云南东部江川生物群中的香肠状疑难化石
——Tawuia化石属性的新解释

李玉兰1,2,3),王浩2),刘傲然4),李明2),梁永忠5),周颖6),唐烽2),任留东2)

1)贵州大学资源与环境工程学院,中国贵阳,550025;2)自然资源部地层与古生物重点实验室,中国地质科学院地质研究所,中国北京,100037;3)贵州省地矿局111地质大队,中国贵阳,550081;4)河北地质大学地球科学学院,中国石家庄,050031;5)云南云天化环保科技有限公司,中国昆明,650300;6)伦敦大学学院地球科学系, 英国伦敦,WC1E6BT

内容提要:云南东部伊迪卡拉(震旦)系顶部灯影组旧城段的江川生物群是华南又一大类丰富且多样化的宏体化石群,其以碳质压膜的方式保存。在该生物群中,我们发现大量香肠状碳质压膜的宏体化石,与成冰(南华)纪全球大冰期之前中、新元古代地层中广泛分布的Tawuia碳膜化石的大小、形态非常相似。其最大宽度达4.5 mm,最大长度可达4 cm,长宽比均>2,膜面光滑,未见其他稳定纹饰,有的化石标本边缘碳质保存较多,可见深黑色边缘环带。但部分化石保存的形态与常见的直棒状I形、U形、C形Tawuia化石相比却较为特殊,呈现直角L形、8字形、宽U形、环状O形等多种保存形态,个别标本弯折部位可见明显的碳质增厚和横脊纹残留,边缘残存有大小不一的刺状突起构造。这类特异形态保存的似Tawuia化石显然不能解释为以往较为公认的浮游型叶状体藻类,而可能与冰期前的新元古代早期鲁西、淮南宏体化石群中的疑似蠕形动物亲缘的化石有传承关系。上述新发现的化石形态表明:似Tawuia的碳膜宏体化石可能是多源属性的早期多细胞生物。其中短带至长带状叶状体,可见短柄突起及疑似固着器构造的化石可确认为底栖宏体藻类;多数的叶状体推测为香肠状或长囊状,生活史中包含远洋浮游的类型,可能归属于原始不分枝的多核体藻类或早期分化出的中空囊状的多细胞藻类;本文展示的部分规则变形的似Tawuia化石,更可能是两侧对称动物亲缘的,生活于近海的底栖生物体发生主动扭曲后,被特异埋藏所呈现出的特殊保存形态,而随机浮游或表栖的多细胞藻类死亡沉积时不会形成类似形态的化石。

关键词:伊迪卡拉纪旧城段;江川生物群;似Tawuia化石;多源属性;两侧对称动物

Tawuia化石最早由Hofmann依据加拿大麦肯齐山前寒武系小达尔群(Little Dal Group)产出的毫米级以上肉眼可见的一类宏体化石而命名为Tawuia dalensis,原始的属征记述一般为两端封闭呈半圆形的似棒状、香肠状,层面上保存为条带状的碳质压膜化石,边缘轮廓光滑连续,两侧平行或至一端略成锥状,膜面平坦无饰或在端部少数可见同心圆状构造及深黑色的轴线条带(Hofmann and Aitken, 1979),但当时所指定的模式种则呈现中部强烈弯曲的U形。而在随后的修订中,Hofmann(1985)将这类化石中多有发现的向一侧弯曲保存为C形、U形和表面出现边缘褶皱作为原生构造纳入特征描述。

20世纪70年代以后,中国学者也陆续发现在华北燕山地区和华北东缘胶辽徐淮地区的新元古代成冰系上、下地层中广泛出露与Tawuia dalensis Hofmann and Aitken, 1979相似的宏体化石,并将其中平直保存的短条/短棒状化石划分出来命名成新类别Tawuia sinensis Duan, 1982,也曾将发现于华南西南缘昆明地区的新型梭状化石命名成新类别Tawuia fusiformis Xing, 1985,但后者一直没有发表规范的新种描述。其后,又记述了在河北怀来的龙凤山生物群(杜汝霖和田立富, 1985; 刘傲然, 2018)、苏皖北部的淮南生物群(符俊辉, 1989; 钱迈平等, 2009)、辽宁大连的辽南生物群(洪作民等, 1986, 1991)、海南石碌的ChuariaTawuia生物群(张仁杰等, 1989, 1991)和北京地区青白口纪(唐烽, 1995)所发现的Tawuia类化石。近年来,在鲁西石旺庄组及淮南寿县刘老碑组也新发现并对比研究了保存更加完美的Tawuia化石(Li Guangjin et al., 2020; Tang Qing et al., 2021a)。

