相电极和液相电解液之间转移来实现提锂(图7)。工作电极与锂离子电池的正极材料相似,选择对锂离子高选择性、高脱嵌容量和良好循环稳定的活性材料,如LiFePO4、LiMn2O4、LiNi1/3Co1/3Mn1/3O2等(Battistel et al.,2020; 王晓丽和杨文胜,2021);对电极有Pt、Ag、Zn、活性炭、电活性聚合物等(Battistel et al.,2020; 郭志远等,2020; 王晓丽和杨文胜,2021)。工作电极、对电极的选择和电化学提锂体系的构建对锂吸附容量、循环稳定性和经济性等关键指标起着决定性作用。电化学提锂体系可分为电控离子交换、电渗析和“摇椅式”电化学法等(Zavahir et al.,2021; Wang Jiajia et al.,2022)。
-
图7 锂离子捕获(放电)和释放(充电)过程示意图(据Lee et al.,2013修改)
-
Fig.7 Schematic diagram of Li+ capturing (discharge) and releasing (charge) processes (modified from Lee et al., 2013)
-
4.1 电控离子交换
-
电控离子交换是将电化学与离子交换相结合,提供了一种高选择性和可逆的分离方法(Wang Jiajia et al.,2022),改进了传统离子交换法反应速率缓慢和平衡时间较长的问题。Kanoh et al.(1993)首次构建了λ-MnO2/Pt电控离子交换提锂体系,但Pt使电解水反应能耗升高,降低了提锂效率。针对以上问题,研究者陆续开发出更高电流效率、高选择性、低能耗的对电极材料(附表5)。以Ag为对电极的电控离子提锂系统,脱盐卤水中锂离子以10.1 mg/g/d的速度选择性回收,速率是吸附过程的3倍(Kim et al.,2019);经连续操作,可将纯度和浓度分别提高到99.0%和190 mM,其锂能耗为21.3 Wh/mol。但Ag的溶解会降低阳极的稳定性,为了降低Ag的成本和提高稳定性,Kim et al.(2015)提出了λ-MnO2/活性炭(AC)的提锂体系,平均每次循环锂浓度增长1 mM,为其理论值的94%,电力消耗降为4.2 Wh/mol,并且50次循环后仍表现出较好的稳定性(96%)。与Ag或Pt相比,NiHCF无疑具有成本优势和耐久性(Wessells et al.,2011),Trócoli et al.(2017)构建的λ-MnO2/NiHCF电控离子交换系统,锂能耗为3.6 Wh/mol,锂相对镁离子的选择性为1700,与λ-MnO2/Ag和λ-MnO2/AC相比,其锂离子选择性至少提高了23.6%(Zavahir et al.,2021)。也有学者将聚合物PPy/PSS作为Ag电极的替代物,Du Xiao et al.(2016)使用λ-MnO2/PPy/PSS涂层电极回收锂时,锂离子交换容量达到35.2 mg/g,吸附平衡时间<2 h,5次循环后其离子交换容量为初始值的98.9%,具有较好的稳定性。Zhang Huixin et al.(2019)引入石墨烯对电极,λ-MnO2对锂离子的良好选择性与石墨烯的优良导电性之间的协同效应使得该体系对锂的吸附起着重要作用。
-
除对电极外,学者也提升工作电极性能以提高锂吸附容量、降低能耗。Al2O3/ZrO2包覆LiMn2O4的活性材料与Ag构成的锂回收系统,最大锂离子回收能力为49.92 mg/g,能耗为5.92 Wh/mol(Luo Guiling et al.,2022),该体系具有更高的效率和长期稳定性(30次循环Mn溶损0.1%)。而Zhao Xiaoyu et al.(2020)在LiMn2O4表面引入了PPy/Al2O3 3D纳米结构骨架,并与AC构建的电控离子交换体系锂离子吸附能耗为1.41 Wh/mol,30次循环后容量保持率为91.66%,该电控离子交换具有成本效益高、循环稳定性好、选择性高、容量大等优点。Pasta et al.(2012)将活性材料改为LiFePO4,构建的LiFePO4/Ag体系提锂电耗为1 Wh/mol。Wang Qiang et al.(2019)基于H1.6Mn1.6O4对锂离子的高度选择性吸附和还原氧化石墨烯(rGO)的良好导电性,将H1.6Mn1.6O4/rGO复合膜应用于低锂浓度溶液提锂,其吸附容量为38.78 mg/g,平衡时间为5 h;经过5次循环后,锂吸附容量为初始值的99%。
-
4.2 电渗析
-
电渗析是一种基于膜的电化学分离技术,是由一系列阴(AXM)、阳离子交换膜(CXM)交替安装在阴极和阳极之间(Wang Jiajia et al.,2022),在电位差的影响下诱导离子通过离子交换膜(图8)。根据离子交换膜的特点电渗析可分为:选择性电渗析、双极膜电渗析和离子液膜电渗析(Zavahir et al.,2021)。
-
图8 电渗析工艺流程图(据Guo Zhiyuan et al.,2018修改)
-
Fig.8 Process flow diagram of electrodialysis (modified from Guo Zhiyuan et al., 2018)
-
Nie Xiaoyao et al.(2017)采用选择性一价离子交换膜制备的选择性电渗析,在优化条件下浓缩液的镁锂比值由初始溶液的150降低到8.0,锂离子回收率达到95.3%,表明单价选择性离子交换膜对镁锂有显著的分离效果。学者从初始溶液浓度、卤水成分、工作电压、离子交换膜改性等方面优化电渗析的渗透选择性和锂回收率。降低初始溶液浓度会导致锂回收率、浓缩液锂钠比以及电耗的升高(Parsa et al.,2015);而溶液共存阳离子浓度(Na+,K+)的增加将降低镁锂分离效果(Ji Pengyuan et al.,2018),且对锂离子的迁移有负面影响(Chen Qingbai et al.,2018)。提高外加电压可以提高锂的分离系数和回收率,但能耗也会增加。Ji Zhiyong et al.(2017)对盐湖卤水进行选择性电渗析,在电压5~6 V时镁锂分离系数增速快于低电压(2~3 V),锂回收率(75.44%)和能耗(0.18~0.24 kWh/mol)也高于后者。为加强锂的吸附,Bazrgar et al.(2020)测定了放置LMO颗粒的改性CXM的电化学性能,其锂离子通量和锂钠比优化值为0.149 mol/min/m2和32.2,与未改性CEM相比,这些值分别低18.58%和高62.3%,表明改性的CXM具有可接受的锂通量和高选择性。Guo Zhiyuan et al.(2018)构建了由11个CXM和10个AXM组成的电渗析系统,对氯化锂溶液分离的最佳电压为10 V,锂回收率和电耗分别为76.45%和0.66 kWh/mol。
-
双极膜电渗析是双极膜(BM)与离子交换膜电渗析相结合的提锂方法,其结构如图9所示。学者对该方法提锂的相关因素进行了研究。Bunani et al.(2017a)监测了电压、初始溶液体积和pH等对锂、硼分离和回收的影响,其性能随外加电压的增加而提高,随初始溶液体积的增加而降低。在最佳条件下锂的分离率和回收率分别为99.6%和88.3%,而硼分别为72.3%和70.8%(Bunani et al.,2017a)。但随着外加电压的增加,锂和硼的电流效率逐渐降低,单位电耗增加(Bunani et al.,2017b);而pH的增加相较于锂更能改善硼的分离和回收(Bunani et al.,2017a)。学者(İpekçi et al.,2018)也研究了酸和碱室中使用的酸和碱溶液浓度、类型对锂和硼分离和回收的影响,在酸室和碱室中分别使用0.05 mol/L HCl和0.05 mol/L NaOH溶液,电压30 V时,锂和硼的分离率分别为94.7%和86.9%,回收率分别为62%和50%。从酸碱的类型来看,弱酸和弱碱需要较高的浓度,强酸和强碱则要适度较低的浓度(İpekçi et al.,2018)。İpekçi et al.(2020)也进一步分析了溶液流速对分离和回收率的影响:较快的流速具有较高的硼和锂分离效率,在流速50 L/h时,锂和硼最高分离效率分别为93%和69%,最高回收率分别为57%和41%。在最佳工艺条件下,硼和锂的回收率分别为59%和73%(İpekçi et al.,2020),与Hwang et al.(2016)双极膜锂离子解吸效率相近,但与化学过程解吸相比恢复时间缩短约180 min。以上学者分析了影响双极膜电渗析分离和回收率的因素及其最佳条件,但以上最佳参数可能会随着不同工艺条件,如离子交换膜类型、卤水锂浓度等而变化(İpekçi et al.,2018)。
-
图9 双极膜结构(a)及双极膜电渗析示意图(b)(据Zavahir et al.,2021修改)
-
Fig.9 Structure of bipolar membrane (a) and schematic diagram of bipolar membrane electrodialysis (b) (modified from Zavahir et al., 2021)
-
离子液膜电渗析是由离子液体分离的进料相和渗透相组成。该技术多用于海水提锂(Hoshino,2013),较少用于卤水提锂。Zhao Zhongwei et al.(2020)提出了一种结合离子液膜萃取和电渗析特性的夹心离子液膜电渗析系统,能够将锂离子与卤水中的其他阳离子分离,实现高镁锂比盐湖卤水中锂的选择性提取。该夹心离子液膜由2个CXM和1个负载锂离子的有机液膜组成(图10)。在最佳条件下,阴极液中的镁锂比值由100降低到2以下,锂能耗低至0.13 kWh/mol。随后该课题组还比较了4种常温离子液膜,得到[C4mim][TFSI]体系具有最高的锂迁移率,在电流密度为4.375 A/m2条件下持续12 h后,镁锂比值由卤水的50降至回收液的0.5(Liu Gui et al.,2020)。与典型的电渗析相比该工艺电流效率高(65%),锂能耗低(16 Wh/g)(Liu Gui et al.,2020)。离子液膜电渗析系统改进了有机相溶解和复杂的操作,适应性强、能耗低、高稳定性,为从高镁锂比卤水中提取和分离锂提供了广阔的前景(Liu Gui et al.,2020; Zhao Zhongwei et al.,2020)。
-
4.3 “摇椅式”电化学
-
“摇椅式”电化学是由分别置于AXM分隔的回收室和原料室内的富锂态电极和贫锂态电极组成的电极体系,通过施加不同方向的电场,同步进行富锂电极脱锂和贫锂电极嵌锂,以实现锂的提取(郭志远等,2020; 王晓丽和杨文胜,2021)。该体系多选用LiFePO4/AXM/FePO4(图11)和LiMn2O4/AXM/Li1-xMn2O4的电化学提锂结构(附表6)。
-
图10 夹心离子液膜电渗析示意图(据Zhao Zhongwei et al.,2020修改)
-
Fig.10 Schematic diagram of the sandwiched liquid membrane electrodialysis (modified from Zhao Zhongwei et al., 2020)
-
图11 “摇椅式”电化学提锂结构(据He Lihua et al.,2018修改)
-
Fig.11 Structure of “rocking chair” electrochemical for lithium extraction (modified from He Lihua et al., 2018)
-
Zhao Zhongwei et al.(2013b)构建了LiFePO4/AXM/FePO4电解槽从高镁锂比卤水中分离镁和锂,分析了镁锂比、电压、共存阳离子等对提取容量的影响,在电压1.0 V纯氯化锂溶液中其插入容量为41.26 mg/g,为其理论值(44 mg/g)的93.78%;插入容量随着镁锂比的增加而降低,降低至28.56 mg/g保持稳定。在镁锂比值为60时,其插入容量在0.8 V时最大,较大的电压将增加镁的插入(Zhao Zhongwei et al.,2013b)。随后又分析了共存离子对提取容量的影响,相对正的电位有利于减少钠离子的插入,而钾离子则难以插入FePO4结构中(Zhao Zhongwei et al.,2013a)。该工艺对青海一里坪盐湖原卤和老卤均表现出优良的镁锂分离和锂富集特性(He Lihua et al.,2018)。学者也研究了其他因素对交换容量和稳定性的影响。初始锂浓度、活性基质的表面密度和电解时间对锂离子交换容量有显著影响,然而低初始溶液锂浓度、高活性基质表面密度和长电解时间会导致阳极液的pH升高,这将影响电极的稳定性(Liu Xuheng et al.,2015)。在优化锂浓度(200 mg/L)、电极间距(2 cm)、电解温度(25℃)、活性基质的表面密度(18 mg/cm2)和电解时间(900 min)等条件下,该体系锂离子交换容量可达到38.9 mg/g,阳极液pH<8(Liu Xuheng et al.,2015)。以上研究均表明即使在超高镁锂比卤水中,该电极也可有效分离锂和共存离子(Zhao Zhongwei et al.,2013a),除杂后阳极液可直接用于制备Li3PO4和电池级碳酸锂(Liu Dongfu et al.,2022)。
