en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李中州,男,1996年生。博士研究生,矿物学、岩石学、矿床学方向。E-mail:zhongzhouli@yeah.net。

通讯作者:

王梦玺,男,1986年生。博士,副教授,主要从事幔源岩浆作用与成矿研究。E-mail:mxwang@chd.edu.cn。

参考文献
Barnes S J. 1986. The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contributions to Mineralogy and Petrology, 93: 524~531.
参考文献
Bao Hongtian, Wang Christina Yan, Cao Yonghua. 2020. Compositions of the olivine from the Poyi ultramafic intrusion in the Beishan area, Xinjiang: Constraints on the nature of its mantle source. Geochimica, 49(4): 353~367 (in Chinese with English abstract).
参考文献
Bao Hongtian, Wang Christina Yan, Cao Yonghua, Wei Bo. 2021. Compositions of olivine of Permian Erbutu ultramafic intrusion in the central Asian orogenic belt (Inner Mongolia): Insights for the pyroxenite mantle source. Geotectonica et Metallogenia, 45(6): 1185~1201 (in Chinese with English abstract).
参考文献
Bao Zhi'an, Chen Lu, Zong Chunlei, Yuan Honglin, Chen Kaiyun, Dai Mengning. 2017. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS. International Journal of Mass Spectrometry, 421: 255~262.
参考文献
Bouldier F. 1991. Olivine xenocrysts in picritic magmas: An experimental and microstructural study. Contributions to Mineralogy and Petrology, 109: 114~123.
参考文献
Bouman C, Elliott T, Vroon P Z. 2004. Lithium inputs to subduction zones. Chemical Geology, 212(1-2): 59~79.
参考文献
Brügmann G E, Hanski E J, Naldrett A J, Smolkin V F. 2000. Sulphide segregation in ferropicrites from the Pechenga complex, Kola Peninsula, Russia. Journal of Petrology, 41(12): 1721~1742.
参考文献
Cao Yonghua, Wang Christina Yan, Wei Bo. 2020. Magma oxygen fugacity of mafic-ultramafic intrusions in convergent margin settings: Insights for the role of magma oxidation states on magmatic Ni-Cu sulfide mineralization. American Mineralogist, 105(12): 1841~1856.
参考文献
Cawthorn R G, Sander B K, Jones I M. 1992. Evidence for the trapped liquid shift effect in the mount Ayliff intrusion, South Africa. Contributions to Mineralogy and Petrology, 111: 194~202.
参考文献
Chan L H, Alt J C, Teagle D A H. 2002. Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201(1): 187~201.
参考文献
Chen Liemeng, Song Xieyan, Hu Ruizhong, Yu Songyue, Yi Junnian, Kang Jian, Huang Kangjun. 2021. Mg-Sr-Nd isotopic insights into petrogenesis of the Xiarihamu mafic-ultramafic intrusion, northern Tibetan plateau, China. Journal of Petrology, 62(2): 1~25.
参考文献
Chen Lu, Chen Kaiyun, Bao Zhian, Liang Peng, Sun Tiantian, Yuan Honglin. 2017. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32(1): 107~116.
参考文献
Couperthwaite F, Thordarson T, Morgan D, Harvey J, Wilson M. 2020. Diffusion timescales of magmatic processes in the Moinui lava eruption at Mauna Loa, Hawaii, as inferred from bimodal olivine populations. Journal of Petrology, 61(7): 58.
参考文献
De Hoog J C M, Gall L, Cornell D H. 2010. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, 270(1-4): 196~215.
参考文献
Dohmen R, Kasemann S A, Coogan L, Chakraborty S. 2010. Diffusion of Li in olivine. Part I: Experimental observations and a multi species diffusion model. Geochimica et Cosmochimica Acta, 74(1): 274~292.
参考文献
Du Wei. 2018. Study on two kinds of mafic ultramafic rocks and nickel sulfide deposit in East Kunlun island arc zone. Doctor degree thesis of Chang'an University (in Chinese with English abstract).
参考文献
Du Wei, Jiang Changyi, Ling Jinlan, Zhou Wei, Xia Mingzhe, Xia Zhaode. 2017. Zircon SHRIMP U-Pb geochronology, geochemistry and implications of No. Ⅱ intrusion in Xiarihamu Cu-Ni deposit, East Kunlun Mountains. Mineral Deposits, 36(5): 1185~1196 (in Chinese with English abstract).
参考文献
Fleet M E, Stone W E, Crocket J H. 1991. Partitioning of palladium, iridium, platinum, between sulfide liquid and basaltic melt: Effects of melt composition, concentration, and oxygen fugacity. Geochimica et Cosmochimica Acta, 55(9): 2545~2554.
参考文献
Foley S D, Prelevic D, Rehfeldt T, Jacob D E. 2013. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth and Planetary Science Letters, 363: 181~191.
参考文献
Gao Shan, Rudnick R L, Yuan Hongling, Liu Xiaoming, Liu Yongsheng, Xu Wenliang, Ling Wenli, Ayers J, Wang Xuanche, Wang Qinghai. 2004. Recycling lower continental crust in the north China craton. Nature, 432(7019): 892~897.
参考文献
Griffin W L, O'Reilly S Y, Afonso J C, Begg G C. 2009. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. Journal of Petrology, 50(7): 1185~1204.
参考文献
Halama R, McDonough W F, Rudnick R L, Keller J, Klaudius J. 2007. The Li isotopic composition of Oldoinyo Lengai: Nature of the mantle sources and lack of isotopic fractionation during carbonatite petrogenesis. Earth and Planetary Science Letters, 254(1-2): 77~89.
参考文献
Herd C D K, Dwarzski R E, Shearer C K. 2009. The behavior of Co and Ni in olivine in planetary basalts: An experimental investigation. American Mineralogist, 94(2-3): 244~255.
参考文献
Howarth G H, Harris C. 2017. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry. Earth and Planetary Science Letters, 475: 143~151.
参考文献
Jeffcoate A B, Elliott T, Kasemann S A, Ionov D, Cooper K, Brooker R. 2007. Li isotope fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta, 71(1): 202~218.
参考文献
Jiang Changyi, Ling Jinlan, Zhou Wei, Du Wei, Wang Zixi, Fan Yazhou, Song Yanfang, Song Zhongbao. 2015. Petrogenesis of the Xiarihamu Ni-bearing layered mafic-ultramafic intrusion, East Kunlun: Implications for its extensional island arc environment. Acta Petrologica Sinica, 31(4): 1117~1136 (in Chinese with English abstract).
参考文献
Jiang Chunfa, Yang Jingsui, Feng Binggui, Zhu Zhizhi, Zhao Min, Chai Yaochu. 1992. Opening-closing structure of the Kunlun Mountains. Beijing: Geological Publishing House(in Chinese).
参考文献
Kamenetsky V S, Elburg M, Arculus R, Thomas R. 2006. Magmatic origin of low-Ca olivine in subduction-related magmas: Co-existence of contrasting magmas. Chemical Geology, 233(3-4): 346~357.
参考文献
Keays R R, Nickel E H, Groves D I, McGoldrick P J. 1982. Iridium and palladium as discriminants of volcanic-exhalative, hydrothermal, and magmatic nickel sulfide mineralization. Economic Geology, 77(6): 1535~1547.
参考文献
Keevil H A, Namur O, Holness M B. 2020. Microstructures and late-stage mag-matic processes in layered mafic intrusions: Symplectites from the Sept Iles intrusion, Quebec, Canada. Journal of Petrology, 61(7): egaa071.
参考文献
Lambert D D, Frick L R, Foster J G, Li C, Naldrett A J. 2000. Re-Os isotopic systematics of the Voisey's bay Ni-Cu-Co magmatic sulfide system. Canada: II. Implications for parental magma chemistry, ore genesis, and metal redistribution. Economic Geology, 95(4): 867~888.
参考文献
Laubier M, Grove T L, Langmuir C H. 2014. Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters, 392(5): 265~278.
参考文献
Lee C T A, Luffi P, LeRoux V, Dasgupta R, Albarede F, Leeman W P. 2010. The redox state of arc mantle using Zn/Fe systematics. Nature, 468: 681~685.
参考文献
Lee C T A, Luffi P, Chin E J, Bouchet R, Dasgupta R, Morton D M, Le Roux V, Yin Q Z, Jin D. 2012. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science, 336(6077): 64~68.
参考文献
Le Roux V, Lee C T A, Turner S J. 2011. Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth's mantle. Geochimica et Cosmochimica Acta, 74(9): 2779~2796.
参考文献
Li Chusi, Xu Zhanghua, de Waal S A, Ripley E M, Maier W D. 2004. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: Implications for ore genesis. Mineralium Deposita, 39: 159~172.
参考文献
Li Chusi, Ripley E M, Naldrett A J. 2009. A new genetic model for the giant Ni-Cu-PGE sulfide deposits associated with Siberian flood basalts. Economic Geology, 104 (2): 291~301.
参考文献
Li Chusi, Zhang Mingjie, Fu Piao'er, Qian Zhangzhi, Hu Peiqing, Ripley E M. 2012. The Kalatongke magmatic Ni-Cu deposits in the central Asian orogenic belt, NW China: Product of slab window magmatism?. Mineralium Deposita, 47: 51~67.
参考文献
Li Chusi, Zhang Zhaowei, Li Wenyuan, Wang Yalei, Sun Tao, Ripley E M. 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China. Lithos, 216-217: 224~240.
参考文献
Li Rongshe, Ji Wenhua, Zhao Zhenming, Chen Shoujian, Meng Yong, Yu Pusheng, Pan Xiaoping. 2007. Progress in the study of the Early Paleozoic Kunlun orogenic belt. Geological Bulletin of China, 26(4): 373~382 (in Chinese with English abstract).
参考文献
Li Shijin, Sun Fengyue, Gao Yongwang, Zhao Junwei, Li Liansong, Yang Qian. 2012. The theoretical guidance and the practice of small intrusions forming large deposits—The enlightenment and significance for searching breakthrough of Cu-Ni sulfide deposit in Xiarihamu, East Kunlun, Qinghai. Northwestern Geology, 45(4): 185~191 (in Chinese with English abstract).
参考文献
Li Shuang, Meng Fancong, Duan Xuepeng, Chen Songyong. 2021. Protolith and tectonic implications of the No. Ⅳ pluton in Xiarihamu area, east Kunlun, Qinghai Province. Acta Petrologica Sinica, 37(10): 3118~3130 (in Chinese with English abstract).
参考文献
Li Wenyuan, Wang Yalei, Qian Bing, Liu Yuegao, Han Yixiao. 2020. Discussion on the formation of magmatic Cu-Ni-Co sulfide deposits in margin of Tarim Block. Earth Science Frontiers, 27(2): 276~293 (in Chinese with English abstract).
参考文献
Li Wenyuan, Zhang Zhaowei, Wang Yalei, Zhang Jiangwei, You Minxin, Zhang Zhibing, Namkha N. 2022. Tectonic transformation of Proto- and Paleo-Tethys and the metallization of magmatic Ni-Cu-Co sufide deposits in Kunlun orogen, northwest China. Journal of Earth Sciences and Environment, 44(1): 1~19 (in Chinese with English abstract).
参考文献
Li Yuan, Audétat A. 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth and Planetary Science Letters, 355-356: 327~340.
参考文献
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.
参考文献
Liu Yuegao, Li Wenyuan, Jia Qunzi, Zhang Zhaowei, Wang Zhi'an. 2018. The dynamic sulfide saturation process and a possible slab break-off model for the giant Xiarihamu magmatic nickel ore deposit in the east Kunlun orogenic belt, northern Qinghai-Tibet Plateau, China. Economic Geology, 113(6): 1383~1417.
参考文献
Loucks R R. 1990. Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al /Ti ratio in clinopyroxene. Geology, 18(4): 346~349.
参考文献
Luan Yan, Sun Xiaohui, Liu Minwu, He Ke. 2021. Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS. Bulletin of Geological Science and Technology, 40(2): 167~175 (in Chinese with English abstract).
参考文献
Maier W D, Peltonen P, Juvonen R, Pienaar C. 2005. Platinum-group elements in peridotite xenoliths and kimberlite from the Premier kimberlite pipe, South Africa. South African Journal of Geology, 108 (3): 413~428.
参考文献
Maier W D, Barnes S J. 2010. The Kabanga Ni sulfide deposits, Tanzania: II. Chalcophile and siderophile element geochemistry. Mineralium Deposita, 45(5): 443~460.
参考文献
Maier W D, Groves D I. 2011. Temporal and spatial control on the formation of magmatic PGE and Ni-Cu deposits. Mineralium Deposita, 46(8): 841~857.
参考文献
Mao Jingwen, Pirajno F, Zhang Zuoheng, Chai Fengmei, Wu Hua, Chen Shiping, Cheng Linsong, Yang Jianmin, Zhang Changqing. 2008. A review of the Cu-Ni sulphide deposits in the chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2-4): 184~203.
参考文献
Mao Yajing, Qin Kezhang, Li Chusi, Xue Shengchao, Ripley E M. 2014. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian orogenic belt, western China. Lithos, 200-201: 111~125.
参考文献
Mao Yajing, Schoneveld L, Barnes S J, Williams M J, Su Benxun, Ruprecht P, Evans N J, Qin Kezhang. 2022. Coupled Li-P zoning and trace elements of olivine from magmatic Ni-Cu deposits: Implications for postcumulus re-equilibration in olivine. Journal of Petrology, 63(3): 1~22.
参考文献
Naldrett A J. 2004. Magmatic sulfide deposits: Geology, geochemistry and exploration. New York: Springer.
参考文献
Naldrett A J. 2010. Secular variation of magmatic sulfide deposits and their source magmas. Economic Geology, 105(3): 669~688.
参考文献
Namur O, Charlier B, Holness M B. 2012. Dual origin of Fe-Ti-P gabbros by im-miscibility and fractional crystallization of evolved tholeiitic basalts in the Sept Iles layered intrusion. Lithos, 154: 100~114.
参考文献
Pan Tong. 2015. The prospecting for magmatic liquation type nickel deposits on the southern and northern margin of Qaidam Basin, Qinghai Province: A case study of the Xiarihamu Ni-Cu sulfide deposit. Geology in China, 42(3): 713~723 (in Chinese with English abstract).
参考文献
Pan Tong, Zhang Yong. 2020. Geochemical characteristics and metallogenic response of the eclogite from Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt. Geotectonica et Metallogenia, 44(3): 447~464 (in Chinese with English abstract).
参考文献
Papike J J, Fowler G W, Adcock C T, Shearer C K. 1999. Systematics of Ni and Co in olivine from planetary melt systems: Lunar mare basalts. American Mineralogist, 84(3): 392~399.
参考文献
Patten C, Barnes S J, Mathez E A, Jenner F E. 2013. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chemical Geology, 358(6): 170~188.
参考文献
Peach C L, Mathez E A, Keays R R. 1990. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting. Geochimica et Cosmochimica Acta, 54(12): 3379~3389.
参考文献
Pearson D G, Irvine G J, Ionov D A, Boyd F R, Dreibus G E. 2004. Re-Os isotope systematics and platinum-group element fractionation during mantle melt extraction: A study of massif and xenolith peridotite suites. Chemical Geology, 208(1-4): 29~59.
参考文献
Peng Bo, Sun Fengyue, Li Bile, Wang Guan, Li Shijin, Zhao Tuofei, Li Liang, Zhi Yubo. 2016. The geochemistry and geochronology of the Xiarihamu II mafic-ultramafic complex, eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni-Cu sulfide deposits. Ore Geology Reviews, 73: 13~28.
参考文献
Piña R, Lunar R, Ortega L, Gervilla F, Alapieti T, Martínez C. 2006. Petrology and geochemistry of mafic-ultramafic fragments from the Aguablanca (SW Spain) Ni-Cu ore breccia: Implications for the genesis of the deposit. Economic Geology, 101(4): 865~881.
参考文献
Qi Liang, Zhou Meifu, Wang Christina Yan. 2004. Determination of low concentrations of platinum group elements in geological samples by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 19(10): 1335~1339.
参考文献
Qi Liang, Zhou Meifu, Wang Christina Yan, Sun Min. 2007. Evaluation of a technique for determining Re and PGEs in geological samples by ICP-MS coupled with a modified Carius tube digestion. Geochemical Journal, 41(6): 407~414.
参考文献
Qin Kezhang, Xiao Wenjiao, Zhang Lianchang, Xu Xingwang, Hao Jie, Sun Shu, Li Jiliang, Richard M T. 2005. Eight stages of major ore deposits in northern Xinjiang, NW-China: Clues and constraints on the tectonic evolution and continental growth of central Asia. In: Mao Jingwen and Bierlein F, eds. Mineral deposit research, Meeting the Global Challenge. Berlin: Springer, 1: 1327~1330.
参考文献
Qin Kezhang, Su Benxun, Sakyi P A, Tang Dongmei, Li Xianhua, Sun He, Xiao Qinghua, Liu Pingping. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma mantle plume. American Journal of Science, 311(3): 237~260.
参考文献
Ramsay W R, Crawford A J, Foden J D. 1984. Field setting mineralogy chemistry and genesis of arc picrites New Georgia Solomon Islands. Contributions to Mineralogy and Petrology, 88: 386~402.
参考文献
Rohrbach A, Schuth S, Ballhaus C, Münker C, Matveev S, Qopoto C. 2005. Petrological constraints on the origin of arc picrites, new Georgia Group, Solomon Islands. Contributions to Mineralogy and Petrology, 149: 685~698.
参考文献
Saal A E, Hauri E H, Langmuir C H, Perfit M R. 2002. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature, 419(6906): 451~455.
参考文献
Shea T, Hammer J E, Hellebrand E, Mourey A J, Costa F, First E C, Lynn K J, Melnik O. 2019. Phosphorus and aluminum zoning in olivine: Contrasting behavior of two nominally incompatible trace elements. Contributions to Mineralogy and Petrology, 174: 85.
参考文献
Simkin T, Smith J V. 1970. Minor-element distribution in olivine. Journal of Geology, 78(3): 304~325.
参考文献
Sobolev A V, Hofmann A W, Sobolev S V, Nikogosian I K. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033): 590~597.
参考文献
Sobolev A V, Hofmann A W, Kuzmin D, Yaxley G, Arndt N, Chung S L, Danyushevsky L, Elliott T, Frey F, Garcia M, Gurenko A, Kamenetsky V, Kerr A, Krivolutskaya N, Matvienkov V, Nikogosian I, Rocholl A, Sigurdsson I, Sushchevskaya N, Teklay M. 2007. The amount of recycled crust in sources of mantle derived melts. Science, 316(5823): 412~417.
参考文献
Sobolev AV, Hofmann A W, Brügmann G, Batanova V G, Kuzmin D V. 2008. A quantitative link between recycling and osmium isotopes. Science, 321(5888): 536.
参考文献
Sobolev A V, Krivolutskaya N A, Kuzmin D V. 2009. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology, 17(3): 253~286.
参考文献
Song Xieyan, Li Xiangren. 2009. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Mineralium Deposita, 44(3): 303~327.
参考文献
Song Xieyan, Yi Junnian, Chen Liemeng, Yu Songyue, Liu Changzheng, Dang Xingyan, Yang Qian, Wu Shukuan. 2016. The giant Xiarihamu Ni-Co sulfide deposit in the east Kunlun orogenic belt, northern Tibet Plateau, China. Economic Geology, 111(1): 29~55.
参考文献
Song Xieyan, Wang Kaiyuan, Barnes S J, Yi Junnian, Chen Liemeng, Schoneveld L E. 2020. Petrogenetic insights from chromite in ultramafic cumulates of the Xiarihamu intrusion, northern Tibet Plateau, China. American Mineralogist, 105(4): 479~497.
参考文献
Su Benxun, Qin Kezhang, Sakyi P A, Li Xianhua, Yang Yueheng, Sun He, Tang Dongmei, Liu Pingping, Xiao Qinghua, Malaviarachchi S P K. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in southern Central Asian orogenic belt: Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research, 20(2-3): 516~531.
参考文献
Su Benxun, Zhang Hongfu, Deloule E. Sakyi P A, Xiao Yan, Tang Yanjie, Hu Yan, Ying Jjfeng, Liu Pingping. 2012. Extremely high Li and low δ7Li signatures in the lithospheric mantle. Chemical Geology, 292-293: 149~157.
参考文献
Su Benxun, Qin Kezhang, Tang Dongmei, Sakyi P A, Liu Pingping, Sun He, Xiao Qinghua. 2013. Late Paleozoic mafic-ultramafic intrusions in southern central Asian orogenic belt (NW China): Insight into magmatic Ni-Cu sulfide mineralization in orogenic setting. Ore Geology Reviews, 51: 57~73.
参考文献
Tang Dongmei, Qin Kezhang, Li Chusi, Qi Liang, Su Benxun, Qu Wenjun. 2011. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic-ultramafic intrusion in the central Asian orogenic belt, NW China. Lithos, 126(1-2): 84~98.
参考文献
Tang Dongmei, Qin Kezhang, Sun He, Su Benxun, Xiao Qinghua. 2012. The role of crustal contamination in the formation of Ni-Cu sulphide deposits in eastern Tianshan, Xinjiang, northwest China: Evidence from trace element geochemistry, Re-Os, Sr-Nd, zircon Hf-O, and Sulphur isotopes. Journal of Asian Earth Sciences, 49: 145~160.
参考文献
Tang Qingyan, Li Jianping, Zhang Mingjie, Song Zhe, Dang Yongxi, Du Li. 2017. The volatile conditions of ore-forming magma for the Xiarihamu Ni-Cu sulfide deposit in east Kunlun orogenic belt, western China: Constraints from chemical and carbon isotopic compositions of volatiles. Acta Petrologica Sinica, 33(1): 104~114 (in Chinese with English abstract).
参考文献
Tang Yanjie, Zhang Hongfu, Deloule E, Su Benxun, Ying Jifeng, Santosh M, Xiao Yan. 2014. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the north China craton. Scientific Reports, 4(1): 4274.
参考文献
Wang Christina Yan, Zhou Meifu, Sun Yali, Arndt N T. 2012. Differentiation, crustal contamination and emplacement of magmas in the formation of the Nantianwan mafic intrusion of the ~260 Ma Emeishan large igneous province, SW China. Contribution to Mineralogy and Petrology, 164(2): 281~301.
参考文献
Wang Christina Yan, Zhou Meifu, Yang Shenghong, Qi Liang, SunYali. 2014. Geochemistry of the Abulangdang intrusion: Cumulates of high-Ti picritic magmas in the Emeishan large igneous province, SW China. Chemical Geology, 378-379: 24~39.
参考文献
Wang Guan. 2014. Metallogenesis of nickel deposits in eastern Kunlun orogenic belt, Qinghai Province. Doctor degree thesis of Jilin University (in Chinese with English abstract).
参考文献
Wang Guan, Sun Fengyue, Li Bile, Li Shijin, Zhao Junwei, Yang Qian and Ao Cong. 2013. Zircon U-Pb geochronology and geochemistry of the early Devonian Syenogranite in the Xiarihamu ore district from east Kunlun, with implications for the geodynamic setting. Geotectonica et Metallogenia, 37(4): 685~697 (in Chinese with English abstract).
参考文献
Wang Guan, Sun Fengyue, Li Bile, Li Shijin, Zhao Junwei, Yang Qi'an. 2014. Zircon U-Pb geochronology and geochemistry of diorite in Xiarihamu ore district from east Kunlun and its geological significance. Journal of Jilin University (Earth Science Edition), 44(3): 876~891 (in Chinese with English abstract).
参考文献
Wang Jing, SuBenxun, Robinson P T, Xiao Yan, Bai Yang, Liu Xia, Sakyi P A, Jing Jiejun, Chen Chen, Liang Zi, Bao Zhian. 2021. Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks. Lithos, 388-389: 106085.
参考文献
Wang Xiaodong, Zhang Mingjie, Fu Juerong, Zhang Jiangwei, Li Liwu, Tang Qianyan, Li Zhongping. 2018. The magmatic intrusive direction constrains from noble gas isotopic compositions: A case study of the Xiarihamu Ni-Cu sulfide deposit in east Kunlun orogenic belt, China. Acta Petrologica Sinica, 34(11): 3433~3444 (in Chinese with English abstract).
参考文献
Wang Zhengrong, Gaetani G A. 2008. Partitioning of Ni between olivine and siliceous eclogite partial melt: Experimental constraints on the mantle source of Hawaiian basalts. Contributions to Mineralogy and Petrology, 156(5): 661~678.
参考文献
Wei Bo, Wang Christina Yan, Li Chusi, Sun Yali. 2013. Origin of PGE-Depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No. 7 orthopyroxenite intrusion, Central Asian orogenic belt, northeastern China. Economic Geology, 108(8): 1813~1831.
参考文献
Wu Shukuan, Yang Qi'An, Ma Yuhui, Wang Zhian, Wang Bin, Ma Guohua, Chang En, Sun Liang. 2016. Characteristics of the Xiarihamu magmatic Ni-Cu sulfide ore deposit in the eastern Kunlun orogenic belt, northwest China. Modern Mining, 32(1): 134~135 (in Chinese).
参考文献
Xiao Peixi, Gao Xiaofeng and Hu Yunxu. 2014. The geology background research in western segment of Altun-east Kunlun metallogenic belt. Beijing: Geological Publishing House, 1~261 (in Chinese).
参考文献
Xing Changming, Wang Christina Yan, Tan Wei. 2017. Disequilibrium growth of olivine in mafic magmas revealed by phosphorus zoning patterns of olivine from mafic-ultramafic intrusions. Earth and Planetary Science Letters, 479: 108~119.
参考文献
Xing Changming, Wang Christina Yan, Charlier B, Namur O. 2022. Ubiquitous dendritic olivine constructs initial crystal framework of mafic magma chamber. Earth and Planetary Science Letters, 594: 117710.
参考文献
Xue Shengchao, Wang Qingfei, Tang Dongmei, Mao Yajing, Yao Zhuosen. 2022. Contamination mechanism of magmatic Ni-Cu sulfide deposits in orogenic belts: Examples from Permian Ni-Cu deposits in Tianshan-Beishan. Mineral Deposits, 41(1): 1~20 (in Chinese with English abstract).
参考文献
Zhang Zhaochong, Cai Jinghong, Yan Shenghao, Chen Bailin, Zhou Gang, He Lixin. 2008. A discussion on the low-Ca olivine phenocrysts in Middle Devonian picritic lavas on the southern margin of the Altay mountains. Acta Petrologica et Mineralogica, 27(3): 171~176 (in Chinese with English abstract).
参考文献
Zhang Zhaochong, Mao Jingwen, Chai Fengmei, Yan Shenghao, Chen Bailin, Pirajno Franco. 2009. Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, NW China: Implications for thegenesis of the magmatic Ni-Cu sulfide deposit. Economic Geology, 104(2): 185~203.
参考文献
Zhang Zhaowei, Li Wenyuan, Qian Bing, Wang Yali, Li Shijin, Liu Changzheng, Zhang Jiangwei, Yang Qian, You Minxin, Wang Zhian. 2015. Metallogenic epoch of the Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt and its prospecting significance. Geology in China, 42(3): 438~451 (in Chinese with English abstract).
参考文献
Zhang Zhaowei, Tang Qingyan, Li Chusi, Wang Yalei, Ripley E M. 2017. Sr-Nd-Os-S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai-Tibet plateau, China. Mineralium Deposita, 52(1): 51~68.
参考文献
Zhang Zhaowei, Qian Bing, Wang Yalei, Li Wenyuan, Zhang Jiangwei, You Minxin. 2020. Understanding of the metallogenic ore-bearing mechanism and its indication of prospecting direction in Xiarihamu magmatic Ni-Co sulfide deposit, East Kunlun orogenic belt, northwestern China. Northwestern Geology, 53(3): 153~168 (in Chinese with English abstract).
参考文献
Zhang Zhibing, Li Wenyuan, Zhang Zhaowei, Qian Bing, Liu Yuegao, Peng Xin. 2017. Mineral characteristic and geological significance of pyroxene from Xiarihamu Ni-Cu sulfide deposit in the eastern Kunlun orogenic belt, northwestern China. Geology and Exploration, 53(5): 867~879 (in Chinese with English abstract).
参考文献
Zhou MeiFu, Lesher C M, Yang Zhengxi, Li Jianwei, Sun Min. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu- (PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233~257.
参考文献
暴宏天, 王焰, 曹勇华. 2020. 新疆北山地区坡一岩体橄榄石成分特征及其对地幔源区的制约. 地球化学, 49(4): 353~367.
参考文献
暴宏天, 王焰, 曹勇华, 魏博. 2021. 内蒙古中部二叠纪额布图岩体的橄榄石成分特征及其对辉石岩地幔源区的指示. 大地构造与成矿学, 45(6): 1185~1201.
参考文献
杜玮. 2018. 东昆中岛弧带两类镁铁质-超镁铁质岩石与镍矿床研究. 长安大学博士学位论文.
参考文献
杜玮, 姜常义, 凌锦兰, 周伟, 夏明哲, 夏昭德. 2017. 东昆仑夏日哈木铜镍矿床Ⅱ号岩体年代学、地球化学及其意义. 矿床地质, 36(5): 1185~1196.
参考文献
姜常义, 凌锦兰, 周伟, 杜玮, 王子玺, 范亚洲, 宋艳芳, 宋忠宝. 2015. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景. 岩石学报, 31(4): 1117~1136.
参考文献
姜春发, 杨经绥, 冯秉贵, 朱志直, 赵民, 柴耀楚. 1992. 昆仑开合构造. 北京: 地质出版社.
参考文献
李荣社, 计文化, 赵振明, 陈守建, 孟勇, 于浦生, 潘小平. 2007. 昆仑早古生代造山带研究进展. 地质通报, 26(4) : 373~382.
参考文献
李世金, 孙丰月, 高永旺, 赵俊伟, 李连松, 杨启安. 2012. 小岩体成大矿理论指导与实践——青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义. 西北地质, 45(4): 185~191.
参考文献
李爽, 孟繁聪, 段雪鹏, 陈松永. 2021. 青海东昆仑夏日哈木Ⅳ号岩体原岩属性及其构造意义. 岩石学报, 37(10): 3118~3130.
参考文献
李文渊, 王亚磊, 钱兵, 刘月高, 韩一筱. 2020. 塔里木陆块周缘岩浆Cu-Ni-Co 硫化物矿床形成的探讨. 地学前缘, 27(2): 276~293.
参考文献
李文渊, 张照伟, 王亚磊, 张江伟, 尤敏鑫, 张志炳, 南卡俄吾. 2022. 东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用. 地球科学与环境学报, 44(1): 1~19.
参考文献
栾燕, 孙晓辉, 刘民武, 何克. 2021. 磁铁矿LA-ICP-MS原位微量元素分析方法研究. 地质科技通报, 40(2): 167~175.
参考文献
潘彤. 2015. 青海省柴达木南北缘岩浆熔离型镍矿的找矿—以夏日哈木镍矿为例. 中国地质, 42(3): 713~723.
参考文献
潘彤, 张勇. 2020. 东昆仑夏日哈木铜镍矿区榴辉岩地球化学特征及成矿响应. 大地构造与成矿学, 44(3): 447~464.
参考文献
汤庆艳, 李建平, 张铭杰, 宋哲, 党永西, 杜丽. 2017. 东昆仑夏日哈木镍铜硫化物矿床成矿岩浆条件: 流体挥发份化学组成与碳同位素组成制约. 岩石学报, 33(1): 104~114.
参考文献
王冠. 2014. 东昆仑造山带镍矿成矿作用研究. 吉林大学博士学位论文.
参考文献
王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 杨启安, 奥琮. 2013. 东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义. 大地构造与成矿, 37(4): 685~697.
参考文献
王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 杨启安. 2014. 东昆仑夏日哈木矿区闪长岩锆石U-Pb 年代学、地球化学及其地质意义. 吉林大学学报(地球科学版), 44(3): 876~891.
参考文献
王小东, 张铭杰, 伏珏蓉, 张江伟, 李立武, 汤庆艳, 李中平. 2018. 稀有气体同位素对岩浆侵入方向的制约: 以夏日哈木镍铜硫化物矿床为例. 岩石学报, 34(11): 3433~3444.
参考文献
吴树宽, 杨启安, 马玉辉, 王治安, 王彬, 马国骅, 常恩, 孙亮. 2016. 东昆仑夏日哈木铜镍矿床特征. 现代矿业, 32(1): 134~135.
参考文献
校培喜, 高晓峰, 胡云绪. 2014. 阿尔金-东昆仑西段成矿带地质背景研究. 北京: 地质出版社, 1~261.
参考文献
薛胜超, 王庆飞, 唐冬梅, 毛亚晶, 姚卓森. 2022. 造山带岩浆铜镍硫化物矿床的混染模式—以天山-北山二叠纪铜镍矿为例. 矿床地质, 41(1): 1~20.
参考文献
张招崇, 蔡劲宏, 闫升好, 陈柏林, 周刚, 何立新. 2008. 阿尔泰山南缘中泥盆统苦橄岩低钙橄榄石的成因探讨. 岩石矿物学杂志, 27(3): 171~176.
参考文献
张照伟, 李文渊, 钱兵, 王亚磊, 李世金, 刘长征, 张江伟, 杨启安, 尤敏鑫, 王治安. 2015. 东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义. 中国地质, 42(3): 438~451.
参考文献
张照伟, 钱兵, 王亚磊, 李文渊, 张江伟, 尤敏鑫. 2020. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示. 西北地质, 53(3): 153~168.
参考文献
张志炳, 李文渊, 张照伟, 钱兵, 刘月高, 彭欣. 2017. 东昆仑夏日哈木铜镍硫化物矿床辉石特征及地质意义. 地质与勘探, 53(5): 867~879.
目录contents

