-
喜马拉雅东、西构造结是喜马拉雅山脉在东、西两端的地质界线,是构造格架和地貌水系发生急剧转折的地区,也是构造应力最强、隆升和剥蚀最快、新生代变质和深熔作用、地壳运动与变形最强的地区(许志琴等,2008)。喜马拉雅山脉的东构造结地处欧亚、印度大陆及缅甸地块的交汇点,是特提斯构造体系正向碰撞和侧向走滑的转换部位(Holt et al.,1991); 该构造结经历并记录了印度板块-欧亚板块陆陆碰撞、碰撞后陆内汇聚阶段等地质作用,是青藏高原上隆升和剥蚀速率最快、地壳运动与构造变形最强烈的地区之一(图1; 刘焰和钟大赉,1998; Ding Lin et al.,2001; 张进江等,2003; 郑来林等,2004; 许志琴等,2008; 唐方头等,2010,2019; Vernant et al.,2014; Gupta et al.,2015)。目前,针对亚洲大陆内部(尤其是有关喜马拉雅东构造结及其周边地区)晚新生代的构造变形与演化的地球动力学机制存在着两种不同认识的争论: ① 大陆变形以沿巨大断裂的走滑运动和块体的横向滑移为主的“大陆逃逸”假说(Tapponnier et al.,1982); ② 大陆变形以地壳的缩短和增厚为主,而走滑运动只是发生在变形后期的次生现象的“地壳增厚”假说(England and Houseman,1986; Molnar,1988)。
-
由于特殊的地理位置和独特的构造部位,喜马拉雅东构造结及周围地区的地壳运动与变形受到青藏高原W-E向地壳流动及印度板块向北俯冲运动等多重影响,是研究造山作用过程中地壳重造的独特野外实验室,其丰富的地质内容引起了众多学者的广泛关注并对其进行研究(例如: 张培震等,2002,2004; 唐方头等,2010,2019; Rangin et al.,2013; Vernant et al.,2014; Gupta et al.,2015; 徐锡伟等,2017)。宋键等(2011)通过数值模拟获得了喜马拉雅东构造结周边地区主要断裂现今运动特征,指出阿帕龙断裂与实皆断裂可能是相连的。康国发等(2013)根据波茨坦地磁场模型进行地壳磁异常分析,发现磁异常在东构造结弧顶地区呈弧形分布,构造结及其周围地区的地壳磁异常都是在负磁或弱磁异常背景上,叠加着中短波长的正负磁异常。黄臣宇等(2021)利用远震波形数据,通过Pms波分裂测量得到区域地壳各向异性横波分裂参数,发现东构造结的快波偏振方向主要为NE-SW方向,周边地区的快波偏振方向呈现出绕东构造结顺时针旋转的趋势。张晨等(2022)利用东构造结及邻区ML≥7.0地震的震源机制解反演区域震源应力场,指出川滇菱形块体西边界的最大水平应力方向与 GPS 主压应变呈现出较明显的差异性,分区均值最大可达42°。但是,由于喜马拉雅东构造结及周围地区主要为海拔超过4000 m的高山和雅鲁藏布江及其支流等构成的高山峡谷地貌,尤其是东构造结一带雨量充沛、植被茂密、滑坡严重,而且东构造结以南地区现今多为边境管控地区,极端恶劣的自然条件和工作环境严重制约了野外实地调查的开展,致使迄今对喜马拉雅东构造结及其周边区域的现今构造变形的认识仍然十分薄弱。近期区域地震活动研究显示(Gupta et al.,2015; 谢超等,2017; 唐方头等,2019),喜马拉雅东构造结的南迦巴瓦峰地区地震活动较弱,南迦巴瓦峰东南侧地区地震活动频繁,包括1950年发生在的察隅8.6级地震(Tapponnier et al.,2001; Gupta et al.,2015; 徐锡伟等,2017; 谢超等,2017; 唐方头等,2019),使得有关喜马拉雅东构造结的核心部位(隆升中心)是否发生了偏移的争论一直持续至今。
-
在过去的20余年间,全球定位系统(GPS)大地测量技术的日臻成熟和广泛应用,使观测站之间基线变化的相对观测精度已高达10-8~10-9水平,为高精度、高效率、大范围、准实时的地壳运动与构造变形观测提供了可能(Holt et al.,1995; Pollitz,1997; Shen Zhengkang et al.,2000; Wang Qi et al.,2001; Zhang Peizhen et al.,2004; Wang Min and Shen Zhengkang,2020)。本文收集喜马拉雅东构造结及其周边区域大范围、长时段的最新GPS速度场资料,分析东构造结及其周边地区的地壳水平差异运动的特征,采用“二维张力样条”方法计算获得区域构造应变场,结合前人的研究成果,重点研究东构造结及其周边地区的现今构造变形状态,并探讨该区域现今构造变形所反映的大陆内部动力学机制。
-
1 GPS数据收集及处理
-
1.1 GPS速度场
-
本文收集Wang Min and Shen Zhengkang(2020) 和Zhang Ling et al.(2021)提供的喜马拉雅东构造结地区(经度: E 88°~104°、纬度: N 20°~34°)约800个GPS观测站的速度场资料,其中整合了 “中国大陆构造环境监测网络”(CMONOC,以下简称陆态网络)在1999~2019年GPS连续站和流动站多期观测资料以及Kreemer et al.(2014)、Devachandra et al.(2014)、Vernant et al.(2014)、Gupta et al.(2015)、Marechal et al.(2016)等的多渠道速度场数据结果。这些GPS速度场数据对于研究区的地壳形变具备较好的可用性(密度)和可靠性(精度)。本文在进行地壳变形综合分析之前,首先使用最小二次配置法完成了统一不同来源数据参考基准的工作(甘卫军等,2004; Wang Min and Shen Zhengkang,2020; Zhang Ling et al.,2021),速度场融合详细步骤见肖根如(2011),公式(1)、(2)如下:
-
式中,Ω为欧拉矢量,由wx、wy、wz组成;Ri为测站位置矢量,用经度λ(°)和纬度φ(°)表示;vi为公共点的速度矢量差(mm/a),包含东向速度差ve(mm/a)和北向速度差vn(mm/a);R为地球半径(km)。特别需要指出的是,1998~2019年,先后发生了2001年昆仑山口西MW 7.8级地震、2004年印度洋苏门答腊岛MW 9.1级地震、2008年四川汶川MW 7.9级地震、2010年四川玉树MW 6.9级地震、2013年四川庐山MW 6.6级地震、2015年尼泊尔MW 7.8级地震等强震,这些强震的同震形变或震后形变对研究区GPS速度场的影响已经得到了有效的处理(Wang Min and Shen Zhengkang,2020)。因此,该套GPS速度场总体上较好地反映了地壳震间形变特征,可有效地用于地壳形变分析和断裂运动速率的反演约束。本文根据新获得的GPS速度场结果,横跨研究区各主要活动断裂做GPS速度剖面(图1b、图2),分析喜马拉雅东构造结及其周边区域边界各活动断裂的形变特征。
-
1.2 应变场计算方法
-
本文采用球面坐标系的Savage et al.(2001)的方法计算应变,以克服地球曲率或投影形变等因素产生的影响(石耀霖和朱守彪,2006),公式如下:
-
式(3)~(5)中,φ、θ和r分别为地球坐标系下的经度角(°)、余弦角(°)和地心距(km)。uφ、uθ、ur分别表示各观测点的E向、N向和垂向位移(m)(此值通常可从GPS处理结果获得);φ0、θ0、r0表示观测网中心点的坐标;Ur、Uθ、Uφ表示观测网中心点3个方向的位转移(m);Δφ、Δθ和Δr表示观测点到观测网中心的距离(m);、、表示各个应变分量(×10-9);、 和表示旋转量(rad/s)。因此,只要知道了3个或以上GPS观测点的E向、N向和垂向三维速度值,就可用最小二乘法拟合,求出观测网的上述9个参数:Ur、Uθ、Uφ、、、、、 和。在实际应用中,如果GPS垂向速度分裂可靠性较差,则可忽略垂向运动,设置Ur和ur为0。则可从公式(5)导出和。这样,公式(3)~(5)简化为:
