藏北安多地区侏罗纪地壳深熔作用与花岗岩成因机制研究
DOI:
作者:
作者单位:

1.中国海洋大学海洋地球科学学院;2.中国海洋大学海底科学与探测技术教育部重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)(编号41922018,41872050,41572053),国家重点基础研究发展计划(973计划)(编号2017YFC0601401),中国博士后科学基金(编号2022M722969)


Jurassic anatexis and granite genesis in Amdo area,Northern Tibet
Author:
Affiliation:

1.College of Marine Geosciences, Ocean University of China;2.Key lab of Submarine Geosciences and Prospecting Techniques MOE China,Ocean University of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    内容:西藏安多微陆块作为班公湖-怒江缝合带内的微陆块,记录了新元古-中生代以来的多期构造热事件,是研究深熔-花岗岩成因的理想对象,为了揭示大洋板块俯冲-折返过程中流体/熔体活动特征,本文结合全岩地球化学、系统的岩石学、锆石内部结构、锆石U-Pb年龄和Lu-Hf同位素进行了综合研究。岩相学观察结果显示混合片麻岩保留了关键野外宏观和微观深熔证据:(1)浅色体和暗色体相间呈层状分布,伴随微弱的褶皱变形;(2)石英的边界和钾长石的边界有细小颗粒的集合体,钾长石边部到中间也有不规则的结晶现象;(3)斜长石和钾长石边界显示出高度尖状、细长或楔形的石英颗粒和长石颗粒,沿着石英和长石颗粒边界有“串珠”结构。阴极发光图像和锆石U-Pb定年结果表明混合岩化片麻岩的锆石具有明显的核-边结构,锆石核部具有明显的震荡环带特征,给出的岩浆结晶年龄约为~510Ma,边部具有较窄的变质或深熔边。浅色体中锆石具有明显的核-边结构,CL图像显示锆石核部呈高度发光且具有振荡环带,可能是继承岩浆锆石,锆石边部呈现灰暗色到暗色的弱分带或无分带等深熔特征,核部年龄约为510~470Ma代表原岩结晶年龄,边部年龄为~184Ma指示熔体结晶年龄。花岗闪长岩的锆石具有典型的岩浆锆石特征,岩浆结晶年龄为~180Ma,与浅色体的年龄在误差范围内一致。浅色体中深熔成因锆石的εHf(184)值为-5.0~-3.3,花岗闪长岩岩浆锆石的εHf(180)值为-10.97~-5.21。全岩地球化学分析表明Fe2O3T、MgO、TiO2、CaO和REEs几乎完全保留在暗色体中,而大量的LILEs(Rb、Sr、K、Ba)则到浅色体中,根据全岩REE特征以及是否携带残留角闪石将浅色体分为Ⅰ型浅色体和Ⅱ型浅色体,其中Ⅰ型浅色体总稀土含量较高,负Eu异常;Ⅱ型浅色体总稀土含量较低,正Eu异常;花岗闪长岩稀土(REE)分布趋势与Ⅰ型浅色一致,富集大离子亲石元素(Rb、Ba、Th),负Eu异常;综合区域已有资料以及本文获得的野外关系、显微结构、年代学和地球化学结果,表明安多微陆块的黑云斜长片麻岩在俯冲折返阶段发生了黑云母参与的水致部分熔融作用,混合岩中的I型浅色体经大规模汇聚、迁移演化和侵位形成了同期花岗闪长岩体。

    Abstract:

    The Ando microland massif in Tibet, as a microland massif within the Bangong Lake-Nujiang River suture zone, has recorded multiple phases of tectonothermal events since the Neoproterozoic-Mesozoic era, and is an ideal object for the study of the genesis of the deep-melt-granitoids. In order to reveal the characteristics of the fluid/melt activities during the subduction-folding process of the oceanic plate, a comprehensive study was carried out herein, combining the whole-rock geochemistry, systematic petrology, zircon internal structure, zircon U-Pb ages, and Lu-Hf isotopes. A comprehensive study was carried out. Petrographic observations show that the mixed gneiss retains key field macro- and microscopic evidence of deep melting: (1) light and dark bodies are interbedded in a laminated distribution, accompanied by weak fold deformation; (2) there are assemblages of fine grains at the boundaries of quartz and potash feldspar, and irregular crystallization of potash feldspars from edge to middle; (3) plagioclase feldspar and potash feldspar boundaries show highly acicular, elongate, or wedge-shaped quartz and feldspar grains, with "bead" structures along the quartz and feldspar grain boundaries. The cathodoluminescence images and zircon U-Pb dating results show that the zircons in the mixed-rock gneisses have a distinct core-rim structure, with a distinctive oscillatory ring in the zircon cores, which gives a magma crystallization age of ~510 Ma, and narrow metamorphic or deep-melting rims in the rims. The zircon in the light-colored body has obvious core-rim structure, and the CL image shows that the zircon core is highly luminous with oscillatory ring band, which may be inherited magmatic zircon, and the zircon rims show deep melting features such as weakly fractional bands of grayish to dark color or no fractional bands, and the age of the core is ~510-470 Ma representing the age of protolithic crystallization, and the rims have an age of ~184 Ma indicating the age of melt crystallization. The zircons of the granodiorite have typical magmatic zircon characteristics, with a magmatic crystallization age of ~180 Ma, which agrees with the age of the light-colored body within the error range. The εHf(184) values of deep-melting diagenetic zircons in the light-colored body range from -5.0 to -3.3, while those of granodiorite magmatic zircons range from -10.97 to -5.21. Whole-rock geochemical analyses indicate that Fe2O3T, MgO, TiO2, CaO, and REEs are almost completely retained in the dark-colored body, while a large number of LILEs (Rb, Sr, K, Ba ) are to the light-colored body. The light-colored body is divided into Type I light-colored body and Type II light-colored body according to the whole-rock REE characteristics and whether it carries residual hornblende, in which Type I light-colored body has higher total rare earth content and negative Eu anomaly, while Type II light-colored body has lower total rare earth content and positive Eu anomaly; the trend of the distribution of rare earths (REEs) of granodiorite eclogites is consistent with that of Type I light-colored with an enrichment of the large ionic proximate elements (Rb, Ba, and Th) and a Negative Eu anomalies; the synthesis of the existing regional data and the field relationship, microstructure, chronology and geochemical results obtained in this paper indicate that the black cloud plagioclase gneisses of the Ando microterrane occurred in the subduction and folding stage of the hydrous partial melting involving black mica, and that the type I light-colored bodies in the mixed rocks formed the contemporaneous granodiorite bodies through large-scale convergence, migratory evolution and encroachment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-16
  • 最后修改日期:2023-09-15
  • 录用日期:2023-09-18
  • 在线发布日期:
  • 出版日期: