西秦岭伯阳—元龙地区中泥盆统变砂岩碎屑锆石 U-Pb 年龄和地球化学特征及地质意义

李亦飞¹⁾,罗金海¹⁾,徐欢¹⁾,尤佳^{1,2)},陈冠旭¹⁾ 1)大陆动力学国家重点实验室,西北大学地质学系,西安,710069; 2)中国石油长庆油田分公司第二采油厂,甘肃庆阳,745100

内容提要:对北秦岭—祁连结合部位伯阳—元龙地区—套变砂岩进行的碎屑锆石 LA-ICP-MS U-Pb 同位素测年 结果表明,变砂岩碎屑锆石年龄的时间跨度极大(407~2483 Ma),有多个测点的年龄数据落入早泥盆世范围,说明变 砂岩的沉积时代不应早于早泥盆世,结合区域地质资料将其形成时代确定为中泥盆世。变砂岩的主要物源是西秦 岭造山带和扬子克拉通。结合地球化学特征推断变砂岩主体形成于活动大陆边缘构造背景,石英砂岩原岩中含有 偏基性的火山物质,经过高绿片岩相—低角闪岩相变质作用形成富含黑云母和角闪石的变砂岩。本文的研究结果 表明,中泥盆世天水—武山板块缝合带已经基本缝合,但未完全缝合,一方面导致源自扬子克拉通的碎屑物可以到 达西秦岭北带,另一方面在西秦岭天水—武山构造带的部分区域可能仍有残余洋盆俯冲活动。

关键词:西秦岭;中泥盆统;变砂岩;地球化学;碎屑锆石 U-Pb 年代学

西秦岭地区位于祁连造山带与秦岭造山带的结 合部位,在北秦岭—祁连结合区和天水—武山构造 带(商丹构造带西延部分)北侧伯阳镇保安村—元 龙镇红星村一带出露一套高绿片岩相—低角闪岩相 变砂岩,前人对这套变砂岩的形成时代有不同看法, 对其地质意义的研究目前还很薄弱。1:20万香泉 幅矿产图●(1968)根据区域地层对比将保安村南变 砂岩地层标定为中泥盆统 F 岩组(D,1),而红星村 南这套地层被标定为石炭—二叠纪闪长岩(δ_{4}^{2-3})。 1:25 万天水市幅地质图^❷(2003)把红星村南的闪 长岩重新厘定为变砂岩,并根据区域地层对比将保 安村南变砂岩和红星村南变砂岩均标定为奥陶系草 滩沟群张家庄组(Ozh^b),但是伯阳镇和元龙镇的这 套变砂岩与奥陶系草滩沟群生物化石采集剖面相距 甚远,所以这套变砂岩的形成时代仍值得进一步研 究。晚古生代以来西秦岭造山带北缘的构造和古地 理格局均发生了重大变革,对不同时期和不同环境 沉积地层形成时代和沉积环境的研究对该地区大陆 动力学研究具有十分重要的科学意义(王元元等, 2014)。伯阳—元龙一带变砂岩的形成时代和形成 环境对天水—武山构造带板块拼接作用的时限有良

好的示踪作用,可以为西秦岭及其邻区大陆动力学研究提供重要信息。本文对这套变砂岩进行地球化学和碎屑锆石 U-Pb 年代学研究,研究其形成时代和形成环境,探讨其地质意义。

1 区域地质背景

天水—武山板块缝合带是商丹缝合带在西秦岭 的西延部分(裴先治等,2007;李王晔,2008),新 阳—元龙大型韧性走滑剪切构造带(区域上可称为 天水—宝鸡走滑剪切带)为西秦岭与祁连造山带的 边界(丁仨平等,2009)。本文变砂岩采样区位于天 水—武山缝合带以北,新阳—元龙韧性剪切带以南 的北秦岭造山带,采样点分别位于伯阳镇保安村以 南和元龙镇红星村以南(图1)。保安村南剖面的变 砂岩地层厚度巨大,褶皱变形比较强烈。在剖面西 北端有正长斑岩和钾长花岗斑岩侵入体,1:20万 香泉幅矿产图(1968)根据岩石变质较浅和区域岩 浆侵入旋回将其划归燕山期花岗斑岩(γπ₅^{2-d}),但 是该正长斑岩与丁守卓等(2015)在伯阳镇北部识 别出来的晚三叠世正长斑岩极其相似,而且二者又 相距不远,我们认为该正长斑岩和钾长花岗斑岩侵

注:本文为大陆动力学国家重点实验室科技部专项(编号:201210133)的成果。

收稿日期:2018-01-12;改回日期:2018-07-23;责任编辑:刘志强。Doi: 10.16509/j.georeview.2018.05.004

作者简介:李亦飞,女,1992年生。硕士研究生,构造地质学和岩石地球化学专业。Email:707107057@qq.com。通讯作者:罗金海,男, 1967年生,博士,教授,主要从事区域构造研究。Email: luojh@nwu.edu.cn。

图 1 西秦岭北部及邻区构造简图(据丁仨平等,2009;裴先治等,2009;胥晓春等,2014 修改)

4km

区域性断裂

Regional faults

采样点

Sampling positions

Fig. 1 Sketch map showing tectonic position of study area and adjacent area

(modified from Ding Saping et al.,2009&;Pei Xianzhi et al.,2009&;Xu Xiaochun et al.,2014&)

Kz—新生界;K₁—下白垩统;T₃X—上三叠统小河子陆相酸性火山岩系;D₃D—上泥盆统大草滩群;D₂S—中泥盆统舒家坝群;D₂^f—中泥盆 统未分;D₂—中泥盆统碎屑岩;S₁HL—下志留统葫芦河群;S₁H—下志留统红土堡群变基性火山岩;St—志留系太阳寺岩组;O₃C—上奥陶 统草滩沟群;O₂₋₃C—中—上奥陶统陈家河群变质中—酸性火山岩;OL—奥陶系李子园群; \mathbf{C} —O₁g—寒武纪—早奥陶世关子镇蛇绿岩; Nhm—南华系木其滩岩组;Pt₂K—中元古界宽坪岩群;Pt₁L—古元古界陇山岩群;Pt₁Q—古元古界秦岭岩群; $\zeta \pi T_3$ —晚三叠世石英正长斑 岩

Kz—Cenozoic; K₁—Lower Cretaceous; T₃*X*—Upper Triassic Xiaohezi continental acid volcanic rocks; D₃*D*—Upper Devonian Dacaotan Group; D₂ *S*—Middle Devonian Shujiaba Group; D₂^f—undivided Middle Devonian; D₂—Middle Devonian clastic rock; S₁*HL*—Lower Silurian Huluhe Group; S₁ *H*—Meta-basic volcanic rocks of Lower Silurian Hongtubao Formation; *St*—Silurian Taiyangsi Rock Formation; O₃*C*—Upper Ordovician Caotangou Group; O₂₋₃*C*—Middle—Upper Ordovician Chenjiahe Group; O*L*—Ordovician Liziyuan Group; C—O₁*g*—Cambrian—Early Ordovician Guanzizhen ophiolite; Nh*m*—Muqitan Rock Formation of the Nanhua Sysytem; Pt₂*K*—Mesoproterozoic Kuanping Group; Pt₁*L*—Paleoproterozoic Longshan Group; Pt₁*Q*—Paleoproterozoic Qinling Group; $\zeta \pi T_3$ —Late Triassic quartz orthophyre

K

 Pt_1Q

Fig. 2 Route geological profile across the meta-sandstone in South of the Baoan Village

人体很可能形成于晚三叠世(图 2)。红星村南剖面 变砂岩露头周围被新生界覆盖,在冲沟中断续出露。 红星村南这套变砂地层在 1:20 万香泉幅矿产图中 被标定为石炭—二叠纪闪长岩(δ4²⁻³),长安大学地 质调查研究院(2003)在填绘 1:25 万天水市幅地 质图时对其进行了实测地质剖面研究,重新将其厘 定为变砂岩,并根据区域地层对比将红星村南变砂 岩和保安村南变砂岩均划归奥陶系草滩沟群张家庄 组(Ozh^b)。我们在考察过程中观察到红星村南部 多个施工隧道开采出来的碎石仍是变砂岩,表明在 红星村南的新生界覆盖区之下仍然广泛发育变砂岩 地层。

2 分析方法和样品特征

2.1 分析方法

用于 U-Pb 定年的锆石由河北省廊坊市区域地 质调查研究所挑选。锆石阴极发光(CL)照相和 LA-ICP-MS 测年在西北大学大陆动力学国家重点实 验室完成。通过加载于扫描电镜上的英国 Gatan 公 司的 Mono CL3+型阴极荧光探头获得锆石的阴极发 光(CL)图像。锆石的 U-Pb 同位素组成利用四极杆 ICP-MS Elan6100DRC 进行测定。激光剥蚀系统为 德国 MicroLas 公司生产的 GeoLas200M,分析采用激 光束斑直径为30 µm,激光脉冲为10 Hz,能量为32 ~36 mJ,同位素组成分析以标准锆石 91500 作为外 标,国际标样 NIST610 作为内标,采用 Glitter4.0 进 行数据处理。在进行年龄数据分析时,对于<1000 Ma 的测点,采用²⁰⁶ Pb/²³⁸ U 年龄值;对于>1000 Ma 的测点,则采用²⁰⁷ Pb/²⁰⁶ Pb 年龄值。同时,结合²⁰⁶ Pb/238U 计算碎屑锆石各测点数据的谐和性, 剔除206 Pb/238U年龄相对于207Pb/206Pb年龄偏差较大的测 点数据。