    摘要

    夏日哈木超大型镍矿I号岩体的地幔源区目前仍存在软流圈、大陆下岩石圈地幔和辉石岩地幔三种不同认识。本次研究通过对该岩体西段新近发现的隐伏矿体ZK3109钻孔中斜方辉石岩和浸染状矿石中的橄榄石进行原位成分分析,识别地幔源区性质,并结合硫化物原位S同位素和全岩亲铜元素组成,探讨硫化物熔离过程。样品中橄榄石均具有较低的Mn/Zn比值(基本小于13.5),而且斜方辉石岩中橄榄石具有较低的100×Mn/Fe比值(基本小于1.35),指示岩体源区有辉石岩地幔组分加入,与前人根据硫化物矿体富Ni特征的推测一致。橄榄石低Ca(小于300.00×10-6)、高Li(平均9.83×10-6)以及Sc与Ni正相关指示辉石岩地幔组分可能是俯冲洋壳物质交代大陆下岩石圈地幔的产物。另一方面,斜方辉石岩中橄榄石Ni、Fo值均与Co负相关且全岩S和铂族元素(PGE)相关性不明显,说明浅部岩浆房硫化物熔离发生在斜方辉石岩形成之后。浸染状矿石中橄榄石Co和Ni正相关且全岩S和PGE正相关,暗示橄榄石成分受控于硫化物熔离。样品中镍黄铁矿、磁黄铁矿和黄铜矿δ34S值(2.28‰~6.11‰)高于地幔值(0 ± 2‰),指示壳源硫化物的选择性加入导致母岩浆在浅部岩浆房S饱和。模拟计算表明岩体东、西两段浸染状矿石和网脉状矿石中亲铜元素的差异是母岩浆在硫化物熔离过程中二者R值(硅酸盐熔体和硫化物熔体质量比)不同造成的,分别为30~3000和3000~15000。本次研究表明综合运用矿物原位成分、S同位素和全岩亲铜元素组成能够有效识别铜镍硫化物矿床赋矿岩体地幔源区性质并刻画硫化物熔离过程。

    Abstract

    The nature of mantle source of the Xiarihamu Ni deposit is still under debate, with three possible source regions from asthenosphere, sub-continental lithospheric mantle or pyroxenite mantle. In this study, we collected orthopyroxenite and disseminated ore samples from the drill hole ZK3109, and carried out the in-situ analysis on olivine composition of the No. I intrusion to identify the nature of mantle source, and analyzed the in-situ S isotopic composition of sulfide and whole-rock chalcophile elements to portray the processes of sulfide saturation and segregation. Most olivine grains of orthopyroxenite and disseminated ores have low Mn/Zn ratio (<13.5), and most of those from orthopyroxenite have low 100×Mn/Fe ratio (<1.35), indicating a pyroxenite mantle component in the source origin. Moreover, the low Ca(<300.00×10-6) and high Li with an average value of ~9.83×10-6 in olivine from orthopyroxenite and disseminated ores, and the positive correlation of Sc and Ni for olivine from orthopyroxenite, suggests that the pyroxenite mantle was formed by the metasomatism of sub-continental lithospheric mantle by materials from the subducted oceanic crust. On the other hand, the negative correlations of Co concentration with Ni concentration, and Fo value of olivine from orthopyroxenite and the ambiguous correlation of S and PGE indicate that the sulfide segregation occurred after the formation of orthopyroxenite. In contrast, the positive correlation of Co and Ni of olivine and the positive correlation of S and PGE of disseminated ores suggest that the olivine composition is mainly controlled by the sulfide segregation. Pentlandite, pyrrhotite and chalcopyrite of orthopyroxenite and disseminated ore have δ34S ranging from 2.28‰ to 6.11‰, distinctly higher than the mantle value (0±2‰), indicating that the S saturation of parental magma in the shallow magma chamber was triggered by the selective addition of crustal S. The modeling results suggest that the different chalcophile elemental compositions of disseminated ores and net-textured ores in the west and east segments of the No. I intrusion were ascribed to different R-values (the mass ratio of the silicate melt to sulfide melt) during sulfide segregation of the parental magma, ranging from 30~3000 and 3000~15000, respectively. Therefore, the combination of mineral, S isotopic and whole-rock chalcophile elemental compositions can be a comprehensive way to effectively identify the nature of mantle source and describe the processes of sulfide segregation of the Cu-Ni sulfide deposits.