-
随后Zhao Mengyao et al.(2017)也将LiMn2O4引入,并构建了LiMn2O4/AXM/Li1-xMn2O4电化学提锂体系,发现电压、温度将影响该锂回收体系的反应速率、电流效率和单位能耗:温度越高,锂提取速率越快,但能耗越大;较低的电位有利于锂与共存离子的分离。以模拟卤水为溶液,其锂提取容量为22 mg/g,锂相对于钠、镁和钙离子的分离效率分别>300、70和110,单位能耗为18.0 Wh/mol(Zhao Mengyao et al.,2017)。Liu Dongfan et al.(2019)发现锂插入量随工作电压的增加而增加,在最佳电压下(0.75 V),其吸附容量为24.2 mg/g。应用该体系对中国青海西台吉乃尔盐湖卤水进行了21 h提锂试验,获得阳极液的锂浓度达到1.93 g/L,镁锂比值降低为1.08,能耗为8.74 Wh/mol,120次循环后容量保持率为87.04%(Liu Dongfu et al.,2021)。该电极体系无论对低还是高锂浓度卤水均有较好的适应性和镁锂分离效果,锂回收率>83%;且100次循环后吸附容量为初始值的91%(Xu Wenhua et al.,2021),表现出优良的稳定性。
-
电化学提锂技术是近年来研究的热点,其对高镁锂比盐湖卤水具有显著优势。电控离子交换是对电极捕获阴离子的电化学提锂体系,因此选择高吸附性能和优良导电性的对电极是其研究的重点,学者对电极的选择由Pt、Ag等转变为活性炭、聚合物等,以构建吸附容量高、电耗强度低和循环稳定性好的电控离子交换提锂体系。从相关文献来看(图12),对工作电极λ-MnO2的研究较多,在对电极选用聚合物等时其吸附容量显著提升。对LiMn2O4工作电极进行掺杂改性后,吸附容量已达到近50 mg/g(Luo Guiling et al.,2022)。对于工作电极为LiFeO4的电控离子交换研究较少,因其电导率差,对镁锂的选择性低,因此其吸附容量也较低(图12)。学者对电渗析的研究除了关注选择性离子交换膜的选择外,学者也分析了初始溶液锂浓度、电压、共存离子等因素对镁锂分离和锂回收率的影响,以期能找到最优的电渗析工艺流程和最佳工作条件。而“摇椅式”电化学则是利用电极嵌锂脱锂以达到提锂的目的。活性材料LiMn2O4相对于橄榄石型的LiFePO4锂离子传输速率更快,然而目前研究成果其提取容量小于LiFePO4(图12),主要是因为该活性材料锰的溶损,提升其稳定性和插入容量是未来研究的重点;LiFePO4的高晶格稳定性使其具有良好的循环性能,而强共价氧键也导致其扩散率低,提锂效率有待进一步提升。
-
电控离子交换单次只能进行锂的提取或回收单一过程,提锂效率较低。而电渗析和“摇椅式”电化学提锂体系实现了连续工作,吸附效率和平衡时间高于电控离子交换,但需要高电压,能耗较高。以“摇椅式”电化学为例,其平均单位电耗为19.94 Wh/mol高于电控离子交换平均水平(8.40 Wh/mol)。因此仍需进一步优化装置设计及提锂工作条件以降低能耗、提高提锂性能。工作电极活性材料是电化学提锂的关键材料,但目前存在锂离子迁移速率低、吸附容量低、循环稳定性差、包覆、成本较高等问题(王晓丽和杨文胜,2021),因此开发高性能、低成本的电极活性材料是实现电化学提锂实际应用的关键。电化学提锂的运行成本主要为电耗,降低电耗和提升回收率,电化学提锂将迎来广阔的产业前景。
-
5 提锂工艺资源、环境与经济性
-
5.1 卤水提锂的资源与环境
-
盐湖卤水是锂产业发展的宝贵资源,其资源储量占全球的一半以上,主要分布于北纬20°~50°和南纬15°~35°(郑绵平等,2016),如中国的青藏高原、南美的安第斯高原和北美的内华达州(余疆江等,2013)。青藏高原和安第斯高原盐湖具有锂浓度高、共生元素多,具有较高综合利用价值等特点(高峰等,2011),使得这些地区成为全球锂资源开发的热点。经过多年的探索,学者提出了多种盐湖卤水提锂工艺。目前已投入工业化生产的有沉淀法、吸附法、萃取法和膜法等。由于卤水成分、工艺和原料种类的不同,以上几种卤水提锂方法的原料消耗情况有较大差别。如铝酸盐沉淀法所需脱硼饱和卤水和沉淀剂氢氧化铝的量分别为162 t和1.41 t;而离子交换吸附法对离子筛的需求量为0.16 t/t,但对卤水(867.4 t)、氨水(5.1 t)、石灰(5.33 t)和盐酸(6.57 t)等的需求量均较大(钟辉等,2003)。吸附法已应用于青海蓝科锂业和Livent工业生产。蓝科锂业将提钾后的老卤作为初始原料,通过铝吸附剂吸附提锂,纳滤膜除镁,反渗透浓缩和沉锂等工序后,获得碳酸锂产品。其锂吸附剂附容量为3 g/L,氯化锂回收率55%,年损耗率<10%,生产吨碳酸锂需要老卤约1800 m3并消耗碳酸钠2 t(彭建忠,2019)。纳滤-反渗透-电渗析提锂所需原料主要为脱硼卤水、碳酸钠和电力,其消耗量分别为33.4 m3/t、1.46 t/t和8674 kWh/t,且对水资源的消耗高达523 t/t(Kelly et al.,2021)。而“摇椅式”电化学等提锂工艺只进行了中试,未见其资源消耗的报道。从以上提锂方法看,锂的回收率取决于卤水的化学成分,虽然没有公司公布回收率的确切数字,但学者估算全流程锂的回收率仅为30%~50%(李丽娟等,2018),损失主要发生在晾晒池中盐沉淀和除镁过程中(Song Jianfeng et al.,2017; Flexer et al.,2018)。
-
图12 电控离子交换(a)和“摇椅”电化学(b)锂吸附容量比较
-
Fig.12 Comparison of lithium adsorption capacity between electrochemically switched ion exchange (a) and “rocking chair” electrochemistry (b)
-
盐湖卤水提锂对能源和化学物质的消耗低于矿石提锂,因此其对环境的影响将显著地小于矿石提锂,不同污染物的环境影响仅为矿石提锂的1.66%~10.75%(Jiang Songyan et al.,2020)。以纳滤反渗透提锂为例,其SO2和NOX排放强度分别为0.10 kg/t和0.08 kg/t(Li Baolan et al.,2020),主要发生在纳滤阶段,电力消耗是其污染物产生的主要原因。以酸化潜力以例,纳滤卤水提锂的强度为0.16 kg SO2eq/t,仅为矿石提锂强度(1.01 kg SO2eq/t)的15.42%(Li Baolan et al.,2020; Jiang Songyan et al.,2020)。而沉淀法提锂的温室气体排放量为2.90 t CO2eq/t,是矿石提锂排放量的14.21%(Kelly et al.,2021)。学者最近更多关注的膜法、电化学法等新提锂工艺环境更加友好。Wang Jiajia et al.(2022)分析得到膜法需要的化学原料为太阳沉淀法的60%,其碳酸锂生产的生态足迹仅为沉淀法的10%(图13)。然而卤水提锂的大规模开发,也对盐湖脆弱的生态环境造成了一定影响。对中国柴达木盆地大气环境监测发现,盐湖本身及资源开发等人类活动对湖区盐尘暴中的硼离子、锂离子、硝酸根离子等具有重要贡献(王建萍等,2022)。随着资源开发规模的逐步增大,近20年察尔汗盐湖工矿用地、盐田面积明显增加,而盐湖和干盐湖的面积呈现出明显减少的趋势,分别减少199.82 km2和172.29 km2(陈亮等,2022)。锂资源的开发,也使得Atacama盐湖植被减少、土壤水分下降、干旱状况不断加剧,Liu Wenjuan et al.(2019)分析了锂资源开发与Atacama盐湖环境退化的关系,得到锂开采活动是当地环境退化的主要因素之一。
-
5.2 卤水提锂的经济性
-
沉淀法是目前国外卤水提锂企业的主流工艺,根据ALB、SQM公司年报,其成本约为2.0万元/t(3000 $/t)。而近些年发展起来的提锂新工艺,镁锂分离较传统沉淀法需要更多原料、能源和设备投入,而提锂其他两阶段流程较为统一,因此其投资强度较大、生产成本较高。目前盐湖卤水碳酸锂的投资额约为11万元/t(17 k$/t),强度显著高于矿石提锂(5 万元/t)。由于研究边界(是否包括老卤制备阶段成本、基建设备折旧、人工福利?)、原料、设备等的差异,已有学者对新工艺成本估算与实际将具有较大的差别(图14b)。如选择性电渗析工艺碳酸锂的生产成本可低至1.12万元(1700 $/t)(Liu Dongfu et al.,2022),就严重低估了电化学提锂的生产成本。电力消耗是占电化学方法成本的主要部分,所占比重约为锂价格的30%(Battistel et al.,2020; Palagonia et al.,2020)。采用双极膜提取氢氧化锂的工艺路线,在不同电流强度和锂浓度下实验室获得的吨成本为1.69~2.66万元(2560~4030 $/t)(Jiang Chenxiao et al.,2014)。萃取法和膜法工艺原料消耗多于电化学方法,其成本通常也较高。青海锂资源公司膜法的直接成本约1.5万元/t,与国际主要生产企业相比具有国际竞争力(>2 万元/t)(邓小川等,2018)。Su Hui et al.(2020)构建的三元(TBP/FeCl3/P507)萃取体系,其生产成本约为2.0万元/t(2924 $/t),与中国蓝科锂业吸附法相比(<3.5万元/t)(胡赞,2019)仍具有优势。基于以上研究,作者估算提锂新工艺的加工成本约为2.31万元/t(3500$/t),高于沉淀法(图14a),与矿石提锂加工成本相接近(2万元/t),但远低于其综合成本。相较矿石提锂,卤水提锂新工艺仍具有显著优势(Pramanik et al.,2020)。近年盐湖提锂成为新的投资热点,但决定盐湖提锂的经济性除工艺可行性外,还取决于盐湖的大小、锂和钾含量、镁锂比、干盐湖的孔隙度和深度、交通基础设施、淡水和能源的可用性等众多因素(Martin et al.,2017)。
-
图13 太阳能蒸发沉淀法(a)和膜法(b)提锂工艺流程和资源环境比较(据Wang Jiajia et al.,2022修改)
-
Fig.13 Comparison of process flow, resources and environment of extracting lithium by solar evaporation precipitation (a) and membrane method (b) (modified from Wang Jiajia et al., 2022)
-
图14 不同卤水提锂方法成本构成(a)及生产成本(b)比较
-
Fig.14 Comparison of cost composition (a) and production cost (b) of different brine lithium extraction processes
-
6 结论与展望
-
新能源汽车产业的飞速发展使得锂的价格和需求呈指数级增长,而沉淀法工艺仅适用于低镁锂比盐湖、回收率低、生产周期长、无法满足不断增长的锂需求。因此,需要关注高镁锂比卤水提锂新技术的发展及其产业化,以促进锂的供给和维持未来市场的供需平衡。本文综述了吸附法、萃取法、膜法和电化学法等多元提锂新技术的研究现状和特点,探讨了各工艺路线的利弊。这些新技术仍需从以下几方面改进,以提升对卤水的适应性、锂生产效率和盐湖综合利用水平。
-
(1)加强多元提锂技术的集成与耦合。吸附、萃取、膜法和电化学等多元新技术本无优劣,适合卤水特性、符合盐湖实情和适应发展需要的工艺路线便是最好的。但盐湖卤水的化学组分因湖而异,因此生产线难以简单复制,需要在实践中考虑各技术的利弊,集成组合应用,如“吸附+膜法”、“电渗析+纳滤”、“膜法+萃取+电化学”等,多工艺的耦合集成将成为未来盐湖提锂技术发展的主趋势。
-
(2)开发原卤提锂技术,提升整体锂回收率。目前提锂技术均基于老卤开发,全流程锂回收率约为30%~50%,锂损失主要发生在盐田摊晒阶段。因此,加大对盐田新工艺、新方法的研发,将提锂环节前移,探索开发吸附+膜法、电化学等原卤提锂技术,提高锂的一次回收率,缩短提锂周期,降低环境影响。
-