主、微量元素地球化学分析在西北大学大陆动

力学国家重点实验室完成。其中,全岩的主量元素 分析在日本理学 RIX2100 XRF 仪上测定,元素分析 误差小于 5%。微量和稀土元素分析在美国 Perkin Elmer 公司 Elan 6100DRC 型电感耦合等离子质谱 仪(ICP-MS)上进行,分析精度误差一般小于 5%。

2.2 样品特征

两地变砂岩样品外观相似(图 3a、b),手标本可 见石英,偶尔可见面状排列的黑云母。镜下观察可 见保安村南样品主要矿物为石英(>65%)和黑云母 (约 30%),副矿物可见角闪石和磷灰石,矿物有弱 定向(样号 15BY24,图 3c、d)。而红星村南样品主 要矿物为长石(50%~60%)、角闪石(15%~20%)和 石英(15%~20%),并有少量黑云母(样号 15BY36, 图 3e、f)。镜下可见石英经历了变质重结晶,且含 量很高,这种情况下一般不会出现镁铁质矿物,但是 岩石中普遍含有角闪石和黑云母等镁铁质矿物,说 明原岩中应该有一些偏基性的火山物质,这些偏基 性的火山物质与成熟度较高的石英砂岩一起变质后 形成黑云母和角闪石等变质成因暗色矿物。两个采 样点变砂岩的矿物组合差异可能反映两地变砂岩的 物源有一定程度的差异。

2.3 锆石特征

保安村南部样品中的碎屑锆石粒径 60~150 μm,红星村南部样品中的碎屑锆石粒径 30~70 μm, 两地变砂岩中部分碎屑锆石具有环带结构,反映岩 浆锆石的特征。少数锆石存在较明显的变质加大 边,Th/U 值主要在 0.02~1.80,说明锆石具有多种 来源。部分锆石具有磨圆特征,反映碎屑锆石的特 点(图 4a、b)。

3 西秦岭伯阳—元龙地区变砂岩的 碎屑锆石 U-Pb 年代学特征

对保安村南部和红星村南部变砂岩样品中挑选

图 3 保安村南变砂岩野外照片(a,b)和显微照片(c,d),红星村南变砂岩显微照片(e,f) Fig. 3 Field photographs(a, b) and microphotographs(c, d) of south Baoan meta-sandstone; and microphotographs(e, f) of south Hongxing meta-sandstones (c),(e)一单偏光图像,(d),(f)—正交偏光图像;Afs—碱性长石,Amp—角闪石,Ap—磷灰石,Bt—黑云母,Qtz—石英

(c) and (e)-Orthogonal polarization, (d) and (f)-plane-polarized light; Afs-Alkalifeldspar,

Amp-amphibole, Ap-apatite, Bt-biotite, Qtz-quartz

图 4 保安村南(a)和红星村南(b)变砂岩碎屑锆石阴极发光图像(圆圈表示测点位置,圆圈中的数字表示测点号)

Fig. 4 CL images of detrital zircons of the meta-sandstones (The circles represent the positions of the dating dots,

and the numbers in the circles represent the serial numbers of the dating sots)

出来的碎屑锆石分别选取 72 粒、62 粒锆石进行了 U-Pb LA-ICP-MS 测年,剔除掉谐和度偏差较大的测 点数据,分别有 65 个和 41 个有效测点(表 1,表 2)。 有效测点均位于²⁰⁷Pb/²³⁵U—²⁰⁶Pb/²³⁸U 谐和图的谐 和线上,或在其附近分布(图 5),表明锆石的放射性 成因 Pb 无明显丢失,测年数据具有较高的可信度。 保安村南和红星村南变砂岩获得的碎屑锆石 U-Pb 年龄的时间跨度都很大,分别是 407~2427 Ma 和 396~2483 Ma,但是二者的年龄区间基本相似。保 安村南部和红星村南部变砂岩样品中获得的碎屑锆 石最小年龄分别是 407 Ma、396 Ma(早泥盆世),且 位于早泥盆世(419~393 Ma)范围内的有效测点分 别有 2 个。

两个变砂岩样品中碎屑锆石的 U-Pb 年龄较为 连续,分别在 407~563 Ma 和 396~587 Ma 有最大峰 值;在 905~1094 Ma 和 926~1085 Ma 有一个次级峰 值;在 637~847 Ma 和 626~824 Ma 有较小的几个峰 值(图5)。

4 西秦岭保安村南和红星村南 变砂岩地球化学特征

两地区样品主量、微量和稀土元素组成基本相 似(表3,表4)。表3中15BY23样品的烧失量偏大 (7.49%),很可能是由于受到后期蚀变作用较强所 致,本文在使用该样品的主量元素分析数据时已进 行了相应的烧失量校正。

4.1 主量元素地球化学特征

保安村南样品和红星村南样品 SiO₂含量分别 是 62.30%~69.68%和 57.50%~63.51%; Al₂O₃含 量较高,分别是 13.20%~17.27%和 15.89%~ 19.23%; FeO^T含量较低,分别为 4.74%~7.24%和 5.82%~8.58%; MgO 分别为 2.47%~3.44%和 2.49%~3.73%; CaO 含量低,分别为 2.23%~ 9.05%和 1.96%~5.26%; TiO₂含量分别为 0.66%~ 表1保安村南变砂岩(样号15BY25)LA-ICP-MS 锆石 U-Pb 同位素分析结果 Table 1 LA-ICP-MS zircon U-Pb isotopic analysis data of south Baoan meta-sandstone

	元素含	量(×1(0_e)				同位書	素比值				<u>III</u>	引位素年龄(A	Aa)		
测点号	*	Ē	-	Th/U	$n(^{207}\mathrm{Pb})/$	$n(^{206}{\rm Pb})$	$n(^{207}{\rm Pb})$	/n(²³⁵ U)	$n(^{206}\mathrm{Pb})$	$/n(^{238}U)$	$n(^{207}{ m Pb})$	/n(²⁰⁶ Pb)	$n(^{207}{\rm Pb})/$	'n(²³⁵ U)	$n(^{206}{\rm Pb})_{,}$	$n(^{238}U)$
	q	u	5	1	测值	lσ	测值	1σ	测值	lσ	测值	1σ	测值	lσ	测值	lσ
01	97	300	471	0.64	0.0751	0.0018	1.6079	0.0287	0.1553	0.0019	1071	18	973	11	930	11
02	21	216	212	1.02	0.0562	0.0016	0.5571	0.0131	0.0719	0.000	459	30	450	6	448	5
03	19	92	87	1.06	0.0690	0.0020	1.4863	0.0342	0.1562	0.0020	899	27	925	14	936	11
04	55	49	211	0.23	0.0870	0.0019	2.5495	0.0372	0.2126	0.0025	1359	13	1286	11	1243	13
05	27	113	151	0.75	0.0671	0.0017	1.2406	0.0242	0.1341	0.0017	841	21	819	11	811	6
90	151 2	219 1	076	0.20	0.0678	0.0014	1.0857	0.0141	0.1161	0.0013	863	12	746	7	708	8
07	62	111	245	0.45	0.0826	0.0020	2.4127	0.0436	0.2119	0.0026	1259	18	1246	13	1239	14
08	153	72	439	0.16	0.1134	0.0021	4.3979	0.0627	0.2814	0.0032	1854	34	1712	12	1598	16
60	68	85	327	0.26	0.0722	0.0018	1.5972	0.0359	0.1604	0.0020	992	53	696	14	959	11
10	25	75	163	0.46	0.0669	0.0020	1.1204	0.0275	0.1214	0.0016	836	30	763	13	739	6
11	11	136	382	0.36	0.0708	0.0016	1.6422	0.0240	0.1683	0.0020	951	14	987	6	1003	11
12	23	53	113	0.46	0.0709	0.0019	1.6250	0.0335	0.1663	0.0021	953	23	980	13	992	12
13	17	127	149	0.86	0.0586	0.0041	0.5610	0.0378	0.0694	0.0011	553	156	452	25	433	7
14	23	112	133	0.84	0.0670	0.0021	1.1660	0.0302	0.1263	0.0017	836	32	785	14	767	10
15	62	776	616	1.26	0.0548	0.0028	0.5086	0.0255	0.0674	0.0009	402	119	417	17	420	5
16	18	49	85	0.57	0.0727	0.0026	1.6277	0.0539	0.1625	0.0022	1004	74	981	21	971	12
17	149	265	406	0.65	0.1008	0.0021	3.9658	0.0508	0.2852	0.0033	1639	11	1627	10	1618	16
18	313	919 1	1386	0.66	0.0772	0.0016	1.8060	0.0228	0.1697	0.0019	1126	11	1048	8	101	11
20	72	108	197	0.55	0.1010	0.0022	3.9283	0.0538	0.2822	0.0033	1642	11	1620	11	1602	17
21	65	159	337	0.47	0.0733	0.0018	1.5684	0.0270	0.1552	0.0019	1022	17	958	11	930	10
22	11	89	92	0.98	0.0682	0.0023	0.8108	0.0236	0.0862	0.0012	876	38	603	13	533	7
23	51	124	264	0.47	0.0706	0.0020	1.5476	0.0401	0.1591	0.0020	945	60	950	16	952	11
24	64	108	114	0.95	0.1498	0.0041	7.9445	0.1885	0.3845	0.0052	2344	48	2225	21	2097	24
25	35	291	403	0.72	0.0574	0.0017	0.5235	0.0127	0.0661	0.0008	508	32	427	8	413	5
26	32	194	314	0.62	0.0586	0.0016	0.6283	0.0136	0.0777	0.0010	553	27	495	8	483	9
27	63	224	206	1.09	0.0837	0.0019	2.4412	0.0373	0.2116	0.0025	1285	14	1255	11	1237	13
28	101	154	632	0.24	0.0667	0.0016	1.2711	0.0271	0.1381	0.0016	830	52	833	12	834	6
29	165	159 1	1042	0.15	0.0694	0.0014	1.3442	0.0218	0.1405	0.0016	911	42	865	6	847	6
30	133	54	712	0.08	0.0760	0.0015	1.7636	0.0275	0.1684	0.0019	1094	40	1032	10	1003	11
32	149	38	716	0.05	0.0838	0.0015	2.1159	0.0289	0.1831	0.0020	1289	35	1154	6	1084	11
33	122 4	436	328	1.33	0.0957	0.0021	3.2504	0.0436	0.2463	0.0028	1542	11	1469	10	1419	15
34	63	62	222	0.28	0.0854	0.0020	3.0009	0.0484	0.2548	0.0031	1325	15	1408	12	1463	16
35	119	81	558	0.14	0.0788	0.0016	2.0361	0.0327	0.1873	0.0021	1168	40	1128	11	1107	12