  • 幔源岩浆在浅部岩浆房的硫化物饱和及熔离过程是岩浆铜镍硫化物矿床成因的主要研究内容,但地幔源区性质也被认为是控制此类矿床形成的一个重要因素(Naldrett,20042010; Sobolev et al.,2008,2009; Maier et al.,2011)。全球大型—超大型铜镍硫化物矿床通常被认为形成于板内地幔柱或裂谷环境,对流地幔物质的贡献是形成矿床的关键(Naldrett,2004)。近20年来,在造山带中发现了很多中—大型铜镍硫化物矿床,如西班牙Aguablanca矿床(Piña et al.,2006)、坦桑尼亚Kabanga镍矿(Maier et al.,2010)和中国中亚造山带中一系列二叠纪的含矿岩体(Qin Kezhang et al.,20052011; Mao Jingwen et al.,2008; Maier et al.,2011; Li Chusi et al.,2012; Su Benxun et al.,2013; Cao Yonghua et al.,2020; 薛胜超等,2022)。这些矿床被认为是地幔柱岩浆活动的产物(Zhou Meifu et al.,2004; Mao Jingwen et al.,2008; Qin Kezhang et al.,2011; Su Benxun et al.,20112012),或来源于俯冲板片断裂后上涌的软流圈(Zhang Zhaochong et al.,2009; Li Chusi et al.,2012),或来源于板片俯冲过程中流体/熔体交代的大陆下岩石圈地幔(SCLM)(Song Xieyan et al.,2009; Maier et al.,2010),但这种被俯冲物质交代后的SCLM物质组成尚存在争论。

  • 经历过多次部分熔融的亏损SCLM常由方辉橄榄岩和纯橄岩组成(Pearson et al.,2004),这些岩石具有Ni含量相对较高(Griffin et al.,2009)而Pt和Pd相对IPGE(Os、Ir和Ru)亏损(Maier et al.,2005)的特征,因此其部分熔融形成的熔体常具有相对低的Pt和Pd含量以及高Ni/Cu比值(Maier et al.,2010)。亏损SCLM在受到俯冲板片熔体/流体交代时,地幔橄榄岩中的橄榄石会与交代物质反应形成辉石,使橄榄岩地幔转变为辉石岩地幔(Gao Shan et al.,2004),而后者部分熔融形成的玄武质岩浆具有富Ni的特点(Brügmann et al.,2000; Sobolev et al.,2005)。此外,大多数辉石岩地幔相对原始地幔富集Cu和S,其中Cu含量可高达400×10-6,而硫化物含量约0.36%,相应的S含量可达1200×10-6Lee et al.,2012)。全岩Sr-Nd-Pb-Os同位素和锆石原位Hf同位素常被用来探讨铜镍硫化物矿床赋矿岩体的地幔源区性质(Maier et al.,2011; Tang Dongmei et al.,20112012; Su Benxun et al.,20112012),但由于幔源岩浆在上升或侵位过程中常受到地壳物质混染,其同位素组成会被改造而无法有效指示源区性质。橄榄石是镁铁-超镁铁质岩体中普遍存在且最早结晶的矿物,其成分不易受地壳混染等岩浆过程的影响,能够反映原始岩浆的成分特征,而且来源于不同地幔源区熔体中结晶的橄榄石成分往往不同,因此橄榄石成分可以用来指示岩体的地幔源区性质(Chan et al.,2002; Bouman et al.,2004; Sobolev et al.,2007; De Hoog et al.,2010; Foley et al.,2013; Howarth et al.,2017; Couperthwaite et al.,2020; 暴宏天等,20202021; Wang Jing et al.,2021)。

  • 东昆仑造山带西段夏日哈木超大型镍矿是全球产出于造山带中规模最大的岩浆型铜镍硫化物矿床。夏日哈木镍矿的硫化物矿体主要赋存于I号岩体。目前,关于夏日哈木镍矿床形成的大地构造环境主要存在岛弧(姜常义等,2015; Li Chusi et al.,2015)、碰撞后伸展(李世金等,2012王冠等,2014潘彤,2015; Song Xieyan et al.,2016; Liu Yuegao et al.,2018; Chen Liemeng et al.,2021)和造山后裂谷环境(李文渊等,20202022)三种观点,相应的地幔源区性质也存在争论。有学者认为I号岩体与II号岩体具有相同的地幔源区,并根据II号岩体锆石高εHf值(+6.9~+13.7,平均值为+11.7; Peng Bo et al.,2016)的特征认为二者均来源于软流圈(Liu Yuegao et al.,2018; 李文渊等,2022);也有学者根据母岩浆富硅(52.4%)和高镁(9.8%)的特征认为其来源于被俯冲物质交代的大陆下岩石圈地幔(Li Chusi et al.,2015);还有学者根据岩体富Ni特征,认为其来源于俯冲富硅熔体或碳酸岩熔体与地幔橄榄岩反应形成的辉石岩地幔(Song Xieyan et al.,2016; Chen Liemeng et al.,2021),并在板片窗打开后与软流圈同时部分熔融形成I号岩体(Song Xieyan et al.,2020)。本次研究从夏日哈木I号岩体西段新近发现的隐伏矿体ZK3109钻孔中系统采集浸染状矿石和斜方辉石岩样品,对样品中的橄榄石进行原位成分分析,探讨岩体地幔源区性质,结合硫化物原位S同位素和全岩亲铜元素组成,讨论其硫化物的饱和与熔离过程。

  • 1 区域地质概况与矿区地质特征

  • 东昆仑造山带位于青藏高原北部,秦岭-祁连-昆仑中央造山带西段,北缘与柴达木盆地相接,南缘与布青山-阿尼玛卿构造混杂岩带及巴颜喀拉造山带相接,东部以温泉断裂与秦岭造山带相邻(李荣社等,2007)。东昆仑造山带从北向南以东昆北、东昆中和东昆南三条断裂为界,被划分为昆北构造带和昆南构造带(姜春发等,1992)(图1a)。昆北构造带主要由大面积出露的前寒武纪变质基底和早古生代—晚中生代侵入岩组成,基底为古元古界金水口群白沙河组中—深变质岩系(校培喜等,2014)。区域上岩浆活动强烈,主要由中酸性岩体和镁铁—超镁铁质岩体组成。其中,中酸性岩体多形成于早古生代晚期,并呈岩株状产出。同时发育有印支早期的花岗质岩株或岩脉,主要为闪长岩、正长花岗岩、二长花岗岩和含石榴石花岗片麻岩(王冠等,2013)。镁铁—超镁铁质岩在区内分布广泛但规模较小,主要为橄榄岩、辉石岩和辉长岩(杜玮,2018)。区域内产出夏日哈木、冰沟南和石头坑德等岩浆铜镍硫化物矿床。

  • 夏日哈木镍矿床位于昆北构造带北缘,赋存有约1.57亿t硫化物矿石,Ni平均品位为0.65%,是我国仅次于金川的第二大镍矿(李世金等,2012王冠等,2014潘彤,2015吴树宽等,2016潘彤等,2020)。矿区内出露有4个规模较小的镁铁—超镁铁质岩体,呈岩盆或岩墙状侵位于古元古界金水口群白沙河组和新元古代花岗片麻岩中(图1b)。夏日哈木I号岩体为主要含矿岩体,II号岩体具有铜镍硫化物矿化,而III号和IV号岩体矿化较弱。形成时代约424 Ma的II号岩体位于矿区东部,主要由辉长岩和辉石岩组成(姜常义等,2015杜玮等,2017)。岩体东部出露面积约0.15 km2,未发现有经济价值的矿体(张照伟等,2020),岩体西部出露面积约0.1 km2,少量镍黄铁矿呈团块状或星点状分布(王冠,2014)。III号岩体位于矿区北西方向,出露面积约0.35 km2,主要由蛇纹岩和石榴石斜长角闪岩组成,含少量辉石岩(图1b)。IV号岩体位于矿区中部,近东西向展布,出露面积约0.7 km2,主要由斜长角闪岩和少量蛇纹岩组成(李爽等,2021)(图1b)。

  • 图1 青藏高原北部大地构造图(a)和夏日哈木矿区地质简图(b)(据姜常义等,2015

  • Fig.1 Tectonic map of the northern margin of the Qinghai-Tibet plateau (a) and simplified geological map of the Xiarihamu deposit (b) (after Jiang Changyi et al., 2015)

  • 夏日哈木I号岩体呈岩盆状近东西向展布,长和宽分别约为1.4 km和0.5 km,出露面积约0.7 km2,岩体总体向西倾斜,中部出露于地表,而东、西两段隐伏于前寒武纪变质岩之下,南部被第四系沉积物覆盖(张照伟等,2015; Li Chusi et al.,2015; Song Xieyan et al.,2016)(图1b)。岩体主要由纯橄岩、方辉橄榄岩、二辉橄榄岩、橄榄斜方辉石岩、二辉辉石岩、斜方辉石岩、辉长苏长岩和辉长岩组成,其中超镁铁质岩石主要分布在岩体上部和中部,而镁铁质岩石主要位于岩体下部(姜常义等,2015汤庆艳等,2017王小东等,2018)。多个钻孔的超镁铁质岩石中出现镁铁质岩石包体(Song Xieyan et al.,2016)。前人对该岩体进行了大量同位素定年,其中二辉辉石岩的形成时代为406~412 Ma(Li Chusi et al.,2015; Song Xieyan et al.,2016),与其北西方向的榴辉岩峰期变质年龄相近(415.0 ± 5.5 Ma,潘彤等,2020)。辉长苏长岩形成时代为423 ± 1 Ma(王冠等,2014)。辉长岩形成时代为431~439 Ma(姜常义等,2015; Li Chusi et al.,2015)和405.5 ± 2.7 Ma(Song Xieyan et al.,2016)。

  • 图2 夏日哈木I号岩体ZK3109钻孔柱状图(a)和岩体中斜方辉石(b),橄榄石(c)和硫化物(d)含量在剖面上的变化

  • Fig.2 The stratigraphic column of drill hole ZK3109 in the western segment of the Xiarihamu No. I intrusion (a) , and the variation of modes of orthopyroxene (b) , olivine (c) and sulfides (d) in the profile

  • I号岩体中大多数硫化物矿体赋存于超镁铁质岩中,而镁铁质岩石矿化较弱(Song Xieyan et al.,2016)。I号岩体中已获得的Ni、Cu和Co金属资源量分别为118.3万t、23.8万t和4.3万t,平均品位分别为0.65%、0.17%和0.03%(张照伟等,2020)。矿石类型主要有块状、稠密浸染状、稀疏浸染状和斑杂状,其中稠密浸染状矿化带厚度和长度分别可达100 m和200 m(Li Chusi et al.,2015)。超镁铁质岩石与含硫化物的矿化带之间呈渐变接触关系,向西含矿带数量减少,但矿体规模变大(Li Chusi et al.,2015)。矿石矿物主要为镍黄铁矿和磁黄铁矿,次要为黄铜矿和方黄铜矿以及少量墨铜矿、铜蓝、紫硫镍矿和辉砷镍矿。

  • I号岩体西段的ZK3109钻孔中新近揭露硫化物矿体,该钻孔大部分为金水口群白沙河组中—高级变质岩,在靠近岩体的位置出现花岗岩,地层与花岗岩厚度达718 m(图2a)。钻孔中岩体下部为厚约25 m的斜方辉石岩(图2a),常被含硫化物的脉体穿插,在与围岩大理岩接触部位常出现斜方辉石岩团块(图3a),而岩体上部为厚约20 m的浸染状矿石(图2a),赋矿岩石为纯橄岩和方辉橄榄岩(图3b)。上部和下部呈现过渡接触关系,自下而上橄榄石和硫化物含量明显升高而斜方辉石含量明显降低(图2b~d)。

  • 2 岩相学和矿相学特征

  • 斜方辉石岩具有堆晶结构,主要由堆晶相斜方辉石(88%~95%)、橄榄石(<8%)和间隙相硫化物(<10%)组成(图3c)。自形—半自形斜方辉石呈板状或短柱状,粒度为0.5~3.0 mm,常蚀变为纤维状角闪石。橄榄石常呈粒状或不规则状,粒度为0.5~1.5 mm。硫化物呈不规则状分布在斜方辉石颗粒之间,主要由磁黄铁矿(约4%)、镍黄铁矿(约4%)和黄铜矿(约1%)组成,磁黄铁矿粒度为0.2~0.6 mm,镍黄铁矿粒度为0.3~2.0 mm,黄铜矿粒度较小(0.1~0.5 mm)常与其他硫化物共生,很少单独出现(图3d)。

  • 浸染状矿石下部向斜方辉石岩过渡,因此矿物含量变化范围较大,主要由堆晶橄榄石(60%~80%)、斜方辉石(<20%)和硫化物(15%~25%)组成(图3e)。橄榄石粒度为0.3~2.5 mm,常发生蛇纹石化,短柱状斜方辉石粒度为0.5~2.5 mm。硫化物在橄榄石颗粒之间呈他形产出(图3f),主要由磁黄铁矿(10%~15%),镍黄铁矿(5%~10%)和黄铜矿(约3%)组成,磁黄铁矿和镍黄铁矿粒度约为0.3~1.0 mm,黄铜矿粒度较小(0.2~0.5 mm)且常与其他硫化物共生。

  • 图3 夏日哈木I号岩体ZK3109钻孔中样品岩石学和岩相学特征

  • Fig.3 Photographs and photomicrographs of orthopyroxenite and disseminated ore samples from the drill hole ZK3109 of the Xiarihamu No. I intrusion

  • (a)—夏日哈木I号岩体与围岩大理岩接触部位常出现斜方辉石岩团块;(b)—浸染状矿石的赋矿岩石为橄榄岩;(c)—斜方辉石岩具有堆晶结构,橄榄石(Ol)和斜方辉石(Opx)为堆晶矿物,硫化物(Sul)以间隙相产出,正交偏光,样品X757;(d)—斜方辉石岩中硫化物呈不规则状分布在斜方辉石颗粒之间,主要由磁黄铁矿(Po),镍黄铁矿(Pn)和黄铜矿(Ccp)组成,反射光,样品X757;(e)—浸染状矿石主要由橄榄石(Ol),硫化物(Sul)和少量斜方辉石组成,单偏光,样品X720;(f)—浸染状矿石中硫化物呈他形分布在橄榄石颗粒之间,主要由磁黄铁矿(Po)和镍黄铁矿(Pn)组成,反射光,样品X727

  • (a)—orthopyroxenite blocks in the boundary of the Xiarihamu No. I intrusion and country rocks; (b)—disseminated ores occurring in the peridotite; (c)—samples of the orthopyroxenite showing cumulate texture, with sulfides (Sul) interstitial to the cumulus olivine (Ol) and orthopyroxene (Opx) , cross polar, under transmitted light, sample X757; (d)—irregular pyrrhotite (Po) , pentlandite (Pn) and chalcopyrite (Ccp) occurring in the interstices of orthopyroxene (Opx) , under reflected light, sample X757; (e)—disseminated ores composed of olivine (Ol) , sulfide (Sul) and minor orthopyroxene, plane polar, under transmitted light, sample X720; (f)—anhedral pyrrhotite (Po) and pentlandite (Pn) occurring in the interstices of olivine (Ol) , under reflected light, sample X727

  • 3 分析方法

  • 3.1 橄榄石原位成分分析

  • 橄榄石原位成分分析在长安大学西部矿产资源与地质工程教育部重点实验室完成。利用JEOL JXA-8100型电子探针对橄榄石主量元素进行分析,实验条件为:加速电压15 kV,测试电流20 nA,束斑直径为1 μm。Si、Fe和Mg的分析误差为2%,Ca和Ni的分析误差为5%。微量元素含量利用激光剥蚀等离子质谱(LA-ICP-MS)进行分析,激光剥蚀系统为Photo Machines公司的Analyte Excite193 nm气态准分子系统,等离子质谱仪为Agilent 7700X型四级杆等离子质谱。激光束斑直径为50 μm,频率为5 Hz,能量密度为5.9 J/cm2。采用NIST610玻璃标样校正仪器漂移,NIST612和BC28作为质量监控,同时利用中国地质调查局BIR-1G、BHVO-2G、BCR-2G和GSE-1G等多个玄武质玻璃标样。微量元素详细分析方法见栾燕等(2021)。利用ICPMSDataCal软件(Liu Yongsheng et al.,2008)对分析数据进行离线处理。

  • 3.2 全岩亲铜元素分析

  • 全岩S、Cu和Ni元素含量分析在中国地质调查局西安地质调查中心完成,其中S元素含量利用LECO CS230型高频红外碳硫分析仪分析,Cu和Ni元素含量利用Thermo Fisher公司ICAP-RQ型电感耦合等离子质谱(ICP-MS)分析。铂族元素(PGE)分析在中国科学院地球化学研究所完成,由于Os元素易挥发不适用于该方法,因此本次分析了除Os以外的其他5个铂族元素。方法详见Qi Liang et al.(2007)。Pt、Pd、Ir和Ru采用同位素稀释法测定,单同位素Rh以194Pt为内标测定(Qi Liang et al.,2004),测试仪器为Elan DRC-e ICP-MS。分析精度优于10%,全流程空白Ir、Ru、Rh小于0.005×10-9,Pt和Pd小于0.024×10-9

  • 3.3 硫化物原位S同位素分析

  • 硫化物原位S同位素分析在西北大学大陆动力学国家重点实验室完成,利用激光剥蚀-多接收等离子质谱(LA-MC-ICP-MS)进行分析,激光剥蚀系统为澳大利亚ASI公司的Resomitics M50-LR准分子激光剥蚀系统,质谱仪为Nu Plasma1700高分辨率多接收等离子质谱仪。详细分析方法见Chen Lu et al.(2017)和Bao Zhian et al.(2017)。样品分析时激光能量密度为4 J/cm2,频率为4 Hz,束斑大小为30 μm。测试过程中采用“标样-样品-标样”交叉分析,每测一个样品前后各测一次标样。实验采用闪锌矿(NBS123,δ34SV-CDT= 17.8±0.2‰(Chen Lu et al.,2017);PSPT-3,δ34SV-CDT=26.4 ± 0.3‰(Bao Zhian et al.,2017)和黄铁矿(Py-4,δ34SV-CDT = 1.7 ± 0.3‰)(Bao Zhian et al.,2017)作为标样。

  • 4 分析结果

  • 4.1 橄榄石原位成分

  • 浸染状矿石中橄榄石Fo为86.10~88.61(附表1,图4c,图5b),单个颗粒核部和边部Fo值相近(图6a、b)。橄榄石中Ca元素含量非常低(≤300.00×10-6)(附表1,图4a),P和Mn元素含量分别≤110.00×10-6和1115.21×10-6~1765.75×10-6(附表1,图4b),二者在剖面上含量变化不规则(图6e、f)。Zn元素含量为100.41×10-6~152.31×10-6,Mn/Zn比值为7.92~14.07(图4c),Li元素含量为4.04×10-6~15.79×10-6(附表1,图4d)。橄榄石Ni和Co元素含量分别为935.11×10-6~2208.13×10-6和77.37×10-6~145.21×10-6,二者正相关且均与Fo值呈负相关(附表1,图5a~c)。Sc元素含量为2.94×10-6~6.74×10-6,与Ni元素含量的相关性不明显(附表1,图5d)。