而在华南扬子地层区的伊迪卡拉(震旦)纪地层中,除了20世纪80年代开始在云南昆明晋宁区的灯影组旧城段发现了形态可以归属Tawuia的碳膜化石(邢裕盛, 1985),其他地区迄今均未见明确的报道。本世纪之初,唐烽等依据前人的资料线索在云南玉溪江川区伊迪卡拉系近顶部旧城段发掘出丰富多样的宏体化石群——江川生物群(唐烽等, 2006, 2009, 2015; Tang Feng et al., 2007; 顾鹏等, 2018),其中包含的似Tawuia碳膜化石,与全球其他地区产出的相似类型比较,显得更加多样化,本文在此进一步归类记述了4大类型,并依据保存形态特异的部分弯曲化石,对以往普遍认定似Tawuia化石的藻类属性提出质疑和新的解释,讨论对比了华北地区东缘和华南扬子西南缘等地产出的弯曲变形的似Tawuia化石,推测了某些特殊构造的成因。

1 江川生物群Tawuia化石产地及地层分布

研究区位于滇东玉溪地区,位于扬子陆块区之上扬子新元古代—中生代裂陷带。地层区划隶属华南地层大区扬子地层区康滇地层分区之昆明地层小区。研究区出露地层由老到新有前震旦系的澄江组、南沱组及震旦系陡山沱组、灯影组(东龙潭组后称藻白云岩段,与上覆旧城段、白岩哨段共同组成灯影组,白岩哨段顶部部分地区沉积较深水泻湖相黑色硅质页岩,曾经被定义为小歪头山段),寒武系渔户村组(狭义的分为中谊村段和大海段)、筇竹寺组、沧浪铺组、龙王庙组、西王庙组、娄山关组及二叠系阳新组。江川生物群的化石剖面主要位于云南昆明市晋宁区六街至王家湾县道旁的灯影组连续露头剖面和玉溪市江川区桃溪村至古埂,以及江城镇侯家山至清水沟的矿山公路北侧灯影组中上部(图1a)。化石产出层位具有较好的分带性,经过近年来的深入采掘研究,自下而上识别出5个宏体化石组合(唐烽等, 2015; 顾鹏等, 2018),分别是灯影组中部旧城段的A—D组合以及位于灯影组上部白岩哨段的E组合:

A)Shaanxilithes 陕西迹化石层,

B)ChuariaTawuiaPumilibaxa 化石层,

C)ShouhsieniaVendotaeniaPalaeocolpomenia* 化石层,

D)LongfengshaniaCycliomedusa*—Eoslivera* 化石层(*即将发表的新类别),

E)VendotaeniaTyrasotaenia 带藻类化石层。

其中,B—D组合(图1b)富集保存的化石矿坑出露点在侯家山村西南约900 m,海拔2106 m,北纬24°27′39.3″,东经102°46′48.4″。含化石层位岩性下部主要为泥质页岩、泥质白云质粉砂岩互层,向上过渡为泥质粉砂质白云岩,风化后常呈黄灰色,具水平微层纹,应属潮间潮下砂、泥坪环境(罗惠麟等, 1988),碳膜保存的宏体化石在风化的层面上出露明显,个别化石膜面黄铁矿化甚至进一步氧化呈褐红色,非常易于识别。

笔者等特别描述及对比的Tawuia类碳质压膜化石,产自侯家山化石矿坑的下部,即上述旧城段江川生物群B组合中(图1b; Tang Feng et al., 2021)。

图1 滇东玉溪地区江川生物群化石剖面的地理位置图(a)及地层柱状图(b)(1X—王家湾;2X—古埂;3X—侯家山)

Fig.1 Locations(a)and stratigraphic column(b)of the macrofossil sections,Jiangchuan Biota in Yuxi area, eastern Yunnan(1X—Wangjiawan; 2X—Gugeng; 3X—Houjiashan)

2 江川生物群中多种形态的Tawuia类化石

华南扬子区西南缘震旦纪晚期产出的Tawuia类宏体化石,与华北燕山地区尤其是华北地区东缘全球冰期以前青白口纪保存丰富的Tawuia化石形态相似,类型相当或更为丰富。常见一类压扁的香肠形和或长或短的直棒形及略有变形的哑铃形和鞋履形;第二类披针形为一端略细窄锲状,一端仍渐粗膨大,第三类梭形为两端渐细,中间膨大,但这两类的端部仍然浑圆封闭,符合Tawuia类的属征;第四类则是各种弯曲形,有C形、U形这些华北地区及全球其他产地均出露的形态,也有本地首次发现的更为罕见的L形、O形和8字形。

2.1 香肠形或直棒I形

呈直棒I形的 T. sinensis(Duan Chenghua, 1982),是我国华北燕山地区和华北东缘胶辽徐淮地区新元古代早期地层中常见的类型,甚至在河北宽城、兴隆地区的中元古界常州沟组也曾报道过香肠形Tawuia状化石及可能的高级藻类多细胞组织结构(如假薄壁组织等)的发现(Zhu Shixing et al., 2000; 陈孟莪, 2000)。本文化石材料中同样多见直肠状的这类化石,两侧缘略收缩的鞋底形也有产出(图2f, m),且出露了许多形态更大的个体(图2e; Tang Feng et al., 2008, 图5);以及短棒形叶状体出现明显的固着端构造的个体,最近被划分为一新类别“古囊藻”(Palaeocolpomenia, Tang Feng et al., 2022, 图2);和长棒形叶状体出现细长拟茎状突起及纺锤状固着构造的个体,曾被命名为另一新类别“带状江川藻”(Jiangchuania taeniophylla),推测属于新元古代初期的优势类群龙凤山藻科Longfengshaniaceae化石(Tang Feng et al., 2007, 图1, 17, 20)。尽管目前这些新出现类别的细胞结构仍然不明,但从形态上可以确定叶状体似Tawuia的宏体化石也有部分是底栖固着类型,而非以往认知的与圆盘形Chuaria紧密共生的浮游类型。