论评

质

	「「素合	皆量(×1	(9_0				同位素	此值]位素年龄(N	Ia)		
测点号	Ě	Ē	-	U/dT	$n(^{207}\mathrm{Pb})/$	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	'n(²³⁵ U)	n(²⁰⁶ Pb)/	/n(²³⁸ U)	$n(^{207}\mathrm{Pb})/$	n(²⁰⁶ Pb)	$n(^{207}{\rm Pb})/$	$n(^{235}U)$	n(²⁰⁶ Pb)/	$n(^{238}U)$
	d J	Ч	5		测值	lσ	测值	lσ	测值	1σ	测值	lσ	测值	lσ	测值	lσ
38	109	188	597	0.31	0.0716	0.0018	1.4887	0.0319	0.1508	0.0018	975	51	926	13	905	10
39	16	117	150	0.77	0.0605	0.0022	0.6540	0.0209	0.0785	0.0011	622	45	511	13	487	7
40	78	81	182	0.44	0.1175	0.0027	5.1778	0.0834	0.3201	0.0040	1918	13	1849	14	1790	19
41	95	75	634	0.12	0.0677	0.0015	1.2335	0.0222	0.1321	0.0016	860	46	816	10	800	6
42	54	171	443	0.39	0.0621	0.0017	0.8887	0.0193	0.1039	0.0013	679	26	646	10	637	8
43	158	89	477	0.19	0.1015	0.0020	3.6462	0.0577	0.2605	0.0031	1652	38	1560	13	1493	16
45	109	282	481	0.59	0.0739	0.0017	1.7557	0.0291	0.1724	0.0021	1040	16	1029	11	1025	11
46	59	787	661	1.19	0.0614	0.0016	0.5517	0.0110	0.0652	0.0008	654	23	446	7	407	5
47	Ξ	89	105	0.85	0.0598	0.0027	0.6592	0.0266	0.0800	0.0012	597	61	514	16	496	7
48	256	468	1259	0.37	0.0739	0.0017	1.7898	0.0358	0.1756	0.0021	1039	48	1042	13	1043	12
49	182	453	716	0.63	0.0802	0.0023	2.1140	0.0542	0.1913	0.0024	1201	58	1153	18	1128	13
50	99	334	265	1.26	0.0690	0.0032	1.4388	0.0645	0.1512	0.0021	899	66	905	27	908	12
51	22	172	208	0.83	0.0595	0.0020	0.6313	0.0178	0.0770	0.0010	586	38	497	11	478	9
52	116	380	327	1.16	0.0908	0.0021	2.8944	0.0455	0.2315	0.0028	1442	14	1380	12	1342	15
53	23	43	75	0.57	0.0893	0.0025	3.0408	0.0686	0.2473	0.0034	1410	23	1418	17	1424	17
54	28	217	297	0.73	0.0588	0.0019	0.5591	0.0157	0.0690	0.0009	560	38	451	10	430	9
55	42	389	302	1.29	0.0610	0.0019	0.7664	0.0193	0.0912	0.0012	639	32	578	11	563	7
56	61	209	205	1.02	0.0810	0.0022	2.4832	0.0526	0.2225	0.0029	1222	22	1267	15	1295	15
57	12	84	132	0.64	0.0563	0.0023	0.5594	0.0206	0.0722	0.0011	463	56	451	13	449	9
58	120	393	476	0.83	0.0758	0.0017	1.9206	0.0300	0.1838	0.0022	1090	15	1088	10	1088	12
59	114	484	516	0.94	0.0718	0.0018	1.5737	0.0282	0.1590	0.0020	981	18	960	11	951	11
60	115	500	435	1.15	0.0756	0.0017	1.8583	0.0303	0.1783	0.0022	1086	15	1066	11	1058	12
61	40	114	139	0.82	0.0838	0.0023	2.5689	0.0565	0.2224	0.0030	1288	23	1292	16	1295	16
64	450	425	948	0.45	0.1573	0.0032	9.0382	0.1084	0.4169	0.0049	2427	6	2342	11	2246	22
65	28	96	164	0.58	0.0710	0.0020	1.3651	0.0318	0.1396	0.0018	956	27	874	14	843	10
99	114	295	361	0.82	0.0896	0.0019	2.8164	0.0411	0.2282	0.0028	1416	13	1360	11	1325	14
67	13	101	123	0.83	0.0662	0.0026	0.7583	0.0270	0.0831	0.0012	812	49	573	16	515	7
68	39	357	368	0.97	0.0552	0.0019	0.5385	0.0161	0.0708	0.0010	419	43	437	11	441	9
69	26	302	248	1.22	0.0562	0.0023	0.5592	0.0206	0.0723	0.0011	459	55	451	13	450	9
70	103	62	281	0.22	0.1043	0.0022	4.1404	0.0696	0.2878	0.0035	1703	39	1662	14	1631	18
71	34	139	145	0.96	0.0705	0.0021	1.5932	0.0392	0.1640	0.0022	943	29	968	15	979	12
72	49	165	240	0.69	0.0679	0.0019	1.5207	0.0336	0.1626	0.0021	864	25	939	14	971	12
注:表中 Pb*表	這示放射	h成因 F	\mathbf{b}_{\circ}													

表 2 红星村南变砂岩(样品号 I5BY37)LA-ICP-MS 锆石 U-Pb 同位素分析结果 Table 2 LA-ICP-MS zircon U-Pb isotopic analysis data of south Hongxing meta-sandstone

