Abstract:Angola has experienced several tectonic cycles in the Precambrian period, among which the paleoproterozoic Eburnean cycle is the most important one, which has important geological significance for understanding its tectonic evolution process. Due to the lack of accurate chronological and geochemical data, the formation age of magmatic rocks in the central Eburnean area is still not supported by effective data, which is also one of the main reasons for the unclear genesis and tectonic evolution of rocks. In this paper, the Quibala porphyritic granites in Eburnean area in the central Angolan Shield are studied in petrology, chronology and geochemistry. LA-ICP-MS zircon U-Pb chronology shows that the Quibala porphyritic granite was formed from 1987 to 1956Ma, which represents the main activity time of Eburnean movement in the Angora Shield. The geochemical study shows that porphyritic granite has high silicon, alkali, iron content, Ba, Sr, P, Ti elements deficit and Rb, Th, K, Hf elements enrichment, the total content of rare earth elements is high, indicating that it is A-type granite. In addition, the xenoliths of ancient basement such as gneiss, diorite inclusions containing potassium feldspar phenocrysts, and the ratios of Rb/Nb, Th/U, Nb/Ta and other characteristic elements indicate that the xenoliths may be the result of the mixing of crust-mantle materials. The NB-Y-3Ga and Rb- (Y+Nb) diagrams show that the granite porphyry was formed in the paleoproterozoic post-collision extensional environment.