粤西圆珠顶斑岩型铜钼矿床成矿地质特征及 成岩成矿作用年代学研究

陈富文1),李华芹1),王登红2),肖光铭3),杨晓君1),高亦文4),梅玉萍1),林秀广4)

1) 国土资源部武汉地质矿产研究所「原官昌地质矿产研究所」,武汉,430223;

2) 中国地质科学院矿产资源研究所,北京,100037; 3) 广东省地质调查院,

广州,510080;4) 广东省地质勘查局 719 地质大队,广东肇庆,526020

内容提要:园珠顶大型铜钼矿床位于大瑶山隆起北缘、粤桂交界的广东省封开县境内。铜钼矿化普遍发育于 斑岩体及其外接触带中,岩体内部见星点状黄铁矿、黄铜矿、辉钼矿分布,但铜钼工业矿体主要产于岩体外接触带 中,并围绕着岩体具椭圆形环状矿化分带特征,由内向外依次为钼矿化带→铜钼矿化带→铜矿化带,成矿作用与二 长花岗斑岩有关。运用高分辨率和高灵敏度离子探针和 Re-Os 分析技术,作者分别对矿区二长花岗斑岩和矿体进 行了年代学研究,获得二长花岗斑岩的锆石 U-Pb SHRIMP 年龄为 154±2Ma(95%可信度,MSWD=0.75,N= 11),铜钼矿体辉钼矿 Re-Os 等时线年龄为 155±5Ma(95%可信度,MSWD=0.31,N=8),表明圆珠顶斑岩型铜钼 区的成岩成矿作用都发生于中侏罗世晚期,成矿作用发生于华南拉张大地构造背景下。

关键词:圆珠顶;斑岩型铜钼矿床;二长花岗斑岩;锆石 SHRIMP U-Pb 定年;辉钼矿 Re-Os 定年

圆珠顶铜钼矿床位于粤西封开县境内,是广东省 地质矿产勘查局 719 地质大队于 2005 年发现并勘查 的大型铜钼矿床,其详查报告已通过国土资源部资源 储量评审中心的评审验收。根据目前勘查程度,矿体 延伸深度超过 300 m,矿床矿石总量 5.7 亿吨;金属量 铜 98 万吨、钼 26 万吨、伴生银 478 吨,潜在经济价值 超过 5000 亿元。目前,该矿床的开采已列入广东省 有色金属产业调整和振兴规划重点项目,将建成我国 仅次于德兴铜矿的第二大露天铜钼矿。

该矿床勘查程度较高,但研究工作明显滞后。 虽然钟立峰等(2010)利用辉钼矿 Re-Os 测年技术 获得了该矿床高精度的成矿年龄,但对矿床地质特 征及成矿地质背景的研究有待深入,特别是对成矿 斑岩体的年代学研究尚属空白。最近,本文作者对 矿区矿化二长花岗斑岩和铜钼矿体分别进行了锆石 U-Pb SHRIMP 和辉钼矿 Re-Os 年代学研究,旨在 探讨该矿床成岩成矿作用时限,为进一步总结钦杭 (州)成矿带成矿规律,指导找矿勘查提供科学依据。

1 矿区地质特征

矿区位于钦杭成矿带西南段,六堡复式背斜南

翼的次级褶皱园珠顶背斜中。

矿区出露地层主要为寒武系水口群上亚群中组 第一岩性段(∈sh²⁻¹)和第二岩性段(∈sh²⁻²),两者 为整合接触,均在轻微区域变质的基础上于斑岩体 周边发生接触变质和热液充填交代等叠加变质作 用。其中,第一岩性段分布于矿区中部的园珠顶背 斜轴部,主要由中厚一厚层状变质细粒石英砂岩、变 质石英粉砂岩和薄一中厚层状绢云黏土板岩组成; 第二岩性段分布于矿区的北部和南部,为园珠顶背 斜的两翼地层,岩性与第一段相似,仅变质石英粉砂 岩、绢云黏土板岩相对较多,厚度增大。