1094

	元素含	昰(×10 ⁻⁶				同位言	素比值					同位素年	:龄(Ma)		
测点号	*	Ē	Th/U	$n(^{207}{\rm Pb})$	$/n(^{206}{\rm Pb})$	$n(^{207}{ m Pb})$	$/n(^{235}U)$	n(²⁰⁶ Pb),	$/n(^{238} U)$	$n(^{207}{ m Pb})_{\prime}$	$n(^{206}\mathrm{Pb})$	$n(^{207}{ m Pb})_{\prime}$	$n(^{235}U)$	$n(^{206}\mathrm{Pb})$	$n(^{238}\mathrm{U})$
	d T D			测值	lσ	测值	lσ	测值	lσ	测值	1σ	测值	lσ	测值	lσ
01	459 8	350 335	35 0.25	0.0753	0.0015	1.2281	0.0200	0.1182	0.0014	1077	41	813	6	720	8
02	134	235 20	04 1.15	0.1626	0.0043	9.6341	0.2219	0.4297	0.0058	2483	46	2400	21	2304	26
03	42	503 35	51 1.72	0.0673	0.0019	0.7077	0.0162	0.0762	0.0010	848	27	543	10	474	9
04	80	126 41	14 0.30	0.0732	0.0017	1.6742	0.0250	0.1659	0.0019	1020	14	666	6	989	11
05	52 (591 41	1.67	0.0680	0.0020	0.7457	0.0171	0.0795	0.0010	868	27	566	10	493	9
07	328	79 105	39 0.08	0.1138	0.0019	4.3997	0.0558	0.2804	0.0032	1861	31	1712	10	1593	16
08	130 2	223 125	52 0.18	0.0611	0.0014	0.7850	0.0118	0.0932	0.0011	642	15	588	7	574	9
60	424	121 137	76 0.09	0.1122	0.0019	4.2898	0.0531	0.2773	0.0031	1836	31	1691	10	1578	16
12	419	83 324	t4 0.03	0.0704	0.0012	1.1545	0.0141	0.1190	0.0013	939	35	<i>6LL</i>	7	725	8
13	123	582 65	56 0.89	0.0698	0.0026	1.2997	0.0450	0.1350	0.0017	924	78	846	20	816	10
14	139	713 82	29 0.86	0.0731	0.0016	1.2945	0.0184	0.1285	0.0015	1016	13	843	8	<i>611</i>	6
15	21	216 21	17 0.99	0.0646	0.0021	0.6302	0.0175	0.0708	0.0010	761	36	496	11	441	9
16	208	52 141	19 0.04	0.0709	0.0013	1.3323	0.0195	0.1364	0.0016	953	39	860	8	824	6
19	111	72 55	59 0.13	0.0790	0.0016	1.9302	0.0330	0.1772	0.0021	1172	42	1092	11	1052	11
20	338	154 257	77 0.06	0.0712	0.0013	1.2023	0.0173	0.1224	0.0014	964	38	802	8	744	8
21	223 18	328 235	53 0.78	0.0594	0.0021	0.5901	0.0197	0.0720	0.0009	583	62	471	13	448	5
22	91 19	973 41	10 4.81	0.0635	0.0018	0.7488	0.0166	0.0856	0.0011	723	26	568	10	529	9
24	341	216 115	56 0.07	0.0616	0.0013	0.6264	0.0111	0.0738	0.0009	658	46	494	7	459	S
25	336 2	264 385	33 0.43	0.0704	0.0026	1.2570	0.0436	0.1295	0.0018	941	78	827	20	785	10
26	60	32 26	51 0.12	0.0896	0.0020	2.5572	0.0472	0.2070	0.0025	1417	43	1288	13	1213	13
27	52	78 25	36 0.03	0.0750	0.0014	1.5725	0.0234	0.1521	0.0016	1068	38	959	6	913	6
28	10	5 06	98 0.04	0.0609	0.0020	0.5775	0.0174	0.0687	0.0009	637	72	463	11	428	5
29	79	98 42	28 0.03	0.0767	0.0014	1.7614	0.0247	0.1665	0.0018	1114	36	1031	6	993	10
32	151	224 45	54 0.03	0.1045	0.0016	3.7717	0.0433	0.2618	0.0027	1705	29	1587	6	1499	14
33	492	286 177	75 0.03	0.0931	0.0014	3.0496	0.0324	0.2377	0.0024	1489	28	1420	8	1375	13
34	169	206 97	77 0.03	0.0734	0.0011	1.4540	0.0164	0.1437	0.0015	1025	31	912	7	866	8
36	109	157 77	70 0.02	0.0714	0.0012	1.1420	0.0155	0.1159	0.0012	970	36	773	7	707	L
38	68	182 33	36 0.03	0.0781	0.0013	1.7189	0.0233	0.1597	0.0017	1149	35	1016	6	955	6
39	179	52 26	92 0.03	0.0866	0.0013	2.3541	0.0266	0.1971	0.0020	1353	30	1229	8	1159	11
43	24	187 27	71 0.03	0.0659	0.0015	0.5958	0.0121	0.0656	0.0007	802	50	475	8	410	4
44	272	67 231	14 0.02	0.0675	0.0010	0.9646	0.0108	0.1037	0.0011	852	32	686	9	636	9
45	25	16 20	9 0.02	0.0651	0.0013	0.9161	0.0153	0.1020	0.0011	<i>6LT</i>	43	099	8	626	9

	元素	含量(×	10^6)				同位素	ぎ比値					同位素年	龄(Ma)		
测点号	ž	Ē	=	Th/U	$n(^{207}{ m Pb})/$	'n(²⁰⁶ Pb)	$n(^{207} \text{Pb}),$	$n(^{235}U)$	n(²⁰⁶ Pb),	$/n(^{238}U)$	$n(^{207}{ m Pb})/$	$n(^{206}{\rm Pb})$	$n(^{207}{ m Pb})_{\prime}$	'n(²³⁵ U)	$n(^{206}{\rm Pb})_{/}$	$n(^{238}U)$
	ЧD	II	-		测值	lσ	测值	lσ	测值	lσ	测值	lσ	测值	lσ	测值	1σ
48	74	90	596	0.03	0.0704	0.0012	1.0254	0.0137	0.1057	0.0011	940	35	717	7	647	6
50	142	36	705	0.03	0.0859	0.0014	2.229	0.0274	0.1878	0.0019	1335	32	1188	6	1109	11
51	117	152	376	0.03	0.1056	0.0017	3.7206	0.0468	0.2556	0.0027	1724	31	1576	10	1467	14
53	61	184	296	0.03	0.0747	0.0013	1.6149	0.0232	0.1569	0.0017	1059	37	976	6	939	6
54	33	192	389	0.03	0.0557	0.0014	0.5328	0.0097	0.0694	0.0008	440	22	434	9	432	5
55	30	199	363	0.03	0.0661	0.0016	0.5784	0.0125	0.0634	0.0007	811	52	463	8	396	4
58	321	176	1045	0.03	0.1050	0.0016	3.6237	0.0393	0.2504	0.0026	1714	28	1555	6	1440	13
59	48	94	247	0.03	0.0725	0.0013	1.5441	0.0215	0.1546	0.0016	666	36	948	6	926	6
60	42	LL	352	0.02	0.0635	0.0012	0.8349	0.0135	0.0954	0.0010	724	42	616	7	587	9
注:表中 Pb*	表示放	射成因	Pb_{\circ}													

0.88%和0.72%~0.88%;K₂O含量为1.50%~3.78%和1.27%~ 3.78%;Na₂O含量分别为2.34%~3.75%和2.16%~4.38%, K₂O/Na₂O分别为0.43~1.53和0.29~1.63;岩石全碱K₂O+Na₂O

分别为4.31%~6.25%和5.50%~6.09%。 PAAS(澳大利亚后太古宙平均页岩)被认为是上地壳平均化 学成分(Taylor et al,1985),对比伯阳—元龙地区样品经校正后的 平均化学成分得到:①伯阳镇保安村南样品 SiO₂平均值是 64.61%,略高于 PAAS(62.80%),反映石英或富含 SiO₂的矿物含 量略高,岩石的成分成熟度较高;Al₂O₃/SiO₂值介于 0.20~0.28 (平均值 0.24),整体上没有明显变化,表明其未经过强烈的搬 运、蚀变和再造作用;②元龙镇红星村南样品 SiO₂平均值是 61.91%,略低于 PAAS(62.80%),反映石英或富含 SiO₂的矿物含 量略低,岩石的成分成熟度较低。Al₂O₃/SiO₂值为 0.25~0.33 (平均值 0.28),整体上没有明显变化,表明其未经过强烈的搬 运、蚀变和再造作用。对比保安村南样品,红星村南变砂岩样品 的 TiO₂、Al₂O₃、^TFe₂O₃和 MgO 等不稳定的成分也更多(红星村南 样品分别是 0.78%、17.54%、7.53%和 3.06%,保安村南样品分 别是 0.76%、15.31%、7.00%和 2.90%)。

对比研究区与不同构造背景砂岩参数(表5)发现,研究区变 砂岩样品的各项参数介于活动大陆边缘和大陆岛弧之间。

变砂岩样品在 K₂O/Na₂O—SiO₂图解中落入活动大陆边缘 (ACM)和大洋岛弧(ARC)区域(图 6a),在 SiO₂/Al₂O₃—K₂O/ Na₂O 图解中落入活动大陆边缘(ACM)和长英质侵入岩碎屑的进 化岛弧环境中(图 6b)。图 6显示在活动大陆边缘投点均较为集 中。

4.2 稀土元素和微量元素特征

在稀土元素配分图(图 7a)中,两个样品均表现为轻稀土富 集明显(La_N/Yb_N分别为 6.04~8.11 和 6.65~8.81), δEu 负异常 明显(分别为 0.66~0.85 和 0.67~0.86), 无 Ce 异常(分别为 (43.51~68.64)×10⁻⁶、(44.42~81.72)×10⁻⁶), 呈现出与 Bhatia (1985)提出的大陆岛弧—活动陆缘杂砂岩相近的特征。微量元 素蛛网图(图 7b)反映样品相对富集 Rb、Ba、Th、U、K 等大离子亲 石元素和 Pb,相对亏损 Nb、Ta、Ti 及重稀土,该组成与岛弧或活 动大陆边缘岩石相近。变砂岩样品在 La—Th—Sc(图 8a)和 Th—Sc—Zr/10 图解(图 8b)中集中落于大陆岛弧区域。综上所 述,推断变砂岩主体形成于活动大陆边缘构造背景。

本文的变砂岩样品在 Th/Sc—Zr/Sc 图解(图9)中位于成分演 化线(玄武岩—长英质岩石—花岗岩)附近,说明沉积碎屑物具有 近源性特点,样品未经历沉积再循环,主要受源区岩石成分控制。

5 讨论

5.1 变砂岩形成时代

保安村南部和红星村南部变砂岩均位于天水—武山构造带 北侧,最小年龄分别是407 Ma和 396 Ma,并且位于早泥盆世(419

表 3 保安村南变砂岩的主量元素(%)和微量元素(×10⁻⁶)分析结果

Table 3 Major element(%) and trace elements(×10⁻⁶) of meta-sandstone in south Baoan Village