  • 斜方辉石岩中橄榄石Fo为85.21~87.61(附表1,图4c,图5b),与浸染状矿石中橄榄石Fo值一致,单个颗粒核部与边部Fo值相近(图6c、d)。橄榄石中Ca元素含量非常低(≤135.71×10-6)(附表1,图4a),P元素含量(≤120.71×10-6)和Mn元素含量(658.28×10-6~1339.80×10-6),二者在剖面上含量变化不规则(图6g、h)。Zn元素含量为66.85×10-6~119.43×10-6(附表1,图4b),Mn/Zn比值为5.64~17.84(图4c),Li元素含量为2.87×10-6~14.04×10-6(附表1,图4d)。橄榄石Ni元素含量为479.34×10-6~1367.31×10-6,略低于浸染状矿石中橄榄石中的Ni元素含量值,并与Fo值正相关(附表1,图5a)。Co元素含量为99.07×10-6~205.25×10-6,与Fo值和Ni元素含量均呈负相关(附表1,图5b、c)。Sc元素含量为2.72×10-6~6.87×10-6,与Ni含量呈正相关(附表1,图5d)。

  • 4.2 全岩亲铜元素含量

  • 浸染状矿石S元素含量为3.75%~14.20%,Cu和Ni元素含量分别为725×10-6~2150×10-6和9830×10-6~45000×10-6,二者与S元素含量呈正相关(表1;图7a);Ir、Ru、Rh和Pt元素含量分别为0.35×10-9~3.19×10-9,0.45×10-9~4.17×10-9,0.23 ×10-9~1.28×10-9和0.23×10-9~0.58×10-9,与S元素含量呈正相关(表1;图7b~e),Pd元素含量为4.11×10-9~7.34×10-9,与S元素含量相关性不明显(表1;图7f),而且Ni、Cu、Ru、Rh、Pt和Pd元素均与Ir元素含量呈正相关(图8a~f)。在亲铜元素原始地幔标准化配分模式图中,PGE相对Ni和Cu元素明显亏损,且均具有Pt负异常(图9a)。

  • 图4 夏日哈木I号岩体中橄榄石Fo与Ca元素含量(a),Zn和Mn元素含量(b), Fo与Mn/Zn比值(c)和Li元素含量(d)相对图解

  • Fig.4 Plots of Fo value versus Ca concentration (a) , Zn concentration versus Mn concentration (b) , Fo value versus Mn/Zn (c) and Li concentration (d) of olivine of the Xiarihamu No. I intrusion

  • 夏日哈木I号岩体和Duke island岩体中橄榄石前人数据分别引自Li Chusi et al.(2015)Li Chusi et al.(2012),辉石岩地幔、橄榄岩地幔等数据引自Sobolev et al.(2007)Howarth et al.(2017)

  • Data of olivine from the Xiarihamu No.I intrusion and Duke island intrusion are from Li Chusi et al. (2015) and Li Chusi et al. (2012) , respectively, and data of peridotite mantle and pyroxenite mantle are from Sobolev et al. (2007) and Howarth et al. (2017) , respectively

  • 表1 夏日哈木I号岩体ZK3109钻孔浸染状矿石和斜方辉石岩全岩亲铜元素含量

  • Table1 Whole-rock chalcophile element compositions of disseminated ore and orthopyroxenite samples from the drill core ZK3109 of the Xiarihamu No. I intrusion

  • 图5 夏日哈木I号岩体中橄榄石Fo值与Ni(a)和Co元素含量(b),Ni元素含量与Co(c)和 Sc元素含量(d)相对图解. 前人数据引自Li Chusi et al.(2015)

  • Fig.5 Plots of Fo value versus Ni (a) and Co (b) concentrations, and Ni concentration versus Co (c) and Sc (d) concentrations of olivine of the Xiarihamu No. I intrusion. Previous data are from Li Chusi et al. (2015)

  • 斜方辉石岩S元素含量为3.47%~5.13%,Cu和Ni元素含量分别为1250×10-6~2190×10-6和4770×10-6~11200×10-6,二者与S元素含量呈正相关(表1;图7a);Ir、Ru、Rh、Pt和Pd元素含量分别为0.24×10-9~0.69×10-9,0.31×10-9~0.77×10-9,0.15×10-9~0.34×10-9、0.22×10-9~13.2×10-9和2.02×10-9~3.48×10-9,均与S元素含量相关性不明显(表1;图7b~f);Ir与Ni元素含量呈负相关而与Cu、Ru、Rh和Pd正相关(图8a~d、f),Pt与Ir元素含量的相关性不明显(图8e)。在亲铜元素原始地幔标准化配分模式图上,PGE相对Ni和Cu元素明显亏损,Pt既有正异常也有负异常(图9b)。

  • 4.3 硫化物原位S同位素组成

  • 浸染状矿石中镍黄铁矿和磁黄铁矿的S同位素组成相似,δ34S分别为2.28‰~5.78‰和3.04‰~5.87‰(表2)。斜方辉石岩与浸染状矿石中硫化物具有相似的S同位素组成,镍黄铁矿、磁黄铁矿和黄铜矿的δ34S分别为3.64‰、4.14‰~4.15‰和6.11‰(表2)。

  • 5 讨论

  • 5.1 地幔源区性质

  • 夏日哈木I号岩体地幔源区性质可以通过橄榄石成分进行识别,但是堆晶岩中橄榄石成分容易受硫化物熔离与间隙熔体再平衡等一系列过程的改造(Barnes,1986; Cawthorn et al.,1992),因此需要先查明本次研究中橄榄石成分是否已被改造。在幔源岩浆冷凝过程中,斜方辉石和尖晶石的结晶对熔体中Mn/Zn、Zn/Fe和Mn/Fe比值影响较小(Lee et al.,2010; Mao Yajing et al.,2022),而单斜辉石的结晶会改变熔体中这三个比值(Le Roux et al.,2011),因此可以利用岩体中单斜辉石结晶前形成的橄榄石Mn/Zn、Zn/Fe和Mn/Fe比值指示地幔源区性质(Mao Yajing et al.,2022)。硫化物熔离主要影响橄榄石中的亲铜元素含量,如Ni和Co元素(Li Chusi et al.,2004),因此在硫化物熔离前结晶的橄榄石Ni、Co元素含量才可以用来反映地幔源区性质。另一方面,橄榄石中的Ca和Li元素含量在与间隙熔体再平衡过程中会发生改变,如单斜辉石和斜长石的结晶会导致间隙熔体贫Ca并促使橄榄石中的Ca由内向外扩散而使其元素含量降低(Wang Christina Yan et al.,2014; Mao Yajing et al.,2022)。橄榄石中Li元素扩散速率较快(1200℃条件下扩散200 μm仅需1 a)(Dohmen et al.,2010; Mao Yajing et al.,2022),因此Li元素含量通常被认为是反映再平衡后的特征,但最新研究表明橄榄石中扩散速率较慢的P元素(1200℃条件下扩散200 μm需300 a)会与Li元素一起替代晶格中的Mg和Si元素,导致Li元素扩散速率明显降低并与P的元素含量呈正相关(Mao Yajing et al.,2022)。在这种情况下,橄榄石中Li元素含量不受再平衡过程的影响,进而能够指示地幔源区性质。因此,利用橄榄石成分识别地幔源区性质时,需挑选在单斜辉石结晶前和硫化物熔离前形成的新鲜橄榄石颗粒。

  • 图6 夏日哈木I号岩体ZK3109钻孔浸染状矿石和斜方辉石岩橄榄石背散射图像(a~d)和Mn、P含量(e~h)在剖面上的变化

  • Fig.6 Backscattered electron (BSE) images (a~d) and variation of Mn and P concentrations (e~h) in the representative olivine profile of disseminated ores and orthopyroxenite from the drill core ZK3109 of the Xiarihamu No. I intrusion

  • (a)~(d)—图中数字为橄榄石Fo值;白色虚线为橄榄颗粒轮廓线;Ol—橄榄石,Opx—斜方辉石,Sul—硫化物

  • (a)~(d)—numbers are Fo values. The white dotted lines are contour of olivine grains. Ol—olivine; Opx—orthopyroxene; Sul—sulfide

  • 图7 夏日哈木I号岩体ZK3109钻孔浸染状矿石和斜方辉石岩中全岩S元素含量和 Cu(a)、Ir(b)、Ru(c)、Rh(d)、Pt(e)和Pd(f)元素含量相对图解

  • Fig.7 Plots of whole-rock S content versus Cu (a) ,Ir (b) ,Ru (c) ,Rh (d) ,Pt (e) and Pd (f) concentrations of disseminated ore and orthopyroxenite samples from the drill core ZK3109 of the Xiarihamu No. I intrusion

  • 图8 夏日哈木I号岩体ZK3109钻孔浸染状矿石和斜方辉石岩中全岩Ir元素含量和 Ni(a)、Cu(b)、Ru(c)、Rh(d)、Pt(e)和Pd(f)元素含量相对图解

  • Fig.8 Plots of whole-rock Ir concentration versus Ni (a) , Cu (b) , Ru (c) , Rh (d) , Pt (e) and Pd (f) concentrations of disseminated ore and orthopyroxenite samples from the drill core ZK3109 of the Xiarihamu No. I intrusion

  • 夏日哈木I号岩体辉长岩、方辉辉石岩和二辉橄榄岩全岩εNd值(-1.97~-5.74;王冠等,2014姜常义等,2015; Zhang Zhaowei et al.,2017)和锆石εHf值(+1~+5;Li Chusi et al.,2015)变化范围均较小,暗示其地壳混染程度较低,对橄榄石成分的影响可能不大。浸染状矿石中橄榄石P元素含量从核部到边部变化不大(图6e、f),说明其结晶时熔体成分较稳定,而斜方辉石岩中橄榄石却具有较复杂的P元素含量变化(图6g、h),但这可能是结晶过程中过冷却的结果(Shea et al.,2019; Xing Changming et al.,2022),与后期熔体成分改变无关。因为样品中橄榄石多为自形—半自形粒状,无明显熔蚀结构(图6a~d),说明其与熔体处于平衡状态(Namur et al.,2012; Xing Changming et al.,2017; Keevil et al.,2020; Xing Changming et al.,2022)。此外,岩体中橄榄石Li与P元素含量呈正相关(图10),说明Li元素没有受到明显的元素扩散影响。另一方面,I号岩体中主要造岩矿物结晶顺序为:尖晶石/橄榄石→斜方辉石→单斜辉石→斜长石(姜常义等,2015),而本文中浸染状矿石和斜方辉石岩为橄榄石和斜方辉石组成的堆晶岩,并且橄榄石具有近似原生橄榄石的Fo值(85~89),明显高于中亚造山带喀拉通克、黄山东和黄山西三个演化程度较高的岩体(Fo:71~85; Zhang Zhaochong et al.,2009; Mao Yajing et al.,2014),说明本次样品中橄榄石形成于岩浆冷凝早期,此时尚无单斜辉石和斜长石结晶(姜常义等,2015)。因此,橄榄石Mn/Zn、Zn/Fe、Mn/Fe比值和Ca元素含量不会受结晶分异和元素扩散作用的影响,可以指示岩体地幔源区性质。此外,浸染状矿石中橄榄石Ni元素含量与Fo值负相关(图5a),暗示其与硫化物熔体发生了Ni-Fe交换(Li Chusi et al.,2004),不能用来判别源区性质,但在斜方辉石岩橄榄石中二者呈正相关,表明其未受硫化物熔体的影响,Ni和Fe元素含量可以用来指示源区性质。因此,本次斜方辉石岩样品中橄榄石Zn/Fe、Mn/Fe和Mn/Zn比值以及Ca、Ni和Li的元素含量,和浸染状矿石中橄榄石的Mn/Zn比值、Ca和Li元素含量均可用来指示岩体地幔源区性质。

  • 图9 夏日哈木I号岩体ZK3109钻孔浸染状矿石和斜方辉石岩亲铜元素原始地幔标准化配分模式图

  • Fig.9 Primitive mantle-normalized chalcophile element patterns for the disseminated ore and orthopyroxenite samples from the drill core ZK3109 of the Xiarihamu No.I intrusion

  • 亲铜元素含量为100%硫化物标准化值;前人数据引自Song Xieyan et al.(2016)Zhang Zhaowei et al.(2017)

  • The concentrations of chalcophile elements are normalized to 100% sulfide; previous data are from Song Xieyan et al. (2016) and Zhang Zhaowei et al. (2017)

  • 表2 夏日哈木I号岩体ZK3109钻孔浸染状矿石和斜方辉石岩中硫化物原位S同位素组成

  • Table2 In-situ S isotopic composition of sulfides of disseminated ore and orthopyroxenite samples from the drill core ZK3109 of the Xiarihamu No. I intrusion

  • 橄榄岩地幔熔体中结晶的橄榄石具有高Mn/Zn比值(>15),而辉石岩地幔熔体中结晶的橄榄石Mn/Zn比值较低(<13)(Howarth et al.,2017)。本次斜方辉石岩和浸染状矿石样品中橄榄石的Mn和Zn元素含量呈正相关,且变化趋势与来自辉石岩地幔熔体中的橄榄石相同(图4b)(Howarth et al.,2017),同时Mn/Zn比值在辉石岩地幔范围内(图4c)。此外,与辉石岩地幔熔体平衡的橄榄石具有较低的100×Mn/Fe值,明显低于橄榄岩地幔熔体中平衡的橄榄石相应比值(>1.6)(Sobolev et al.,2007; Le Roux et al.,2011; Howarth et al.,2017)。本次斜方辉石岩样品中橄榄石100×Mn/Fe值为0.63~1.44,多在辉石岩地幔范围内(图11a),但 Mn/Fe与Zn/Fe比值的相关图解位于橄榄岩地幔和辉石岩地幔之间,具有二者混合的特征(图11b)。因此夏日哈木I号岩体源区中有辉石岩地幔的组份存在,与前人通过该岩体中硫化物矿体富Ni特征的推测一致(Song Xieyan et al.,2016)。

  • 图10 夏日哈木I号岩体ZK3109钻孔浸染状矿石和斜方辉石岩橄榄石剖面中P元素含量与Li元素含量相对图解

  • Fig.10 Plot of P concentration versus Li concentration in the olivine profile for disseminated ore and orthopyroxenite samples from the drill core ZK3109 of the Xiarihamu No.I intrusion

  • 另一方面,大洋中脊和克拉通内部来源于橄榄岩地幔熔体中结晶的橄榄石,其Li元素含量一般小于5×10-6。但由于再循环陆壳物质进入深部地幔或俯冲带碳酸岩熔体交代地幔楔而形成的辉石岩地幔中橄榄石的Li元素含量可以高达16×10-6Halama et al.,2007; Jeffcoate et al.,2007; Su Benxun et al.,2012; Foley et al.,2013)。因此,辉石岩地幔部分熔融形成的熔体常具有较高的Li元素含量(Chan et al.,2002; Bouman et al.,2004; Tang Yanjie et al.,2014)。本次斜方辉石岩和浸染状矿石样品中橄榄石Li元素含量平均为9.83×10-6(附表1),明显比来源于橄榄岩地幔熔体中结晶的橄榄石相应值高,暗示其源区被壳源物质交代(图4d)。而且,斜方辉石岩橄榄石中Sc与Ni元素含量呈正相关(图5d),说明其源区辉石岩地幔为再循环洋壳物质加入形成(Foley et al.,2013)。

  • 橄榄石中Ca元素含量在幔源岩浆冷凝的早期阶段主要受控于熔体成分,特别是熔体中的水含量。水含量越高,Ca越不容易进入橄榄石晶格中。因此从岛弧环境富水幔源岩浆中结晶的橄榄石往往具有贫Ca的特征(Kamenetsky et al.,2006),低于地幔橄榄石的Ca元素含量(1000×10-6; Simkin et al.,1970),如阿拉斯加型岩体Duke Island中橄榄石Ca含量低于500×10-6(图4a; Li Chusi et al.,2012)。夏日哈木I号岩体橄榄石Ca元素含量明显低于对流地幔熔体中结晶橄榄石Ca元素的相应值,如洋中脊玄武岩、洋岛玄武岩、大陆溢流玄武岩和科马提岩等,而与Duke Island岩体相似(图4a),暗示其可能是岛弧环境下富水岩浆结晶形成。

  • 图11 夏日哈木I号岩体ZK3109钻孔浸染状矿石和斜方辉石岩中橄榄石Mn/Fe与Fo(a)和Zn/Fe(b)相对图解

  • Fig.11 Plots of Mn/Fe versus Fo value (a) and Zn/Fe (b) for olivine of the disseminated ore and orthopyroxenite samples from the drill core ZK3109 of the Xiarihamu No. I intrusion

  • 橄榄岩地幔和辉石岩地幔数据分别引自Sobolev et al.(2007)Howarth et al.(2017)

  • Data of peridotite mantle and pyroxenite mantle are from Sobolev et al. (2007) and Howarth et al. (2017) , respectively

  • 图12 夏日哈木I号岩体单斜辉石TiO2-Alz值相关图解.