矿区的基本构造格架为东西向园珠顶背斜,为 六堡复式背斜次级的褶皱,轴向近东西,轴部为园珠 顶斑岩体,北翼倾向北,南翼倾向南,倾角 40°~70°。 园珠顶背斜两翼地层网脉(裂隙)构造非常发育,控 制着铜、钼矿化的范围和矿体赋存部位。矿区内仅 见4条小断裂破碎带,对矿体影响极小。

成矿斑岩体沿园珠顶背斜轴部侵入,呈小岩株 产出(图 1),分布面积共 0.193 km²。岩石呈灰白 色一肉红色,斑状结构,岩性均为二长花岗斑岩,斑 晶有斜长石(25% ±)、钾长石(5% ±)、石英(5%

注:本文为"十一五"国家科技支撑计划项目《南岭地区有色一贵金属成矿潜力及综合探测技术示范研究》(2006BAB01B03)、国土资源大调查项目"中南地区矿产资源潜力评价"(1212010813034)和"地质调查工作部署研究(武汉地质调查中心)"(1212010660203)共同资助的成果。 收稿日期:2011-02-20;改回日期:2012-02-15;责任编辑:刘恋,黄敏。

作者简介:陈富文,男,1963年生。研究员,主要从事岩浆作用与成矿学研究。Email:yccfuwen@sina.com。

图 1 粤西园珠顶斑岩铜钼矿床地质略图

Fig. 1 Sketch map of the Yuanzhuding porphyry deposit, west Guangdong

1-寒武系水口群上亚群中组第一岩性段;2-寒武系水口群上亚群中组第二岩性段;3-二长花岗斑岩;4-铜矿体水平投影分布范围;5-铜钼矿体水平投影分布范围;6-铜钼矿体水平投影分布范围;7-勘探线及编号;I-桂中凹陷;Ⅱ-大瑶山隆起;Ⅲ-钦防海槽;Ⅳ-云开隆起;V-粤中凹陷

1—The first section of middle sub-group, Cambrian Shuikou Group; 2—the second section of middle sub-group, Cambrian Shuikou Group; 3 adamellite-porphyry; 4—horizontal projection domain of the copper mineralization; 5—horizontal projection domain of the coppermolybdenum mineralization; 6—horizontal projection domain of the molybdenum mineralization; 7—exploration line and number; I—Central-Guangxi depression; []—Dayaoshan uplift; []]—Qinzhou-Fangcheng trough; []V—Yunkai uplift; V—Central-Guangdong depression

±)、黑云母(3%±);基质主要有长石(以酸性斜长石为主,钾长石次之,25%±)、石英(25%±)、黑云母(≪5%);副矿物含量甚微,主要有黄铁矿、黄铜

矿、辉钼矿、磷灰石、锆石等;岩石蚀变较普遍,斜长 石常绢云母化和绿帘石化,钾长石常高岭石化,黑云 母绿泥石化、绿帘石化(钟立峰等,2010)。

图 2 粤西园珠顶斑岩铜钼矿床 108 勘探线剖面图

Fig. 2 Section map of No. 108 exploration line of the Yuanzhuding porphyry deposit, west Guangdong 1—钻孔及编号;2—二长花岗斑岩;3—钼工业矿体;4—低品位钼矿体;5—铜工业矿体;6—低品位铜矿体
1—Borehol and number;2—adamellite-porphyry;3—industrial molybdenum bodies;4—low grade molybdenum bodies;
5—industrial copper bodies;6—low-grade copper bodies

矿床类型为斑岩型铜钼矿床。矿体主要分布在 斑岩体外接触带的变质砂岩中,平面上呈环形围绕 着岩体分布;工业矿体分布在岩体外接触带约0~ 400m范围内,矿体与近矿围岩、工业矿体与低品位 矿体之间无明显界线,铜、钼矿体为渐变过渡关系; 根据分析结果圈定矿体,矿体内低品位矿段呈夹层 状,与工业矿段相互平行大致呈水平分布。根据有 用组分的主次,勘查部门分别圈出了铜、钼矿体,约 岩体接触带向外,200m范围内主要为钼矿体,约 100~150m地段矿体厚度最大,品位最高;200~ 400m范围内主要为铜矿体,约 300~400m地段矿 体厚度最大,品位最高(图 2,图 3)。