Sample	15BY14	15BY15	15BY16	15BY17	15BY18	15BY19	15BY20	15BY21	15BY22	15BY23
SiO ₂	64.56	60.38	66.45	61.19	60.44	59.78	62.10	63.75	66.08	58.06
TiO ₂	0.71	0.84	0.68	0.72	0.78	0.83	0.83	0.71	0.73	0.61
Al_2O_3	13.98	15.94	13.43	15.78	16.33	16.57	15.80	15.12	14.06	12.22
$\mathrm{Fe_2O_3}^\mathrm{T}$	6.10	7.13	5.02	7.58	7.56	7.72	6.92	6.30	6.09	6.68
MnO	0.08	0.07	0.07	0.08	0.08	0.08	0.07	0.04	0.06	0.13
MgO	3.01	2.93	2.49	3.33	3.23	2.65	2.79	3.03	2.52	2.29
CaO	4.25	2.28	2.85	2.44	2.73	2.14	2.64	2.58	2.78	8.37
Na ₂ O	3.09	3.57	2.23	2.84	3.21	2.37	2.95	3.41	2.77	2.22
K ₂ O	1.79	1.83	1.98	2.76	2.43	3.63	2.42	1.45	2.00	1.77
P_2O_5	0.15	0.21	0.16	0.15	0.18	0.19	0.18	0.16	0.18	0.14
烧失	2.12	4.43	4.58	2.68	3.06	4.29	3.46	3.18	2.28	7.49
总量	99.84	99.61	99.94	99.55	100.03	100.25	100.16	99.73	99.55	99.98
Li	23.64	41.08	22.98	30.80	30.64	27.94	29.77	29.61	27.05	24.67
Be	1.24	1.41	1.08	1.35	1.80	1.71	1.76	1.39	1.71	1.52
Sc	18.84	19.00	17.57	21.54	21.93	22.87	22.17	18.70	19.08	16.44
v	132.23	152.23	117.07	138.47	145.01	149.48	141.09	125.68	125.74	109.53
Cr	98.53	79.54	86.88	66.56	71.16	74.42	71.71	80.34	92.00	71.68
Co	31.17	31.95	24.23	26.27	28.83	21.79	26.32	23.95	30.44	19.02
Ni	27.42	36.76	28.04	33.25	39.07	34.73	35.85	34.21	29.01	28.62
Cu	3.77	31.33	13.18	56.63	71.18	32.66	45.53	38.34	2.56	2.60
Zn	68.68	102.56	43.55	89.36	88.37	88.65	91.83	63.62	70.25	59.86
Ga	14.19	19.36	13.92	18.87	19.18	18.80	19.04	15.71	16.15	13.34
Ge	1.23	1.36	1.35	1.36	1.40	1.15	1.39	1.37	1.19	1.05
Rb	72.28	62.58	76.42	89.44	78.13	125.84	79.02	51.24	78.56	68.53
Sr	437.90	172.20	81.29	231.52	248.36	193.31	217.48	261.14	199.06	200.21
Y	25.41	27.77	21.01	30.50	31.38	33.17	31.17	25.64	28.21	26.59
Zr	188.74	194.90	177.85	143.77	153.70	178.63	149.14	148.84	205.75	148.12
Nb	5.61	10.14	6.02	8.97	8.45	9.90	9.64	7.10	7.05	5.99
Cs	7.15	1.82	2.42	4.41	5.32	3.21	5.29	2.20	5.30	4.84
Ba	388.68	293.67	72.67	758.10	618.31	666.58	544.66	262.90	527.90	402.18
La	21.61	31.93	23.82	30.96	30.88	34.18	31.86	26.42	31.84	24.71
Ce	43.51	63.09	46.26	60.44	62.28	68.64	64.66	53.07	60.18	47.68
Pr	5.13	7.31	5.34	7.04	7.31	7.95	7.56	6.14	6.92	5.54
Nd	20.25	28.45	21.01	27.48	28.96	30.86	29.43	24.02	27.05	22.17
Sm	4.32	5.70	4.22	5.61	6.02	6.32	6.04	4.87	5.46	4.71
Eu	1.20	1.36	0.90	1.42	1.43	1.48	1.39	1.19	1.25	1.20
Gd	4.27	5.43	3.93	5.31	5.74	5.99	5.74	4.56	5.30	4.77
Tb	0.69	0.85	0.61	0.85	0.90	0.93	0.90	0.72	0.82	0.75
Dy	4.28	5.19	3.79	5.21	5.57	5.79	5.58	4.52	5.08	4.60
Ho	0.88	1.04	0.78	1.07	1.12	1.17	1.13	0.94	1.03	0.93
Er	2.64	3.05	2.36	3.16	3.31	3.51	3.31	2.80	2.96	2.65
Tm	0.39	0.46	0.35	0.47	0.49	0.53	0.50	0.42	0.44	0.38
Yb	2.57	3.03	2.34	3.04	3.19	3.50	3.21	2.76	2.82	2.47
Lu	0.39	0.45	0.36	0.46	0.48	0.52	0.48	0.42	0.42	0.37
Hf	4.79	5.22	4.62	3.88	4.21	4.81	4.07	4.00	5.35	3.84
Та	0.46	0.71	0.48	0.71	0.65	0.81	0.79	0.58	0.58	0.45
Pb	15.54	33.75	3.40	20.52	21.43	17.75	22.23	15.37	19.46	15.18
Th	8.15	11.21	8.61	12.42	11.55	14.33	13.13	10.14	10.07	8.22
U	1.64	2.37	1.62	2.45	2.42	2.70	2.67	2.18	2.14	1.82
Σ REE	112.11	157.33	116.07	152.51	157.67	171.37	161.77	132.83	151.58	122.95

表 4 红星村南变砂岩的主量元素(%)和微量元素(×10⁻⁶)分析结果

Table 4 Major element (%) and trace elements ($\times 10^{-6}$) of meta-sandstonein in south Hongxing Village

Sample	15BY26	15BY27	15BY28	15BY29	15BY30	15BY31	15BY32	15BY33	15BY34	15BY35
SiO ₂	61.53	62.55	59.87	59.98	60.64	56.17	61.78	59.77	60.43	60.33
TiO,	0.70	0.74	0.77	0.79	0.75	0.86	0.76	0.71	0.76	0.78
Al ₂ O ₃	15.39	16.89	17.18	17.73	17.08	18.79	16.99	16.36	17.27	17.12
$Fe_2O_3^T$	6.81	7.12	8.40	7.05	7.00	9.32	7.13	6.22	7.56	7.03
MnO	0.50	0.30	0.19	0.18	0.24	0.12	0.22	0.07	0.20	0.35
MgO	2.99	2.84	3.49	2.78	2.82	3.64	2.79	2.40	3.12	2.95
CaO	3.17	2.80	1.92	2.96	3.06	2.15	2.08	5.06	1.99	2.88
Na ₂ O	2.46	2.31	2.34	2.99	2.36	2.75	2.86	4.21	2.19	2.12
K ₂ O	3.15	3.13	3.51	3.04	3.04	3.69	3.04	1.22	3.31	3.41
P_2O_5	0.18	0.17	0.18	0.20	0.17	0.20	0.17	0.18	0.18	0.19
烧失	2.99	1.40	1.73	1.90	2.36	2.55	1.83	3.39	2.70	2.40
总量	99.87	100.25	99.58	99.60	99.52	100.24	99.65	99.59	99.71	99.56
Li	41.30	31.00	50.39	38.04	36.89	66.99	40.19	26.88	48.23	36.80
Be	1.77	1.58	1.73	1.85	1.70	2.15	1.91	1.21	1.94	1.77
Sc	18.90	20.88	24.29	23.34	21.97	26.53	18.98	15.88	22.00	22.89
V	109.67	115.55	141.94	145.33	129.67	164.75	122.80	128.79	137.56	137.98
Cr	49.78	37.23	62.59	43.27	42.14	71.01	61.40	52.12	71.81	48.83
Co	33.23	27.67	29.97	27.36	31.18	28.22	31.61	25.89	30.37	24.53
Ni	28.60	20.38	37.71	20.76	28.27	38.66	31.54	22.59	34.93	27.83
Cu	47.86	63.22	101.45	41.41	54.83	45.84	52.45	8.02	34.22	33.67
Zn	95.58	84.31	111.39	91.89	96.80	115.97	91.68	79.15	101.38	97.28
Ga	18.95	17.22	22.12	20.33	20.39	24.64	20.26	15.65	21.77	20.74
Ge	1.51	1.45	1.62	1.45	1.52	2.03	1.66	1.00	1.47	1.59
Rb	122.39	99.34	130.35	105.49	106.42	133.42	108.48	61.19	127.17	118.18
\mathbf{Sr}	199.77	198.03	191.80	256.69	232.96	228.19	199.03	565.11	201.14	207.24
Y	31.70	28.72	36.26	33.62	33.41	37.96	29.78	18.12	32.73	34.20
Zr	153.47	132.26	149.13	159.00	165.74	166.40	166.48	122.04	153.27	172.40
Nb	9.85	6.80	10.68	7.37	8.12	11.60	10.14	4.46	11.25	8.25
Cs	6.25	3.97	6.01	4.42	4.51	6.59	5.53	4.79	6.36	4.76
Ba	773.16	668.04	673.58	730.93	802.09	817.72	642.62	194.37	635.27	938.45
La	34.51	27.33	38.60	34.14	34.37	41.51	35.79	22.74	39.02	35.10
Ce	68.15	56.65	74.98	69.20	69.20	81.72	72.18	44.42	75.66	70.20
Pr	7.66	6.39	8.61	8.03	7.90	9.56	8.29	5.14	8.60	8.19
Nd	29.89	25.24	33.18	31.95	31.00	36.95	31.89	20.52	33.13	32.32
Sm	6.20	5.21	6.71	6.67	6.39	7.60	6.38	4.13	6.60	6.66
Eu	1.37	1.26	1.52	1.60	1.56	1.64	1.42	1.12	1.53	1.57
Gd	6.06	5.02	6.46	6.39	6.15	7.23	5.95	3.78	6.17	6.47
Tb	0.92	0.78	1.01	0.98	0.95	1.12	0.90	0.56	0.95	0.98
Dy	5.54	4.93	6.28	6.03	5.94	6.87	5.51	3.36	5.77	5.98
Ho	1.10	1.01	1.29	1.23	1.20	1.39	1.11	0.68	1.17	1.21
Er	3.17	3.01	3.79	3.58	3.56	4.07	3.19	1.94	3.38	3.51
Tm	0.47	0.46	0.57	0.53	0.54	0.60	0.49	0.30	0.49	0.52
Yb	2.99	2.95	3.66	3.38	3.52	3.85	3.09	1.90	3.18	3.43
Lu	0.46	0.45	0.56	0.53	0.54	0.60	0.48	0.30	0.48	0.51
Hf	4.18	3.57	4.10	4.46	4.61	4.65	4.67	3.29	4.23	4.72
Та	0.72	0.52	0.82	0.66	0.69	0.93	0.80	0.36	0.91	0.66
Pb	23.52	21.70	21.56	26.02	22.56	23.94	26.83	16.69	25.24	22.72
Th	12.70	9.74	14.25	12.98	13.40	16.23	13.96	6.49	15.00	12.88
U	2.51	1.99	2.81	2.59	2.60	3.27	2.88	1.47	2.81	2.70
Σ REE	168.47	140.70	187.22	174.22	172.83	204.70	176.66	110.91	186.13	176.64