(3)注重盐湖多种资源的开发与综合利用。盐湖是多元素共生的矿床,在开发盐湖锂资源的同时,还可综合利用大量的钾、镁、硼等资源。重视盐湖多种资源提取技术的研究,如综合回收镁锂的新工艺(Wang Huaiyou et al.,2018),可获得更高的收益,降低综合生产成本,增强市场竞争力,并保护盐湖脆弱的生态环境。
-
附件:本文附件(附表1~6)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202404091?st=article_issue
-
注释
-
❶ SPGCI.2022. Albemarle says ‘not impossible’ to meet surging lithium demand. https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/energy-transition/021722-albemarle-says-not-impossible-to-meet-surging-lithium-demand (Accessed02-17 2022) .
-
❷ USGS.2022. Mineral Commodity Summaries 2022. https://doi.org/10.3133/mcs2022.
-
❸ Lee J M, Bauman W C.1978. Recovery of lithium from brines. US4116856, 1978-09-26.
-
❹ Nelli J R, Arthur T E, Gastonia N C.1968. Recovery of lithium from bitterns. US3537813, 1970-11-03.
-
❺ 黄师强,崔荣旦,张淑珍,毕道周,孙帮宽,王国莲,杜云清,李丽娟.1987. 一种从含锂卤水中提取无水氯化锂的方法. 中华人民共和国专利局. CN87103431A,1987-11-04.
-
参考文献
-
An J W, Kang D J, Tran K T, Kim M J, Lim T, Tran T. 2012. Recovery of lithium from Uyuni salar brine. Hydrometallurgy, 117-118: 64~70.
-
Battistel A, Palagonia M S, Brogioli D, Mantia L F, Trócoli R. 2020. Electrochemical methods for lithium recovery: A comprehensive and critical review. Advanced Materials, 32(23): 1905440.
-
Bazrgar B M, Moheb A, Dinari M. 2020. Preparation of lithium ion-selective cation exchange membrane for lithium recovery from sodium contaminated lithium bromide solution by electrodialysis process. Desalination, 486: 114476.
-
Bi Qiuyan, Zhang Zhiqiang, Zhao Chenying, Tao Zhenqi. 2014. Study on the recovery of lithium from high Mg2+/Li+ ratio brine by nanofiltration. Water Science & Technology, 70(10): 1690~1694.
-
Bian Weibai, Pan Jianming. 2020. Research progress in selective adsorption materials for lithium extraction. Chemical Industry and Engineering Progress, 39(6): 2206~2217 (in Chinese with English abstract).
-
Bunani S, Arda M, Kabay N, Yoshizuka K, Nishihama S. 2017a. Effect of process conditions on recovery of lithium and boron from water using bipolar membrane electrodialysis (BMED). Desalination, 416: 10~15.
-
Bunani S, Yoshizuka K, Nishihama S, Arda M, Kabay N. 2017b. Application of bipolar membrane electrodialysis (BMED) for simultaneous separation and recovery of boron and lithium from aqueous solutions. Desalination, 424: 37~44.
-
Chen Cheng, Li Yiran, Sun Zhanxue, Zhou Tangbo, Li Zhiyong. 2018. Preparation of magnetic aluminum salt adsorbent and extraction performance of lithium from saline lake brine. Nonferrous Metals (Extractive Metallurgy), (1): 29~33 (in Chinese with English abstract).
-
Chen Liang, Wang Jianping, Han Jinjun, Wang Erlong, Zhang Juan, Wang Luohai. 2022. Changes and trends of landscape pattern in Qarhan Salt Lake region in recent 20 years. Journal of Salt Lake Rearch, 30(2): 19~26 (in Chinese with English abstract).
-
Chen Jun, Lin Sen, Yu Jianguo. 2020. Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines. Journal of Hazardous Materials, 388: 122101.
-
Chen Qingbai, Ji Zhiyong, Liu Jie, Zhao Yingying, Wang Shizhao, Yuan Junsheng. 2018. Development of recovering lithium from brines by selective-electrodialysis: Effect of coexisting cations on the migration of lithium. Journal of Membrane Science, 548: 408~420.
-
Cheng Penggao, Huang Chuanfeng, Gan Shantian, Gong Jingkuan, Xiang Jun, Tang Na. 2021. Preparation of aluminum-based lithium adsorbent and its application in extracting lithium from Taihe underground brine. Inorganic Chemicals Industry, 53(6): 140~144 (in Chinese with English abstract).
-
Chitrakar R, Kanoh H, Miyai Y, Ooi K. 2000. A new type of manganese oxide (MnO2·0. 5H2O) derived from Li1. 6Mn1. 6O4 and its lithium ion-sieve properties. Chemistry of Materials, 12(10): 3151~3157.
-
Chitrakar R, Makita Y, Ooi K, Sonoda A. 2014a. Synthesis of iron-doped manganese oxides with an ion-sieve property: Lithium adsorption from Bolivian brine. Industrial & Engineering Chemistry Research, 53(9): 3682~3688.
-
Chitrakar R, Makita Y, Ooi K, Sonoda A. 2014b. Lithium recovery from salt lake brine by H2TiO3. Dalton Transactions, 43(23): 8933~8939.
-
Deng Xiaochuan, Zhu Chaoliang, Shi Yifei, Fan Jie, Fan Faying, Qing Binju, Zhang Yi, Zhang Wending, Yang Jiaqi, Li Yangyang. 2018. The current situation of Qinghai salt lake lithium resources development and the suggestions for lithium industry. Journal of Salt Lake Research, 26(4): 11~18 (in Chinese with English abstract).
-
Dong Dianquan, Zhang Fengbao, Zhang Guoliang, Liu Yifan. 2007. Synthesis of Li4Ti5O12 and its exchange kinetics with Li+. Acta Physico-Chimica Sinica, 23(6): 950~954 (in Chinese with English abstract).
-
Dong Dianquan, Bi Shenshen, Li Jing, Hu Xiaoyu, Lin Runxiong. 2012. Preparation and performance study of three-dimensionally ordered macroporous lithium ion-sieve. Chinese Journal of Inorganic Chemistry, 28(7): 1423~1428 (in Chinese with English abstract).
-
Dong Qian, Piao Xianglan, Zhu Shenlin. 2007. Adsorption techniques and progress on the extraction of lithium from salt lake brines. Journal of Salt and Chemical industry, 36(3): 31~35 (in Chinese with English abstract).
-
Du Xiao, Guan Guoqing, Li Xiumin, Jagadale A D, Ma Xuli, Wang Zhongde, Hao Xiaogang, Abudulac A. 2016. A novel electroactive λ-MnO2/PPy/SS core-shell nanorod coated electrode for selective recovery of lithium ions at low concentration. Journal of Materials Chemistry A, 36(4): 13989~13996.
-
Flexer V, Baspineiro C F, Galli C I. 2018. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. The Science of the Total Environment, 639: 1188~1204.