矿化蚀变主要有硅化、云英岩化、黄铁矿化及碳酸盐化等。蚀变分带不十分明显,为渐变过渡关系, 常相互叠加。由岩体中心向外,可大致分为以下几 个蚀变组合带。①岩体中心:硅化(石英脉)+绢云 母、绿泥石化+碳酸盐化(按蚀变强弱顺序排列,下 同)。②岩体边部:硅化(石英脉)+绢云母、绿泥石 化+碳酸盐化+钾化。③主接触带:硅化(石英脉) +角岩化+绢云母、绿泥石化+碳酸盐化+钾化。 ④外接触带(岩体外 100m):角岩化+绢云母、绿泥 石化+硅化(石英脉)+碳酸盐化+黄铁矿化+钾 化。⑤外接触带(岩体外 100~250m):硅化(石英 脉)+钾化+角岩化+碳酸盐化+绢云母、绿泥石化 +黄铁矿化。⑥外接触带(岩体外 250~350m):硅 化(石英脉、交代)+黄铁矿化+碳酸盐化+钾化。 ⑦外接触带(岩体外 250~450m): 硅化(交代)+黄 铁矿化+碳酸盐化(图 4)。

2 同位素年龄测定

2.1 样品采集

花岗斑岩体的 SHRIMP U-Pb 定年样品采自 矿区 ZK-23-120 钻孔,孔深为 236~241m 之间的岩 芯(YZ-1);辉钼矿 Re-Os 等时线定年样品采自矿区 ZK12-112 钻孔,孔深为 284~313m 之间的辉钼矿 化矿石(YZ-3);分别从上述的两组样品中分选出锆 石和辉钼矿,作为 SHRIMP U-Pb 和 Re-Os 法的测 定对象。

2.2 测试方法

锆石 SHRIMP U-Pb 测年是目前公认的高精 度定年方法,在确定岩体定位时代方面起到不可替 代的作用,在国内外已得到广泛应用(Compston et al.,1984,1992; Williams et al.,1987,1998);而辉 钼矿 Re-Os 法定年是直接测定成矿时代的有效方 法,也是目前精度最高的方法之一,国内外已有众多 成功范例(Stein et al.,1998,2001; Barra et al., 2002;毛景文等,2004;聂凤军等,2007)。

本次锆石 SHRIMP U-Pb 测年在北京离子探 针中心完成,采用的仪器是高分辨率和高灵敏度的 离子探针 SHRIMP(II)。按常规方法分选出晶形 完好、无裂纹和包体少的锆石颗粒与标准锆石样品 (91500)一起粘结在环氧树脂靶上,并对样品靶上的

图 3 粤西园珠顶斑岩铜钼矿床 0 勘探线剖面图

Fig. 3 Section map of No. 0 exploration line of the Yuanzhuding porphyry deposit, west Guangdong 1—钻孔及编号;2—二长花岗斑岩;3—钼工业矿体;4—低品位钼矿体;5—铜工业矿体;6—低品位铜矿体
1—Borehol and number;2—adamellite-porphyry;3—industrial molybdenum bodies;4—low grade molybdenum bodies;
5—industrial copper bodies;6—low-grade copper bodies

空间位置		固 岩								
蚀变类型	石体	1	100m	200m	300m	400m				
硅化(石英脉)) —								
硅化(交代)	(1		_			
热变质(角岩化)						I				
绢云母、绿泥石化	(rr						
钾化)- -								
碳酸盐化						,				
辉钼矿化)		_						
黄铜矿化	(·	_			
黄铁矿化)					_			

图 4 粤西园珠顶斑岩铜钼矿床蚀变与矿化关系图 Fig. 4 Sketch map showing relationships between alterations and mineralization of the Yuanzhuding porphyry deposit, west Guangdong