-
为了利用离散分布的GPS速度场计算出空间上连续的地壳应变率场。本文采用了“二维高张力样条”(τ= 0.95)内插算法(Wessel and Bercovici,1998),计算过程中首先对非均匀的GPS速度场进行了0.6°×0.6°的均匀预测加密。基于9个加密网格点的单元区域均匀应变率计算,既能控制应变计算单元网格的密度,又能充分地反映高密度观测区实际观测结果对应变计算的贡献; 本文采用的二维张力样条是一种基于所有已知点的通用内插算法。其中的张力参数τ(0≤τ<1)表示曲面膜中张力应变能所占总应变能的份额。当时τ=0,这种内插算法等同于曲率平方和最小的双调和样条。随着张力增加,整个曲面膜曲率的平方和就随之增加。而当τ→1时,这种算法将等同于基于所有已知点的线性内插(甘卫军等,2004)。本文通过这9个加密网格点的单元区域进行均匀应变率计算,得到相应0.6°×0.6°网格内的均匀应变率(图3); 进而计算出研究区最大剪应变率(图4)、面膨胀率(图5)及旋转率场(图6)。
-
图1 喜马拉雅东构造结地区地理位置图(a)及其在固定华南板块参考框架下的水平运动速度场(b)(据Wang Min and Shen Zhengkang,2020; Zhang Ling et al.,2021)
-
Fig.1 Geographic map (a) and horizontal movement rate field (b) of the Eastern Himalayan Syntaxis and its vicinities in the South China block fixed reference frame (after Wang Min and Shen Zhengkang, 2020; Zhang Ling et al., 2021)
-
图2 喜马拉雅东构造结及其周边区域边界活动断裂GPS速度剖面(剖面位置见图1b,各断裂带简称详见图1)
-
Fig.2 GPS velocity profiles with 1-sigma error bar across the major strike-slip faults of the Eastern Himalayan Sntaxis area (the locations and labels of the profiles are presented in Fig.1b, see Fig.1 for details of the main fault zones)
-
2 GPS数据处理结果
-
2.1 区域水平差异运动速度场
-
从图1可清楚地看到喜马拉雅东构造结相对于稳定欧亚板块的水平地壳运动,最显著的特征为青藏高原东部及东南部围绕着东构造结的顺时针旋转现象(王琪等,2001; 张培震等,2002; 甘卫军等,2004)。GPS观测的速度矢量揭示了印度板块东北部的运动方向约NE20°,速度是38.2~42.1 mm/a; 其北向速度分量是34.1~39.4 mm/a,其东向速度分量为7.3~16.7 mm/a。跨过喜马拉雅山之后,运动方向变为 NE27°~47°,平均速率为23.2~34.2 mm/a,显示喜马拉雅主逆冲带的平均地壳缩短速率为 4.0~14.5 mm/a,该结果与Bilham et al.(1997)和Larson et al.(1999)的结果相似; 向北的运动分量由南向北从30.9 mm/a逐渐减小到10.2 mm/a; 而向东与向北分量的比值则逐渐增大,向东的运动分量由西向东从14.0 mm/a逐渐增大到22.6 mm/a。整体上,喜马拉雅地区以北东向运动为主,而青藏高原内部各活动地块之间或者运动方向不同,或者运动速率不同(Armijo et al.,1986; Molnar,1988; 张培震等,2002); 以喀喇昆仑-嘉黎断裂为界,GPS揭示出拉萨地块显示出NE30°~44°的优势运动方向,平均速率为23.4~29.1 mm/a; 羌塘地块的优势运动方向为NE60°~70°,速率平均在20.6~25.4 mm/a; 值得注意的是,青藏高原南部的北向会聚速度分量在喀喇昆仑-嘉黎断裂附近出现了较大的减弱(甘卫军等,2004)。以甘孜-玉树-鲜水河断裂为界,青藏高原东北部地区的昆仑活动地块和柴达木活动地块的运动方向基本一致,优势运动方向变为NE70°~90°,平均速率则减小到8.1~16.3 mm/a; 而青藏高原东南部地区呈现出以扇形发散为特征的围绕着喜马拉雅东构造结中心的挤出式顺时针分布,优势运动方向由最初的喜马拉雅东构造结的北部及东北部NE70°~90°(平均速率: 16.7~26.3 mm/a),到构造结以东的川西地区逐渐转化为SE105°~120°(平均速率:14.4~21.5 mm/a),沿着高原东边界向南到川滇块体转化为SE120°~140°(平均速率:13.7~20.6 mm/a),再向南到喜马拉雅东构造结东南的滇西地区进一步转化为SE160°~170°(平均速率:9.5~16.7 mm/a)。跨过红河断裂之后,GPS数据揭示了地壳运动方向转化为“弥散”状态,优势运动方向介于SE165°~180°到SW180°~200°之间,平均速率减小到5.1~12.4 mm/a。此外,GPS揭示位于在印度板块东北部的阿萨姆次级地块的运动方向为NE40°~45°,速度矢量为22.4~30.8 mm/a,其北向速度分量是15.1~24.3 mm/a,其东向速度分量为13.2~19.2 mm/a。
-
图3 喜马拉雅东构造结及其周边区域的现今主应变率场(图中灰色圆点为GPS站点,各断裂带简称详见图1)
-
Fig.3 Present-day strain rate field around the Eastern Himalayan Syntaxis and its vicinities (the gray dots are GPS stations, see Fig.1 for details of the main fault zones)
-
根据GPS速度场结果绘制2条剖面垂直于喜马拉雅主边界逆冲断裂(剖面A1—A1′和A2—A2′),各1剖面垂直于实皆断裂(剖面B1—B1′)、阿帕龙断裂(剖面B2—B2′)、小江断裂(剖面C1—C1′)和鲜水河断裂(剖面C2—C2′)(Ben-Menahem,1974; 李保昆等,2015; 谢超等,2017),共计6条剖面线(图1b),绘制剖面线位置原则是要确保每条剖面线均包含较多的GPS测站,并假设横跨断裂区域的形变全部集中在单一的主要活动构造上,若存在相隔较近的次级断裂,主要断裂的形变速率估值将比实际情况略高(郑刚,2019)。位于距离断裂50 km的范围内的测站通常由于断裂闭锁会受到弹性形变的影响,导致其速度结果不能用于求解滑动速率(Duvall and Clark,2010),因此本文将主要断裂两侧距其50~600 km范围内的远场测站的平均速度之差作为其滑动速率。根据GPS速度场结果,由垂直于各主要断裂的测站速度分量计算可得,喜马拉雅主边界逆冲断裂、实皆断裂、阿帕龙断裂分别吸收~15.7 mm/a、~5.2 mm/a和~27.4 mm/a的缩减速率(图2),喜马拉雅主边界逆冲断裂中西段(剖面A1—A1′)的GPS速率缩减量(向北运动速率)略大于其东段(剖面A2—A2′); 平行于各主要断裂的测站速度分量表明喜马拉雅主边界逆冲断裂、实皆断裂、阿帕龙断裂分别具有~6.0 mm/a、~32.4 mm/a和~18.6 mm/a的右行走滑速率(图2b、e),喜马拉雅主边界逆冲断裂东段(剖面A2—A2′)的GPS测站向东运动速率明显大于其中西段(剖面A1—A1′); 值得注意的是,获得的这些主要断裂的形变速率量值比较大,其可能为是50~600 km宽度范围内一系列断裂的总和。鲜水河-小江断裂吸收约1~3 mm/a的缩减速率,北部的鲜水河断裂吸收的缩减速率(约2~3 mm/a)略大于南部的小江断裂吸收的缩减速率(约1~2 mm/a)(图2c); 鲜水河-小江断裂带具有约8~9 mm/a的左行走滑速率,其中鲜水河断裂和小江断裂分别具有~8.8 mm/a和~8.1 mm/a的左行走滑的平均速率(图2f; 魏文薪等,2012)。