  • Fig.12 Plot of TiO2 versus Alz for clinopyroxene of the Xiarihamu No. I intrusion

  • 单斜辉石数据来自姜常义等(2015)张志炳等(2017)杜玮(2018)和Liu yuegao et al.(2018),弧堆晶和裂谷堆晶趋势线引自Loucks(1990)

  • Data of clinopyroxene are from Jiang Changyi et al. (2015) , Zhang Zhibing et al. (2017) , Du Wei (2018) and Liu Yuegao et al. (2018) , two trends in the plot are after Loucks (1990)

  • 然而,一些地幔捕虏晶(Ramsay et al.,1984; Bouldier et al.,1991; Rohrbach et al.,2005; Wang Jing et al.,2021)和苦橄质岩浆中结晶的橄榄石也具有贫Ca特征(张招崇等,2008)。因此,贫Ca橄榄石不能作为夏日哈木I号岩体形成于岛弧环境的唯一证据,需要全岩或其他矿物成分证据的支持。在不同构造环境中,幔源岩浆结晶过程中Al离子进入单斜辉石的方式不同,如形成于岛弧环境的单斜辉石比形成于裂谷环境的具有更高呈四次配位的Al离子百分比(AlZ)(Loucks,1990)。利用前人研究的单斜辉石成分(姜常义等,2015张志炳等,2017杜玮,2018; Liu Yuegao et al.,2018),本研究计算了I号岩体单斜辉石AlZ值(≤11.3 mol %),结合TiO2含量的变化趋势表现出形成于岛弧环境的单斜辉石特征(图12)。因此,橄榄石和单斜辉石成分均指示I号岩体形成于岛弧环境,与前人根据岩体富集轻稀土,大离子亲石元素,亏损高场强元素认为其形成于岛弧环境的观点一致(姜常义等,2015)。

  • 5.2 两期硫化物熔离

  • 5.2.1 深部硫化物熔离

  • 夏日哈木I号岩体母岩浆亏损PGE被认为是地幔源区低程度部分熔融,导致硫化物残留在源区(Song Xieyan et al.,2016; Zhang Zhaowei et al.,2017),或原始岩浆到达深部岩浆房后发生了小规模硫化物熔离所造成的(Liu Yuegao et al.,2018)。辉石岩地幔中硫化物的含量为0.36%,高于橄榄岩地幔(0.06%),二者的S元素含量分别为 1200×10-6和200×10-6Saal et al.,2002; Lee et al.,2012)。前人研究表明,中亚造山带西部和东部含铜镍硫化物矿床的黄山南、黑山和红旗岭岩体地幔源区中有约10%的辉石岩地幔组份加入(暴宏天等,2021)。假设夏日哈木I号岩体中辉石岩地幔组份比例与上述三个岩体相同,地幔源区中S元素含量应为300×10-6。另一方面,该岩体地幔源区的部分熔融程度目前还存在争论,有学者认为较高(李文渊等,2022),也有学者认为较低(Song Xieyan et al.,2016),但都没有给出具体的部分熔融比例。当该岩体地幔源区发生低程度部分熔融(<15%)时,原始岩浆中S元素含量最低为2000×10-6,高于高镁玄武质熔体或玻安质熔体在其源区中的S元素含量(约1800×10-6; Li Chusi et al.,2009),那么原始岩浆有可能在地幔源区即发生硫化物熔离的。而如果其地幔源区部分熔融程度较高(>15%),那么原始岩浆S元素含量最高为2000×10-6,硫化物熔离就有可能发生在深部岩浆房。然而,由于夏日哈木I号岩体源区有辉石岩地幔物质加入,其部分熔融程度目前难以准确估算,早期硫化物熔离发生在地幔源区还是发生在深部岩浆房仍需进一步研究。

  • 5.2.2 浅部岩浆房硫化物熔离

  • I号岩体的硫化物矿体主要赋存于超镁铁质岩石,说明浅部岩浆房中硫化物饱和及熔离发生较早,因此橄榄石中Ni和Co等元素含量可以用来指示这一过程。在硫不饱和岩浆分离结晶时,Ni和Co在橄榄石中均表现为相容元素,与硅酸盐熔体之间的分配系数分别为7.37~11.9(Wang Zhengrong et al.,2008)和2.48(Laubier et al.,2014)。岩浆中Ni和Co含量会随橄榄石的分离结晶程度升高而降低。但由于Ni分配系数大于Co,其含量的降低比Co快,因此橄榄石中Fo值与Ni元素含量呈正相关,与Co元素含量呈负相关(Papike et al.,1999; Herd et al.,2009)。当岩浆中硫饱和后,Ni和Co元素在硫化物熔体和硅酸盐熔体之间的分配系数分别为300~1000(Patten et al.,2013)和20~580(Li Yuan et al.,2012),远高于在橄榄石—硅酸盐熔体之间的分配系数。二者更容易进入硫化物中,造成此后结晶的橄榄石Ni和Co含量明显降低,但它们此时的分配系数接近,因此常表现为正相关关系。此外,橄榄石还会在亚固相阶段与硫化物熔体发生元素交换,如橄榄石中的Ni进入硫化物,而硫化物中的Fe进入橄榄石,导致橄榄石中Ni元素含量和Fo值呈负相关(Li Chusi et al.,2004)。同理,橄榄石和硫化物熔体也会发生Ni-Co交换反应,导致橄榄石Ni和Co元素含量呈正相关(Mao Yajing et al.,2022)。

  • 夏日哈木I号岩体浸染状矿石中与硫化物接触的橄榄石Co和Ni元素含量呈正相关,可能是其结晶前发生了硫化物熔离或结晶后与硫化物发生Ni-Co反应造成的。但被硅酸盐矿物包裹的橄榄石中Co和Ni元素含量也呈正相关(图5c),说明橄榄石中的Co和Ni元素可能在其结晶前发生了硫化物熔离,导致Co和Ni更多地进入硫化物中,这与橄榄石-硫化物的Ni-Co交换反应无关。浸染状矿石和网脉状矿石中橄榄石Fo值和Ni元素含量呈负相关(图5a),可能是橄榄石与硫化物熔体发生了Ni-Fe交换反应,这一反应也导致橄榄石中的Co元素含量与Fo值呈负相关(图5b)。岩体中不含矿的斜方辉石岩、二辉橄榄岩、二辉辉石岩和橄榄二辉辉石岩中橄榄石Fo值与Ni元素含量呈正相关(图5a),而且斜方辉石岩中橄榄石Fo值、Ni元素含量均与Co元素含量均呈负相关,暗示其成分主要受控于结晶分异作用(图5b、c)。结合斜方辉石岩中S元素含量与PGE相关性不明显(图7b~f)的特征,我们认为I号岩体浅部岩浆房的硫化物熔离可能发生在斜方辉石岩形成之后。

  • 导致幔源岩浆S饱和的机制主要有:强烈的结晶分异、岩浆混合和地壳混染(Naldrett,2004)。夏日哈木I号岩体斜方辉石岩、二辉橄榄岩和橄榄二辉辉石岩中橄榄石的Fo值基本都高于84(Li Chusi et al.,2015; Zhang Zhaowei et al.,2017)(图4a),说明其母岩浆没有经历强烈的结晶分异,可能S饱和不是控制因素。I号岩体全岩Nd同位素和锆石Hf同位素组成变化范围较小(王冠等,2014姜常义等,2015Li Chusi et al.,2015; Zhang Zhaowei et al.,2017),橄榄石、辉石等矿物没有明显的环带和反应结构(图9),说明没有发生高温岩浆混合。本次浸染状矿石样品中镍黄铁矿和磁黄铁矿的δ34S为2.28‰~5.87‰,斜方辉石岩中镍黄铁矿、磁黄铁矿和黄铜矿的δ34S范围为3.64‰~6.11‰(表2),均高于地幔相应值(0 ± 2‰),说明I号岩体在浅部岩浆房有壳源硫化物的选择性加入并造成岩浆S饱和。

  • 前人研究表明,由于地壳富集Re元素,熔点较低的壳源硫化物进入幔源岩浆导致放射性成因187Os含量升高,187Os/188Os比值也相应增大(Lambert et al.,2000)。而硫化物中Sr和Nd的元素含量较低,其加入不会明显改变岩浆Sr-Nd同位素组成。因此,当壳源S选择性进入幔源岩浆后会明显改变岩浆Os同位素组成,而Nd同位素变化不大。例如前人报道的峨眉山大火成岩省中含铜镍硫化物矿床的南天湾岩体和中亚造山带东段红旗岭7号岩体均具有这样的Os-Nd同位素特征(Wang Christina Yan et al.,2012; Wei Bo et al.,2013)。夏日哈木I号岩体浸染状矿石的全岩Os同位素组成变化较大(γOs值为78~1095),相应的全岩Nd同位素组成变化较小(εNd值为1.97~5.74)(Zhang Zhaowei et al.,2017),暗示岩浆在浅部岩浆房中有壳源硫化物的选择性加入。

  • 5.2.3 亲铜元素变化的控制因素

  • 前人根据亲铜元素(Ni、Rh和Pd)含量模拟计算了夏日哈木I号岩体东、西两段浸染状矿石和网脉状矿石的R值(硅酸盐熔体和硫化物熔体的质量比),结果显示两类矿石R值均在200~500之间,但在计算过程中得到的东、西两段母岩浆中亲铜元素含量差别较大(Song Xieyan et al.,2016; Zhang Zhaowei et al.,2017)。Song Xieyan et al.(2016)根据矿石中硫化物100%标准化后Pd和Ni元素含量的模拟计算,发现岩体西段母岩浆演化程度较高,Ni和Pd元素含量分别为600×10-6和0.15×10-9;而东段母岩浆演化程度较低,Ni和Pd元素含量分别为450×10-6和0.3×10-9Zhang Zhaowei et al.(2017)根据浸染状矿石和网脉状矿石中Rh和Pd元素含量计算得到东、西两段具有相同的母岩浆,且Rh和Pd元素含量分别为0.014×10-9和0.24×10-9。因此,本次结合前人研究中浸染状矿石和网脉状矿石的Cu、Pd元素含量对I号岩体浅部岩浆房的熔离过程进行了模拟计算。由于Cu和Pd的元素活动性较强,易受热液蚀变影响(Keays et al.,1982)。Ir元素的地球化学性质稳定,不易受热液蚀变影响。本次浸染状矿石样品中Cu和Pd均与Ir元素呈正相关(图8b、f),说明Cu、Pd元素含量没有受到热液蚀变的影响,可以用来讨论硫化物熔离的过程。

  • 前人认为I号岩体母岩浆中Cu元素含量为57×10-6~128×10-6Song Xieyan et al.,2016; Zhang Zhaowei et al.,2017),但辉石岩地幔中Cu元素含量明显高于橄榄岩地幔,最高可达400×10-6Lee et al.,2012)。考虑到Cu在硫化物熔体和硅酸盐熔体中的分配系数(约600)远小于PGE(14000~23000; Peach et al.,1990; Fleet et al.,1991)。本研究认为发生在深部的小规模硫化物熔离对原始岩浆中的Cu元素含量影响并不大,I号岩体母岩浆中Cu元素含量应高于原始的玄武质岩浆(100×10-6; Lee et al.,2012),且低于全部由辉石岩组成的地幔部分熔融形成的熔体Cu元素含量(200×10-6; Lee et al.,2012)。因此,本次模拟计算取平均值为150×10-6。结合Song Xieyan et al.(2016)Zhang Zhaowei et al.(2017)计算得到的Pd元素含量为0.15×10-9~0.30×10-9,假设母岩浆中Pd的元素含量为0.24×10-9,Cu和Pd在硫化物熔体和硅酸盐熔体中的分配系数分别为600和50000(Fleet et al.,1991)进行模拟计算,结果显示I号岩体东、西两段的浸染状矿石和网脉状矿石分别具有相似的Pd含量和Cu/Pd比值,两类矿石形成于不同的R值,浸染状矿石R值为30~3000;网脉状矿石R值高于浸染状矿石且变化范围较大,为3000~15000(图13)。因此,夏日哈木I号岩体浸染状矿石和网脉状矿石亲铜元素的差异可能是母岩浆硫化物熔离过程中R值的不同引起的。

  • 图13 夏日哈木I号岩体东、西两段浸染状矿石和网脉状矿石Pd元素含量和Cu/Pd比值图解

  • Fig.13 Plot of Pd concentration versus Cu/Pd ratio for the samples of disseminated ores and net-textured ores in the west and east segments of the Xiarihamu No. I intrusion

  • 图中不同的实线代表不同的R值;前人数据引自Song Xieyan et al.(2016)Zhang Zhaowei et al.(2017)

  • Solid linesin the plot represent different R-factors. Previous data are from Song Xieyan et al. (2016) , Zhang Zhaowei et al. (2017)

  • 6 结论

  • (1)夏日哈木超大型镍矿I号岩体西段斜方辉石岩和浸染状矿石中橄榄石低Mn/Zn和Mn/Fe比值表明岩体源区中有辉石岩地幔组份加入,而橄榄石低Ca和高Li元素含量暗示辉石岩地幔组分是俯冲洋壳物质交代大陆下岩石圈地幔形成的。

  • (2)斜方辉石岩中橄榄石Fo值和Ni元素含量均与Co元素含量呈负相关,且全岩S和铂族元素(PGE)相关性不明显,暗示浅部岩浆房硫化物熔离发生在斜方辉石岩形成之后,岩体变化较小的全岩Nd同位素、变化较大的Os同位素和高于地幔值的硫化物S同位素,共同揭示了壳源硫化物的选择性加入导致母岩浆在浅部岩浆房达到了S饱和。

  • (3)模拟计算结果显示I号岩体母岩浆在硫化物熔离过程中R值的不同,引起东、西两段浸染状矿石和网脉状矿石中亲铜元素的差异。

  • 致谢:长安大学刘民武和栾燕两位老师在橄榄石成分分析中给予了帮助,中国地质大学(北京)薛胜超副教授和另外两位匿名审稿专家对本文提出了宝贵的修改意见,在此一并表示感谢!

  • 附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202310091?st=article_issue

  • 参考文献

    • Barnes S J. 1986. The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contributions to Mineralogy and Petrology, 93: 524~531.

    • Bao Hongtian, Wang Christina Yan, Cao Yonghua. 2020. Compositions of the olivine from the Poyi ultramafic intrusion in the Beishan area, Xinjiang: Constraints on the nature of its mantle source. Geochimica, 49(4): 353~367 (in Chinese with English abstract).

    • Bao Hongtian, Wang Christina Yan, Cao Yonghua, Wei Bo. 2021. Compositions of olivine of Permian Erbutu ultramafic intrusion in the central Asian orogenic belt (Inner Mongolia): Insights for the pyroxenite mantle source. Geotectonica et Metallogenia, 45(6): 1185~1201 (in Chinese with English abstract).

    • Bao Zhi'an, Chen Lu, Zong Chunlei, Yuan Honglin, Chen Kaiyun, Dai Mengning. 2017. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS. International Journal of Mass Spectrometry, 421: 255~262.

    • Bouldier F. 1991. Olivine xenocrysts in picritic magmas: An experimental and microstructural study. Contributions to Mineralogy and Petrology, 109: 114~123.

    • Bouman C, Elliott T, Vroon P Z. 2004. Lithium inputs to subduction zones. Chemical Geology, 212(1-2): 59~79.

    • Brügmann G E, Hanski E J, Naldrett A J, Smolkin V F. 2000. Sulphide segregation in ferropicrites from the Pechenga complex, Kola Peninsula, Russia. Journal of Petrology, 41(12): 1721~1742.

    • Cao Yonghua, Wang Christina Yan, Wei Bo. 2020. Magma oxygen fugacity of mafic-ultramafic intrusions in convergent margin settings: Insights for the role of magma oxidation states on magmatic Ni-Cu sulfide mineralization. American Mineralogist, 105(12): 1841~1856.

    • Cawthorn R G, Sander B K, Jones I M. 1992. Evidence for the trapped liquid shift effect in the mount Ayliff intrusion, South Africa. Contributions to Mineralogy and Petrology, 111: 194~202.

    • Chan L H, Alt J C, Teagle D A H. 2002. Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201(1): 187~201.

    • Chen Liemeng, Song Xieyan, Hu Ruizhong, Yu Songyue, Yi Junnian, Kang Jian, Huang Kangjun. 2021. Mg-Sr-Nd isotopic insights into petrogenesis of the Xiarihamu mafic-ultramafic intrusion, northern Tibetan plateau, China. Journal of Petrology, 62(2): 1~25.

    • Chen Lu, Chen Kaiyun, Bao Zhian, Liang Peng, Sun Tiantian, Yuan Honglin. 2017. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32(1): 107~116.

    • Couperthwaite F, Thordarson T, Morgan D, Harvey J, Wilson M. 2020. Diffusion timescales of magmatic processes in the Moinui lava eruption at Mauna Loa, Hawaii, as inferred from bimodal olivine populations. Journal of Petrology, 61(7): 58.

    • De Hoog J C M, Gall L, Cornell D H. 2010. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, 270(1-4): 196~215.

    • Dohmen R, Kasemann S A, Coogan L, Chakraborty S. 2010. Diffusion of Li in olivine. Part I: Experimental observations and a multi species diffusion model. Geochimica et Cosmochimica Acta, 74(1): 274~292.

    • Du Wei. 2018. Study on two kinds of mafic ultramafic rocks and nickel sulfide deposit in East Kunlun island arc zone. Doctor degree thesis of Chang'an University (in Chinese with English abstract).

    • Du Wei, Jiang Changyi, Ling Jinlan, Zhou Wei, Xia Mingzhe, Xia Zhaode. 2017. Zircon SHRIMP U-Pb geochronology, geochemistry and implications of No. Ⅱ intrusion in Xiarihamu Cu-Ni deposit, East Kunlun Mountains. Mineral Deposits, 36(5): 1185~1196 (in Chinese with English abstract).

    • Fleet M E, Stone W E, Crocket J H. 1991. Partitioning of palladium, iridium, platinum, between sulfide liquid and basaltic melt: Effects of melt composition, concentration, and oxygen fugacity. Geochimica et Cosmochimica Acta, 55(9): 2545~2554.

    • Foley S D, Prelevic D, Rehfeldt T, Jacob D E. 2013. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth and Planetary Science Letters, 363: 181~191.

    • Gao Shan, Rudnick R L, Yuan Hongling, Liu Xiaoming, Liu Yongsheng, Xu Wenliang, Ling Wenli, Ayers J, Wang Xuanche, Wang Qinghai. 2004. Recycling lower continental crust in the north China craton. Nature, 432(7019): 892~897.

    • Griffin W L, O'Reilly S Y, Afonso J C, Begg G C. 2009. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. Journal of Petrology, 50(7): 1185~1204.

    • Halama R, McDonough W F, Rudnick R L, Keller J, Klaudius J. 2007. The Li isotopic composition of Oldoinyo Lengai: Nature of the mantle sources and lack of isotopic fractionation during carbonatite petrogenesis. Earth and Planetary Science Letters, 254(1-2): 77~89.

    • Herd C D K, Dwarzski R E, Shearer C K. 2009. The behavior of Co and Ni in olivine in planetary basalts: An experimental investigation. American Mineralogist, 94(2-3): 244~255.

    • Howarth G H, Harris C. 2017. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry. Earth and Planetary Science Letters, 475: 143~151.

    • Jeffcoate A B, Elliott T, Kasemann S A, Ionov D, Cooper K, Brooker R. 2007. Li isotope fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta, 71(1): 202~218.

    • Jiang Changyi, Ling Jinlan, Zhou Wei, Du Wei, Wang Zixi, Fan Yazhou, Song Yanfang, Song Zhongbao. 2015. Petrogenesis of the Xiarihamu Ni-bearing layered mafic-ultramafic intrusion, East Kunlun: Implications for its extensional island arc environment. Acta Petrologica Sinica, 31(4): 1117~1136 (in Chinese with English abstract).

    • Jiang Chunfa, Yang Jingsui, Feng Binggui, Zhu Zhizhi, Zhao Min, Chai Yaochu. 1992. Opening-closing structure of the Kunlun Mountains. Beijing: Geological Publishing House(in Chinese).

    • Kamenetsky V S, Elburg M, Arculus R, Thomas R. 2006. Magmatic origin of low-Ca olivine in subduction-related magmas: Co-existence of contrasting magmas. Chemical Geology, 233(3-4): 346~357.

    • Keays R R, Nickel E H, Groves D I, McGoldrick P J. 1982. Iridium and palladium as discriminants of volcanic-exhalative, hydrothermal, and magmatic nickel sulfide mineralization. Economic Geology, 77(6): 1535~1547.

    • Keevil H A, Namur O, Holness M B. 2020. Microstructures and late-stage mag-matic processes in layered mafic intrusions: Symplectites from the Sept Iles intrusion, Quebec, Canada. Journal of Petrology, 61(7): egaa071.

    • Lambert D D, Frick L R, Foster J G, Li C, Naldrett A J. 2000. Re-Os isotopic systematics of the Voisey's bay Ni-Cu-Co magmatic sulfide system. Canada: II. Implications for parental magma chemistry, ore genesis, and metal redistribution. Economic Geology, 95(4): 867~888.

    • Laubier M, Grove T L, Langmuir C H. 2014. Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters, 392(5): 265~278.

    • Lee C T A, Luffi P, LeRoux V, Dasgupta R, Albarede F, Leeman W P. 2010. The redox state of arc mantle using Zn/Fe systematics. Nature, 468: 681~685.

    • Lee C T A, Luffi P, Chin E J, Bouchet R, Dasgupta R, Morton D M, Le Roux V, Yin Q Z, Jin D. 2012. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science, 336(6077): 64~68.