-
Gao Feng, Zheng Mianping, Nie Zhen, Liu Jianhua, Song Pengsheng. 2011. Brine lithium resource in the salt lake and advances in its exploitation. Acta Geoscientica Sinica, 34(4): 483~492 (in Chinese with English abstract).
-
Ge Tao, Xu Liang, Meng Jinwei, Song Yi, Wang Jiabao, Zhao Zhuo. 2021. Research progress of lithium extraction technology from salt lake brine. Nonferrous Metals Engineering, 11(2): 55~62 (in Chinese with English abstract).
-
Gmar S, Chagnes A. 2019. Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources. Hydrometallurgy, 189: 105124.
-
Gu Donglei, Sun Wenjun, Han Guofei, Cui Qun, Wang Haiyan. 2018. Lithium ion sieve synthesized via an improved solid state method and adsorption performance for West Taijinar salt lake brine. Chemical Engineering Journal, 350: 474~483.
-
Guo Hongjie, Huang Shiqiang. 1991. Study on synergistic extraction of lithium with HPMBP-TB system. Journal of Salt Lake Research, (3): 14~21 (in Chinese with English abstract).
-
Guo Min, Feng Zhifang, Zhou Yuan, Li Quan, Zhang Huifang, Wu Zhijian. 2016. Research progress on extraction of lithium from brine by lithium adsorbent. Guangzhou Chemical Industry, 44(20): 10~13 (in Chinese with English abstract).
-
Guo Zhiyuan, Ji Zhiyong, Chen Qingbai, Liu Jie, Zhao Yingying, Li Fei, Liu Zhiyong, Yuan Junsheng. 2018. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes. Journal of Cleaner Production, 193: 338~350.
-
Guo Zhiyuan, Ji Zhiyong, Chen Huayan, Shi Yabin, Zhang Fan, Zhao Yingying, Liu Jie, Yuan Junsheng. 2020. Progress of electrode materials and electrode systems in electrochemical lithium extraction process. Chemical Industry and Engineering Progress, 39(6): 2294~2303 (in Chinese with English abstract).
-
He Lihua, Xu Wenhua, Song Yunfeng, Luo Yunze, Liu Xuheng, Zhao Zhongwei. 2018. New insights into the application of lithium-ion battery materials: Selective extraction of lithium from brines via a rocking-chair lithium-ion battery system. Global Challenges, 2(2): 1700079.
-
Hoshino T. 2013. Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane. Desalination, 317: 11~16.
-
Hu Zan. 2019. Analysis of typical lithium extraction from mines and its economic benefit. Journal of Salt Science and Chemical Industry, 48(3): 5~8 ( in Chinese with English abstract).
-
Huang Tao, Song Jianfeng, He Sanfeng, Li Tao, Li Xuemei, He Tao. 2019. Enabling sustainable green close-loop membrane lithium extraction by acid and solvent resistant poly (ether ether ketone) membrane. Journal of Membrane Science, 589: 117273.
-
Hwang C W, Jeong M H, Kim Y J, Son W K, Kang K S, Lee C S, Hwang T S. 2016. Process design for lithium recovery using bipolar membrane electrodialysis system. Separation and Purification Technology, 166: 34~40.
-
İpekçi D, Altçok E, Bunani S, Yoshizuka K, Nishihama S, Arda M, Kabay N. 2018. Effect of acid-base solutions used in acid-base compartments for simultaneous recovery of lithium and boron from aqueous solution using bipolar membrane electrodialysis (BMED). Desalination, 448: 69~75.
-
İpekçi D, Kabay N, Bunani S, Altıok E, Arda M, Yoshizuka K, Nishihama S. 2020. Application of heterogeneous ion exchange membranes for simultaneous separation and recovery of lithium and boron from aqueous solution with bipolar membrane electrodialysis (EDBM). Desalination, 479: 114313.
-
Ishimori K, Imura H, Ohashi K. 2002. Effect of 1, 10-phenanthroline on the extraction and separation of lithium(I), sodium(I) and potassium(I) with thenoyltrifluoroacetone. Analytica Chimica Acta, 454(2): 241~247.
-
Ji Lianmin, Hu Yuehua, Li Lijuan, Shi Dong, Li Jinfeng, Nie Feng, Song Fugen, Zeng Zhongmin, Sun Wei, Liu Zhiqi. 2016. Lithium extraction with a synergistic system of dioctyl phthalate and tributyl phosphate in kerosene and FeCl3. Hydrometallurgy, 162: 71~78.
-
Ji Pengyuan, Ji Zhiyong, Chen Qingbai, Liu Jie, Zhao Yingying, Wang Shizhao, Li Fei, Yuan Junsheng. 2018. Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. Separation and Purification Technology, 207: 1~11.
-
Ji Zhiyong, Peng Jingling, Yuan Junsheng, Jiao Pengpeng, Wang Jun, Wang Zhiquan. 2015. Synthesis of Al-doped lithium ion-sieve precursor based on Li4Mn5O12. Inorganic Chemicals Industry, 47(12): 22~24+66 (in Chinese with English abstract).
-
Ji Zhiyong, Chen Qingbai, Yuan Junsheng, Liu Jie, Zhao Yingying, Feng Wenxian. 2017. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis. Separation and Purification Technology, 172: 168~177.
-
Jiang Chenxiao, Wang Yaoming, Wang Qiuyue, Feng Hongyan, Xu Tongwen. 2014. Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM). Industrial & Engineering Chemistry Research, 53(14): 6103~6112.
-
Jiang Songyan, Zhang Ling, Li Fengying, Hua Hui, Liu Xin, Yuan Zengwei, Wu Huijun. 2020. Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment. Journal of Environmental Management, 262: 110253.
-
Jiang Yingping, Xue Yufei, Deng Chaoqun. 2021. Solvent extraction of lithium from salt lake brine by TBP-NX mixed extraction system. Nonferrous Metals Engineering, 11(11): 41~47 (in Chinese with English abstract).
-
Kang Weiqing, Shi Lijie, Zhao Youjing, Zhang Dayi, Zhang Hongtao, Wang Min. 2014. Preliminary test of separation of Mg2+/Li+ in salt lake brine by nanofiltration. Inorganic Chemicals Industry, 46(12): 22~24 (in Chinese with English abstract).
-
Kanoh H, Ooi K, Miyai Y, Katoh S. 1993. Electrochemical recovery of lithium Ions in the aqueous phase. Separation Science and Technology, 28(1-3): 643~651.
-
Kelly J C, Wang M, Dai Q, Winjobi O. 2021. Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries. Resources, Conservation & Recycling 174: 105762.
-
Kim S, Lee J, Kang J S, Jo K, Kim S, Sung Y E, Yoon J. 2015. Lithium recovery from brine using a lambda-MnO2/activated carbon hybrid supercapacitor system. Chemosphere, 125: 50~56.
-
Kim S, Joo H, Moon T, Kim S H, Yoon J. 2019. Rapid and selective lithium recovery from desalination brine using an electrochemical system. Environmental Science Processes & Impacts, 21(4): 667~676.
-
Kim Y S, In G, Choi J M. 2003. Chemical equilibrium and synergism for solvent extraction of trace lithium with thenoyltrifluoroacetone in the presence of trioctylphosphine oxide. Bulletin of the Korean Chemical Society, 24(10): 1495~1500.
-
Kotsupalo N P, Ryabtsev A D, Poroshina I A, Kurakov A A, Mamylova E V, Menzheres L T, Korchagin M A. 2013. Effect of structure on the sorption properties of chlorine-containing form of double aluminum lithium hydroxide. Russian Journal of Applied Chemistry, 86(4): 482~487.
-
Koyanaka H, Matsubaya O, Koyanaka Y, Hatta N. 2003. Quantitative correlation between Li absorption and H content in manganese oxide spinel λ-MnO2. Journal of Electroanalytical Chemistry, 559: 77~81.
-
Lai Xianrong, Yuan Yijia, Chen Zhouqin, Peng Jiahui, Sun Hao, Zhong Hui. 2020. Adsorption-desorption properties of granular EP/HMO composite and its application in lithium recovery from brine. Industrial & Engineering Chemistry Research, 59(16): 7913~7925.
-
Lawagon C P, Nisola G M, Mun J, Tron A, Torrejos R E C, Seo J G, Kim H, Chung W J. 2016. Adsorptive Li+ mining from liquid resources by H2TiO3: Equilibrium, kinetics, thermodynamics, and mechanisms. Journal of Industrial and Engineering Chemistry, 35: 347~356.
-
Lawagon C P, Nisola G M, Cuevas R A I, Kim H, Lee S P, Chung W J. 2019. Development of high capacity Li+ adsorbents from H2TiO3/polymer nanofiber composites: Systematic polymer screening, characterization and evaluation. Journal of Industrial and Engineering Chemistry, 70: 124~135.
-
Lee J, Yu S H, Kim C, Sung Y E, Yoon J. 2013. Highly selective lithium recovery from brine using a lambda-MnO2-Ag battery. Physical Chemistry Chemical Physics: PCCP, 15(20): 7690~7695.
-
Li Baolan, Wu Jun, Lu Jiang. 2020. Life cycle assessment considering water-energy nexus for lithium nanofiltration extraction technique. Journal of Cleaner Production, 261: 121152.
-
Li Jie, Xiong Xiaobo. 2010. Current research status and prospect of extraction of lithium from salt lake brine with alum inium saltbased sorbent. Inorganic Chemicals Industry, 42(10): 9~11 (in Chinese with English abstract).
-
Li Lijuan, Peng Xiaowu, Shi Dong, Zhang Licheng, Li Huifang, Song Fugen, Nie Feng, Ji Lianmin, Song Xuexue, Zeng Zhongmin. 2018. Eco-friendly separation and effective applications of lithium resources from various brine with lithium: Their extractant and extraction system. Journal of Salt Lake Research, 26(4): 1~10 (in Chinese with English abstract).
-
Li Ling, Deshmane V G, Paranthaman M P, Bhave R, Moyer B A, Harrison S. 2018. Lithium recovery from aqueous resources and batteries: A brief review. Johnson Matthey Technology Review, 62(2): 161~176.
-
Li Na, Lu Deli, Zhang Jinlong, Wang Lingzhi. 2018. Yolk-shell structured composite for fast and selective lithium ion sieving. Journal of Colloid and Interface Science, 520: 33~40.
-
Li Xia, Deng Zhaoping, Li Jing. 2017. Extraction of lithium from salt lake brine with kaolinit. Chemical Industry and Engineering Progress, 36(6): 2057~2063 (in Chinese with English abstract).
-
Li Yan, Wang Min, Zhao Youjing, Wang Huaiyou, Yang Hongjun, Zhu Zenghu. 2021. Study on separation of magnesium and lithium from salt lake brine with high magnesium-to-lithium mass ratio by nanofiltration membrane. CIESC Journal, 72(6): 3130~3139 (in Chinese with English abstract).