-
2.2 区域应变场
-
图3为由GPS速度场计算得到的喜马拉雅东构造结区域现今主应变率场。整个喜马拉雅造山弧在沿着印度与欧亚板块会聚碰撞的方向上承受着强烈的挤压,压缩应变方向沿着造山弧自西向东由SN向逐渐转化为NW-SE向,压缩应变率主要为40×10-9~87×10-9 a-1,局部量值高达95×10-9~110×10-9 a-1; 同时,垂直于印度与欧亚板块会聚碰撞的方向上,喜马拉雅地块承受着轻微的横向拉张,拉张应变率为10×10-9~35×10-9 a-1,局部量值高达70×10-9~75×10-9 a-1。另一个高主应变率区为跨实皆断裂地区,实皆断裂(N 20°~26.5°)在沿着断裂走向上的压缩应变方向为NE40°~45°,压缩应变量值为60×10-9~90×10-9 a-1,局部量值高达110×10-9~120×10-9 a-1,同时,跨实皆断裂地区在SE130°~135°方向上承受着明显的扩散拉张作用,伸长应变率以30×10-9~65×10-9 a-1为主,局部可达90×10-9~125×10-9 a-1,该地区这种明显拉张应变与挤压缩短特征和实皆断裂的走滑-逆冲性质是相一致的(Kreemer et al.,2014; 谢超等,2017; Wang Min and Shen Zhengkang,2020)。阿帕龙断裂(N27°~29°)主要承受着在垂直于断裂走向的强烈挤压缩短作用,挤压应变方向自西向东由SN向逐渐转化为NE45°向,压缩应变量值为50×10-9~93×10-9 a-1,局部量值高达116×10-9~140×10-9 a-1。印度东北部及缅甸西部的巴坎—若开山脉地区存在着显著的高应变状态,主要表现为近E-W至NE-SW向挤压和近N-S至NW-SE向拉伸,挤压应变的典型量值为28×10-9~82×10-9 a-1,局部量值高达104×10-9 a-1; 拉张应变的典型量值为24×10-9~54×10-9 a-1,局部量值高达74×10-9~77×10-9 a-1。跨鲜水河-小江断裂地区是中国大陆内部另一个高主应变率显现区,该区域受到的挤压、拉张方向均与断层走向呈45°相交,拉张方向从鲜水河断裂北部(~N32°)的~N10°W沿着断层向南到小江断裂南部(N24°)逐渐转化为NE60°~65°,平均拉张应变率量值为30×10-9~75×10-9 a-1,局部量值高达97×10-9 a-1; 而挤压缩短方向与拉张方向相垂直,压缩应变率量值主要为25×10-9~61×10-9 a-1,局部量值高达106×10-9 a-1。川滇菱形地块内部程海断裂附近和曲江石屏断裂一带,存在局部显著的高应变地区,主要表现为NE-SW向拉伸和NW-SE向挤压,挤压应变的典型量值为15×10-9~27×10-9 a-1,拉张应变的典型量值为21×10-9~48×10-9 a-1; 嘉黎断裂西段局部分布着高应变,表现为NWW-SEE向拉伸和NNE-SSW向挤压,挤压应变的典型量值为15×10-9~35×10-9 a-1,拉张应变的典型量值为20×10-9~44×10-9 a-1; 玉树断裂表现为近N-S向拉伸和E-W向挤压,典型的构造主应变量值为15×10-9~30×10-9 a-1; 此外,在跨嘉黎断裂和红河断裂区域并无显著的应变,典型的构造主应变量值在20×10-9 a-1以下。
-
如图4所示,研究区面压缩率高值区主要集中于喜马拉雅造山带,其中面压缩率最高值位于阿萨姆东北部区域一带的喜马拉雅主边界逆冲断裂与阿帕龙断裂的交汇处(N 28°~29°、E 95.5°~96.5°),面压缩率典型量值为31.9×10-9~123.4×10-9 a-1,局部最高量值为151.8×10-9 a-1。面压缩率是面膨胀率的反义词,面膨胀率最小的负值就是面压缩率的最大值,反映上地壳缩短程度。阿萨姆次级地块西北部的喜马拉雅造山带也存在明显面压缩地区,面压缩率的典型量值为31.7×10-9~97.8×10-9 a-1,局部高量值为104.1×10-9~118.0×10-9 a-1。实皆断裂亦多处面压缩区,面压缩率典型量值为31.2×10-9~90.5×10-9 a-1,局部最高量值达117.5×10-9 a-1。此外,印度东北部及缅甸西部的若开山脉西部地区广泛分布着显著的面压缩的高值区,面压缩率典型量值为27.0×10-9~79.1×10-9 a-1。而在喜马拉雅东构造结以东、小江断裂以西、鲜水河断裂以南多处地区呈现明显拉张,面膨胀率典型量值为15.5×10-9~39.7×10-9 a-1; 嘉黎断裂和玉树断裂之间也存在着多处明显拉张地区,面膨胀率典型量值为14.1×10-9~33.7×10-9 a-1,局部最高量值为41.1×10-9 a-1; 跨嘉黎断裂和红河断裂地区并无显著的面膨胀或面压缩特征。
-
图4 喜马拉雅东构造结及其周边区域的面膨胀率
-
Fig.4 Areal dilatational rate field of the Eastern Himalayan Syntaxis and its vicinities
-
负值代表面压缩率; 各断裂带简称详见图1
-
Negative value represents the surface compression rate; see Fig.1 for details of the main fault zones
-
图5为区域最大剪切应变率结果,研究区最大剪切应变的地区为鲜水河-小江断裂、实皆-阿帕龙断裂和喜马拉雅主边界逆冲断裂等断裂带地区,以及印度东北部若开山脉地区的大型走滑断层系地区。跨鲜水河-小江断裂带的最大剪切应变率沿着断层发生变化,典型量值为25.8×10-9~89.5×10-9 a-1,其可能为跨断层约8~9 mm/a左旋剪切运动在断层两侧约200 km范围内的结果(王敏等,2008); 鲜水河断裂北段和小江断裂南段存在局部高剪切异常地区,局部最高量值分别为127.9×10-9~151.5×10-9 a-1和94.1×10-9~108.3×10-9 a-1。跨实皆断裂带沿线的最大剪切应变率的平均量值以31.8×10-9~104.8×10-9 a-1为主,局部(N21.5°~22.5°、E 95.5°~96.5°)地区和(N 23.5°~26.0°、E 96.0°~97.0°)地区最高量值分别高达109.4×10-9~226.2×10-9 a-1和105.4×10-9~189.7×10-9 a-1,反映了强烈右旋走滑特征; 跨阿帕龙断裂带沿线的最大剪切应变率的平均量值以39.7×10-9~128.1×10-9 a-1,局部高量值为146.3×10-9~170.7×10-9 a-1,显示了其显著右旋走滑特征。跨喜马拉雅主边界断裂带地区的最大剪应变率平均量值以40.7×10-9~92.8×10-9 a-1为主,局部最高量值为120.8×10-9~153.1×10-9 a-1。印度东北部及缅甸西部的巴坎-若开山脉地区的大型走滑断裂系地区的最大剪应变率典型量值为46.5×10-9~92.8×10-9 a-1,局部高量值为109.6×10-9~146.8×10-9 a-1。值得注意的是,跨玉树断裂、嘉黎断裂和红河断裂地区并无显著的剪切应变特征。
-