待测锆石进行透射光、反射光和阴极发光图像分析, 据此选定锆石微区原位分析的靶位。对测定结果用 SHRIMP 定年标准物质对 U-Th 和 Pb 含量及年龄 做了校正,普通铅根据实测的²⁰⁴ Pb 进行校正。详细 测试流程见宋彪等(2002)和简平等(2003)的报道。 辉钼矿 Re-Os 年龄测试在中国地质科学院国家地 质实验测试中心 Re-Os 同位素实验室完成。样品 采自矿区 ZK12-112 钻孔孔深为 284~313m 之间的 辉钼矿化矿石,较富矿石样品中辉钼矿可直接将其 刮下来,贫矿石样品首先粉碎过筛,再从100目以上 的样品中用重力等方法分选出辉钼矿,在双目镜下 经过仔细挑选后,再用玛瑙钵研磨至200目待测,详 细测试流程详见前人(杜安道等,1993,1994;姚军明 等,2007)有关报道。

图 5 粤西圆珠顶矿区花岗斑岩体锆石阴极发光图像 (CL)及测定点位和相应的²⁰⁶ Pb/²³⁸ U 视年龄

Fig. 5 CL images and ²⁰⁶ Pb/²³⁸ U apparent ages of zircons from adamellite-porphyry in the Yuanzhuding Cu-Mo orefield, west Guangdong

2.3 测定结果

2.3.1 二长花岗斑岩定年结果

圆珠顶铜钼矿区花岗斑岩体的锆石 U-Pb 年龄 测定结果列于表 1。由表 1 可以看出,所有测定点

2012 年

位的 Th/U 值均大于 0.3,在阴极发光图像中,被测 锆石内部均显示较清晰的岩浆结晶环带结构(图 5),表明为典型的岩浆结晶锆石,在 14 个测点中,除 测点 yz-1.1,yz-1-2-1 和 yz-1-11-1 偏离谐和线外,其 余的 11 个点在²⁰⁶ Pb/²³⁸ U-²⁰⁷ Pb/²³⁵ U 谐和图上的投 影点均在谐和线上(图 6),这一特征也暗示被测锆 石未遭受到明显的后期热事件的影响。在 14 个测 点中,除去 yz-1-1 测点²⁰⁶ Pb/²³⁸ U 比值年龄 (148Ma)、测点 yz-1-2-1 ²⁰⁶ Pb/²³⁸ U 比值年龄 (145Ma)和 yz1-11-1²⁰⁶ Pb/²³⁸ U 比值年龄(705Ma) 明显较其他 11 个测点的年龄偏低和偏高,在计算加 权平均值年龄时被删除外,其余 11 个测点的 206 Pb/²³⁸ U 比值年龄时被删除外,其余 11 个测点的 体形成的时间。

2.3.2 铜钼矿体定年结果

辉钼矿的 Re-Os 同位素分析结果列于表 2 中, 从表 2 中可以看出,辉钼矿中 Re 的含量从 120503 ×10⁻⁶~176852×10⁻⁶,¹⁸⁷ Re 含量从 75739×10⁻⁶ ~111155×10⁻⁶,¹⁸⁷ Os 的含量为 196.2×10⁻⁶~ 285.9×10⁻⁶。模式年龄为 154.7~155.9Ma,在测 定误差范围内完全一致,用 Isoplot 软件计算所测 8 个点的等时线年龄和模式年龄的加权平均值(图 7) 分别为 155±5Ma(95%可信度,MSWD=0.31,N=8)和 155±2Ma(95%可信度,MSWD=0.049,N=8)。两者在测定误差范围内完全一致,据此表明, 等时线年龄和模式年龄是精确可靠的,该年龄可直 接代表圆珠顶斑岩型铜钼矿床形成的时间,即该矿

表 1 粤西圆珠顶斑岩型铜钼区含矿二长花岗斑岩锆石 SHRIMP U-Pb 年龄测定结果 Table 1 Zircon SHRIMP U-Pb data of adamellite-porphyry from the Yuanzhuding Cu-Mo ore district, west Guangdong