    • Le Roux V, Lee C T A, Turner S J. 2011. Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth's mantle. Geochimica et Cosmochimica Acta, 74(9): 2779~2796.

    • Li Chusi, Xu Zhanghua, de Waal S A, Ripley E M, Maier W D. 2004. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: Implications for ore genesis. Mineralium Deposita, 39: 159~172.

    • Li Chusi, Ripley E M, Naldrett A J. 2009. A new genetic model for the giant Ni-Cu-PGE sulfide deposits associated with Siberian flood basalts. Economic Geology, 104 (2): 291~301.

    • Li Chusi, Zhang Mingjie, Fu Piao'er, Qian Zhangzhi, Hu Peiqing, Ripley E M. 2012. The Kalatongke magmatic Ni-Cu deposits in the central Asian orogenic belt, NW China: Product of slab window magmatism?. Mineralium Deposita, 47: 51~67.

    • Li Chusi, Zhang Zhaowei, Li Wenyuan, Wang Yalei, Sun Tao, Ripley E M. 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China. Lithos, 216-217: 224~240.

    • Li Rongshe, Ji Wenhua, Zhao Zhenming, Chen Shoujian, Meng Yong, Yu Pusheng, Pan Xiaoping. 2007. Progress in the study of the Early Paleozoic Kunlun orogenic belt. Geological Bulletin of China, 26(4): 373~382 (in Chinese with English abstract).

    • Li Shijin, Sun Fengyue, Gao Yongwang, Zhao Junwei, Li Liansong, Yang Qian. 2012. The theoretical guidance and the practice of small intrusions forming large deposits—The enlightenment and significance for searching breakthrough of Cu-Ni sulfide deposit in Xiarihamu, East Kunlun, Qinghai. Northwestern Geology, 45(4): 185~191 (in Chinese with English abstract).

    • Li Shuang, Meng Fancong, Duan Xuepeng, Chen Songyong. 2021. Protolith and tectonic implications of the No. Ⅳ pluton in Xiarihamu area, east Kunlun, Qinghai Province. Acta Petrologica Sinica, 37(10): 3118~3130 (in Chinese with English abstract).

    • Li Wenyuan, Wang Yalei, Qian Bing, Liu Yuegao, Han Yixiao. 2020. Discussion on the formation of magmatic Cu-Ni-Co sulfide deposits in margin of Tarim Block. Earth Science Frontiers, 27(2): 276~293 (in Chinese with English abstract).

    • Li Wenyuan, Zhang Zhaowei, Wang Yalei, Zhang Jiangwei, You Minxin, Zhang Zhibing, Namkha N. 2022. Tectonic transformation of Proto- and Paleo-Tethys and the metallization of magmatic Ni-Cu-Co sufide deposits in Kunlun orogen, northwest China. Journal of Earth Sciences and Environment, 44(1): 1~19 (in Chinese with English abstract).

    • Li Yuan, Audétat A. 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth and Planetary Science Letters, 355-356: 327~340.

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.

    • Liu Yuegao, Li Wenyuan, Jia Qunzi, Zhang Zhaowei, Wang Zhi'an. 2018. The dynamic sulfide saturation process and a possible slab break-off model for the giant Xiarihamu magmatic nickel ore deposit in the east Kunlun orogenic belt, northern Qinghai-Tibet Plateau, China. Economic Geology, 113(6): 1383~1417.

    • Loucks R R. 1990. Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al /Ti ratio in clinopyroxene. Geology, 18(4): 346~349.

    • Luan Yan, Sun Xiaohui, Liu Minwu, He Ke. 2021. Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS. Bulletin of Geological Science and Technology, 40(2): 167~175 (in Chinese with English abstract).

    • Maier W D, Peltonen P, Juvonen R, Pienaar C. 2005. Platinum-group elements in peridotite xenoliths and kimberlite from the Premier kimberlite pipe, South Africa. South African Journal of Geology, 108 (3): 413~428.

    • Maier W D, Barnes S J. 2010. The Kabanga Ni sulfide deposits, Tanzania: II. Chalcophile and siderophile element geochemistry. Mineralium Deposita, 45(5): 443~460.

    • Maier W D, Groves D I. 2011. Temporal and spatial control on the formation of magmatic PGE and Ni-Cu deposits. Mineralium Deposita, 46(8): 841~857.

    • Mao Jingwen, Pirajno F, Zhang Zuoheng, Chai Fengmei, Wu Hua, Chen Shiping, Cheng Linsong, Yang Jianmin, Zhang Changqing. 2008. A review of the Cu-Ni sulphide deposits in the chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2-4): 184~203.

    • Mao Yajing, Qin Kezhang, Li Chusi, Xue Shengchao, Ripley E M. 2014. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian orogenic belt, western China. Lithos, 200-201: 111~125.

    • Mao Yajing, Schoneveld L, Barnes S J, Williams M J, Su Benxun, Ruprecht P, Evans N J, Qin Kezhang. 2022. Coupled Li-P zoning and trace elements of olivine from magmatic Ni-Cu deposits: Implications for postcumulus re-equilibration in olivine. Journal of Petrology, 63(3): 1~22.

    • Naldrett A J. 2004. Magmatic sulfide deposits: Geology, geochemistry and exploration. New York: Springer.

    • Naldrett A J. 2010. Secular variation of magmatic sulfide deposits and their source magmas. Economic Geology, 105(3): 669~688.

    • Namur O, Charlier B, Holness M B. 2012. Dual origin of Fe-Ti-P gabbros by im-miscibility and fractional crystallization of evolved tholeiitic basalts in the Sept Iles layered intrusion. Lithos, 154: 100~114.

    • Pan Tong. 2015. The prospecting for magmatic liquation type nickel deposits on the southern and northern margin of Qaidam Basin, Qinghai Province: A case study of the Xiarihamu Ni-Cu sulfide deposit. Geology in China, 42(3): 713~723 (in Chinese with English abstract).

    • Pan Tong, Zhang Yong. 2020. Geochemical characteristics and metallogenic response of the eclogite from Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt. Geotectonica et Metallogenia, 44(3): 447~464 (in Chinese with English abstract).

    • Papike J J, Fowler G W, Adcock C T, Shearer C K. 1999. Systematics of Ni and Co in olivine from planetary melt systems: Lunar mare basalts. American Mineralogist, 84(3): 392~399.

    • Patten C, Barnes S J, Mathez E A, Jenner F E. 2013. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chemical Geology, 358(6): 170~188.

    • Peach C L, Mathez E A, Keays R R. 1990. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting. Geochimica et Cosmochimica Acta, 54(12): 3379~3389.

    • Pearson D G, Irvine G J, Ionov D A, Boyd F R, Dreibus G E. 2004. Re-Os isotope systematics and platinum-group element fractionation during mantle melt extraction: A study of massif and xenolith peridotite suites. Chemical Geology, 208(1-4): 29~59.

    • Peng Bo, Sun Fengyue, Li Bile, Wang Guan, Li Shijin, Zhao Tuofei, Li Liang, Zhi Yubo. 2016. The geochemistry and geochronology of the Xiarihamu II mafic-ultramafic complex, eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni-Cu sulfide deposits. Ore Geology Reviews, 73: 13~28.

    • Piña R, Lunar R, Ortega L, Gervilla F, Alapieti T, Martínez C. 2006. Petrology and geochemistry of mafic-ultramafic fragments from the Aguablanca (SW Spain) Ni-Cu ore breccia: Implications for the genesis of the deposit. Economic Geology, 101(4): 865~881.

    • Qi Liang, Zhou Meifu, Wang Christina Yan. 2004. Determination of low concentrations of platinum group elements in geological samples by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 19(10): 1335~1339.

    • Qi Liang, Zhou Meifu, Wang Christina Yan, Sun Min. 2007. Evaluation of a technique for determining Re and PGEs in geological samples by ICP-MS coupled with a modified Carius tube digestion. Geochemical Journal, 41(6): 407~414.

    • Qin Kezhang, Xiao Wenjiao, Zhang Lianchang, Xu Xingwang, Hao Jie, Sun Shu, Li Jiliang, Richard M T. 2005. Eight stages of major ore deposits in northern Xinjiang, NW-China: Clues and constraints on the tectonic evolution and continental growth of central Asia. In: Mao Jingwen and Bierlein F, eds. Mineral deposit research, Meeting the Global Challenge. Berlin: Springer, 1: 1327~1330.

    • Qin Kezhang, Su Benxun, Sakyi P A, Tang Dongmei, Li Xianhua, Sun He, Xiao Qinghua, Liu Pingping. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma mantle plume. American Journal of Science, 311(3): 237~260.

    • Ramsay W R, Crawford A J, Foden J D. 1984. Field setting mineralogy chemistry and genesis of arc picrites New Georgia Solomon Islands. Contributions to Mineralogy and Petrology, 88: 386~402.

    • Rohrbach A, Schuth S, Ballhaus C, Münker C, Matveev S, Qopoto C. 2005. Petrological constraints on the origin of arc picrites, new Georgia Group, Solomon Islands. Contributions to Mineralogy and Petrology, 149: 685~698.

    • Saal A E, Hauri E H, Langmuir C H, Perfit M R. 2002. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature, 419(6906): 451~455.

    • Shea T, Hammer J E, Hellebrand E, Mourey A J, Costa F, First E C, Lynn K J, Melnik O. 2019. Phosphorus and aluminum zoning in olivine: Contrasting behavior of two nominally incompatible trace elements. Contributions to Mineralogy and Petrology, 174: 85.

    • Simkin T, Smith J V. 1970. Minor-element distribution in olivine. Journal of Geology, 78(3): 304~325.

    • Sobolev A V, Hofmann A W, Sobolev S V, Nikogosian I K. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033): 590~597.

    • Sobolev A V, Hofmann A W, Kuzmin D, Yaxley G, Arndt N, Chung S L, Danyushevsky L, Elliott T, Frey F, Garcia M, Gurenko A, Kamenetsky V, Kerr A, Krivolutskaya N, Matvienkov V, Nikogosian I, Rocholl A, Sigurdsson I, Sushchevskaya N, Teklay M. 2007. The amount of recycled crust in sources of mantle derived melts. Science, 316(5823): 412~417.

    • Sobolev AV, Hofmann A W, Brügmann G, Batanova V G, Kuzmin D V. 2008. A quantitative link between recycling and osmium isotopes. Science, 321(5888): 536.

    • Sobolev A V, Krivolutskaya N A, Kuzmin D V. 2009. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology, 17(3): 253~286.

    • Song Xieyan, Li Xiangren. 2009. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Mineralium Deposita, 44(3): 303~327.

    • Song Xieyan, Yi Junnian, Chen Liemeng, Yu Songyue, Liu Changzheng, Dang Xingyan, Yang Qian, Wu Shukuan. 2016. The giant Xiarihamu Ni-Co sulfide deposit in the east Kunlun orogenic belt, northern Tibet Plateau, China. Economic Geology, 111(1): 29~55.

    • Song Xieyan, Wang Kaiyuan, Barnes S J, Yi Junnian, Chen Liemeng, Schoneveld L E. 2020. Petrogenetic insights from chromite in ultramafic cumulates of the Xiarihamu intrusion, northern Tibet Plateau, China. American Mineralogist, 105(4): 479~497.

    • Su Benxun, Qin Kezhang, Sakyi P A, Li Xianhua, Yang Yueheng, Sun He, Tang Dongmei, Liu Pingping, Xiao Qinghua, Malaviarachchi S P K. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in southern Central Asian orogenic belt: Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research, 20(2-3): 516~531.

    • Su Benxun, Zhang Hongfu, Deloule E. Sakyi P A, Xiao Yan, Tang Yanjie, Hu Yan, Ying Jjfeng, Liu Pingping. 2012. Extremely high Li and low δ7Li signatures in the lithospheric mantle. Chemical Geology, 292-293: 149~157.

    • Su Benxun, Qin Kezhang, Tang Dongmei, Sakyi P A, Liu Pingping, Sun He, Xiao Qinghua. 2013. Late Paleozoic mafic-ultramafic intrusions in southern central Asian orogenic belt (NW China): Insight into magmatic Ni-Cu sulfide mineralization in orogenic setting. Ore Geology Reviews, 51: 57~73.

    • Tang Dongmei, Qin Kezhang, Li Chusi, Qi Liang, Su Benxun, Qu Wenjun. 2011. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic-ultramafic intrusion in the central Asian orogenic belt, NW China. Lithos, 126(1-2): 84~98.

    • Tang Dongmei, Qin Kezhang, Sun He, Su Benxun, Xiao Qinghua. 2012. The role of crustal contamination in the formation of Ni-Cu sulphide deposits in eastern Tianshan, Xinjiang, northwest China: Evidence from trace element geochemistry, Re-Os, Sr-Nd, zircon Hf-O, and Sulphur isotopes. Journal of Asian Earth Sciences, 49: 145~160.

    • Tang Qingyan, Li Jianping, Zhang Mingjie, Song Zhe, Dang Yongxi, Du Li. 2017. The volatile conditions of ore-forming magma for the Xiarihamu Ni-Cu sulfide deposit in east Kunlun orogenic belt, western China: Constraints from chemical and carbon isotopic compositions of volatiles. Acta Petrologica Sinica, 33(1): 104~114 (in Chinese with English abstract).

    • Tang Yanjie, Zhang Hongfu, Deloule E, Su Benxun, Ying Jifeng, Santosh M, Xiao Yan. 2014. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the north China craton. Scientific Reports, 4(1): 4274.

    • Wang Christina Yan, Zhou Meifu, Sun Yali, Arndt N T. 2012. Differentiation, crustal contamination and emplacement of magmas in the formation of the Nantianwan mafic intrusion of the ~260 Ma Emeishan large igneous province, SW China. Contribution to Mineralogy and Petrology, 164(2): 281~301.

    • Wang Christina Yan, Zhou Meifu, Yang Shenghong, Qi Liang, SunYali. 2014. Geochemistry of the Abulangdang intrusion: Cumulates of high-Ti picritic magmas in the Emeishan large igneous province, SW China. Chemical Geology, 378-379: 24~39.

    • Wang Guan. 2014. Metallogenesis of nickel deposits in eastern Kunlun orogenic belt, Qinghai Province. Doctor degree thesis of Jilin University (in Chinese with English abstract).

    • Wang Guan, Sun Fengyue, Li Bile, Li Shijin, Zhao Junwei, Yang Qian and Ao Cong. 2013. Zircon U-Pb geochronology and geochemistry of the early Devonian Syenogranite in the Xiarihamu ore district from east Kunlun, with implications for the geodynamic setting. Geotectonica et Metallogenia, 37(4): 685~697 (in Chinese with English abstract).

    • Wang Guan, Sun Fengyue, Li Bile, Li Shijin, Zhao Junwei, Yang Qi'an. 2014. Zircon U-Pb geochronology and geochemistry of diorite in Xiarihamu ore district from east Kunlun and its geological significance. Journal of Jilin University (Earth Science Edition), 44(3): 876~891 (in Chinese with English abstract).

    • Wang Jing, SuBenxun, Robinson P T, Xiao Yan, Bai Yang, Liu Xia, Sakyi P A, Jing Jiejun, Chen Chen, Liang Zi, Bao Zhian. 2021. Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks. Lithos, 388-389: 106085.

    • Wang Xiaodong, Zhang Mingjie, Fu Juerong, Zhang Jiangwei, Li Liwu, Tang Qianyan, Li Zhongping. 2018. The magmatic intrusive direction constrains from noble gas isotopic compositions: A case study of the Xiarihamu Ni-Cu sulfide deposit in east Kunlun orogenic belt, China. Acta Petrologica Sinica, 34(11): 3433~3444 (in Chinese with English abstract).

    • Wang Zhengrong, Gaetani G A. 2008. Partitioning of Ni between olivine and siliceous eclogite partial melt: Experimental constraints on the mantle source of Hawaiian basalts. Contributions to Mineralogy and Petrology, 156(5): 661~678.

    • Wei Bo, Wang Christina Yan, Li Chusi, Sun Yali. 2013. Origin of PGE-Depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No. 7 orthopyroxenite intrusion, Central Asian orogenic belt, northeastern China. Economic Geology, 108(8): 1813~1831.

    • Wu Shukuan, Yang Qi'An, Ma Yuhui, Wang Zhian, Wang Bin, Ma Guohua, Chang En, Sun Liang. 2016. Characteristics of the Xiarihamu magmatic Ni-Cu sulfide ore deposit in the eastern Kunlun orogenic belt, northwest China. Modern Mining, 32(1): 134~135 (in Chinese).

    • Xiao Peixi, Gao Xiaofeng and Hu Yunxu. 2014. The geology background research in western segment of Altun-east Kunlun metallogenic belt. Beijing: Geological Publishing House, 1~261 (in Chinese).

    • Xing Changming, Wang Christina Yan, Tan Wei. 2017. Disequilibrium growth of olivine in mafic magmas revealed by phosphorus zoning patterns of olivine from mafic-ultramafic intrusions. Earth and Planetary Science Letters, 479: 108~119.

    • Xing Changming, Wang Christina Yan, Charlier B, Namur O. 2022. Ubiquitous dendritic olivine constructs initial crystal framework of mafic magma chamber. Earth and Planetary Science Letters, 594: 117710.

    • Xue Shengchao, Wang Qingfei, Tang Dongmei, Mao Yajing, Yao Zhuosen. 2022. Contamination mechanism of magmatic Ni-Cu sulfide deposits in orogenic belts: Examples from Permian Ni-Cu deposits in Tianshan-Beishan. Mineral Deposits, 41(1): 1~20 (in Chinese with English abstract).

    • Zhang Zhaochong, Cai Jinghong, Yan Shenghao, Chen Bailin, Zhou Gang, He Lixin. 2008. A discussion on the low-Ca olivine phenocrysts in Middle Devonian picritic lavas on the southern margin of the Altay mountains. Acta Petrologica et Mineralogica, 27(3): 171~176 (in Chinese with English abstract).

    • Zhang Zhaochong, Mao Jingwen, Chai Fengmei, Yan Shenghao, Chen Bailin, Pirajno Franco. 2009. Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, NW China: Implications for thegenesis of the magmatic Ni-Cu sulfide deposit. Economic Geology, 104(2): 185~203.

    • Zhang Zhaowei, Li Wenyuan, Qian Bing, Wang Yali, Li Shijin, Liu Changzheng, Zhang Jiangwei, Yang Qian, You Minxin, Wang Zhian. 2015. Metallogenic epoch of the Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt and its prospecting significance. Geology in China, 42(3): 438~451 (in Chinese with English abstract).

    • Zhang Zhaowei, Tang Qingyan, Li Chusi, Wang Yalei, Ripley E M. 2017. Sr-Nd-Os-S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai-Tibet plateau, China. Mineralium Deposita, 52(1): 51~68.

    • Zhang Zhaowei, Qian Bing, Wang Yalei, Li Wenyuan, Zhang Jiangwei, You Minxin. 2020. Understanding of the metallogenic ore-bearing mechanism and its indication of prospecting direction in Xiarihamu magmatic Ni-Co sulfide deposit, East Kunlun orogenic belt, northwestern China. Northwestern Geology, 53(3): 153~168 (in Chinese with English abstract).