图5 喜马拉雅东构造结及其周边区域的最大剪切率场(各断裂带简称详见图1)
-
Fig.5 Maximum shear rate field of the Eastern Himalayan Syntaxis and its vicinities (see Fig.1 for details of the main fault zones)
-
图6给出旋转率的计算结果。可以看出旋转量最大的地区是小江断裂-鲜水河断裂地区、跨实皆-阿帕龙断裂地区、环绕喜马拉雅东构造结的环形地区以及印度东北部及缅甸西部巴坎-若开山脉地区。其中鲜水河-小江断裂地区呈条带状的逆时针旋转,旋转率量值为 19.2×10-9~50.5×10-9 rad/a,反映了断层左旋走滑运动包含的刚性旋转分量。跨实皆断裂地区和环绕喜马拉雅东构造结的环形地区自南向北呈连续状的顺时针转动,旋转率平均量值主要为34.1×10-9~93.5×10-9 rad/a,局部最高量值为108.8×10-9~116.2×10-9 rad/a,这一结果反映出这些地区受到了印度板块北东向俯冲插入中国大陆转换而来的一系列断层右旋走滑运动所引起的刚性旋转特征。喜马拉雅东构造结以东的澜沧江、金沙江和怒江断裂地区表现为20.1×10-9~66.5×10-9 rad/a的顺时针旋转,这一结果反映出这些地区受到了印度板块以~NE20°向俯冲插入欧亚大陆造成的一系列断层右旋走滑运动所引起的刚性旋转特征。喜马拉雅东构造结以东的澜沧江、金沙江和怒江断裂地区表现处20.1×10-9~66.5×10-9 rad/a的顺时针旋转,印度东北部及缅甸西部巴坎-若开山脉地区表现为19.2×10-9~75.2×10-9 rad/a的顺时针旋转,反映了印度板块东向分量运动压造成的近南北走向的褶皱活动和与褶皱平行断裂的右旋走滑活动。
-
3 讨论
-
3.1 喜马拉雅东构造结核心部位(隆升中心)
-
自始新世中期以来,印度板块与欧亚板块的碰撞和其随后的造山运动,形成了宽达千余千米的强烈变形区及被称之为“世界屋脊”的青藏高原。在固定华南板块参考框架下,印度大陆现今以37.5~42.1 mm/a的速度沿着约NE20°运动方向楔入欧亚大陆(图1)。剖面B2—B2′所示,平行于剖面的速度矢量分量具自南向北呈负增长的趋势,由剖面南端的~31.6±0.63 mm/a逐渐降低到4.2±0.23 mm/a,地壳缩短量约为27.4 mm/a,该变化趋势表明区域地壳向北东运动的速度自南北向急剧减弱(图2)。印度板块的阿萨姆次级地块向北东的推进速率大于喜马拉雅的南迦巴瓦变质体地区的推进速率(图1; Vernant et al.,2014),使位于碰撞的前缘部分的喜马拉雅东构造结受到强烈挤压。图3中,阿萨姆次级地块东北部的边界断裂——阿帕龙断裂(N 27°~29°)时挤压变形最为剧烈的区域,以承受着在垂直于断裂走向的强烈挤压缩短作用为主要特征,地壳挤压主应变方向存在顺时针偏转,自西向东由SN向并逐渐转化为NE45°向,地壳挤压压缩应变量值最高达116×10-9~140×10-9 a-1; 反映了该区域构造应力正在快速积累。
-
图6 喜马拉雅东构造结及其周边区域的现今旋转率场
-
Fig.6 Rotation rate field of the Eastern Himalayan Syntaxis and its vicinities
-
顺时针旋转值为正值; 各断裂带简称详见图1
-
Positive value represent clockwise rotation value; see Fig.1 for details of the main fault zones
-
研究区高主应变率区集中在喜马拉雅主逆冲断裂、实皆断裂、阿帕龙断裂、鲜水河-小江断裂、东构造结的环形地区和印度东北部及缅甸西部的巴坎—若开山脉地区(图3),显示研究区现今强烈变形地区主要分布于大陆岩石圈的板块(地块)边界带,其形变形式与大小存在系统性的空间变化。区域地震分布显示南迦巴瓦峰地区现今地震活动较弱,构造应力积累缓慢(Gupta et al.,2015; 谢超等,2017; 唐方头等,2019),而阿萨姆次级地块东北部的区域隆升速率逐渐增大,构造应力快速积累,近年来地震活动频繁(Gupta et al.,2015); 面应变率的高梯度带显示,最大面压缩率(152.1×10-9 a-1)发生在阿萨姆次级地块东北部区域一带的喜马拉雅主边界逆冲断裂与阿帕龙江断裂的交汇处,区域历史震例的震源机制解显示,察隅1950年8.6级地震为NW向节面的右旋走滑运动,显示该地震的发震构造可能为阿帕龙断裂——实皆断裂北段(Ben-Menahem,1974; 李保昆等,2015; 谢超等,2017)。热年代学研究显示南迦巴瓦构变质体在3 Ma以来经历了快速的抬升阶段,3 Ma 以来南迦巴瓦峰地区是东构造结的隆升中心(丁林等,1995),但在2.2 Ma由10 mm/a降低至3~5 mm/a(Burg et al.,1997),而阿萨姆次级地块的东北部区域隆升速率具有逐渐加大的趋势,8~5 Ma的隆升速率为0.21 mm/a,而3~1.1 Ma的隆升速率达到0.83 mm/a(孙东霞等,2015),而隆升强度与剥蚀速率往往呈正相关,反映南迦巴瓦峰地区隆升强度在逐渐减弱,喜马拉雅造山带东构造结的隆升中心从南迦巴瓦峰地区向其东南方向发生偏移至阿萨姆次级地块的东北部区域。定量化地貌研究显示,南迦巴瓦峰地区(区域2)高程频率分布曲线和拟合得到的标准正态分布曲线非常吻合(偏态值为0),区域隆升和剥蚀作用已经达到高度平衡状态,该区域处于侵蚀的壮年期; 阿萨姆次级地块东北部的高程频率峰值范围较大,在3500~4150 m,峰值同样位于正态分布曲线右侧(偏态值>0),且偏离曲线程度较大,表明该区域地貌演化程度很低,接近侵蚀幼年期早期阶段(谢超等,2017; 谢超,2018)。
-
本研究采用“二维张力样条”方法计算获得的区域面应变率显示,面压缩的高梯度带集中分布在阿萨姆次级地块的东北部一带(N28°—N29°、E95.5°—E96.5°),最大面压缩率(约151.8×10-9 a-1)发生在喜马拉雅主边界逆冲断裂与阿帕龙断裂的交汇处(图4); 若假设地壳过程中岩石圈的单位体积不发生变化(Holt et al.,2000),面压缩对应地壳的隆起,面膨胀对应地壳的下陷,反映如今阿萨姆次级地块的东北部一带(N28°—N29°、E95.5°—E96.5°)已成为区域隆起核心部位。综上所述,本文认为喜马拉雅东构造结的最强变形核心部位已经由南迦巴瓦峰地区(丁林等,1995)向其东南方向发生转移,移至位于阿萨姆次级地块东北部地区的喜马拉雅主边界逆冲断裂与阿帕龙断裂的交汇处。
-
3.2 地球动力学机制
-
中生代—新生代以来,印度板块持续向北推进,最终向欧亚板块俯冲并发生由西向东的斜向穿时性的陆-陆碰撞(图7; Molnar and Tapponnier,1975; Dewey et al.,1989; Patzelt et al.,1996; Yin and Harrison,2000),印度板块西北角的南迦巴尔特构造结为最早的碰撞点(Patzelt et al.,1996),欧亚板块和印度板块两个板块在45 Ma时全线发生碰撞(Dewey et al.,1989; Le Pichon et al.,1992)。印度和欧亚大陆碰撞引起了青藏高原强烈的地壳缩短,导致青藏高原地壳增厚形成了60~70 km的巨厚大陆地壳,比~35 km的大陆平均地壳增厚了25~35 km(张培震等,2002,2004)。印度和欧亚大陆全线碰撞俯冲过程中,印度板块不仅向北向青藏高原内部俯冲,而且向东俯冲形成缅甸弧; 强烈的碰撞造山运动造就了喜马拉雅造山带和一系列规模巨大的活动走滑断裂,例如喜马拉雅主边界断裂、实皆-阿帕龙断裂等逆冲-走滑板块边界断裂带(图7; Acharyya,1994; Rangin et al.,2013)。