表 5 伯阳—元龙地区变砂岩与不同构造背景杂砂岩化学组成对比

Table 5 Comparison of chemical compositions of the Boyang—Yuanlong meta-sandstones with the graywackes from various tectonic settings

地球化学指标	保安村南(平均)	红星村南(平均)	大洋岛弧	大陆岛弧	活动大陆边缘	被动大陆边缘
SiO ₂ (%)	61.88	60.32	58.83	70.69	73.86	81.95
$\text{TiO}_2(\%)$	0.73	0.76	1.06	0.64	0.46	0.49
$Al_2O_3(\%)$	14.67	17.09	17.11	14.04	12.89	8.41
$\operatorname{Fe}_2 \operatorname{O}_3^T + \operatorname{MgO}(\%)$	6.71	7.34	11.73	6.79	4.63	2.89
MnO(%)	0.08	0.25	0.15	0.10	0.10	0.05
MgO(%)	2.78	2.98	3.65	1.97	1.23	1.39
CaO(%)	3.76	2.82	5.83	2.68	2.48	1.89
Na ₂ O(%)	2.81	2.61	4.10	3.12	2.77	1.07
$K_2O(\%)$	2.17	3.09	1.60	1.89	2.90	1.71
$P_2O_5(\%)$	0.17	0.18	0.26	0.16	0.09	0.12
Al_2O_3/SiO_2	0.24	0.28	0.29	0.20	0.18	0.10
K ₂ O/Na ₂ O	0.80	1.26	0.39	0.61	0.99	1.60
Al ₂ O ₃ /CaO+Na ₂ O	2.44	3.29	1.72	2.42	2.56	4.15
$La(\times 10^{-6})$	28.45	34.35	8.20	27.00	37.00	39.00
$Ce(\times 10^{-6})$	56.14	68.33	19.40	59.00	78.00	85.00
La/Yb	9.95	10.72	4.20	11.00	12.50	15.90
(La/Yb) _N	7.14	7.69	2.80	7.50	8.30	10.80
$\sum \text{REE}(\times 10^{-6})$	141.75	170.36	58.00	146.00	186.00	210.00
Σ LREE/ Σ HREE	6.66	7.02	3.80	7.70	9.10	8.50
Eu⁄Eu *	0.76	0.74	1.04	0.80	0.60	0.55

注:不同构造环境砂岩的数据引自 Bhatia(1983)和 Bhatia 等(1986)。

图 6 研究区变砂岩 K₂O/Na₂O—SiO₂(a)和 SiO₂/Al₂O₃—K₂O/Na₂O (b)构造环境判别图

Fig. 6 Tectonic setting discrimination diagrams of $\mathrm{K_2O/Na_2O}\mathrm{--SiO_2(a)}$

(a)图的底图据 Roser 等(1986);(b)图的底图据 Maynard 等(1982); ARC—大洋岛弧; ACM—活动大陆边缘; PM—被动大陆边缘; A1—玄武质和安山质碎屑的岛弧环境; A2—长英质侵入岩碎屑的进化岛弧环境

(a) from Roser et al., 1986; (b) from Maynard et al., 1989; ARC—oceanic island arc; ACM—active continental margin; PM—passive continental margin; A1—island arc of basaltic and andesitic detrital; A2—evolved island arc of felsic intrusive rock detrital

~393 Ma)范围内的有效测点分别有 2 个,说明这套 变砂岩的沉积时间不早于早泥盆世。

根据1:20万香泉幅矿产图,伯阳一带的中泥 盆统F岩组(D₂^f)主要为一套中一深变质的碎屑 岩、泥质岩夹碳酸盐岩地层,岩性主要为灰色、绿灰 色混合岩、灰绿色石榴石绿泥斜长片麻岩夹少量浅 灰色薄—中厚层石英岩(或变质岩),偶夹灰白色 薄—中厚层大理岩。这套变质岩的原岩应该是碎屑

图 7 变砂岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b) (球粒陨石数据据 Boynton, 1984; 原始地幔数据据 Sun and McDonough, 1989)

Fig. 7 REE distribution patterns(a) and primitive mantle normalized incompatible element spider diagram(b) of the metasandstones; (chondrite data from Boynton, 1984; primitive mantle data from Sun and McDonough, 1989)

岩夹碳酸盐岩组合,这种岩石组合与西秦岭地区中 泥盆统舒家坝群薄层灰岩和砂岩组合相似,而与西 秦岭地区以粗碎屑岩为特征的上泥盆统大草滩群 (D₃D)岩性差异比较明显,本文认为伯阳—元龙变 砂岩应属于1:20万香泉幅矿产图所说的中泥盆统 F岩组,形成时代为中泥盆世。这是现有文献中,在 西秦岭北带少有的中泥盆统物质记录(图1)。

毛小红等(2017)在西秦岭党川一带的秦岭杂 岩中识别出了麻粒岩相岩石,麻粒岩相峰期变质时 间为433~424 Ma,这个时间略早于本文变砂岩的沉 积时间但是二者相差不太大,推测本文的变砂岩就 是在麻粒岩相峰期变质作用的后续事件中被变质改 造。

5.2 变砂岩物源特征

对比变砂岩与华北、扬子克拉通和西秦岭中泥 盆统碎屑锆石 U-Pb 年龄分布特征(图 10),变砂岩 样品的年龄分布与陈岳龙等(2008)得到的西秦岭 中泥盆统及扬子克拉通碎屑锆石的年龄分布有很大 的相似性。800~1100 Ma 的锆石应该主要来自秦岭 造山带和扬子克拉通。

两地样品中碎屑锆石 U-Pb 年龄分别在 407~563 Ma 和 396~587 Ma 有最大峰值,对应北秦岭加 里东期的岩浆活动;在 905~1094 Ma 和 926~1085

Ma 有一个次级峰值,主要来自秦岭造山带和扬子克 拉通,反映北秦岭与 Rodinia 超大陆聚合相关的物 源,以及来自扬子克拉通物源;在 637~847 Ma 和 626~824 Ma 有较小的几个峰值,可能反映与 Rodinia 超大陆拉张和裂解有关的岩浆活动,这个时 间段的岩浆活动目前在西秦岭地区报道得比较少。 可识别的变质锆石年代集中在 700~1000 Ma 和 1700~1900 Ma 这两个区间内,可能代表秦岭群变质 岩所经历的变质事件的时间(Vavra et al., 1999; Hoskion, 2002; Belousova et al., 2002; Zhang Chengli et al., 2004; Chen Danling et al., 2004; Siebel et al., 2005)。

两地变砂岩样品的矿物组合有所不同,但二者 的碎屑锆石 U-Pb 年龄特征则基本类似,反映它们 具有总体类似的物源区。红星村南变砂岩样品中富 含长石,而保安村南变砂岩样品中则基本不含长石, 可见红星村南变砂岩的成熟度要低于保安村南变砂 岩,说明红星村南变砂岩可能受到局部分布的近源 物源区的影响。

5.3 岩石矿物学特征及地质意义

已有同位素年代学资料(李永军等,2005;王洪 亮等,2006;王婧等,2008;刘成军,2013)表明西秦岭 北带大规模花岗质岩浆侵入活动主要发育在450~ 391 Ma,反映了早古生代末北秦岭造山带西段存在 板块俯冲消减与汇聚碰撞作用(徐学义等,2008)。 研究区变砂岩石英含量很高且变质重结晶,出现了 黑云母和角闪石等镁铁质矿物,推测原岩中应该有 一些偏基性的火山物质,其加入成熟度较高的石英 砂岩再经过高绿片岩相—低角闪岩相变质作用后出 现暗色矿物。综合地化特征,作者认为变砂岩主体 形成于活动大陆边缘构造背景,岩石成分主要受源 区岩石成分控制,物源具有近源性,并有偏基性的火 山物质加入。由于红星村南剖面变砂岩中的黑云母 和角闪石含量明显高于保安村南剖面的变砂岩,说 明在红星村南剖面应该有更多的偏基性火山物质。

6 结论

(1)伯阳—元龙变砂岩的沉积时代为中泥盆世,这套地层应该划归中泥盆统,这可能是现有文献中,在西秦岭北带少有的中泥盆统物质记录。

(2)研究区中泥盆统石英砂岩中含有偏基性的 火山物质,经过高绿片岩相—低角闪岩相变质形成 研究区变砂岩。变砂岩主体形成于活动大陆边缘构 造背景,主要物源是西秦岭造山带和扬子克拉通,说 明在中泥盆世时西秦岭造山带的天水—武山板块缝 合带已经基本缝合,导致大量源自扬子克拉通的沉 积物能够到达西秦岭北带;但当时天水—武山板块 缝合带可能尚未完全缝合,局部仍存在活动大陆边 缘环境。

注释 / Notes

● 地质部陕西省地质局区域地质测量队二十一分队.1968.中华人民 共和国矿产图(I-48-XVII)(香泉)幅.