-
Li Zengrong, Liu Guowang, Tang Faman. 2017. Overview of lithium resources and lithium extraction technology in Qinghai salt lake. Resource Information and Engineering, 32(5): 94~97 (in Chinese).
-
Liu Dongfan, Sun Shuying, Yu Jianguo. 2019. A new high-efficiency process for Li+ recovery from solutions based on LiMn2O4/λ-MnO2 materials. Chemical Engineering Journal, 377: 119825.
-
Liu Dongfu, Xu Wenhua, Xiong Jiachun, He Lihua, Zhao Zhongwei. 2021. Electrochemical system with LiMn2O4 porous electrode for lithium recovery and its kinetics. Separation and Purification Technology, 270: 118809.
-
Liu Dongfu, Zhao Zhongwei, Xu Wenhua, Xiong Jiachun, He Lihua. 2022. A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation. Desalination, 519: 115302.
-
Liu Gui, Zhao Zhongwei, He Lihua. 2020. Highly selective lithium recovery from high Mg/Li ratio brines. Desalination, 474: 114185.
-
Liu Wenjuan, Agusdinata D B, Myint S W. 2019. Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile. International Journal of Applied Earth Observation and Geoinformation, 80: 145~156.
-
Liu Xuheng, Chen Xingyu, He Lihua, Zhao Zhongwei. 2015. Study on extraction of lithium from salt lake brine by membrane electrolysis. Desalination, 376: 35~40.
-
Lu Jian, Qin Yingying, Zhang Qi, Wu Yilin, Cui Jiuyun, Li Chunxiang, Wang Liang, Yan Yongsheng. 2018. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone. Applied Surface Science, 427: 931~941.
-
Lu Qingqiang, Chen Linlin, Chao Yanhong, Li Xiaowei, Jiang Lei, Zhu Wenshuai. 2021. Research progress of titanium-based lithium ion sieve for extracting lithium from salt lake brine. Chemical Industry and Engineering Progress, 40(S1): 1~12 (in Chinese with English abstract).
-
Luo Guiling, Zhu Lin, Li Xiaowei, Zhou Guolang, Sun Jing, Chen Linlin, Chao Yanhong, Jiang Lei, Zhu Wenshuai. 2022. Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3-ZrO2 coated LiMn2O4 electrode. Journal of Energy Chemistry, 69: 244~252.
-
Ma P, Chen Xiaodong, Hossain M M. 2007. Lithium extraction from a multicomponent mixture using supported liquid membranes. Separation Science and Technology, 35(15): 2513~2533.
-
Martin G, Schneider A, Voigt W, Bertau M. 2017. Lithium extraction from the mineral zinnwaldite: Part II: Lithium carbonate recovery by direct carbonation of sintered zinnwaldite concentrate. Minerals Engineering, 110: 75~81.
-
Moazeni M, Hajipour H, Askari M, Nusheh M. 2015. Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents. Materials Research Bulletin, 61: 70~75.
-
Mu Yingxin, Zhang Chengyi, Zhang Wen, Wang Yuxin. 2021. Electrochemical lithium recovery from brine with high Mg2+/Li+ ratio using mesoporous λ-MnO2/LiMn2O4 modified 3D graphite felt electrodes. Desalination, 511: 115112.
-
Nie Xiaoyao, Sun Shuying, Sun Ze, Song Xingfu, Yu Jianguo. 2017. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination, 403: 128~135.
-
Özgür C. 2010. Preparation and characterization of LiMn2O4 ion-sieve with high Li+ adsorption rate by ultrasonic spray pyrolysis. Solid State Ionics, 181(31-32): 1425~1428.
-
Palagonia M S, Brogioli D, Mantia L F. 2020. Lithium recovery from diluted brine by means of electrochemical ion exchange in a flow-through-electrodes cell. Desalination, 475: 114192.
-
Pan Xin, Zeng Wenwen, He Zhoukun, Luo Nan, Zhang Haoran, Mei Jun. 2019. Research progress of titanium lithium-ion sievein salt lake lithium extraction. Yunnan Chemical
-
Technology, 46(2): 25~32 (in Chinese with English abstract).
-
Paranthaman M P, Li L, Luo J, Hoke T, Ucar H, Moye B A, Harrison S. 2017. Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents. Environmental Science & Technology, 51(22): 13481~13486.
-
Park M J, Nisola G M, Beltran A B, Torrejos R E C, Seo J G, Lee S P, Kim H, Chung W J. 2014. Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate. Chemical Engineering Journal, 254: 73~81.
-
Parsa N, Moheb A, Mehrabani-Zeinabad A, Masigol M A. 2015. Recovery of lithium ions from sodium-contaminated lithium bromide solution by using electrodialysis process. Chemical Engineering Research and Design, 98: 81~88.
-
Pasta M, Battistel A, MantiaL F. 2012. Batteries for lithium recovery from brines. Energy & Environmental Science, 5(11): 9487.
-
Peng Jianzhong. 2019. Analysis of the domestic production technology and economic benefit of lithium carbonate. Journal of Salt Science and Chemical Industry, 48(10): 18~20 (in Chinese with English abstract).
-
Pramanik B K, Asif M B, Kentish S, Nghiem L D, Hai F I. 2019. Lithium enrichment from a simulated salt lake brine using an integrated nanofiltration-membrane distillation process. Journal of Environmental Chemical Engineering, 7(5): 103395.
-
Pramanik B K, Asif M B, Roychand R, Shu L, Jegatheesan V, Bhuiyan M, Hai F I. 2020. Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration. Chemosphere, 260: 127623.
-
Qi Guicai, Hai Chunxi, Zhou Yuan. 2018. Progress of extracting lithium by manganese oxide ion-sieve adsorbent. Journal of Functional Materials, 49(11): 11023~11032 (in Chinese with English abstract).
-
Sato K, Poojary D M, Clearfield A, Kohno M, Inoue Y. 1997. The surface structure of the proton-exchanged lithium manganese oxide spinels and their lithium-ion sieve properties. Journal of Solid State Chemistry, 131(1): 84~93.
-
Shi Chenglong, Song Guixiu, Qin Yaru, Wang Xingquan, Liu Bing, Li Hongxia, Li Haichao. 2020. Synergistic extraction of lithium with tributyl phosphate/ethylbutyrate system. Chemical Engineering (China), 48(2): 16~19 (in Chinese with English abstract).
-
Shi Dong. 2013. Study on the extraction of lithium from salt lake brine with high magnesium lithium ratio by new extraction system. Master's thesis of University of Chinese Academy of Sciences (in Chinese with English abstract).
-
Shi Dong, Li Jinfeng, Zhang Bo, Nie Feng, Zeng Zhongmin, Li Lijuan. 2013. Process study on N523-TBP-sulfonated kerosene extraction system for extraction of lithium from brine saturated by magnesium chloride. Journal of Salt Lake Research, 21(2): 52~57 (in Chinese with English abstract).
-
Shi Dong, Zhang Licheng, Peng Xiaowu, Li Lijuan, Song Fugen, Nie Feng, Ji Lianmin, Zhang Yuze. 2018. Extraction of lithium from salt lake brine containing boron using multistage centrifuge extractors. Desalination, 441: 44~51.
-
Shi Dong, Cui Bin, Li Lijuan, Peng Xiaowu, Zhang Licheng, Zhang Yuze. 2019. Lithium extraction from low-grade salt lake brine with ultrahigh Mg/Li ratio using TBP-kerosene-FeCl3 system. Separation and Purification Technology, 211: 303~309.
-
Shi Xichang, Zhou Dingfang, Zhang Zhibing, Yu Liangliang, Xu Hui, Chen Baizhen, Yang Xiyun. 2011. Synthesis and properties of Li1. 6Mn1. 6O4 and its adsorption application. Hydrometallurgy, 110(1-4): 99~106.
-
Shi Xichang, Zhang Zhibing, Zhou Dingfang, Zhou Xicheng, Tang Tiangang, Yin Shihao. 2013. Adsorption performance of ion-sieve obtained after Li1. 6Mn1. 6O4 pickled in brine. Journal of Central South University, 44(3): 892~890 (in Chinese with English abstract).
-
Song Jianfeng, Li Xuemei, Zhang Yunyan, Yin Yong, Zhao Baolong, Li Chunxia, Kong Dingfeng, He Tao. 2014. Hydrophilic nanoporous ion-exchange membranes as a stabilizing barrier for liquid-liquid membrane extraction of lithium ions. Journal of Membrane Science, 471: 372~380.
-
Song Jianfeng, Huang Tao, Qiu Hongbin, Li Xuemei, He Tao. 2017. Recovery of lithium from salt lake brine of high Mg/Li ratio using Na[FeCl4 * 2TBP] as extractant: Thermodynamics, kinetics and processes. Hydrometallurgy, 173: 63~70.
-
Su Hui, Li Zheng, Zhang Jian, Zhu Zhaowu, Wang Lina, Qi Tao. 2020. Recovery of lithium from salt lake brine using a mixed ternary solvent extraction system consisting of TBP, FeCl3 and P507. Hydrometallurgy, 197: 105487.
-
Sun Dongshu, Meng Minjia, Yin Yijie, Zhu Yanzhuo, Li Hongji, Yan Yongsheng. 2016. Highly selective, regenerated ion-sieve microfiltration porous membrane for targeted separation of Li+. Journal of Porous Materials, 23(6): 1411~1419.
-
Sun Shuying, Zhang Qinhui, Yu Jianguo. 2010a. Hydrothermal synthesis and lithium adsorption properties of LiMn2O4 spinel. The Chinese Journal of Process Engineering, 10(1): 185~189 (in Chinese with English abstract).
-
Sun Shuying, Zhang Qinhui, Yu Jianguo. 2010b. Preparation and lithium adsorption properties of low-dimensional cubic Li4Mn5O12 nanostructure. Journal of Inorganic Materials, 25(6): 626~630 (in Chinese with English abstract).
-
Sun Shuying, Ye Fan, Song Xingfu, Li Yunzhao, Wang Jin, Yu Jianguo. 2011. Extraction of lithium from salt lake brine and mechanism research. Chinese Journal of Inorganic Chemistry, 27(3): 439~444 (in Chinese with English abstract).
-
Sun Shuying, Cai Lijuan, Nie Xiaoyao, Song Xingfu, Yu Jianguo. 2015. Separation of magnesium and lithium from brine using a desal nanofiltration membrane. Journal of Water Process Engineering, 7: 210~217.
-
Tang Dahai, Zhou Dali, Zhou Jiabei, Zhang Ping, Zhang Liyuan, Xia Yi. 2015. Preparation of H2TiO3-lithium adsorbent using low-grade titanium slag. Hydrometallurgy, 157: 90~96.