-
在青藏高原东南缘和喜马拉雅地造山带地区,印度板块的下插造成了大面积的地壳增厚,地壳增厚造成下地壳温度的升高,地壳在一定深度内发育有低黏滞度层,层内地壳物质在压力作用下发生流动,即地壳层流(channel flow),并能够使得上地壳、下地壳部分或全部与上下边界解耦(Klemperer,2006),最终地壳内部在南北向挤压及重力场作用下产生东向的塑性流(曾融生等,1998)。如图1所示,在印度板块北东向的推挤下,在喀喇昆仑-嘉黎断裂以南的区域,由于受喜马拉雅东部构造结的阻挡,其物质没有直接东向“逃逸”,而是以围绕东部构造结顺时针旋转的方式汇入了羌塘地块东半部流滑带。在喀喇昆仑-嘉黎断裂和阿尔金断裂的高原内部广大区域,地块以刚性形式向东“逃逸”; 这是由于大陆岩石圈具有分层的力学性质,上地壳以脆性变形为主,表现为整体性(或具有一定刚性)的地块运动和地块间的相互作用,下地壳和上地幔则以黏塑性的流变为特征,在板块相互作用下发生连续蠕动,从底部驱动着上覆脆性地块的运动(Molnar and Deng,1984; Molnar,1988; 王琪等,2001; 张培震等,2002)。研究区GPS速度场(图1)显示,羌塘地块北部的优势运动方向为NE60°~70°,反映其下地壳黏塑性物质的向东运移,形成了向东的流动带。由于受到华南板块高强度岩石圈的阻挡,向东流动的下地壳物质在青藏高原东边界(龙门山断裂带)发生堆积,从而形成巨厚的地壳和海拔5000 m以上的地貌(Royden et al.,1997; Clark and Royden,2000); 最终,青藏高原东南缘地壳内软弱的或塑性程度高的层流带向东没有超出其东边界(川西高原),而是从高原内部向云南和东南亚流动,表现为环绕东喜马拉雅东构造结形成顺时针大旋转,使得青藏高原东边界与华南地块的速度差没有转换成明显的逆冲和地壳缩短。
-
印度和欧亚大陆碰撞过程中,印度板块东、西两处碰撞角向北运动存在速度差,速度分别为 64 mm/a和55 mm/a(Dewey et al.,1989; Le Pichon et al.,1992); 由于东、西两处碰撞角位移的速度差和西北处碰撞角(南迦巴尔特)首先被锁而相对不动,并以挤压压缩变形为特征。同时,印度板块在位移过程中继续反时针旋转并压缩变形,中部喜马拉雅山造山带以旋转-挤压的弧形变形为特征,最终导致东部角继续向NE楔入、挤压(图7; Dewey et al.,1989; Rangin et al.,2013; 谢超等,2017)。晚第四纪以来,南迦巴瓦变质体向北的推进速度缓慢,甚至已经停止了向拉萨地块的俯冲作用,印度板块在阿萨姆次级地块向北快速推进,与南迦巴瓦变质体向北运动产生的速度差引发了墨脱次级断裂的左旋运动; 由于印度板块的反时针旋转,南迦巴瓦变质体受东南侧块体的持续挤压,挤压作用形成的SE-NW向地壳缩短部分被墨脱断裂和米林断裂逆冲运动所吸收(唐方头等,2010,2019; 宋键等,2011; 谢超等,2017; 谢超,2018)。在固定华南板块参考框架下,由于印度板块的持续向NE楔入、挤压,引起喜马拉雅构造结北部地区的深部物质向NE移动,并围绕着构造结形成层流带,发生顺时针旋转; 而喜马拉雅构造结以东地区存在着多处显著的局部剪切的应变梯度带,呈现水平拉张(Burchfiel and Royden,1991; Holt et al.,1995; 钟大赉和丁林,1996; King et al.,1997; Burchfiel et al.,1997; 王二七等,2001; Wang Qi et al.,2001)。本文GPS速度场及速度剖面的平行断裂分量的变化特征显示,作为青藏高原东南缘与华南板块两者的板块边界带的鲜水河-小江断裂带存在着约8~9 mm/a的左旋走滑形变(图1,图2c、f),沿着实皆-阿帕龙断裂、鲜水河-小江断裂等构造带分布着最大剪切应变率的高异常值(图5),东构造结旋转环宽度超过400~600 km,旋转率在云南西部和缅甸北部地区亦表现强烈的顺时针旋转(图6; 甘卫军等,2004)。因此,本研究认为“地壳增厚”(England and Houseman,1986)模式较为真实地反映了喜马拉雅东构造结及其周边地区的现今大陆构造变形的动力学机制。
-
图7 印度板块相对于欧亚板块向N运动模式图(据Rangin et al.,2013修改; 各断裂带简称详见图1)
-
Fig.7 Diagram showing the continuous northward shift of the Indian plate relative to the Eurasian plate (modified after Rangin et al., 2013; see Fig.1 for details of the main fault zones)
-
4 结论
-
本文采用“二维张力样条”方法计算获得东构造结及其周边地区的构造应变场,发现区域最大面压缩率发生在阿萨姆次级地块东北部区域一带的喜马拉雅主边界逆冲断裂与阿帕龙断裂的交汇处,最高量值为151.8×10-9 a-1; 表明喜马拉雅东构造结的最强变形核心部位已经由南迦巴瓦峰地区向其东南方向发生了转移,移至位于阿萨姆次级地块东北部地区的喜马拉雅主边界逆冲断裂与阿帕龙断裂的交汇处。
-
致谢:非常感谢中国地震局地质研究所甘卫军研究员和应急管理部国家自然灾害防治研究院田云锋副研究员在室内研究及论文成文中提供的建议和指导,以及匿名审稿老师和编辑部对稿件提出的修改意见。
-
参考文献
-
Acharyya S K. 1994. Accretion of Indo-Australian Gondwanic blocks along Peri-Indian collision margins. In: 9th Intemational Gondwana Symposium, Hyderabad, India, 1029~1049.
-
Armijo R, Tapponnier P, Mercier J L, Han T L. 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications. Journal of Geophysical Research, 91: 13803~13972.
-
Ben-Menahem A, Aboodi E, Schild R. 1974. The source of the great Assam earthquake—An interplate wedge motion. Physics of the Earth & Planetary Interiors, 9(4): 265~289.
-
Bilham R, Larson K, Freymuller J. 1997. Indo-Asian convergence rates in the Nepal-Himalaya. Nature, 386: 61~66.
-
Burchfiel B C, Royden L H. 1991. Tectonics of Asia 50 years after the death of Emile Argand. Ecogae Geol Helv, 184(3): 599~629.
-
Burchfiel B C, Chen Z H, Liu Y, Royden L H. 1997. Tectonics of the Longmen Shan and adjacent regions, central China. International Geological Review, 37(8): 661~735.