点号	²⁰⁶ Pbc	U	Th	²³² Th	²⁰⁶ Pb *	b^{*} $206 \text{ Pb}/238 \text{ U}$		²⁰⁷ Pb *	±%	²⁰⁷ Pb *	±%	²⁰⁶ Pb *	±%
	(%)	$(\times 10^{-3})$	(×10°)	/ 230 U	(×10 °)	A	ge	/200 Pb*		/ 200 U		/ 230 U	
YZ-1-1.1	1.19	520	211	0.42	10.5	148	\pm 4	0.0493	7.3	0.158	7.7	0.02328	2.4
YZ-1-2.1	1.61	329	125	0.39	6.53	145	± 4	0.0506	9.0	0.158	9.3	0.02272	2.4
YZ-1-3.1	1.13	653	280	0.44	13.8	155	± 4	0.0458	5.5	0.1540	6.0	0.02436	2.4
YZ-1-4.1	0.71	595	224	0.39	12.7	158	± 4	0.0488	4.7	0.1664	5.2	0.02475	2.3
YZ-1-5.1	1.10	529	256	0.50	11.4	158	\pm 4	0.0468	6.7	0.160	7.1	0.02477	2.4
YZ-1-6.1	1.01	741	1032	1.44	16.0	158	\pm 4	0.0463	6.0	0.159	6.4	0.02486	2.3
YZ-1-7.1	0.17	1517	1164	0.79	30.7	150	\pm 3	0.04950	2.0	0.1605	3.0	0.02351	2.3
YZ-1-8.1	0.59	1200	822	0.71	25.3	155	± 4	0.0480	3.1	0.1611	3.8	0.02435	2.3
YZ-1-9.1	0.36	665	254	0.39	13.7	152	\pm 3	0.0499	3.0	0.1642	3.8	0.02385	2.3
YZ-1-9a	0.45	562	117	0.21	11.8	156	± 4	0.0494	3.8	0.1663	4.4	0.02443	2.3
YZ-1-10.1	0.28	794	507	0.66	16.2	151	\pm 3	0.0496	2.3	0.1623	3.2	0.02372	2.3
YZ-1-11.1	0.07	844	337	0.41	83.8	705	± 15	0.06885	0.83	1.096	2.4	0.1155	2.2
YZ-1-12.1	0.79	828	418	0.52	17.5	155	\pm 4	0.0509	4.5	0.1707	5.0	0.02435	2.3
YZ-1-13.1	0.64	1182	648	0.57	24.2	151	± 3	0.0485	3.6	0.1581	4.3	0.02365	2.3

注:误差为 1σ; Pb。和 Pb*分别代表普通铅和放射成因铅,应用实测的204 Pb 对普通铅进行了校正。

表 2 广东园珠顶矿区中辉钼矿 Re-Os 同位素数据

Table 2	Re-Os analytical	results of mol	vbdenites from	the Yuanzhuding	Cu-Mo depos	sit in Guangdong
			2			

原样名 样	送香(m)	${ m Re}(imes 10^{-6})$		C 普 Os(×10 ⁻⁶)		$^{187} m Re(imes 10^{-6})$		$^{187}\mathrm{Os}(imes 10^{-6})$		模式年龄 Ma	
	件里(g)	测定值	不确定度	测定值	不确定度	测定值	不确定度	测定值	不确定度	测定值	不确定度
YZ-3-1a	0.0630	174553	1780	0.041	0.014	109710	1119	285.4	2.3	155.9	2.4
YZ-3-1a	0.05029	176852	1927	0.053	0.118	111155	1211	285.9	2.4	154.2	2.5
YZ-3-1b	0.05089	148747	1517	0.053	0.118	93490	954	242.6	2.1	155.5	2.4
YZ-3-1c	0.05151	133029	1231	0.052	0.059	83611	774	216.3	1.8	155.1	2.3
YZ-3-2	0.05096	123879	947	0.053	0.119	77860	595	201.3	1.8	155.0	2.2
YZ-3-3	0.02621	120503	885	0.052	0.116	75739	556	196.2	1.7	155.3	2.2
YZ-3-4	0.05045	158634	1442	0.054	0.060	99705	906	257.5	2.2	154.8	2.3
YZ-3-5	0.00648	132580	1198	0.050	0.168	83329	753	215.1	1.9	154.7	2.3

注:表2中 Re、Os含量的不确定度包括样品和稀释剂称量误差、稀释剂标定误差、质谱测量分馏校正误差、被测样品同位素比值测定误差 (置信水平 95%)。模式年龄计算采用的¹⁸⁷ Re 衰变常数 λ=1.666×10⁻¹¹a⁻¹(Smoliar et al., 1966)。