    • Zhang Zhibing, Li Wenyuan, Zhang Zhaowei, Qian Bing, Liu Yuegao, Peng Xin. 2017. Mineral characteristic and geological significance of pyroxene from Xiarihamu Ni-Cu sulfide deposit in the eastern Kunlun orogenic belt, northwestern China. Geology and Exploration, 53(5): 867~879 (in Chinese with English abstract).

    • Zhou MeiFu, Lesher C M, Yang Zhengxi, Li Jianwei, Sun Min. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu- (PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233~257.

    • 暴宏天, 王焰, 曹勇华. 2020. 新疆北山地区坡一岩体橄榄石成分特征及其对地幔源区的制约. 地球化学, 49(4): 353~367.

    • 暴宏天, 王焰, 曹勇华, 魏博. 2021. 内蒙古中部二叠纪额布图岩体的橄榄石成分特征及其对辉石岩地幔源区的指示. 大地构造与成矿学, 45(6): 1185~1201.

    • 杜玮. 2018. 东昆中岛弧带两类镁铁质-超镁铁质岩石与镍矿床研究. 长安大学博士学位论文.

    • 杜玮, 姜常义, 凌锦兰, 周伟, 夏明哲, 夏昭德. 2017. 东昆仑夏日哈木铜镍矿床Ⅱ号岩体年代学、地球化学及其意义. 矿床地质, 36(5): 1185~1196.

    • 姜常义, 凌锦兰, 周伟, 杜玮, 王子玺, 范亚洲, 宋艳芳, 宋忠宝. 2015. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景. 岩石学报, 31(4): 1117~1136.

    • 姜春发, 杨经绥, 冯秉贵, 朱志直, 赵民, 柴耀楚. 1992. 昆仑开合构造. 北京: 地质出版社.

    • 李荣社, 计文化, 赵振明, 陈守建, 孟勇, 于浦生, 潘小平. 2007. 昆仑早古生代造山带研究进展. 地质通报, 26(4) : 373~382.

    • 李世金, 孙丰月, 高永旺, 赵俊伟, 李连松, 杨启安. 2012. 小岩体成大矿理论指导与实践——青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义. 西北地质, 45(4): 185~191.

    • 李爽, 孟繁聪, 段雪鹏, 陈松永. 2021. 青海东昆仑夏日哈木Ⅳ号岩体原岩属性及其构造意义. 岩石学报, 37(10): 3118~3130.

    • 李文渊, 王亚磊, 钱兵, 刘月高, 韩一筱. 2020. 塔里木陆块周缘岩浆Cu-Ni-Co 硫化物矿床形成的探讨. 地学前缘, 27(2): 276~293.

    • 李文渊, 张照伟, 王亚磊, 张江伟, 尤敏鑫, 张志炳, 南卡俄吾. 2022. 东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用. 地球科学与环境学报, 44(1): 1~19.

    • 栾燕, 孙晓辉, 刘民武, 何克. 2021. 磁铁矿LA-ICP-MS原位微量元素分析方法研究. 地质科技通报, 40(2): 167~175.

    • 潘彤. 2015. 青海省柴达木南北缘岩浆熔离型镍矿的找矿—以夏日哈木镍矿为例. 中国地质, 42(3): 713~723.

    • 潘彤, 张勇. 2020. 东昆仑夏日哈木铜镍矿区榴辉岩地球化学特征及成矿响应. 大地构造与成矿学, 44(3): 447~464.

    • 汤庆艳, 李建平, 张铭杰, 宋哲, 党永西, 杜丽. 2017. 东昆仑夏日哈木镍铜硫化物矿床成矿岩浆条件: 流体挥发份化学组成与碳同位素组成制约. 岩石学报, 33(1): 104~114.

    • 王冠. 2014. 东昆仑造山带镍矿成矿作用研究. 吉林大学博士学位论文.

    • 王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 杨启安, 奥琮. 2013. 东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义. 大地构造与成矿, 37(4): 685~697.

    • 王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 杨启安. 2014. 东昆仑夏日哈木矿区闪长岩锆石U-Pb 年代学、地球化学及其地质意义. 吉林大学学报(地球科学版), 44(3): 876~891.

    • 王小东, 张铭杰, 伏珏蓉, 张江伟, 李立武, 汤庆艳, 李中平. 2018. 稀有气体同位素对岩浆侵入方向的制约: 以夏日哈木镍铜硫化物矿床为例. 岩石学报, 34(11): 3433~3444.

    • 吴树宽, 杨启安, 马玉辉, 王治安, 王彬, 马国骅, 常恩, 孙亮. 2016. 东昆仑夏日哈木铜镍矿床特征. 现代矿业, 32(1): 134~135.

    • 校培喜, 高晓峰, 胡云绪. 2014. 阿尔金-东昆仑西段成矿带地质背景研究. 北京: 地质出版社, 1~261.

    • 薛胜超, 王庆飞, 唐冬梅, 毛亚晶, 姚卓森. 2022. 造山带岩浆铜镍硫化物矿床的混染模式—以天山-北山二叠纪铜镍矿为例. 矿床地质, 41(1): 1~20.

    • 张招崇, 蔡劲宏, 闫升好, 陈柏林, 周刚, 何立新. 2008. 阿尔泰山南缘中泥盆统苦橄岩低钙橄榄石的成因探讨. 岩石矿物学杂志, 27(3): 171~176.

    • 张照伟, 李文渊, 钱兵, 王亚磊, 李世金, 刘长征, 张江伟, 杨启安, 尤敏鑫, 王治安. 2015. 东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义. 中国地质, 42(3): 438~451.

    • 张照伟, 钱兵, 王亚磊, 李文渊, 张江伟, 尤敏鑫. 2020. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示. 西北地质, 53(3): 153~168.

    • 张志炳, 李文渊, 张照伟, 钱兵, 刘月高, 彭欣. 2017. 东昆仑夏日哈木铜镍硫化物矿床辉石特征及地质意义. 地质与勘探, 53(5): 867~879.

  • 参考文献

    • Barnes S J. 1986. The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contributions to Mineralogy and Petrology, 93: 524~531.

    • Bao Hongtian, Wang Christina Yan, Cao Yonghua. 2020. Compositions of the olivine from the Poyi ultramafic intrusion in the Beishan area, Xinjiang: Constraints on the nature of its mantle source. Geochimica, 49(4): 353~367 (in Chinese with English abstract).

    • Bao Hongtian, Wang Christina Yan, Cao Yonghua, Wei Bo. 2021. Compositions of olivine of Permian Erbutu ultramafic intrusion in the central Asian orogenic belt (Inner Mongolia): Insights for the pyroxenite mantle source. Geotectonica et Metallogenia, 45(6): 1185~1201 (in Chinese with English abstract).

    • Bao Zhi'an, Chen Lu, Zong Chunlei, Yuan Honglin, Chen Kaiyun, Dai Mengning. 2017. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS. International Journal of Mass Spectrometry, 421: 255~262.

    • Bouldier F. 1991. Olivine xenocrysts in picritic magmas: An experimental and microstructural study. Contributions to Mineralogy and Petrology, 109: 114~123.

    • Bouman C, Elliott T, Vroon P Z. 2004. Lithium inputs to subduction zones. Chemical Geology, 212(1-2): 59~79.

    • Brügmann G E, Hanski E J, Naldrett A J, Smolkin V F. 2000. Sulphide segregation in ferropicrites from the Pechenga complex, Kola Peninsula, Russia. Journal of Petrology, 41(12): 1721~1742.

    • Cao Yonghua, Wang Christina Yan, Wei Bo. 2020. Magma oxygen fugacity of mafic-ultramafic intrusions in convergent margin settings: Insights for the role of magma oxidation states on magmatic Ni-Cu sulfide mineralization. American Mineralogist, 105(12): 1841~1856.

    • Cawthorn R G, Sander B K, Jones I M. 1992. Evidence for the trapped liquid shift effect in the mount Ayliff intrusion, South Africa. Contributions to Mineralogy and Petrology, 111: 194~202.

    • Chan L H, Alt J C, Teagle D A H. 2002. Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201(1): 187~201.

    • Chen Liemeng, Song Xieyan, Hu Ruizhong, Yu Songyue, Yi Junnian, Kang Jian, Huang Kangjun. 2021. Mg-Sr-Nd isotopic insights into petrogenesis of the Xiarihamu mafic-ultramafic intrusion, northern Tibetan plateau, China. Journal of Petrology, 62(2): 1~25.

    • Chen Lu, Chen Kaiyun, Bao Zhian, Liang Peng, Sun Tiantian, Yuan Honglin. 2017. Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32(1): 107~116.

    • Couperthwaite F, Thordarson T, Morgan D, Harvey J, Wilson M. 2020. Diffusion timescales of magmatic processes in the Moinui lava eruption at Mauna Loa, Hawaii, as inferred from bimodal olivine populations. Journal of Petrology, 61(7): 58.

    • De Hoog J C M, Gall L, Cornell D H. 2010. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, 270(1-4): 196~215.

    • Dohmen R, Kasemann S A, Coogan L, Chakraborty S. 2010. Diffusion of Li in olivine. Part I: Experimental observations and a multi species diffusion model. Geochimica et Cosmochimica Acta, 74(1): 274~292.

    • Du Wei. 2018. Study on two kinds of mafic ultramafic rocks and nickel sulfide deposit in East Kunlun island arc zone. Doctor degree thesis of Chang'an University (in Chinese with English abstract).

    • Du Wei, Jiang Changyi, Ling Jinlan, Zhou Wei, Xia Mingzhe, Xia Zhaode. 2017. Zircon SHRIMP U-Pb geochronology, geochemistry and implications of No. Ⅱ intrusion in Xiarihamu Cu-Ni deposit, East Kunlun Mountains. Mineral Deposits, 36(5): 1185~1196 (in Chinese with English abstract).

    • Fleet M E, Stone W E, Crocket J H. 1991. Partitioning of palladium, iridium, platinum, between sulfide liquid and basaltic melt: Effects of melt composition, concentration, and oxygen fugacity. Geochimica et Cosmochimica Acta, 55(9): 2545~2554.

    • Foley S D, Prelevic D, Rehfeldt T, Jacob D E. 2013. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth and Planetary Science Letters, 363: 181~191.

    • Gao Shan, Rudnick R L, Yuan Hongling, Liu Xiaoming, Liu Yongsheng, Xu Wenliang, Ling Wenli, Ayers J, Wang Xuanche, Wang Qinghai. 2004. Recycling lower continental crust in the north China craton. Nature, 432(7019): 892~897.

    • Griffin W L, O'Reilly S Y, Afonso J C, Begg G C. 2009. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. Journal of Petrology, 50(7): 1185~1204.

    • Halama R, McDonough W F, Rudnick R L, Keller J, Klaudius J. 2007. The Li isotopic composition of Oldoinyo Lengai: Nature of the mantle sources and lack of isotopic fractionation during carbonatite petrogenesis. Earth and Planetary Science Letters, 254(1-2): 77~89.

    • Herd C D K, Dwarzski R E, Shearer C K. 2009. The behavior of Co and Ni in olivine in planetary basalts: An experimental investigation. American Mineralogist, 94(2-3): 244~255.

    • Howarth G H, Harris C. 2017. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry. Earth and Planetary Science Letters, 475: 143~151.

    • Jeffcoate A B, Elliott T, Kasemann S A, Ionov D, Cooper K, Brooker R. 2007. Li isotope fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta, 71(1): 202~218.

    • Jiang Changyi, Ling Jinlan, Zhou Wei, Du Wei, Wang Zixi, Fan Yazhou, Song Yanfang, Song Zhongbao. 2015. Petrogenesis of the Xiarihamu Ni-bearing layered mafic-ultramafic intrusion, East Kunlun: Implications for its extensional island arc environment. Acta Petrologica Sinica, 31(4): 1117~1136 (in Chinese with English abstract).

    • Jiang Chunfa, Yang Jingsui, Feng Binggui, Zhu Zhizhi, Zhao Min, Chai Yaochu. 1992. Opening-closing structure of the Kunlun Mountains. Beijing: Geological Publishing House(in Chinese).

    • Kamenetsky V S, Elburg M, Arculus R, Thomas R. 2006. Magmatic origin of low-Ca olivine in subduction-related magmas: Co-existence of contrasting magmas. Chemical Geology, 233(3-4): 346~357.

    • Keays R R, Nickel E H, Groves D I, McGoldrick P J. 1982. Iridium and palladium as discriminants of volcanic-exhalative, hydrothermal, and magmatic nickel sulfide mineralization. Economic Geology, 77(6): 1535~1547.

    • Keevil H A, Namur O, Holness M B. 2020. Microstructures and late-stage mag-matic processes in layered mafic intrusions: Symplectites from the Sept Iles intrusion, Quebec, Canada. Journal of Petrology, 61(7): egaa071.

    • Lambert D D, Frick L R, Foster J G, Li C, Naldrett A J. 2000. Re-Os isotopic systematics of the Voisey's bay Ni-Cu-Co magmatic sulfide system. Canada: II. Implications for parental magma chemistry, ore genesis, and metal redistribution. Economic Geology, 95(4): 867~888.

    • Laubier M, Grove T L, Langmuir C H. 2014. Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters, 392(5): 265~278.

    • Lee C T A, Luffi P, LeRoux V, Dasgupta R, Albarede F, Leeman W P. 2010. The redox state of arc mantle using Zn/Fe systematics. Nature, 468: 681~685.

    • Lee C T A, Luffi P, Chin E J, Bouchet R, Dasgupta R, Morton D M, Le Roux V, Yin Q Z, Jin D. 2012. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science, 336(6077): 64~68.

    • Le Roux V, Lee C T A, Turner S J. 2011. Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth's mantle. Geochimica et Cosmochimica Acta, 74(9): 2779~2796.

    • Li Chusi, Xu Zhanghua, de Waal S A, Ripley E M, Maier W D. 2004. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: Implications for ore genesis. Mineralium Deposita, 39: 159~172.

    • Li Chusi, Ripley E M, Naldrett A J. 2009. A new genetic model for the giant Ni-Cu-PGE sulfide deposits associated with Siberian flood basalts. Economic Geology, 104 (2): 291~301.

    • Li Chusi, Zhang Mingjie, Fu Piao'er, Qian Zhangzhi, Hu Peiqing, Ripley E M. 2012. The Kalatongke magmatic Ni-Cu deposits in the central Asian orogenic belt, NW China: Product of slab window magmatism?. Mineralium Deposita, 47: 51~67.

    • Li Chusi, Zhang Zhaowei, Li Wenyuan, Wang Yalei, Sun Tao, Ripley E M. 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China. Lithos, 216-217: 224~240.

    • Li Rongshe, Ji Wenhua, Zhao Zhenming, Chen Shoujian, Meng Yong, Yu Pusheng, Pan Xiaoping. 2007. Progress in the study of the Early Paleozoic Kunlun orogenic belt. Geological Bulletin of China, 26(4): 373~382 (in Chinese with English abstract).

    • Li Shijin, Sun Fengyue, Gao Yongwang, Zhao Junwei, Li Liansong, Yang Qian. 2012. The theoretical guidance and the practice of small intrusions forming large deposits—The enlightenment and significance for searching breakthrough of Cu-Ni sulfide deposit in Xiarihamu, East Kunlun, Qinghai. Northwestern Geology, 45(4): 185~191 (in Chinese with English abstract).

    • Li Shuang, Meng Fancong, Duan Xuepeng, Chen Songyong. 2021. Protolith and tectonic implications of the No. Ⅳ pluton in Xiarihamu area, east Kunlun, Qinghai Province. Acta Petrologica Sinica, 37(10): 3118~3130 (in Chinese with English abstract).

    • Li Wenyuan, Wang Yalei, Qian Bing, Liu Yuegao, Han Yixiao. 2020. Discussion on the formation of magmatic Cu-Ni-Co sulfide deposits in margin of Tarim Block. Earth Science Frontiers, 27(2): 276~293 (in Chinese with English abstract).

    • Li Wenyuan, Zhang Zhaowei, Wang Yalei, Zhang Jiangwei, You Minxin, Zhang Zhibing, Namkha N. 2022. Tectonic transformation of Proto- and Paleo-Tethys and the metallization of magmatic Ni-Cu-Co sufide deposits in Kunlun orogen, northwest China. Journal of Earth Sciences and Environment, 44(1): 1~19 (in Chinese with English abstract).

    • Li Yuan, Audétat A. 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth and Planetary Science Letters, 355-356: 327~340.

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.

    • Liu Yuegao, Li Wenyuan, Jia Qunzi, Zhang Zhaowei, Wang Zhi'an. 2018. The dynamic sulfide saturation process and a possible slab break-off model for the giant Xiarihamu magmatic nickel ore deposit in the east Kunlun orogenic belt, northern Qinghai-Tibet Plateau, China. Economic Geology, 113(6): 1383~1417.

    • Loucks R R. 1990. Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al /Ti ratio in clinopyroxene. Geology, 18(4): 346~349.

    • Luan Yan, Sun Xiaohui, Liu Minwu, He Ke. 2021. Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS. Bulletin of Geological Science and Technology, 40(2): 167~175 (in Chinese with English abstract).

    • Maier W D, Peltonen P, Juvonen R, Pienaar C. 2005. Platinum-group elements in peridotite xenoliths and kimberlite from the Premier kimberlite pipe, South Africa. South African Journal of Geology, 108 (3): 413~428.

    • Maier W D, Barnes S J. 2010. The Kabanga Ni sulfide deposits, Tanzania: II. Chalcophile and siderophile element geochemistry. Mineralium Deposita, 45(5): 443~460.

    • Maier W D, Groves D I. 2011. Temporal and spatial control on the formation of magmatic PGE and Ni-Cu deposits. Mineralium Deposita, 46(8): 841~857.

    • Mao Jingwen, Pirajno F, Zhang Zuoheng, Chai Fengmei, Wu Hua, Chen Shiping, Cheng Linsong, Yang Jianmin, Zhang Changqing. 2008. A review of the Cu-Ni sulphide deposits in the chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2-4): 184~203.

    • Mao Yajing, Qin Kezhang, Li Chusi, Xue Shengchao, Ripley E M. 2014. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian orogenic belt, western China. Lithos, 200-201: 111~125.

    • Mao Yajing, Schoneveld L, Barnes S J, Williams M J, Su Benxun, Ruprecht P, Evans N J, Qin Kezhang. 2022. Coupled Li-P zoning and trace elements of olivine from magmatic Ni-Cu deposits: Implications for postcumulus re-equilibration in olivine. Journal of Petrology, 63(3): 1~22.

    • Naldrett A J. 2004. Magmatic sulfide deposits: Geology, geochemistry and exploration. New York: Springer.

    • Naldrett A J. 2010. Secular variation of magmatic sulfide deposits and their source magmas. Economic Geology, 105(3): 669~688.

    • Namur O, Charlier B, Holness M B. 2012. Dual origin of Fe-Ti-P gabbros by im-miscibility and fractional crystallization of evolved tholeiitic basalts in the Sept Iles layered intrusion. Lithos, 154: 100~114.

    • Pan Tong. 2015. The prospecting for magmatic liquation type nickel deposits on the southern and northern margin of Qaidam Basin, Qinghai Province: A case study of the Xiarihamu Ni-Cu sulfide deposit. Geology in China, 42(3): 713~723 (in Chinese with English abstract).