-
Burg J P, Davy P, Nievergelt P, Oberli F, Meier M. 1997. Exhumation during crustal folding in the Namche Barwa syntaxis. Terra Nova, (2): 53~56.
-
Clark M, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703~706.
-
Devachandra M, Kundu B, Catherine J, Kumar A, Gahalaut V K. 2014. Global positioning system (GPS) measurements of crustal deformation across the frontal Eastern Himalayan Syntaxis and seismic-hazard assessment. Bulletin of the Seismological Society of America, 104(3): 1518~1524.
-
Dewey J F, Cande S, Pitman W C. 1989. Tectonic evolution of the India-Eurasia collision zone. Eclogae Geologicae Helvetiae, 82(3): 717~734.
-
Ding Lin, Zhong Dalai, Pan Yusheng, Huang Xuan, Wang Qinglong. 1995. Fission-track evidence for Neocene uplift of eastern Himalayan syntaxis. Chinese Science Bulletin, 40(16): 1497~1500 (in Chinese with English abstract).
-
Ding Lin, Zhong Dalai, Yin An, Kapp P, Harrison T M. 2001. Cenozoic structural and metamorphic evolution of the Eastern Himalayan Syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192: 423~438.
-
Duvall A R, Clark M K. 2010. Dissipation of fast strike-slip faulting within and beyond northeastern Tibet. Geology, 38(3): 223~226.
-
England P, Houseman G. 1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone. Journal of Geophysical Research, Solid Earth, 91 (B3): 3664~3676.
-
Gan Weijun, Shen Zhengkang, Zhang Peizhen, Ren Jinwei, Wan Yongge, Zhou Demin. 2004. Horizontal crustal movement of Tibetan plateau from GPS measurements. Journal of Geodesy and Geodynamics, 24(1): 29~35 (in Chinese with English abstract).
-
Gupta T D, Riguzzi F, Dasgupta S, Mukhopadhyay B, Roy S, Sharma S. 2015. Kinematics and strain rates of the Eastern Himalayan Syntaxis from new GPS campaigns in Northeast India. Tectonophysics, 655: 15~26.
-
Holt W E, Ni J F, Wallace T C, Haines A J. 1991. The active tectonics of the Eastern Himalayan Syntaxis and surrounding regions. Journal of Geophysical Research, Solid Earth, 96(B9): 14595~14632.
-
Holt W E, Li M, Haines A J. 1995. Earthquake strain rates and instantaneous relative motions within central and eastern Asia. Geophysical Journal International, 122: 569~593.
-
Holt W E, Chamot-Rooke N, Pichon X L, Haines A J, Shen-Tu B, Ren J. 2000. Velocity field in Asia inferred from Quaternary fault slip rates and global positioning system observations. Journal of Geophysical Research, Solid Earth, 105(B8): 19185~19209.
-
Huang Chenyu, Chang Lijun, Ding Zhifeng. 2021. Crustal anisotropy in the Eastern Himalayan Syntaxis and adjacent areas. Chinese Journal of Geophysics, 64(11): 3970~3982 (in Chinese with English abstract).
-
Kang Guofa, Gao Guoming, Bai Chunhua, Wang Tianyuan, Wang Yimi, Zhu Teng. 2013. Study on distribution features of crustal magnetic anomalies around eastern Himalayan syntaxis. Chinese Journal of Geophysics, 56(11): 3877~3886 (in Chinese with English abstract).
-
King R W, Shen Feng, Burchfiel B C, Royden L H, Wang Erchie, Chen Zhiliang, Liu Yuping, Zhang Xuanyang, Zhao Jixiang, Li Yulin. 1997. Geodetic measurement of crustal motiom in Southwest China. Geology, 25: 179~182.
-
Klemperer S L. 2006. Crustal flow in Tibet: Geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow. Geological Society London Special Publications, 268(1): 39~70.
-
Kreemer C, Blewitt G, Klein E C. 2014. A geodetic plate motion and global strain rate model. Geochemistry, Geophysics, Geosystems, 15: 3849~3889.
-
Larson K M, Burgmann R, Bilham R, Freymueller J T. 1999. Kinematics of the India-Eurasia collision zone from GPS measurements. Journal of Geophysical Research: Solid Earth, 104: 1077~1093.
-
Le Pichon X, Fournier M, Jolivet L. 1992. Kinematics, topography, shortening, and extrusion in the India-Eurasia collision. Tectonics, 11(6): 1085~1098.
-
Li Baokun, Diao Guiling, Xu Xiwei, Wan Yongge, Feng Xiangdong, Zou Liye, Miao Chunlan. 2015. Redetermination of the source parameters of the Zayü, Tibet M8. 6 earthquake sequence in 1950. Chinese Journal of Geophysics, 58(11): 4254~4265 (in Chinese with English abstract).
-
Liu Yan, Zhong Dalai. 1998. Geological structure framework of East Himalayan tectonic junction. Progress in Natural Science, 8(4): 506~509 (in Chinese with English abstract).
-
Marechal A, Mazzotti S, Cattin R, Cazes G, Vernant P, Drukpa D, Thinley K, Tarayoun A, Roux-Mallouf R L, Thapa B P, Pelgay P, Gyeltshen J, Doerflinger E, Gautier S. 2016. Evidence of interseismic coupling variations along the Bhutan Himalayan arc from new GPS data. Geophysical Research Letters, 43(24): 12399~12406.
-
Molnar P. 1988. Continental tectonics in the aftermath of plate tectonics. Nature, 335: 131~137.
-
Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189: 419~426.
-
Molnar P, Deng Q. 1984. Faulting associated with large earthquakes and the average rate of deformation in Asia. Journal of Geophysical Research, 89: 6203~6228.
-
Patzelt A, Li H M, Wang J D, Appel E. 1996. Paleomagnetism of cretaceous to Tertiary sediments from southern Tibet: Evidences for the extent of the northern margin of India piror to the collision with Eurasia. Tectonophysics, 259(4): 259~284.
-
Pollitz F F. 1997. Gravitational viscoelastic postseismic relaxation on a layered spherical earth. Journal of Geophysical Research Solid Earth, 102(B8): 17921~17941.
-
Rangin C, Maurin T, Masson F. 2013. Combined effects of Eurasia/Sunda oblique convergence and East-Tibetan crustal flow on the active tectonics of Burma. Journal of Asian Earth Sciences, 76(20): 185~194.
-
Royden L H, Burchfiel B C, King R W, Wang E, Chen Z L, Shen F, Liu Y P. 1997. Surface deformantion and lower crustal flow in eastern Tibet. Science, 276(5313): 788~790.
-
Savage J C, Gan W J, Svarc J L. 2001. Strain accumulation and rotation in eastern California shear zone. Journal of Geophysical Research, 106(B10): 21995~22007.
-
Shen Zhengkang, Zhao Chengkun, Yin An, Li Yanxing, Jackson D D, Fang Peng, Dong Danan. 2000. Contemporary crustal deformation in eastern Asia constrained by global positioning system measurements. Journal of Geophysical Research, 105: 5721~5734.
-
Shi Yaolin, Zhu Shoubiao. 2006. Discussion on method of calculating strain with GPS displacement data. Journal of Geodesy and Geodynamics, 26(1): 1~8 (in Chinese with English abstract).
-
Song Jian, Tang Fangtou, Deng Zhihui, Cao Zhongquan, Zhou Bin, XiaoGenru, Chen Weitao, Ge Weipeng. 2011. Study on current movement characteristics and numerical simulation of the main faults around Eastern Himalayan Syntaxis. Chinese Journal of Geophysics, 54(6): 1536~1548 (in Chinese with English abstract).
-
Sun Dongxia, Zhong Dalai, Ji Jianqing, Tu Jiyao. 2015. Inversion model of drainage basins' tectono-thermal evolution through detrital AFT ages: A case study of Chayu River in southeastern Tibet. Chinese Journal of Geophysics, 58(2): 613~627(in Chinese with English abstract).