图 6 粤西圆珠顶矿区二长花岗斑岩体锆石 SHRIMP U-Pb 年龄谐和图(a)及 U-Pb 年龄加权平均值图(b) Fig. 6 Zircon SHRIMP U-Pb concordia diagram(a) and weighted average age of adamellite-porphyry(b) from the Yuanzhuding Cu-Mo orefield, west Guangdong

图 7 广东园珠顶矿区辉钼矿 Re-Os 等时线图(a)和模式年龄加权平均值图(b) Fig. 7 Molybdenite Re-Os isochron diagram(a) and weighted average age(b) of Yuanzhuding porphyry Cu-Mo deposit, west Guangdong

床形成于中侏罗世晚期。

3 讨论

(1)大瑶山地区斑岩体的时代存在明显争议。 前人多认为大瑶山地区与成矿作用关系密切的斑岩 体的形成时代主要有加里东晚期(371~395Ma)和 燕山晚期(66~164Ma),并认为加里东晚期的斑岩 体和成矿作用受大瑶山东西向主断裂带以及北西向 和北东向断裂复合部位控制,而燕山晚期的斑岩体 及成矿作用受北西向构造带及其派生断裂所控制 (陈业清等,1992; 康先济等,1993⁰; 朱桂田等, 2006;陈富文等,2008)。同一斑岩体的年龄差异很 大,其主要原因可能是研究者选择的定年方法对样 品的适用性、样品的代表性及早期仪器测定精度及 实验条件等诸多因素所致。例如,全岩 K-Ar 法测 年很难获得燕山期前花岗岩类的精确定年数据,传 统的锆石 U-Pb 定年法也无法排除源区继承锆石对 年龄测定结果的影响。本次高精度花岗斑岩及成矿 作用同位素年龄数据的获得至少证明大瑶山地区与 斑岩体有关的燕山晚期成矿作用是客观存在的,矿 化作用不仅有金银矿化,而且还有铜钼矿化。

(2)钟立峰等(2010)认为,早侏罗世具高浮力块

体的 Izanagi 板块俯冲到粤西-桂东地区而改变了俯 冲角度,导致俯冲板片撕裂而开天窗或岩石圈加厚 而发生拆沉,在该地区出现一系列 NE 向壳幔相互 作用强烈的伸展带,引发了软流圈物质在中晚侏罗 世沿着 NE 向深断裂与 EW 向断裂的交汇部位上 涌,形成了园珠项斑岩型矿床;蔡明海等(2001)对地 质构造特征、花岗岩岩石学的综合研究表明,粤西-桂东地区中生代岩石圈经历了碰撞挤压(224~ 265Ma)、挤压到伸展构造转换(154~163Ma)及强 烈拉张伸展(80~120Ma)3个阶段的构造演化过 程,成矿作用受控于燕山早期岩石圈的构造转换及 燕山晚期的拉张伸展。圆珠顶花岗斑岩的锆石 SHRIMP U-Pb 和辉钼矿的 Re-Os 等时线年龄揭示 了该矿床的形成动力学背景应为燕山期岩石圈伸展 减薄阶段,这与临近的南岭地区大规模成矿作用出 现于中晚侏罗世(165~150Ma)的大地构造背景是 一致的:古太平洋板块向华南大陆俯冲,在大陆边缘 弧后地区出现一系列 NE 向壳幔相互作用强烈的伸 展带,这些伸展带与东西向古断裂的交汇部位是岩 浆活动和成矿作用中心区(毛景文等,2007)。因此, 作者认为该矿床并非形成于挤压构造背景,而是形 成于陆内伸展环境,这与东环太平洋斑岩型铜矿形 成于板块会聚体制的成矿背景是明显不同的。

4 结论

(1)笔者在前人研究的基础上首次采用高灵敏 度锆石 SHRIMP 定年技术对园珠顶铜钼矿区二长 花岗斑岩进行了年代学研究。11 个锆石点数据计 算的²⁰⁶ Pb/²³⁸ U 年龄统计权重平均值为 154±2Ma (95%可信度, MSWD=0.75, N=11),由于被测锆 石的阴极发光图像具有清晰的振荡环带结构,应为 岩浆结晶锆石,其年龄值代表该矿区矿化二长花岗 斑岩形成的时间。