    • Pan Tong, Zhang Yong. 2020. Geochemical characteristics and metallogenic response of the eclogite from Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt. Geotectonica et Metallogenia, 44(3): 447~464 (in Chinese with English abstract).

    • Papike J J, Fowler G W, Adcock C T, Shearer C K. 1999. Systematics of Ni and Co in olivine from planetary melt systems: Lunar mare basalts. American Mineralogist, 84(3): 392~399.

    • Patten C, Barnes S J, Mathez E A, Jenner F E. 2013. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chemical Geology, 358(6): 170~188.

    • Peach C L, Mathez E A, Keays R R. 1990. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting. Geochimica et Cosmochimica Acta, 54(12): 3379~3389.

    • Pearson D G, Irvine G J, Ionov D A, Boyd F R, Dreibus G E. 2004. Re-Os isotope systematics and platinum-group element fractionation during mantle melt extraction: A study of massif and xenolith peridotite suites. Chemical Geology, 208(1-4): 29~59.

    • Peng Bo, Sun Fengyue, Li Bile, Wang Guan, Li Shijin, Zhao Tuofei, Li Liang, Zhi Yubo. 2016. The geochemistry and geochronology of the Xiarihamu II mafic-ultramafic complex, eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni-Cu sulfide deposits. Ore Geology Reviews, 73: 13~28.

    • Piña R, Lunar R, Ortega L, Gervilla F, Alapieti T, Martínez C. 2006. Petrology and geochemistry of mafic-ultramafic fragments from the Aguablanca (SW Spain) Ni-Cu ore breccia: Implications for the genesis of the deposit. Economic Geology, 101(4): 865~881.

    • Qi Liang, Zhou Meifu, Wang Christina Yan. 2004. Determination of low concentrations of platinum group elements in geological samples by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 19(10): 1335~1339.

    • Qi Liang, Zhou Meifu, Wang Christina Yan, Sun Min. 2007. Evaluation of a technique for determining Re and PGEs in geological samples by ICP-MS coupled with a modified Carius tube digestion. Geochemical Journal, 41(6): 407~414.

    • Qin Kezhang, Xiao Wenjiao, Zhang Lianchang, Xu Xingwang, Hao Jie, Sun Shu, Li Jiliang, Richard M T. 2005. Eight stages of major ore deposits in northern Xinjiang, NW-China: Clues and constraints on the tectonic evolution and continental growth of central Asia. In: Mao Jingwen and Bierlein F, eds. Mineral deposit research, Meeting the Global Challenge. Berlin: Springer, 1: 1327~1330.

    • Qin Kezhang, Su Benxun, Sakyi P A, Tang Dongmei, Li Xianhua, Sun He, Xiao Qinghua, Liu Pingping. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma mantle plume. American Journal of Science, 311(3): 237~260.

    • Ramsay W R, Crawford A J, Foden J D. 1984. Field setting mineralogy chemistry and genesis of arc picrites New Georgia Solomon Islands. Contributions to Mineralogy and Petrology, 88: 386~402.

    • Rohrbach A, Schuth S, Ballhaus C, Münker C, Matveev S, Qopoto C. 2005. Petrological constraints on the origin of arc picrites, new Georgia Group, Solomon Islands. Contributions to Mineralogy and Petrology, 149: 685~698.

    • Saal A E, Hauri E H, Langmuir C H, Perfit M R. 2002. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature, 419(6906): 451~455.

    • Shea T, Hammer J E, Hellebrand E, Mourey A J, Costa F, First E C, Lynn K J, Melnik O. 2019. Phosphorus and aluminum zoning in olivine: Contrasting behavior of two nominally incompatible trace elements. Contributions to Mineralogy and Petrology, 174: 85.

    • Simkin T, Smith J V. 1970. Minor-element distribution in olivine. Journal of Geology, 78(3): 304~325.

    • Sobolev A V, Hofmann A W, Sobolev S V, Nikogosian I K. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033): 590~597.

    • Sobolev A V, Hofmann A W, Kuzmin D, Yaxley G, Arndt N, Chung S L, Danyushevsky L, Elliott T, Frey F, Garcia M, Gurenko A, Kamenetsky V, Kerr A, Krivolutskaya N, Matvienkov V, Nikogosian I, Rocholl A, Sigurdsson I, Sushchevskaya N, Teklay M. 2007. The amount of recycled crust in sources of mantle derived melts. Science, 316(5823): 412~417.

    • Sobolev AV, Hofmann A W, Brügmann G, Batanova V G, Kuzmin D V. 2008. A quantitative link between recycling and osmium isotopes. Science, 321(5888): 536.

    • Sobolev A V, Krivolutskaya N A, Kuzmin D V. 2009. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology, 17(3): 253~286.

    • Song Xieyan, Li Xiangren. 2009. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Mineralium Deposita, 44(3): 303~327.

    • Song Xieyan, Yi Junnian, Chen Liemeng, Yu Songyue, Liu Changzheng, Dang Xingyan, Yang Qian, Wu Shukuan. 2016. The giant Xiarihamu Ni-Co sulfide deposit in the east Kunlun orogenic belt, northern Tibet Plateau, China. Economic Geology, 111(1): 29~55.

    • Song Xieyan, Wang Kaiyuan, Barnes S J, Yi Junnian, Chen Liemeng, Schoneveld L E. 2020. Petrogenetic insights from chromite in ultramafic cumulates of the Xiarihamu intrusion, northern Tibet Plateau, China. American Mineralogist, 105(4): 479~497.

    • Su Benxun, Qin Kezhang, Sakyi P A, Li Xianhua, Yang Yueheng, Sun He, Tang Dongmei, Liu Pingping, Xiao Qinghua, Malaviarachchi S P K. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in southern Central Asian orogenic belt: Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research, 20(2-3): 516~531.

    • Su Benxun, Zhang Hongfu, Deloule E. Sakyi P A, Xiao Yan, Tang Yanjie, Hu Yan, Ying Jjfeng, Liu Pingping. 2012. Extremely high Li and low δ7Li signatures in the lithospheric mantle. Chemical Geology, 292-293: 149~157.

    • Su Benxun, Qin Kezhang, Tang Dongmei, Sakyi P A, Liu Pingping, Sun He, Xiao Qinghua. 2013. Late Paleozoic mafic-ultramafic intrusions in southern central Asian orogenic belt (NW China): Insight into magmatic Ni-Cu sulfide mineralization in orogenic setting. Ore Geology Reviews, 51: 57~73.

    • Tang Dongmei, Qin Kezhang, Li Chusi, Qi Liang, Su Benxun, Qu Wenjun. 2011. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic-ultramafic intrusion in the central Asian orogenic belt, NW China. Lithos, 126(1-2): 84~98.

    • Tang Dongmei, Qin Kezhang, Sun He, Su Benxun, Xiao Qinghua. 2012. The role of crustal contamination in the formation of Ni-Cu sulphide deposits in eastern Tianshan, Xinjiang, northwest China: Evidence from trace element geochemistry, Re-Os, Sr-Nd, zircon Hf-O, and Sulphur isotopes. Journal of Asian Earth Sciences, 49: 145~160.

    • Tang Qingyan, Li Jianping, Zhang Mingjie, Song Zhe, Dang Yongxi, Du Li. 2017. The volatile conditions of ore-forming magma for the Xiarihamu Ni-Cu sulfide deposit in east Kunlun orogenic belt, western China: Constraints from chemical and carbon isotopic compositions of volatiles. Acta Petrologica Sinica, 33(1): 104~114 (in Chinese with English abstract).

    • Tang Yanjie, Zhang Hongfu, Deloule E, Su Benxun, Ying Jifeng, Santosh M, Xiao Yan. 2014. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the north China craton. Scientific Reports, 4(1): 4274.

    • Wang Christina Yan, Zhou Meifu, Sun Yali, Arndt N T. 2012. Differentiation, crustal contamination and emplacement of magmas in the formation of the Nantianwan mafic intrusion of the ~260 Ma Emeishan large igneous province, SW China. Contribution to Mineralogy and Petrology, 164(2): 281~301.

    • Wang Christina Yan, Zhou Meifu, Yang Shenghong, Qi Liang, SunYali. 2014. Geochemistry of the Abulangdang intrusion: Cumulates of high-Ti picritic magmas in the Emeishan large igneous province, SW China. Chemical Geology, 378-379: 24~39.

    • Wang Guan. 2014. Metallogenesis of nickel deposits in eastern Kunlun orogenic belt, Qinghai Province. Doctor degree thesis of Jilin University (in Chinese with English abstract).

    • Wang Guan, Sun Fengyue, Li Bile, Li Shijin, Zhao Junwei, Yang Qian and Ao Cong. 2013. Zircon U-Pb geochronology and geochemistry of the early Devonian Syenogranite in the Xiarihamu ore district from east Kunlun, with implications for the geodynamic setting. Geotectonica et Metallogenia, 37(4): 685~697 (in Chinese with English abstract).

    • Wang Guan, Sun Fengyue, Li Bile, Li Shijin, Zhao Junwei, Yang Qi'an. 2014. Zircon U-Pb geochronology and geochemistry of diorite in Xiarihamu ore district from east Kunlun and its geological significance. Journal of Jilin University (Earth Science Edition), 44(3): 876~891 (in Chinese with English abstract).

    • Wang Jing, SuBenxun, Robinson P T, Xiao Yan, Bai Yang, Liu Xia, Sakyi P A, Jing Jiejun, Chen Chen, Liang Zi, Bao Zhian. 2021. Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks. Lithos, 388-389: 106085.

    • Wang Xiaodong, Zhang Mingjie, Fu Juerong, Zhang Jiangwei, Li Liwu, Tang Qianyan, Li Zhongping. 2018. The magmatic intrusive direction constrains from noble gas isotopic compositions: A case study of the Xiarihamu Ni-Cu sulfide deposit in east Kunlun orogenic belt, China. Acta Petrologica Sinica, 34(11): 3433~3444 (in Chinese with English abstract).

    • Wang Zhengrong, Gaetani G A. 2008. Partitioning of Ni between olivine and siliceous eclogite partial melt: Experimental constraints on the mantle source of Hawaiian basalts. Contributions to Mineralogy and Petrology, 156(5): 661~678.

    • Wei Bo, Wang Christina Yan, Li Chusi, Sun Yali. 2013. Origin of PGE-Depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No. 7 orthopyroxenite intrusion, Central Asian orogenic belt, northeastern China. Economic Geology, 108(8): 1813~1831.

    • Wu Shukuan, Yang Qi'An, Ma Yuhui, Wang Zhian, Wang Bin, Ma Guohua, Chang En, Sun Liang. 2016. Characteristics of the Xiarihamu magmatic Ni-Cu sulfide ore deposit in the eastern Kunlun orogenic belt, northwest China. Modern Mining, 32(1): 134~135 (in Chinese).

    • Xiao Peixi, Gao Xiaofeng and Hu Yunxu. 2014. The geology background research in western segment of Altun-east Kunlun metallogenic belt. Beijing: Geological Publishing House, 1~261 (in Chinese).

    • Xing Changming, Wang Christina Yan, Tan Wei. 2017. Disequilibrium growth of olivine in mafic magmas revealed by phosphorus zoning patterns of olivine from mafic-ultramafic intrusions. Earth and Planetary Science Letters, 479: 108~119.

    • Xing Changming, Wang Christina Yan, Charlier B, Namur O. 2022. Ubiquitous dendritic olivine constructs initial crystal framework of mafic magma chamber. Earth and Planetary Science Letters, 594: 117710.

    • Xue Shengchao, Wang Qingfei, Tang Dongmei, Mao Yajing, Yao Zhuosen. 2022. Contamination mechanism of magmatic Ni-Cu sulfide deposits in orogenic belts: Examples from Permian Ni-Cu deposits in Tianshan-Beishan. Mineral Deposits, 41(1): 1~20 (in Chinese with English abstract).

    • Zhang Zhaochong, Cai Jinghong, Yan Shenghao, Chen Bailin, Zhou Gang, He Lixin. 2008. A discussion on the low-Ca olivine phenocrysts in Middle Devonian picritic lavas on the southern margin of the Altay mountains. Acta Petrologica et Mineralogica, 27(3): 171~176 (in Chinese with English abstract).

    • Zhang Zhaochong, Mao Jingwen, Chai Fengmei, Yan Shenghao, Chen Bailin, Pirajno Franco. 2009. Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, NW China: Implications for thegenesis of the magmatic Ni-Cu sulfide deposit. Economic Geology, 104(2): 185~203.

    • Zhang Zhaowei, Li Wenyuan, Qian Bing, Wang Yali, Li Shijin, Liu Changzheng, Zhang Jiangwei, Yang Qian, You Minxin, Wang Zhian. 2015. Metallogenic epoch of the Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt and its prospecting significance. Geology in China, 42(3): 438~451 (in Chinese with English abstract).

    • Zhang Zhaowei, Tang Qingyan, Li Chusi, Wang Yalei, Ripley E M. 2017. Sr-Nd-Os-S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai-Tibet plateau, China. Mineralium Deposita, 52(1): 51~68.

    • Zhang Zhaowei, Qian Bing, Wang Yalei, Li Wenyuan, Zhang Jiangwei, You Minxin. 2020. Understanding of the metallogenic ore-bearing mechanism and its indication of prospecting direction in Xiarihamu magmatic Ni-Co sulfide deposit, East Kunlun orogenic belt, northwestern China. Northwestern Geology, 53(3): 153~168 (in Chinese with English abstract).

    • Zhang Zhibing, Li Wenyuan, Zhang Zhaowei, Qian Bing, Liu Yuegao, Peng Xin. 2017. Mineral characteristic and geological significance of pyroxene from Xiarihamu Ni-Cu sulfide deposit in the eastern Kunlun orogenic belt, northwestern China. Geology and Exploration, 53(5): 867~879 (in Chinese with English abstract).

    • Zhou MeiFu, Lesher C M, Yang Zhengxi, Li Jianwei, Sun Min. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu- (PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233~257.

    • 暴宏天, 王焰, 曹勇华. 2020. 新疆北山地区坡一岩体橄榄石成分特征及其对地幔源区的制约. 地球化学, 49(4): 353~367.

    • 暴宏天, 王焰, 曹勇华, 魏博. 2021. 内蒙古中部二叠纪额布图岩体的橄榄石成分特征及其对辉石岩地幔源区的指示. 大地构造与成矿学, 45(6): 1185~1201.

    • 杜玮. 2018. 东昆中岛弧带两类镁铁质-超镁铁质岩石与镍矿床研究. 长安大学博士学位论文.

    • 杜玮, 姜常义, 凌锦兰, 周伟, 夏明哲, 夏昭德. 2017. 东昆仑夏日哈木铜镍矿床Ⅱ号岩体年代学、地球化学及其意义. 矿床地质, 36(5): 1185~1196.

    • 姜常义, 凌锦兰, 周伟, 杜玮, 王子玺, 范亚洲, 宋艳芳, 宋忠宝. 2015. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景. 岩石学报, 31(4): 1117~1136.

    • 姜春发, 杨经绥, 冯秉贵, 朱志直, 赵民, 柴耀楚. 1992. 昆仑开合构造. 北京: 地质出版社.

    • 李荣社, 计文化, 赵振明, 陈守建, 孟勇, 于浦生, 潘小平. 2007. 昆仑早古生代造山带研究进展. 地质通报, 26(4) : 373~382.

    • 李世金, 孙丰月, 高永旺, 赵俊伟, 李连松, 杨启安. 2012. 小岩体成大矿理论指导与实践——青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义. 西北地质, 45(4): 185~191.

    • 李爽, 孟繁聪, 段雪鹏, 陈松永. 2021. 青海东昆仑夏日哈木Ⅳ号岩体原岩属性及其构造意义. 岩石学报, 37(10): 3118~3130.

    • 李文渊, 王亚磊, 钱兵, 刘月高, 韩一筱. 2020. 塔里木陆块周缘岩浆Cu-Ni-Co 硫化物矿床形成的探讨. 地学前缘, 27(2): 276~293.

    • 李文渊, 张照伟, 王亚磊, 张江伟, 尤敏鑫, 张志炳, 南卡俄吾. 2022. 东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用. 地球科学与环境学报, 44(1): 1~19.

    • 栾燕, 孙晓辉, 刘民武, 何克. 2021. 磁铁矿LA-ICP-MS原位微量元素分析方法研究. 地质科技通报, 40(2): 167~175.

    • 潘彤. 2015. 青海省柴达木南北缘岩浆熔离型镍矿的找矿—以夏日哈木镍矿为例. 中国地质, 42(3): 713~723.

    • 潘彤, 张勇. 2020. 东昆仑夏日哈木铜镍矿区榴辉岩地球化学特征及成矿响应. 大地构造与成矿学, 44(3): 447~464.

    • 汤庆艳, 李建平, 张铭杰, 宋哲, 党永西, 杜丽. 2017. 东昆仑夏日哈木镍铜硫化物矿床成矿岩浆条件: 流体挥发份化学组成与碳同位素组成制约. 岩石学报, 33(1): 104~114.

    • 王冠. 2014. 东昆仑造山带镍矿成矿作用研究. 吉林大学博士学位论文.

    • 王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 杨启安, 奥琮. 2013. 东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义. 大地构造与成矿, 37(4): 685~697.

    • 王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 杨启安. 2014. 东昆仑夏日哈木矿区闪长岩锆石U-Pb 年代学、地球化学及其地质意义. 吉林大学学报(地球科学版), 44(3): 876~891.

    • 王小东, 张铭杰, 伏珏蓉, 张江伟, 李立武, 汤庆艳, 李中平. 2018. 稀有气体同位素对岩浆侵入方向的制约: 以夏日哈木镍铜硫化物矿床为例. 岩石学报, 34(11): 3433~3444.

    • 吴树宽, 杨启安, 马玉辉, 王治安, 王彬, 马国骅, 常恩, 孙亮. 2016. 东昆仑夏日哈木铜镍矿床特征. 现代矿业, 32(1): 134~135.

    • 校培喜, 高晓峰, 胡云绪. 2014. 阿尔金-东昆仑西段成矿带地质背景研究. 北京: 地质出版社, 1~261.

    • 薛胜超, 王庆飞, 唐冬梅, 毛亚晶, 姚卓森. 2022. 造山带岩浆铜镍硫化物矿床的混染模式—以天山-北山二叠纪铜镍矿为例. 矿床地质, 41(1): 1~20.

    • 张招崇, 蔡劲宏, 闫升好, 陈柏林, 周刚, 何立新. 2008. 阿尔泰山南缘中泥盆统苦橄岩低钙橄榄石的成因探讨. 岩石矿物学杂志, 27(3): 171~176.

    • 张照伟, 李文渊, 钱兵, 王亚磊, 李世金, 刘长征, 张江伟, 杨启安, 尤敏鑫, 王治安. 2015. 东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义. 中国地质, 42(3): 438~451.

    • 张照伟, 钱兵, 王亚磊, 李文渊, 张江伟, 尤敏鑫. 2020. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示. 西北地质, 53(3): 153~168.

    • 张志炳, 李文渊, 张照伟, 钱兵, 刘月高, 彭欣. 2017. 东昆仑夏日哈木铜镍硫化物矿床辉石特征及地质意义. 地质与勘探, 53(5): 867~879.