❷长安大学地质调查研究院.2003.中华人民共和国地质图 (I48C002003)(天水市幅).

参考文献 / References

(The literature whose publishing year followed by a "&" is in Chinese with English abstract; the literature whose publishing year followed by a "#" is in Chinese without English abstract)

- 陈岳龙,李大鹏,周建,张宏飞,刘飞,聂兰仕,蒋丽婷,柳小明. 2008. 中国西秦岭碎屑锆石 U-Pb 年龄及其构造意义. 地学前缘, 15 (04):88~107.
- 丁仨平,裴先治,李勇,李瑞保,李佐臣,冯建赟,孙雨,张亚峰. 2009. 西秦岭北缘新阳—元龙韧性剪切带中花岗质糜棱岩黑云母 (40)Ar-(39)Ar年龄及地质意义.地质学报,83(11):1624~ 1632.
- 丁守卓,罗金海,程佳孝,韩奎,王师迪,尤佳. 2015. 西秦岭伯阳石英 正长斑岩的地球化学、年代学及其地质意义. 地学前缘, 22 (04):247~254.
- 李王晔. 2008. 西秦岭—东昆仑造山带蛇绿岩及岛弧型岩浆岩的年 代学和地球化学研究. 合肥:中国科学技术大学博士学位论文.
- 李永军,李锁成,杨俊泉,刘静,温志亮,杨忠民. 2005. 西秦岭党川地 区花岗岩体的"解体"及同位素年龄证据. 矿物岩石地球化学通 报,24(02):114~120.
- 刘成军. 2013. 秦祁结合部位物质组成、构造演化过程及交接关系研究. 西安:长安大学硕士学位论文.
- 毛小红,张建新,于胜尧,李云帅,喻星星,路增龙. 2017. 西秦岭造山

北部早古生代麻粒岩相变质作用及深熔作用:锆石和独居石 U-Pb 年代学制约.中国科学:地球科学,47(5):601~616.

- 裴先治,丁仨平,李佐臣,刘战庆,李高阳,李瑞保,王飞,李夫杰. 2007. 西秦岭北缘关子镇蛇绿岩的形成时代:来自辉长岩中 LA-ICP-MS 锆石 U-Pb 年龄的证据.地质学报,81(11):1550~1561.
- 裴先治,丁仨平,李佐臣,刘战庆,李瑞保,冯建赟,孙雨,张亚峰,刘智 刚,张晓飞,陈国超,陈有炘. 2009.西秦岭北缘早古生代天水— 武山构造带及其构造演化. 地质学报, 83(11):1547~1564.
- 王洪亮,何世平,陈隽璐,徐学义,孙勇,第五春荣. 2006. 北秦岭西段 红花铺俯冲型侵入体 LA-ICPMS 定年及其地质意义. 现代地质, 20 (4): 536~544.
- 王元元,裴先治,刘成军,李瑞保,李佐臣,魏博,任厚州,陈伟男,刘图 杰,胥晓春. 2014. 西秦岭舒家坝地区泥盆纪舒家坝群碎屑锆石 LA-ICP-MS U-Pb 年龄:源区特征与形成时代. 地质通报, 33 (7):1015~1027.
- 王婧,张宏飞,徐旺春,蔡宏明. 2008. 西秦岭党川地区花岗岩的成因 及其构造意义. 地球科学(中国地质大学学报), 33(4):474~ 486.
- 徐学义,何世平,王洪亮,张二朋,陈隽璐,孙吉明. 2008. 早古生代北 秦岭—北祁连结合部构造格局的地层及构造岩浆事件约束. 西 北地质,41(1):1~21.
- 胥晓春,裴先治,刘成军,李瑞保,李佐臣,魏博,王元元,刘图杰,任厚州,陈伟男,陈有炘. 2014. 西秦岭天水阴崖沟早古生代草滩沟 群火山岩地球化学特征及其地质意义.中国地质,41(3):851~ 865.
- Bhatia M R. 1983. Plate tectonics and geochemical compositon of sandstones. J. Geol., 91(06):611~627.
- Bhatia M R. 1985. Rare earth element geochemistry of Australian Paleozoic gray wackes and mudrocks provenance and tectonic control. Sedimentary Geology, 45:97~113.
- Bhatia M R, Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., 92:181~193.
- Belousova E A, Griffin W L, O' Rilly S Y. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143;602~622.
- Chen Danling, Liu Liang, Sun Yong, Zhang Anda, Zhang Chengli, Liu Xiaoming, Luo Jinhai. 2004. Determination of the Neoproterozoic granite in the Eastern Qinling Mountains Shicaogou syn-collisional and its geological implications. Acta Geologica Sinica (English edition), 78(1): 73~82.
- Chen Yuelong, Li Dapeng, Zhou Jian, Zhang Hongfei, Liu Fei, Nie Lanshi, Jiang Liting, Liu Xiaoming. 2008&. U-Pb ages of zircons in western Qinling Mountain, China, and their tectonic implications. Earth Science Frontiers, 15(04):88~107.
- Ding Saping, Pei Xianzhi, Li Yong, Li Ruibao, Li Zuochen, Feng Jianyun, Sun Yu, Zhang Yafeng. 2009 &. Biotite ~ (40) Ar-~ (39) Ar Ages of Granitic Mylonite at the Xinyang—Yuanlong Ductile Shear Zone in the North Margin of West Qinling and Their Geological Significance. Acta Geologica Sinica, 83(11):1624~1632.
- Ding Shouzhuo, Luo Jinhai, Cheng Jiaxiao, Han Kui, Wang Shidi, You Jia. 2015&. Geochemistry and chronology of quartz orthophyre in Boyang of the Western Qinling Orogenic Belt, and their geological significance. Earth Science Frontiers, 22(04):247~254.
- Hoskion P W O. 2002. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(8):627~630.
- Li Wangye. 2008 &. Geochronology and Geochemistry of the Ophiolites and Island—arc-type Igneous Rocks in the Western Qinling Orogen

and the Eastern Kunlun Orogen. Hefei: PhD thesis of University of Science and Technology of China.

- Li Yongjun, Li Suocheng, Yang Junquan, Liu Jing, Wen Zhiliang, Yang Zhongmin. 2005&. The "Disintegration" of Granite Bodies in the Dangchuan Area of Western Qinling: Evidence from the Isotopic Dating Ages. Bulletin of Mineralogy Petrology and Geochemistry, 24 (02):114~120.
- Liu Chengjun. 2013&. Study on Material Composition, Tectonic Evolution and Transformation at the Conjunction of Qinling and North Qilian Orogen. Xi' an: master 's thesis of Chang' an University.
- Mao Xiaohong, Zhang Xinjian, Yu Shengyao, Li Yunshuai, Yu Xingxing, Lu Zenglong. 2017&. Early Paleozoic granulite-facies metamorphism and anatexis in the northern West Qinling orogeny: Monazite and zircon U-Pb geochronological constraints. Science China Earth Sciences, 47(5):601~616.
- Mao Xiaohong, Zhang Jianxin, Yu Shengyao, Li Yunshuai, Yu Xingxing, Lu Zenglong. 2017&. Early Paleozoic granulite-facies metamorphism and anatexis in the northern West Qinling orogen: Monazite and zircon U-Pb geochronological constraints. Science China Earth Sciences, 60: 943~957.
- Maynard J B, ValloniR, Yu H. 1982. Composition of modern deep-sea sands from arc-related basins. Geol. Soc. London Spec.Pub., 10:551 ~561.
- McLennan S M, Hemming S, Mcdaniel D K, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Special Papers—Geological Society of America, 284:21 ~40.
- Pei Xianzhi, Ding Saping, Li Zuochen, Liu Zhanqing, Li Gaoyang, Li Ruibao, Wang Fei, Li Fujie. 2007&. LA-ICP-MS Zircon U-Pb Dating of the Gabbro from the Guanzizhen Ophiolite in the Northern Margin of the Western Qinling and Its Geological Significance. Acta Geologica Sinica, 81(11):1550~1561.
- Pei Xianzhi, Ding Saping, Li Zuochen, Liu Zhanqing, Li Ruibao, Feng Jianyun, Sun Yu, Zhang Yafeng, Liu Zhigang, Zhang Xiaofei, Chen Guochao, Chen Youxin. 2009&. Early Paleozoic Tianshui— Wushan Tectonic zone of the Northern Margin of West Qinling and its Tectonic Evolution. Acta Geologica Sinica, 83(11):1547~1564.
- Roser B P, Korsch R J. 1986. Determination of tectonic setting of sandstone—mudstone suites using SiO₂ content and K₂ O/Na₂ O ratio. J. Geol., 94(5):635~650.
- Sun S S, McDonough W F. 1989. Chemical and isotope systematicas of oceanic basalts: implications for mantle composition and processes.