(2)本次研究采用辉钼矿 Re-Os 定年方法对铜 钼矿体进行了直接成矿时代测定,模式年龄为 154. 7~155.9Ma,在测定误差范围完全一致,用 Isoplot 软件计算所测 8 个点的等时线年龄和模式年龄的加 权平均值分别为 155±5Ma(95%可信度,MSWD= 0.31,N=8)和 155±2Ma(95%可信度,MSWD= 0.049,N=8)。两者在测定误差范围内一致,也与 钟立峰等(2010)的 Re-Os 定年结果(155.6±3.4 Ma,MSWD= 0.85,N=11)在测定误差范围内一 致。不同矿化部位、不同实验室测定获得的同位素 年龄互相印证,进一步说明用辉钼矿 Re-Os 定年法 直接测定矿床的形成时间是精确可靠的。

(3)基于二长花岗斑岩自身普遍矿化的特点,且 含矿斑岩体锆石 SHRIMP U-Pb 年龄(154±2Ma) 与矿石辉钼矿 Re-Os 年龄(155±5Ma)在测定误差 范围内一致,由此表明,斑岩体岩浆活动与成矿作用 在时间上具有明显的一致性,笔者认为前人将该矿 床的成因类型归为斑岩型铜钼矿是合理的,其成岩 成矿作用均发生于中侏罗世晚期。

注 释

● 康先济,杨世义.广西大瑶山地区斑岩体的地质特征及斑岩型铜 钼矿找矿前景研究报告.地矿部"八五"科技攻关项目研究成果报 告,编号:85-01-007-03-4-1:1~112.

参考文献

- 蔡明海,彭松柏,孟祥金,刘国庆.2001.桂东-粤西地区中生代成矿规 律及动力学机制探讨.华南地质与矿产,(2):35~42.
- 陈业清.1992.广西园珠顶次火山热液型铜钼矿地质特征及成矿条 件探讨.贵金属地质,1(2):153~157.
- 杜安道,何红蓼,殷宁万,邹晓秋,孙亚利,孙德忠,陈少珍,屈文俊. 1993. Re-Os 法测定辉钼矿矿化年龄.科学通报,(6):574~ 575.
- 杜安道,何红蓼,殷宁万,邹晓秋,孙亚利,孙德忠,陈少珍,屈文俊. 1994.辉钼矿的铼-锇同位素地质年龄测定方法研究,地质学报, 64(2):339~347.
- 简平,刘敦一,孙晓猛. 2003. 滇川西部金沙江石炭纪蛇绿岩 SHRIMP测年:古特提斯洋盆演化的同位素年代学制约。地质 学报,77(2):217~228.
- 毛景文, Stein H J, 杜安道, 周涛发, 梅燕雄, 李永峰, 藏文栓, 李进文. 2004. 长江中下游地区铜金(钼)矿 Re-Os 年龄测定及其对成矿 作用的指示. 地质学报, 78(1): 121~131.
- 毛景文,谢桂青,郭春丽,陈毓川.2007. 南岭地区大规模钨锡多金属 成矿作用:成矿时限及地球动力学背景.岩石学报,23(10):2329 ~2338.
- 宋彪,张玉海,万渝生.2002. 锆石 SHRIMP 样品靶制作,年龄测定及 有关现象讨论.地质论评,48(Sup):26~30.
- 姚军明,华仁民,屈文俊,戚华文,林锦富,杜安道.2007.湘南黄沙坪 铅锌钨钼多金属矿床辉钼矿的 Re-Os 同位素定年及其意义。 中国科学 D辑(地球科学),37(4):471~477.
- 钟立峰,夏斌,刘立文,李杰,林秀,徐力,林良庄.2010. 粤两-桂东成 矿带园珠顶铜钼矿床成矿年代学及其地质意义. 矿床地质,29 (3):395~404.
- 朱桂田,朱文风.2006.广西大瑶山古里脑和圆珠顶斑岩型铜钼岩浆 期后断裂成矿作用及找矿意义.矿产与地质,20(3):214~218.
- Barra F, Ruiz J, Mathur R, Titley S. 2002. A Re-Os study of sulfide minerals from the Bagdad porphyry Cu-Mo deposit, northern Arizona, USA. Mineralium Deposita, 38(5): 585~596.