-
Tang Fangtou, Song Jian, Cao Zhongquan, Deng Zhihui, Wang Min, Xiao Genru, Chen Weitao. 2010. Movement characteristics of the main fault zones around the East tectonic node revealed by the latest GPS data. Chinese Journal of Geophysics, 53(9): 2119~2128 (in Chinese with English abstract).
-
Tang Fangtou, You Huichuan, Liang Xiaohua. 2019. A discussion on seismogenic fault of the Milin MS 6. 9 earthquake, Tibet and its tectonic attributes. Acta Geoscientica Sinica, 40(1): 213~218 (in Chinese with English abstract).
-
Tapponnier P, Peltzer G, Dain L A, Armijo R, Cobbold P. 1982. Propagating extrusiontectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(10): 611~616.
-
Tapponnier P, Xu Zhiqin, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang Jingsui. 2001. Oblique stepwise rise and growth of the Tibetan Plateau. Science, 294: 1671~1677.
-
Vernant P, Biham R, Szeliga W, Drupka D, Kalita S, Bhattacharyya A K, Gaur V, Pelgay P, Cattin R, Berthet T. 2014. Clockwise rotation of the Brahmaputra Valley relative to India: Tectonic convergence in the eastern Himalaya, Naga Hills, and Shillong Plateau. Journal of Geophysical Research, 119(8): 6558~6571.
-
Wang Erchie, Burchfiel B C, Ji Jianqing. 2001. Evidence and estimation of Cenozoic crustal shortening across the Eastern Himalaya syntax. Science in China (Series D), 31(1): 1~9 (in Chinese with English abstract).
-
Wang Min, Shen Zhengkang. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125: e2019JB018774.
-
Wang Min, Shen Zhengkang, Gan Weijun, Liao Hua, Li Tieming, Ren Jinwei, Qiao Xuejun, Wang Qingliang, Yang Yonglin, Kato Zhaozhi, Li Peng. 2008. GPS monitoring of temporal deformation of the Xianshuihe fault. Science in China (Series D), 38(5): 575~581 (in Chinese with English abstract).
-
Wang Qi, Zhang Peizhen, Freymuller J T, Bilham R, Larson K M, Lai Xi'an, You Xinzhao, Niu Zhijun, Wu Jianchun, Li Yanxin, Liu Jingnan, Yang Zhiqiang, Chen Qizhi. 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294: 574~577.
-
Wang Qi, Zhang Peizhen, Niu Zhijun, FreymuelerJ T, Lai Xi'an, Li Yanxing, Zhu Wenyao, Liu Jingnan, Bilham R. Larson K M. 2001. Crustal movement and tectonic deformation of continental China. Science in China (Series D), 31(7): 529~536 (in Chinese with English abstract).
-
Wei Wenxin, Jiang Zaisen, Wu Yanqiang, Zhao Jing. 2012. Motion characteristics of major faults in east boundary of Sichuan-Yunnan block obtained with GPS data. Geomatics and Information Journal of Wuhan University, 37(9): 1041~1044+1063+1006 (in Chinese with English abstract).
-
Wessel P, Bercovici D. 1998. Interpolation with spline in tension: A Green's function approach. Mathematical Geology, 30(1): 77~93.
-
Xiao Genru. 2011. GPS crustal deformation observations and its application the great triangular seismotectonic. Doctoral dissertation of Institute of Geology, China Earthquake Administration (in Chinese with English abstract).
-
Xie Chao. 2018. A study ontectonic geomorphology of Namche Barwa and activity of the faults. Doctoral dissertation of Institute of Geology, China Earthquake Administration (in Chinese with English abstract).
-
Xie Chao, Zhou Bengang, Li Zhengfang. 2017. Geomorphic features of Eastern Himalayan Syntaxis and its tectonic implications. Seismology & Geology, 39(2): 276~286 (in Chinese with English abstract).
-
Xu Zhiqin, Cai Zhihui, Zhang Zeming, Li Huaqi, Chen Fangyuan, Tang Zemin. 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, eastern Himalayan syntaxis. Acta Petrologica Sinica, 24(7): 1463~1476 (in Chinese with English abstract).
-
Xu Xiwei, Wu Xiyan, Yu Guihua, Tan Xibin, Li Kang. 2017. Seismo-geological signatures for identifying M≥7. 0 earthquake risk areas and their premilimary application in China mainland. Seismology and Geology, 39(2): 219~275 (in Chinese with English abstract).
-
Yin An, Harrison T M. 2000. Geological evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211~280.
-
Zeng Rongsheng, Ding Zhifeng, Wu Qingju. 1998. The crustal structures from Himalaya to Qilian and its implications for continent-continent collision process. Chinese Journal of Geophysics, 41(1): 49~60 (in Chinese with English abstract).
-
Zhang Chen, Ji Lingyun, Zhu Liangyu, Xu Jing. 2022. Analysis of crustal deformation characteristics of East Himalayan tectonic junction and its adjacent area based on focal stress and GPS strain. Journal of Seismological Research, 45(4): 526~534 (in Chinese with English abstract).
-
Zhang Jinjiang, Ji Jianqing, Zhong Dalai, Ding Lin, He Shundong. 2003. Investigate the tectonic framework and the formation process of the Namjagbarwa structure junction in the East Himalayas. Science in China (Series D), 33(4): 373~383 (in Chinese with English abstract).
-
Zhang Ling, Liang Shiming, Yang Xiaoping, Gan Weijun, Dai Chenglong. 2021. Geometric and kinematic evolution of the Jiali fault, eastern Himalayan syntaxis. Journal of Asian Earth Sciences, 104722.
-
Zhang Peizhen, Shen Zhengkang, Wang Min, Gan Weijun, Burgmän R, Molnar P, Wang Qi, Niu Zhijun, Sun Jianzhong, Wu Jianchun, Sun Hanrong, You Xinzhao. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809~812 (in Chinese with English abstract).
-
Zhang Peizhen, Shen Zhengkang, Wang Min, Gan Weijun. 2004. Kinematics of present-day tectonic deformationof Tibetan Plateau and its vicinities. Seismology & Geology, 26 (3): 367~377.
-
Zhang Peizhen, Wang Qi, Ma Zongjin. 2002. GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental China. Earth Science Frontiers, 9(2): 442~450 (in Chinese with English abstract).
-
Zheng Gang. 2019. Theuse of long-term GPS observations to analyze present-day slip rate and crustal activity characteristic of the Kunlun fault. Journal of Geodesy and Geodynamics, 39(6): 557~561 (in Chinese with English abstract).
-
Zheng Lailin, Jin Zhenmin, Pan Guitang, Geng Quanru, Sun Zhimin. 2004. Geological features and tectonic evolution in the Namjagbarwa area, eastern Himalayas. Acta Geologica Sinica, 78(6): 744~751+882 (in Chinese with English abstract).
-
Zhong Dalai, Ding Ling. 1996. Discussion processes and mechanism of uplifting of Tibetan Plateau. Science in China (Series D), 26(4): 289~295 (in Chinese with English abstract).
-
丁林, 钟大赉, 潘裕生, 黄萱, 王庆隆. 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据. 科学通报, 40(16): 1497~1500.
-
甘卫军, 沈正康, 张培震, 任金卫, 万永革, 周德敏. 2004. 青藏高原地壳水平差异运动的GPS观测研究. 大地测量与地球动力学, 24(1): 29~35.
-
黄臣宇, 常利军, 丁志峰. 2021. 喜马拉雅东构造结及周边地区地壳各向异性特征. 地球物理学报, 64 (11): 3970~3982.