-
Trócoli R, Erinmwingbovo C, Mantia F L. 2017. Optimized lithium recovery from brines by using an electrochemical ion-pumping process based on λ-MnO2 and nickel hexacyanoferrate. ChemElectroChem, 4(1): 143~149.
-
Wang Chang, Zhai Yanlong, Wang Xi, Zeng Ming. 2014. Preparation and characterization of lithium λ-MnO2 ion-sieves. Frontiers of Chemical Science and Engineering, 8(4): 471~477.
-
Wang Huaiyou, Zhong Yuan, Du Baoqiang, Zhao Youjing, Wang Min. 2018. Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process. Hydrometallurgy, 175: 102~108.
-
Wang Jiajia, Yue Xiyan, Wang Peifen, Yu Tao, Du Xiao, Hao Xiaogang, Abudula A, Guan Guoqing. 2022. Electrochemical technologies for lithium recovery from liquid resources: A review. Renewable and Sustainable Energy Reviews, 154: 111813.
-
Wang Jianping, Zhang Xiying, Jiao Pengcheng. 2022. Focusing on the changing salt lake: The overall design and implementation of the salt lake project. Journal of Salt Lake Research, 30(2): 1~10 (in Chinese with English abstract).
-
Wang Qiang, Du Xiao, Gao Fengfeng, Liu Feifan, Liu Mimi, Hao Xiaogang, Tang Keyong, Guan Guoqing, Abudula A. 2019. A novel H1. 6Mn1. 6O4/reduced graphene oxide composite film for selective electrochemical capturing lithium ions with low concentration. Separation and Purification Technology, 226: 59~67.
-
Wang Shulei, Li Ping, Zhang Xin, Zheng Shili, Zhang Yi. 2017. Selective adsorption of lithium from high Mg-containing brines using HxTiO3 ion sieve. Hydrometallurgy, 174: 21~28.
-
Wang Shulei, Zheng Shili, Wang Zheming, Cui Wenwen, Zhang Hailin, Yang Liangrong, Zhang Yi, Li Ping. 2018. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves. Chemical Engineering Journal, 332: 160~168.
-
Wang Xiaoli, Yang Wensheng. 2021. Research progress of electrochemical lithium extraction systems and electrode materials. CIESC Journal, 76(6): 2957~2971 (in Chinese with English abstract).
-
Wei Shudan, Wei Yuanfeng, Chen Tao, Liu Chengbin, Tang Yanhong. 2020. Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water. Chemical Engineering Journal, 379: 122407.
-
Wen Xianming, Ma Peihua, Zhu Chaoliang, He Qiong, Deng Xiaochuan. 2006. Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration. Separation and Purification Technology 49: 230~236.
-
Wessells C D, Peddada S V, Huggins R A, Cui Y. 2011. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Letters, 11(12): 5421~5425.
-
Wu Jing, Ren Xiulian, Wei Qifeng. 2020. Research progress on separation and extraction of lithium from salt-lake brine. Inorganic Chemicals Industry, 52(12): 1~6 (in Chinese with English abstract).
-
Xiang Wei, Liang Shengke, Zhou Zhiyong, Qin Wei, Fei Weiyang. 2016. Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium. Hydrometallurgy, 166: 9~15.
-
Xiang Wei, Liang Shengke, Zhou Zhiyong, Qin Wei, Fei Weiyang. 2017. Lithium recovery from salt lake brine by counter-current extraction using tributyl phosphate/FeCl3 in methyl isobutyl ketone. Hydrometallurgy, 171: 27~32.
-
Xiao Jiali, Nie Xiaoyao, Sun Shuying, Song Xingfu, Li Ping, Yu Jianguo. 2015a. Lithium ion adsorption-desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model. Advanced Powder Technology, 26(2): 589~594.
-
Xiao Jiali, Sun Shuying, Song Xingfu, Li Ping, Yu Jianguo. 2015b. Lithium ion recovery from brine using granulated polyacrylamide-MnO2 ion-sieve. Chemical Engineering Journal, 279: 659~666.
-
Xiao Xiaoling, Dai Zhifeng, Zhu Zenghu, Ma Peihua. 2005. Extracting lithium from brines by absorption method. Journal of Salt Lake Research, 13(2): 66~69 (in Chinese with English abstract).
-
Xie Lixin, Chen Xiaomian. 2014. Preparation of Li1. 6Mn1. 6O4/PVDF membrane and its lithium uptaking. CIESC Jorunal, 65(1): 237~243 (in Chinese with English abstract).
-
Xing Hong, Wang Xiaohu, Mao Xinyu. 2016. Lithium technology research of salt lake brine by membrane. Journal of Salt and Chemical Industry, 45(1): 24~26 (in Chinese with English abstract).
-
Xing Lixin, Song Jianfeng, Li Zhansheng, Liu Jindun, Huang Tao, Dou Pengjia, Chen Ying, Li Xuemei, He Tao. 2016. Solvent stable nanoporous poly (ethylene-co-vinyl alcohol) barrier membranes for liquid-liquid extraction of lithium from a salt lake brine. Journal of Membrane Science, 520: 596~606.
-
Xu Naicai, Shi Dandan, Li Sixia, Liu Zhong, Dong Yaping, Li Wu. 2017. Advances in extracting lithium from salt lake brines by adsorption technique. Materials Reports, 31(17): 116~121 (in Chinese with English abstract).
-
Xu Renqing. 1979. Study on Extraction of lithium from saturated magnesium chloride solution. Chinese Journal of Organic Chemistry, (1): 13~23 (in Chinese).
-
Xu Wenhua, He Lihua, Zhao Zhongwei. 2021. Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials. Desalination, 503: 114935.
-
Xu Xin, Zhou You, Fan Maohong, Lv Zijian, Tang Yang, Sun Yanzhi, Chen Yongmei, Wan Pingyu. 2017. Lithium adsorption performance of a three-dimensional porous H2TiO3-type lithium ion-sieve in strong alkaline Bayer liquor. RSC Advances, 7(31): 18883~18891.
-
Xue Feng, Wang Boyang, Chen Minmin, Yi Chenhao, Ju Shengui, Xing Weihong. 2019. Fe3O4-doped lithium ion-sieves for lithium adsorption and magnetic separation. Separation and Purification Technology, 228: 115750.
-
Yan Hui, Zhong Hui, Chen Nian. 2014. Preparation of new lithium adsorbents. Inorganic Chemicals Industry, 46(2): 38~40 (in Chinese with English abstract).
-
Yang Gang, Shi Hong, Liu Wenqiang, Xing Weihong, Xu Nanping. 2011. Investigation of Mg2+/Li+ separation by nanofiltration. Chinese Journal of Chemical Engineering, 19(4): 586~591.
-
Yang Shanshan, Ruan Huimin, Shen Jiangnan, Gao Congjie. 2015. Preparation methods and analyses of structural performance of spinel-type lithium manganese oxide ion sieves. Chemical Industry and Engineering Progress, 34(6): 1690~1698+1736 (in Chinese with English abstract).
-
Ye Liuying, Zeng Dewen, Chen Chi, Li Zhuye, Li Gao, Liao Yipeng, Xu Baoming. 2019. Research progress in application of absorbent of lithium extraction from brine. Inorganic Chemicals Industry, 51(3): 16~19 (in Chinese with English abstract).
-
Yu Jiangjiang, Zheng Mianping, Wu Qian. 2013. Research progress of lithium extraction process in lithium-containing salt lake. Chemical Industry and Engineering Progress, 32(1): 13~21 (in Chinese with English abstract).
-
Zandevakili S, Ranjbar M, Ehteshamzadeh M. 2014. Recovery of lithium from Urmia Lake by a nanostructure MnO2 ion sieve. Hydrometallurgy, 149: 148~152.
-
Zavahir S, Elmakki T, Gulied M, Ahmad Z, Al-Sulaiti L, Shon H K, Chen Y, Park H, Batchelor B, Han D S. 2021. A review on lithium recovery using electrochemical capturing systems. Desalination, 500: 114883.
-
Zeng Xiaomao, Fan Lei. 2017. Extraction of lithium from salt-lake brine with high Mg/Li ratio. Mining and Metallurgical Engineering, 37(6): 95~96 (in Chinese with English abstract).
-
Zhang Chengyi, Mu Yingxin, Zhang Wen, Zhao Song, Wang Yuxin. 2020a. PVC-based hybrid membranes containing metal-organic frameworks for Li+/Mg2+ separation. Journal of Membrane Science, 596: 117724.
-
Zhang Chengyi, Mu Yingxin, Zhao Song, Zhang Wen, Wang Yuxin. 2020b. Lithium extraction from synthetic brine with high Mg2+/Li+ ratio using the polymer inclusion membrane. Desalination, 496: 114710.
-
Zhang Guotai, Zhang Jingze, Zhou Yuan, Qi Guicai, Wu Yongmin, Hai Chunxin, Tang Weiping. 2019. Synthesis of aluminum-doped ion-sieve manganese oxides powders with enhanced adsorption performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583: 123950.
-
Zhang Huixin, Du Xiao, Ding Shengqi, Wang Qiang, Chang Lutong, Ma Xuli, Hao Xiaogang, Pen Changjun. 2019. DFT calculations of the synergistic effect of λ-MnO2/Graphene composites for electrochemical adsorption of lithium ions. Physical Chemistry Chemical Physics, 15(21): 8133~8140.
-
Zhang Jie, Cui Xulin, Yang Fan, Qu Lingbo, Du Fengguang, Zhang Haoqin, Wang Jingtao. 2019. Hybrid cation exchange membranes with lithium ion-sieves for highly enhanced Li+ permeation and permselectivity. Macromolecular Materials and Engineering, 304(1): 1800567.
-
Zhang Jincai, Wang Min, Dai Jing. 2005. Summarization of the lithium extraction system. Journal of Salt Lake Research, 13(1): 42~48 (in Chinese with English abstract).
-
Zhang Licheng, Li Lijuan, Shi Dong, Li Jinfeng, Peng Xiaowu, Nie Feng. 2017. Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system. Separation and Purification Technology, 188: 167~173.
-
Zhang Licheng, Li Lijuan, Shi Dong, Peng Xiaowu, Song Fugen, Nie Feng, Han Wensheng. 2018. Recovery of lithium from alkaline brine by solvent extraction with β-diketone. Hydrometallurgy, 175: 35~42.
-
Zhang Lifen, Chen Baizhen, Shi Xichang, Ma Liwen, Chen Ya. 2010. Synthesis and adsorption property of H2TiO3 type adsorbent. The Chinese JournaI of Nonferrous Metals, 20(9): 1849~1853 (in Chinese with English abstract).
-
Zhang Lifen, Xing Xueyong, Wang Wenjuan, Wan Hongqiang, Ning Shunming, She Zonghua, Li Zhaojia. 2021. Extraction of lithium from salt lake brine with high magnesium/lithium ratio. Mining and Metallurgical Engineering, 40(5): 94~96 (in Chinese with English abstract).