- Compston W, Williams I S, Kirschvink J L, Zhang Z, Ma G. 1992. Zircon U-Pb ages for the Early Cambrian time scale. Journal of the Geological Society, London, 149: 171~184.
- Compston W, Williams I S, Meyer C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high massresolution ion microprobe. Journal of Geophysical Research, 89 (Supplement): 325~534.
- Smoliar M I, Walker R J, Morgan J W. 1996. Re-Os ages of Group IIA, IIIA, IVA, and IVB iron meteorites. Science, 271: 1099~ 1102.
- Stein H J, Markey R J, Morgan J W, Hannah J L, Schersten A. 2001. The remarkable Re-Os chronometer in molybdenite: How and why it works. Terra Nova, 13: 479~486.

Stein H J, Sundblad K, Markey R J, Morgan J W, Motuza G. 1998.

Re-Os ages for Archean molybdenite and pyrite, Kuittila-Kivisuo, Finland and Proterozoic molybdenite, Kabeliai, Lithuania: Testing the chronometer in a metamorphic and metasomatic setting. Mineralium Deposita, 33(4): 329~345.

- Williams I S, Claesson S. 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides: Iion microprobe zircon U-Th-Pb. Contributions to Mineralogy and Petrology, 97:205~217.
- Williams I S. 1998. U-Th-Pb geochronology by ion Microprobe. In: McKibben M A, Shanks IW C, Ridley W I, eds. Applications of Microanalytical Techniques to Understanding Mineraling Processes. Reviews in Economic Geology, 7:1~35.

Geological Characteristics and Diagenetic—Metallogenic Chorological Study of the Yuanzhuding Porphyry Cu-Mo Deposit, Western Guangdong Province

CHEN Fuwen¹⁾, LI Huaqin¹⁾, WANG Dehong²⁾, XIAO Guangming³⁾, YANG Xiaojun¹⁾, GAO Yiwen⁴⁾, MEI Yuping¹⁾, LIN Xiuguang⁴⁾

Wuhan [Former Yichang] Institute of Geology and Mineral Resources, MLR, Wuhan, 430223;
 Institute of Mineral Resources, Chinese Academy of Geosciences, Beijing, 100037;
 Guangdong Geological Survey, Guangzhou, 510080;
 No. 719 Geological Party, Guangdong Bureau of Geological Exploration, Zhaoqing, Guangdong, 526020

Abstract

The large Yuanzhuding porphyry deposit is Located in the northern margin of the Dayaoshan uplift and in Fengkai County of Guangdong-Guangxi boundary. The Cu-Mo mineralization exists commonly within the Yuanzhuding adamellite porphyry and its outside contact zone. Asteroidal pyrite, chalcopyrite and molybdenite can be viewed within the porphyry body, but industrial Cu-Mo orebodies lay mainly in the outside contact zone and is characterized by ellipsoids mineralization zoning: molybdenum mineralization \rightarrow copper-molybdenum mineralization \rightarrow copper mineralization from the porphyry body outwards, which shows that the Cu-Mo mineralization is closely related to the adamellite-porphyry. The authors carried out chronological study of the adamellite-porphyry and orebodies using high decision SHRIMP zircon U-Pb and Re-Os dating technique, yielding 154 ± 2 Ma of zircon U-Pb age (95% confidence, MSWD=0.75, N=11) and 155 ± 5 Ma of molybdenite Re-Os isochron age (95% confidence, MSWD=0.31, N=8), respectively. These data show that diagenesis and metallogeny of the Yuanzhuding Cu-Mo orefield happened during the late Middle Jurassic period while mineralization occurred in the extensional tectonic setting of South China.

Key words: Yuanzhuding; porphyry Cu-Pb Deposit; adamellite-porphyry; Zircon SHRIMP U-Pb dating; molybdenite Re-Os dating