In:Saunders A D and Norry M J.Magmatism in the Ocean Basins. Geological Society Special Publication, 42: 313~345.

- Siebel W, Blaha U, Chen F, Rohrmüller J. 2005. Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif. Int. J. Earth Sci. (Geol. Rundsch), 94: 8~23.
- Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution . Oxford: Black well:1~312.
- Vavra G, Schmid R, Gebauer D. 1999. Internal morphology, habit and U—Th—Pb microanalysis of amphibole to granulite facies zircon: Geochronology of the Ivren Zone (Southern Alps). Contrib Mineral Petrol, 134:380~404.
- Wang Hongliang, He Shiping, Chen Juanlu, Xu Xueyi, Sun Yong, Diwu Chunrong. 2006&. LA-ICPM S Dating of Zircon U-Pb and Tectonic Significance of Honghuapu Subduction-Related Intrusions in the West Segment of Northern Qinling Mountains. Geoscience, 20 (4): 536~544.
- Wang Yuanyuan, Pei Xianzhi, Liu Chengjun, Li Ruibao, Li Zuochen, Wei Bo, Ren Houzhou, Chen Weinan, Liu Tujie, Xu Xiaochun. 2014&. Detrial zircon LA-ICP-MS U-Pb ages of the Devonian Shujiaba Group in Shujiaba area of the West Qinling tectonic zone: Constraints on material source and sedimentary age. Geological Bulletin of China, 33(7):1015~1027.
- Wang Jing, Zhang Hongfei, Xu Wangchun, Cai Hongming. 2008&. Petrogenesis of Granites from Dangchuan Area in West Qinling Orogenic Belt and Its Tectonic Implication. Earth Science(Journal of Chinal University of Geosciences), 33(4):474~486.
- Xu Xueyi, He Shiping, Wang Hongliang, Zhang Erpeng, Chen Junlu, Sun Jiming. 2008 &. Tectonic Framework of North Qinling Mountain and North Qilian Mountain Conjunction Area in Early Paleozoic: A Study of the Evidences from Strata and Tectonic—Magmatic Events. Northwestern Geology, 41(1):1~21.
- Xu Xiaochun, Pei Xianzhi, Liu Chengjun, Li Ruibao, Li Zuochen, Wei Bo, Wang Yuanyuan, Liu Tujie, Ren Houzhou, Chen Weinan, Chen Youxin. 2014&. Geochemical characteristics of the Yinaigou Early Paleozoic Caotangou Group volcanic rocks in Tianshui of West Qinling Mountains and their geological significance. Geology in China, 41(3): 851~865.
- Zhang Chengli, Li Miao, Wang Tao, Yuan Honglin, Yan Yunxiang, Liu Xiaoming, Wang Jianqi, Liu Ye. 2004. U-Pb zircon geochronology and geochemistry of granitoids in the Douling Group in the Eastern Qinling. Acta Geologica Sinica(English edition), 78(1): 83~95.

Detrital Zircon U-Pb Age, Geochemical Characteristics and Geological Significance of Meta-sandstones form Boyang—Yuanlong Area in The Western Qinling Orogenic Belt

LI Yifei¹⁾, LUO Jinhai¹⁾, XU Huan¹⁾, YOU Jia^{1,2)}, CHEN Guanxu¹⁾

State Key Laboratory of Continental Dynamics (Northwest University), Department of Geology, Northwest University, Xi' an, 710069;
 No. 2 Oil Production Company of Changqing Oil field Company of CNPC, Qingyang, Gansu, 745100

Objectives: The meta-sandstones in Boyang—Yuanlong area located between Tianshui—Wushan suture zone and Xinyang—Yuanlong ductile shear zone. Up to now, the study of the meta-sandstone in Boyang—Yuanlong area

is not mature. Research of meta-sandstone in Boyang—Yuanlong area could offer important information for the study of Qinling orogenic belt.

Methods: Based on the clastic zircon LA-ICP-MS U-Pb dating and the analysis of geochemical data, we discussed the age and structural environment of the meta-sandstone in Boyang—Yuanlong area. We Combined the zircon LA-ICP-MS U-Pb dating with geochemical data analysis and offer proof of the evolution of Tianshui—Wushan suture zone.

Results: ① The meta-sandstone was formed in Middle Devonian, and the clastic sediment comes mainly from the Northern Qinling orogenic belt and Yangtze craton; ② The meta-sandstone in the Boyang—Yuanlong area was mainly formed under tectonic setting of active continental margin; ③ The closure of Tianshui—Wushan suture zone had not been completed before Middle Devonian.

Keywords:western Qinling orogenic belt; Middle Devonian; meta-sandstone; Geochemical; detrital zircon U-Pb Geochronology

Acknowledgements: This work is supported by the MOST Special Fund from State Key Laboratory of Continental Dynamics, No. 201210133

First author: LI Yifei, female, born in 1992, Master. Mainly engaged in tectonic geology and Petrogeochemistry. Email: 707107057@qq.com

Corresponding author: LUO Jinhai, male, born in 1967, Professor. Mainly engaged in tectonic geology. Email: luojh@nwu.edu.cn

Manuscript received on:2018-01-12; Accepted on:2018-07-23; Edited by: LIU Zhiqiang

Doi:10.16509/j.georeview.2018.05.004

贵州东南部煌斑岩类中稀土元素超常富集

高军波¹⁾,杨瑞东¹⁾,杨光海¹⁾,杨光忠²⁾,徐海¹⁾,冯康宁¹⁾ 1)贵州大学资源与环境工程学院,贵阳,550025;2)贵州省地质矿产勘查开发局101地质大队,贵州凯里,556000

关键词:稀土元素;超常富集;煌斑岩类;贵州东南部

贵州东南部产出大量规模不等的煌斑岩类岩体,其中位 于贵州镇远马坪的煌斑岩体是我国发现的第一个含原生金 刚石岩体,并将其作为寻找规模性金刚石矿床的重点,但遗 憾的是,截至目前,一直未在金刚石找矿方面取得较大突破。 然而,笔者及课题组成员通过多次野外调查和实验分析发 现,贵州东南部镇远、麻江一带煌斑岩类及其风化壳中明显 富集稀土元素, Σ REY (Σ REE + Y)介于 558.78×10⁻⁶ ~ 2409.94×10⁻⁶,平均1461.21×10⁻⁶(*n*=20),高于风化壳型稀 土矿床最低工业品位。这一重要发现对于我国稀土资源找 矿具有较为重要参考价值。

由于我国稀土矿产资源禀赋,除世界第一大的白云鄂博 轻稀土矿床外,长期以来,我国针对稀土资源的调查研究与 找矿工作更多地聚焦在与酸性花岗岩类、变质岩有关的古风 化壳型稀土矿床方面,而与基性、超基性岩,特别是与煌斑岩 类有关的稀土矿床找矿突破不大,可供参考的实例偏少。原因在于煌斑岩类中稀土元素含量一般比较低,不易形成稀土元素富集甚至成矿。例如我国滇西北衙煌斑岩(SREE = 206.6×10⁻⁶~272.8×10⁻⁶)(和文言等,2014)、云南白马寨矿区煌斑岩(SREE = 139.11×10⁻⁶~232.92×10⁻⁶)(管涛等,2006)、山西大同饮牛沟钾镁煌斑岩(SREE = 288.8×10⁻⁶~472.6×10⁻⁶)(张连昌等,1998)、鲁西煌斑岩(SREE 介于338.4×10⁻⁶~558.05×10⁻⁶)(邱检生等,1997)及塔里木板块西南缘煌斑岩(SREE 介于118×10⁻⁶~279.72×10⁻⁶)(柴凤梅等,2007)等,稀土元素含量相比均较低。西澳Yilgam 地块(Taylor et al.,1994)及意大利阿尔卑斯山脉西部煌斑岩类(Owen,2008)中虽也发育稀土元素的富集,但含量总体也不高,往往不超过500×10⁻⁶。与煌斑岩类有关的稀土元素含量有现象,见于煌斑岩中分布的方解石脉中,其稀土元素含量有

注:本文为贵州省教育厅青年科技人才成长项目(编号:黔教合 KY 字[2016]117)、贵州省沉积矿床科技创新人才团队项目(编号:黔科 合平台人才[2018]5613)和贵州省科学技术基金项目(编号:黔科合 J字[2015]2032 号)的成果。

收稿日期:2018-08-02;改回日期:2018-08-14;责任编辑:章雨旭。Doi: 10.16509/j.georeview.2018.05.021

作者简介:高军波,男,1985年生,博士,副教授,硕士生导师,从事沉积矿床研究和教学工作.Email: gaojunbo1985@126.com。