-
Zhang Liyuan, Zhou Dali, Yao Qianqian, Zhou Jiabei. 2016. Preparation of H2TiO3-lithium adsorbent by the sol-gel process and its adsorption performance. Applied Surface Science, 368: 82~87.
-
Zhang Liyuan, Liu Yiwu, Huang Lan, Li Ning. 2018. A novel study on preparation of H2TiO3-lithium adsorbent with titanyl sulfate as titanium source by inorganic precipitation-peptization method. RSC Advances, 8(3): 1385~1391.
-
Zhang Qinhui, Sun Shuying, Li Shaopeng, Jiang Hao, Yu Jianguo. 2007. Adsorption of lithium ions on novel nanocrystal MnO2. Chemical Engineering Science, 62(18-20): 4869~4874.
-
Zhang Rui, Lu Qiwei, Lin Sen, Yu Jianguo. 2021a. Performance evaluation and comparison of aluminum-based granulated lithium adsorbent. CIESC Journal, 72(6): 3053~3062 (in Chinese with English abstract).
-
Zhang Rui, Zhong Jing, Lin Sen, Yu Jianguo. 2021b. Study on the influence of granulation conditions on Li/Al-LDHs for lithium recovery from low grade brine. CIESC Journal, 72(12): 6291~6297(in Chinese with English abstract).
-
Zhang Xiufeng, Tan Xiumin, Zhang Lizhen. 2017. Research progress in lithium extraction from salt lake brine by nanofiltration membrane separation technology. Inorganic Chemicals Industry, 49(1): 1~6 (in Chinese with English abstract).
-
Zhang Yan, Zhong Hui, Yan Ming. 2006. Research progress of separating materials on extracting lithium from salt lake brine. Guangdong Trace Elements Science, 13(2): 7~10 (in Chinese with English abstract).
-
Zhang Yongxing, Ma Yameng, Zhang Lizhen, Zhang Xiufeng, Tan Xiumin. 2019. Experimental research on extracting lithium from concentrated salt lake brine. Inorganic Chemicals Industry, 51(3): 38~40 (in Chinese with English abstract).
-
Zhao Mengyao, Ji Zhiyong, Zhang Yongguang, Guo Zhiyuan, Zhao Yingying, Liu Jie, Yuan Junsheng. 2017. Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method. Electrochimica Acta, 252: 350~361.
-
Zhao Ruzhen, Wei Qifeng, Ren Xiulian. 2021. Research status and prospects of extraction and separation of lithium extracted from salt lake. Applied Chemical Industry, 50(6): 1690~1693 (in Chinese with English abstract).
-
Zhao Xiaoyu, Jiao Yaoxin, Xue Peijie, Feng Minghui, Wang Yanfei, Sha Zuoliang. 2020. Efficient lithium extraction from brine using a three-dimensional nanostructured hybrid inorganic-gel framework electrode. ACS Sustainable Chemistry & Engineering, 8(12): 4827~4837.
-
Zhao Zhongwei, Si Xiufen, Liang Xinxing, Liu Xuheng, He Lihua. 2013a. Electrochemical behavior of Li+, Mg2+, Na+ and K+ in LiFePO4/ FePO4 structures. Transactions of Nonferrous Metals Society of China, 23(4): 1157~1164.
-
Zhao Zhongwei, Si Xiufen, Liu Xuheng, He Lihua, Liang Xinxing. 2013b. Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials. Hydrometallurgy, 133: 75~83.
-
Zhao Zhongwei, Liu Gui, Jia Hang, He Lihua. 2020. Sandwiched liquid-membrane electrodialysis: Lithium selective recovery from salt lake brines with high Mg/Li ratio. Journal of Membrane Science, 596: 117685.
-
Zheng Mianping, Zhang Yongsheng, Liu Xifang, Qi Wen, Kong Fanjing, Nie Zhen, Jia Qingian, Pu Lingzhong, Hou Xianhua, Wang Hailei, Zhang Zhen, Kong Weigang, Lin Yongjie. 2016. Progress and prospects of salt lake research in China. Acta Geological Sinica, 90(9): 2123~2165 (in Chinese with English abstract).
-
Zhong Hui, Yin Huian. 2003. Study on the properties of the surface and absorpt of Li+ ion-exchange of H2TiO3 type. Ion Exchange and Adsorption, 18(1): 55~60 (in Chinese with English abstract).
-
Zhong Hui, Zhou Yanfang, Yin Huian. 2003. Progress in technology for extracting lithium from Li bearing brine resources. Multipurpose Utilization of Mineral Resources, (1): 23~28 (in Chinese with English abstract).
-
Zhong Jing, Lin Sen, Yu Jianguo. 2021. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines. Desalination, 505: 114983.
-
Zhong Jing, Lu Qiwei, Lin Sen, Yu Jianguo. 2021. Washing and desorption procedures research on granulated lithium aluminum layered double hydroxides for lithium recovery from low-grade brine. Chemical Industry and Engineering Progress, 40(8): 4638~4646 (in Chinese with English abstract).
-
Zhou Zhiyong, Fan Jiahui, Liu Xueting, Hu Yafei, Wei Xiaoyu, Hu Yulei, Wang Wei, Ren Zhongqi. 2020. Recovery of lithium from salt-lake brines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent. Hydrometallurgy, 191: 105244.
-
Zhou Zhiyou, Qin Wei, Fei Weiyang. 2011. Extraction equilibria of lithium with tributyl phosphate in three diluents. Journal of Chemical & Engineering Data, 56(9): 3518~3522.
-
Zhou Zhiyou, Qin, Wei, Liang Shengke, Tan Yuanzhong, Fei Weiyang. 2012. Recovery of lithium using tributyl phosphate in methyl isobutyl ketone and FeCl3. Industrial & Engineering Chemistry Research, 51(39): 12926~12932.
-
Zhou Zhiyong, Liang Shengke, Qin Wei, Fei Weiyang. 2013. Extraction equilibria of lithium with tributyl phosphate, diisobutyl ketone, acetophenone, methyl isobutyl ketone, and 2-heptanone in kerosene and FeCl3. Industrial & Engineering Chemistry Research, 52(23): 7912~7917.
-
Zhu Huafang, Gao Jie, Guo Yafei, Deng Tianlong. 2010. Progresses on solvent extraction for lithium recovery from brines. Guangdong Trace Elements Science, 17(11): 25~30 (in Chinese with English abstract).
-
Zhu Shenlin, Piao Xianlan, Gou Zeming. 2000. Extraction of lithium from brine with neutral organophosphorous solvents. Journal of Tsinghua University (Science and Technology), 40(10): 47~50 (in Chinese with English abstract).
-
卞维柏, 潘建明. 2020. 选择性吸附提锂材料的研究进展. 化工进展, 39(6): 2206~2217.
-
陈程, 李亦然, 孙占学, 周堂波, 李志勇. 2018. 磁性铝盐吸附剂的制备及高镁锂比盐湖卤水中提锂性能研究. 有色金属(冶炼部分), (1): 29~33.
-
陈亮, 王建萍, 韩进军, 王二龙, 张娟, 王罗海. 2022. 近20a察尔汗盐湖区景观格局变化与趋势分析. 盐湖研究, 30(2): 19~26.
-
程鹏高, 黄传峰, 甘善甜, 龚经款, 项军, 唐娜. 2021. 铝基锂吸附剂制备及其在泰和地下卤水提锂中的应用. 无机盐工业, 53(6): 140~144.
-
邓小川, 朱朝梁, 史一飞, 樊洁, 樊发英, 卿彬菊, 张毅, 张文丁, 杨佳亓, 李阳阳. 2018. 青海盐湖锂资源开发现状及对提锂产业发展建议. 盐湖研究, 26(4): 11~18.
-
董殿权, 张凤宝, 张国亮, 刘亦凡. 2007. Li4Ti5O12 的合成及对Li+的离子交换动力学. 物理化学学报, 23(6): 950~954.
-
董殿权, 毕参参, 李晶, 胡哓瑜, 林润雄. 2012. 三维有序大孔锂离子筛的制备及其交换性能研究. 无机化学学报, 28(7): 1423~1428.
-
董茜, 朴香兰, 朱慎林. 2007. 从盐湖卤水中提取锂的吸附技术及研究进展. 盐业与化工, 36(3): 31~35.
-
高峰, 郑绵平, 乜贞, 刘建华, 宋彭生. 2011. 盐湖卤水锂资源及其开发进展. 地球学报, 34(4): 483~492.
-
葛涛, 徐亮, 孟金伟, 宋羿, 王家保, 赵卓. 2021. 盐湖卤水提锂工艺技术研究进展. 有色金属工程, 11(2): 55~62.
-
郭敏, 封志芳, 周园, 李权, 张慧芳, 吴志坚. 2016. 吸附法从盐湖卤水中提锂的研究进展. 广东化工, 44(20): 10~13.
-
郭宏杰, 黄师强. 1991. HPMBP-TBP体系协同萃取锂的研究. 盐湖研究, (3): 14~21.
-
郭志远, 纪志永, 陈华艳, 时雅滨, 张帆, 赵颖颖, 刘杰, 袁俊生. 2020. 电化学提锂技术中电极材料和电极体系的研究进展. 化工进展, 39(6): 2294~2303.
-
胡赞. 2019. 典型矿石提锂工艺介绍及经济效益分析. 盐科学与化工, 48(3): 5~8.
-
纪志永, 彭靖龄, 袁俊生, 焦朋朋, 王军, 王志全. 2015. 基于Li4Mn5O12的铝改性锰基锂离子筛前体的制备. 无机盐工业, 47(12): 22~24+66.
-
蒋应平, 薛宇飞, 邓超群. 2021. 采用TBP-NX混合萃取体系从盐湖卤水提锂. 有色金属工程, 11(11): 41~47.
-
康为清, 时历杰, 赵有璟, 张大义, 张宏韬, 敏, 王. 2014. 纳滤法用于盐湖卤水镁锂分离的初步实验. 无机盐工业, 46(12): 22~24.
-
李杰, 熊小波. 2010. 铝盐吸附剂盐湖卤水提锂的研究现状及展望. 无机盐工业, 42(10): 9~11.
-
李丽娟, 彭小五, 时东, 张利诚, 李慧芳, 宋富根, 聂锋, 姬连敏, 宋雪雪, 曾忠民. 2018. 含锂卤水中锂资源高效利用与绿色分离的新型萃取体系. 盐湖研究, 26(4): 1~10.
-
李霞, 邓昭平, 李晶. 2017. 高岭土在盐湖卤水提锂中的应用. 化工进展, 36(6): 2057~2063.