-
康国发, 高国明, 白春华, 王天媛, 王一咪, 朱腾. 2013. 喜马拉雅东构造结周边地区地壳磁异常分布特征研究. 地球物理学报, 56(11): 3877~3886.
-
李保昆, 刁桂苓, 徐锡伟, 万永革, 冯向东, 邹立晔, 苗春兰. 2015. 1950年西藏察隅MS 8. 6强震序列震源参数复核. 地球物理学报, 58(11): 4254~4265.
-
刘焰, 钟大赉. 1998. 东喜马拉雅构造结地质构造框架. 自然科学进展, 8(4): 506~509.
-
石耀霖, 朱守彪. 2006. 用GPS位移资料计算应变方法的讨论. 大地测量与地球动力学, 26(1): 1~8.
-
宋键, 唐方头, 邓志辉, 曹忠权, 周斌, 肖根如, 陈为涛, 葛伟鹏. 2011. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究. 地球物理学报, 54(6): 1536~1548.
-
孙东霞, 钟大赉, 季建清, 涂继耀. 2015. 河砂岩屑磷灰石裂变径迹模拟流域热史——以藏东南察隅河为例. 地球物理学报, 58(2): 613~627.
-
唐方头, 宋键, 曹忠权, 邓志辉, 王敏, 肖根如, 陈为涛. 2010. 最新GPS数据揭示的东构造结周边主要断裂带的运动特征. 地球物理学报, 53(9): 2119~2128.
-
唐方头, 尤惠川, 梁小华. 2019. 西藏米林6. 9级地震发震断层判定及其构造属性讨论. 地球学报, 40(1): 213~218.
-
王二七, Burchfiel B C, 季建青. 2001. 东喜马拉雅构造结新生代地壳缩短量的估算及其地质依据. 中国科学(D辑), 31(1): 1~9.
-
王敏, 沈正康, 甘卫军, 廖华, 李铁明, 任金卫, 乔学军, 王庆良, 杨永林, 加藤照之, 李鹏. 2008. GPS连续监测鲜水河断裂形变场动态演化. 中国科学D辑: 地球科学, 38(5): 575~581.
-
王琪, 张培震, 牛之俊, Freymueller J T, 赖锡安, 李延兴, 朱文耀, 刘经南, Bilham R, Larson K M. 2001. 中国大陆现今地壳运动和构造变形. 中国科学(D辑: 地球科学), 31(7): 529~536.
-
肖根如. 2011. GPS地壳形变观测及其在中亚大三角地震构造域的应用. 中国地震局地质研究所博士学位论文.
-
谢超. 2018. 南迦巴瓦地区构造地貌及断裂活动特征. 中国地震局地质研究所博士学位论文.
-
谢超, 周本刚, 李正芳. 2017. 东喜马拉雅构造结地貌形态及其构造指示意义. 地震地质, 39(2): 276~286.
-
魏文薪, 江在森, 武艳强, 赵静. 2012. 利用GPS数据研究川滇块体东边界主要断裂带运动特性. 武汉大学学报(信息科学版), 37(9): 1041~1044+1063+1006.
-
许志琴, 蔡志慧, 张泽明, 李化启, 陈方远, 唐泽民. 2008. 喜马拉雅东构造结——南迦巴瓦构造及组构运动学. 岩石学报, 24(7): 1463~1476.
-
徐锡伟, 吴熙彦, 于贵华, 谭锡斌, 李康. 2017. 中国大陆高震级地震危险区判定的地震地质学标志及其应用. 地震地质, 39(2): 219~275.
-
曾融生, 丁志峰, 吴庆举. 1998. 喜马拉雅-祁连山地壳构造与大陆大陆碰撞过程. 地球物理学报, 41(1): 49~60.
-
张晨, 季灵运, 朱良玉, 徐晶. 2022. 基于震源应力与GPS应变分析喜马拉雅东构造结及其邻区地壳变形特征. 地震研究, 45(4): 526~534.
-
张进江, 季建清, 钟大赉, 丁林, 何顺东. 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨. 中国科学(D辑: 地球科学), 33(4): 373~383.
-
张培震, 王琪, 马宗晋. 2002. 青藏高原现今构造变形特征与GPS速度场. 地学前缘, 9(2): 442~450.
-
张培震, 沈正康, 王敏, 甘卫军. 2004. 青藏高原及周边现今构造变形的运动学. 地震地质, 26(3): 367~377.
-
郑来林, 金振民, 潘桂棠, 耿全如, 孙志民. 2004. 东喜马拉雅南迦巴瓦地区区域地质特征及构造演化. 地质学报, 78(6): 744~751+882.
-
钟大赉, 丁林. 1996. 青藏高原的隆升过程及其机制探讨. 中国科学, 26(4): 289~295.
-
摘要
喜马拉雅东构造结位于印度与欧亚板块碰撞的前缘,是地壳缩短和构造旋转变形十分强烈的部位。本文收集东构造结及其周边区域大范围、长时段的最新GPS速度场资料,采用“二维张力样条”方法计算获得区域构造应变场,研究其现今地壳运动与构造变形特征。结果显示,高应变率区集中在喜马拉雅主逆冲断裂、实皆-阿帕龙断裂、鲜水河-小江断裂、东构造结的环形地区和印度东北部及缅甸西部的巴坎-若开山脉地区,而在跨嘉黎断裂和红河断裂区域并无显著的应变。区域最大剪切应变率主要沿着实皆-阿帕龙断裂、鲜水河-小江断裂等构造带分布,区域最大面压缩率发生在阿萨姆东北部一带(N28°~29°、E95.5°~96.5°),最高量值为151.8×10-9 a-1; 反映喜马拉雅东构造结的最强变形核心部位已经由南迦巴瓦峰地区向其东南方向发生了转移,移至位于阿萨姆东北部地区的喜马拉雅主边界逆冲断裂与阿帕龙断裂的交汇处。综合分析认为,喜马拉雅东构造结地区在印度板块强烈的楔入挤压作用下,大陆变形以地壳增厚为主,深部以黏塑性为特征的下地壳和上地幔物质的流动驱动着上覆脆性上地壳地块。
Abstract
The Eastern Himalayan Syntaxis (EHS) and its vicinities,located in the tectonic front of the collision between India plate and Eurasia plate, is characterized by strong crustal shortening and tectonic rotation deformation. Based on the large-scale GPS velocity data, we analyze horizontal differential crustal movement associated with the EHS and its vicinities. Furthermore, we use a “spline in tension” technique to get a continuous strain rate map of the EHS region. Combined with the previous research results, we focus on the present-day tectonic deformation and mechanism of the EHS and its vicinities, and try to discuss the continental internal dynamic mechanism reflected by the current tectonic deformation in this area. The following results are obtained: Under the background of continuous subduction of Indian plate beneath Eurasian plate at an angle of NE20°, the most remarkable crustal motion is the clockwise rotation of southeastern and eastern Tibetan Plateau around the Eastern Himalayan Syntaxis. High tectonic strain rates in this area concentrate around the vicinity of Himalayan main boundary thrust, Sagaing fault, Xianshuihe-Xiaojiang fault and other large strike-slip faults, as well as the ring areas of the Eastern Himalayan Syntaxis, whereas there are no significant strain anomalies in the area across Jiali fault and Red River fault. Moreover, the maximum superficial compressive strain rates of 151.8×10-9 a-1 is in the northeast areas of Assam sub-block, which indicates that the core position moves from the Namjagbarwa area towards its southeast to the northeast of Assam, where the Himalayan main boundary thrust successively meets the inferred northern Sagaing thrust. It is considered according to the research that, owing to the hyper-oblique subduction of the Indian plate, the Eastern Himalayan Syntaxis region is mainly characterized by crustal thickening, and the flow of the lower crust and upper mantle with viscoplastic characteristics in the deep drives the overall movement of the overlying brittle upper crust block.