-
李燕, 王敏, 赵有璟, 王怀有, 杨红军, 祝增虎. 2021. 纳滤膜对高镁锂比盐湖卤水镁锂分离性能研究. 化工学报, 72(6): 3130~3139.
-
李增荣, 刘国旺, 唐发满. 2017. 青海盐湖锂资源及提锂技术概述. 资源信息与工程, 32(5): 94~97.
-
路青强, 陈琳琳, 巢艳红, 李小为, 蒋磊, 朱文帅. 2021. 钛系锂离子筛用于盐湖提锂的研究进展. 化工进展, 40(S1): 1~12.
-
潘鑫, 曾文文, 何周坤, 罗楠, 詹浩然, 梅军. 2019. 钛系锂离子筛盐湖提锂的研究进展. 云南化工, 46(2): 25~32.
-
彭建忠. 2019. 国内碳酸锂生产工艺和效益分析. 盐科学与化工, 48(10): 18~20.
-
漆贵财, 海春喜, 周园. 2018. 锰氧化物锂离子筛型吸附剂提锂进展. 功能材料, 49(11): 11023~11032.
-
石成龙, 宋桂秀, 秦亚茹, 王兴权, 刘兵, 李宏霞, 李海朝. 2020. 磷酸三丁酯/丁酸乙酯体系协同萃取提锂的研究. 化学工程, 48(2): 16~19.
-
石西昌, 张志兵, 周定方, 周喜诚, 唐天罡, 尹世豪. 2013. Li1. 6Mn1. 6O4酸洗后离子筛在盐湖卤水中的吸附性能. 中南大学学报(自然科学版), 44(3): 892~890.
-
时东. 2013. 新萃取体系从高镁锂比盐湖卤水中萃取锂的研究. 中国科学院大学硕士学位论文.
-
时东, 李晋峰, 张波, 聂峰, 曾忠民, 李丽娟. 2013. N523-TBP-磺化煤油萃取体系从饱和氯化镁卤水中萃取锂的工艺研究. 盐湖研究, 21(2): 52~57.
-
孙淑英, 张钦辉, 于建国. 2010a. 尖晶石型LiMn2O4的水热合成及其锂吸附性能. 过程工程学报, 10(1): 185~189.
-
孙淑英, 张钦辉, 于建国. 2010b. 低维纳米立方相Li4Mn5O12的制备及锂吸附性能. 无机材料学报, 25(6): 626~630.
-
孙淑英, 叶帆, 宋兴福, 李云钊, 汪瑾, 于建国. 2011. 盐湖卤水提锂及其萃取机理研究. 无机化学学报, 27(3): 439~444.
-
王建萍, 张西营, 焦鹏程. 2022. 聚焦变化中的盐湖: 二次科考盐湖专题阶段性研究进展. 盐湖研究, 30(2): 1~10.
-
王晓丽, 杨文胜. 2021. 电化学提锂体系及其电极材料的研究进展. 化工学报, 76(6): 2957~2971.
-
吴静, 袁秀莲, 魏琦峰. 2020. 盐湖卤水中锂的分离提取研究进展. 无机盐工业, 52(12): 1~6.
-
肖小玲, 戴志锋, 祝增虎, 马培华. 2005. 吸附法盐湖卤水提锂的研究进展. 盐湖研究, 13(2): 66~69.
-
解利昕, 陈小棉. 2014. Li1. 6Mn1. 6O4/PVDF多孔膜的制备及提锂性能. 化工学报, 65(1): 237~243.
-
邢红, 王肖虎, 毛新宇. 2016. 膜法盐湖卤水提锂工艺研究. 盐业与化工, 45(1): 24~26.
-
许乃才, 史丹丹, 黎四霞, 忠, 刘. , 董亚萍, 李武. 2017. 利用吸附技术提取盐湖卤水中锂的研究进展. 材料导报, 31(17): 116~121.
-
许仁庆. 1979. 从氯化镁饱和溶液中萃取锂的研究. 有机化学, (1): 13~23.
-
颜辉, 钟辉, 陈念. 2014. 新型锂吸附剂的制备研究. 无机盐工业, 46(2): 38~40.
-
杨珊珊, 阮慧敏, 沈江南, 高从堦. 2015. 尖晶石型锂锰氧化物离子筛的制备方法及构效性能分析. 化工进展, 34(6): 1690~1698+1736.
-
叶流颖, 曾德文, 陈驰, 李珠叶, 李高, 廖义鹏, 徐保明. 2019. 卤水提锂吸附剂应用研究进展. 无机盐工业, 51(3): 16~19.
-
余疆江, 郑绵平, 伍倩. 2013. 富锂盐湖提锂工艺研究进展. 化工进展, 32(1): 13~21.
-
曾小毛, 樊磊. 2017. 高镁锂比盐湖老卤萃取提锂工艺研究. 矿冶工程, 37(6): 95~96.
-
张金才, 王敏, 戴静. 2005. 卤水提锂的萃取体系概述. 盐湖研究, 13(1): 42~48.
-
张丽芬, 陈白珍, 石西昌, 马立文, 陈亚. 2010. 偏钛酸型锂吸附剂的合成及吸附性能. 中国有色金属学报, 20(9): 1849~1853.
-
张丽芬, 邢学永, 王文娟, 万洪强, 宁顺明, 佘宗华, 李肇佳. 2021. 高镁锂比盐湖卤水萃取提锂研究. 矿冶工程, 40(5): 94~96.
-
张瑞, 陆旗玮, 林森, 于建国. 2021a. 铝系成型锂吸附剂性能测试评价与对比. 化工学报, 72(6): 3053~3062.
-
张瑞, 钟静, 林森, 于建国. 2021b. 盐湖铝系提锂吸附剂成型条件的影响研究. 化工学报, 72(12): 6291~6297.
-
张秀峰, 谭秀民, 张利珍. 2017. 纳滤膜分离技术应用于盐湖卤水提锂的研究进展. 无机盐工业, 49(1): 1~6.
-
张艳, 钟辉, 闫明. 2006. 盐湖卤水提锂分离材料的研究进展. 广东微量元素科学, 13(2): 7~10.
-
张永兴, 马亚梦, 张利珍, 张秀峰, 谭秀民. 2019. 从浓缩盐湖卤水中萃取分离锂的实验研究. 无机盐工业, 51(3): 38~40.
-
赵汝真, 魏琦峰, 任秀莲. 2021. 盐湖提锂的萃取分离研究现状与展望. 应用化工, 50(6): 1690~1693.
-
郑绵平, 张永生, 刘喜方, 齐文, 孔凡晶, 乜贞, 贾沁贤, 卜令忠, 侯献华, 王海雷, 张震, 孔维目, 林勇杰. 2016. 中国盐湖科学技术研究的若干进展与展望. 地质学报, 90(9): 2123~2165.
-
钟辉, 殷辉安. 2003. 偏钛酸型锂离子交换剂表面性质与选择吸附性研究. 离子交换与吸附, 18(1): 55~60.
-
钟辉, 周燕芳, 殷辉安. 2003. 卤水锂资源开发技术进展. 矿产综合利用, (1): 23~28.
-
钟静, 陆旗玮, 林森, 于建国. 2021. 锂铝层状吸附剂超低品位卤水提锂冲洗和解吸过程. 化工进展, 40(8): 4638~4646.
-
朱华芳, 高洁, 郭亚飞, 邓天龙. 2010. 溶剂萃取法提锂的研究进展. 广东微量元素科学, 17(11): 25~30.
-
朱慎林, 朴香兰, 缑泽明. 2000. 中性磷类萃取剂从卤水中萃取锂的研究. 清华大学学报(自然科学版), 40(10): 47~50.
-
摘要
传统沉淀法提锂生产周期长、不适用于低锂浓度卤水,盐湖提锂产量增长缓慢,难以满足新能源产业发展的需求。因此,开发高镁锂比卤水提锂新技术是锂产业发展的迫切需求。本文概述了吸附法、萃取法、膜法和电化学法等提锂新工艺的研究现状,发现铝基吸附剂已应用于工业生产,但其吸附容量显著地小于锰基和钛基吸附剂,而后两者的溶损和长吸附平衡时间是制约其产业化的关键。中性磷类萃取剂关注最多,但其易腐蚀和出现第三相;酰胺类萃取体系无腐蚀,已用于氯化物型卤水工业化提锂,但其稳定性需长期关注;并且萃取法工艺流程较长,酸碱消耗高。膜法无法深度除镁,需与其他方法相结合提锂,其水资源消耗量大。电渗析和“摇椅式”电化学实现了连续性提锂,加速了吸附速率,避免了洗脱剂的使用,其电耗随着优化提锂体系和工作条件的降低,电化学提锂将迎来广阔的产业前景。以上卤水提锂新工艺资源消耗和环境影响小于传统沉淀法,对高镁锂比盐湖具有显著的竞争优势,但各有弊端。因此,未来盐湖卤水提锂应加强多种新技术的集成与耦合,前移提锂过程,提升全流程锂的回收率和多种资源的综合开发。
Abstract
The traditional precipitation method for extracting lithium has a long production cycle, which is not suitable for brine with low lithium concentration. Therefore, the lithium output from salt lakes grows slowly and does not meet the needs of new energy industry. Therefore, there is an urgent need for the lithium industry to develop new technology for extracting lithium from brine with high magnesium lithium ratio. This paper summarizes the development of new lithium extraction processes such as adsorption, solvent extraction, membrane and electrochemical methods. It is found that aluminum based adsorbents have been used in industrial production, but its adsorption capacity is significantly smaller than that of manganese and titanium based adsorbents, and the dissolution loss and long adsorption equilibrium time of the latter two are the key factors restricting their industrialization. Neutral phosphorus extractant have attracted the most attention, but they easily corrode in the third phase. Corrosion free amide extraction system has been used to industrially extract lithium from chloride type brine, but its lack of stability demands continuing attention. Moreover, solvent extraction process has a long process flow and high acid and alkali consumption. The membrane method cannot fully remove magnesium, so it needs to be combined with other methods to extract lithium, which consumes a large amount of water resources. Electrodialysis and "rocking chair" electrochemistry realize continuous lithium extraction, accelerate the adsorption rate, and avoid the use of eluent. With the reduction of power consumption with the optimization of lithium extraction system and working conditions, electrochemical lithium extraction technology will usher in broad industrial prospects. The resource consumption and environmental impact of the above new process for extracting lithium from brine are less than that of the traditional precipitation method, which has significant competitive advantages for salt lakes with high magnesium lithium ratio, but each has its own disadvantages. Therefore, in future, lithium extraction from salt lake brine should strengthen the integration and coupling of a variety of new technologies to improve lithium extraction process, boost the lithium recovery rate and enable comprehensive utilization of various resources.
Keywords
brine ; lithium extraction ; adsorption ; solvent extraction ; membrane ; electrochemistry