图5 滇东玉溪地区江川生物群中C形的Tawuia类化石

Fig.5 Tawuia-like macrofossils with cashew or C-shape from Jiangchuan biota in eastern Yunnan

(a)—(i)产自云南江川旧城段,标尺为 2 mm。(a)弯曲变形较强烈,拐点略偏于一端的标本,疑似斜侧压埋保存的;(c)标本有不规则弯折和褶皱(红/紫色箭头),可能是压埋挤压的结果;其余标本均在化石中部圆缓弯曲,碳膜在中凹处都有所增厚,个别(i)呈腰果状,腰窝具较厚的碳质斜面(黄色箭头),显示化石生物是圆筒立体的小“腰果”

(a)—(i)from the Jiucheng Mb.of Dengying Fm., Jiangchuan, Yunnan, the scale bar is 2 mm.(a)specimens with strong bending deformation and slight inflection point at one end are suspected to be preserved by obliquely compressing;(c)the specimen is irregularly bent and wrinkled(red/purple arrows), which may be the result of compression; The rest of specimens are round and gently curved in the middle part, and the carbonaceous compression was thickened in the middle concave.Some specimens(i)are cashew-shaped, and the lumbar concave has a thick carbonaceous slope(yellow arrow), indicating that the fossil is a small cylindrical “cashew”

滇东旧城段泥质粉砂岩中保存的香肠、直棒形Tawuia状化石表面覆盖有厚薄不均的碳膜,多数膜面光滑无饰,仅环绕膜面周缘呈现一圈碳质增厚的环带,可以解释为生物有机质经埋藏被挤压到周边保存的现象;少数膜面出现裂纹(crack)、孔洞(hole)、皱纹(crinkle),但这些无定向、不规则、不稳定的纹洞(图2,箭头)显然不能代表这类生物的原生构造,而是后期风化及压埋作用所致;个别化石可见端部类似圆孔的开口(图2b,箭头)和局部残存的细密平行的横向纹饰(图2k,箭头),推测是原生构造,可能与部分化石的生物属性有关(见后文讨论)。

图2 滇东玉溪地区江川生物群香肠形或直棒形Tawuia类化石

Fig.2 Tawuia-like macrofossils with sausage shape and claviform, Jiangchuan Biota in eastern Yunnan

(a)—(d),(e),(g)中紫色箭头所指为裂纹;(b)的端部黄色箭头指向孔洞开口;(c)为标准的直棒I形化石,碳膜表面显示不规则脱落的孔洞;(f),(l),(m)为鞋底形化石;(h)为略弯的香肠形化石,红色箭头指示纵向分布的褶痕;(j)为(i)的局部放大;(i),(j)蓝箭头指向不规则孔洞;(k)化石片段,绿色箭头所指为保存的细密横纹。均产自云南江川灯影组的旧城段,标尺为2 mm

The purple arrows in(a)—(d),(e), and(g)indicate cracks; The yellow arrow at the end of(b)points to the hole opening;(c)is a standard straight rod and I-shaped fossil with irregular deciduous holes on the surface of carbonaceous compression;(f),(l),(m)are sole shape fossils;(h)is a slightly curved sausage-shaped fossil, with red arrows indicating longitudinal folds;(j)is the magnification of(i);(i),(j)the blue arrows point to the irregular hole;(k)fossil fragment, green arrows point to preserve dense and transverse stripes.All fossils from the Jiucheng Mb.of Dengying Fm., Jiangchuan, Yunnan, the scale bar is 2 mm

2.2 披针形

该类化石曾经在苏皖北部的淮南生物群(符俊辉, 1989, 图2)及河北燕山地区的龙凤山生物群(刘傲然, 2018, 图3)中就有过报道,在滇东江川生物群中也很常见(图3)。在Hofmann(1979, 1985)对Tawuia dalensis化石的特征定义中将“有些化石末端变得细尖”即“披针形”包含其中,但在其文献中仅展示了个别这样形态的化石(Hofmann, 1985, 图36-3),而一端逐渐窄细,另一端粗壮膨大,应该是化石生物的原生形态,而不可能是肠形及棒形Tawuia化石压埋变形导致的。滇东这类化石碳膜保存较厚的标本呈现出明显折叠的褶皱纹饰,略见纵向分布,自窄细端向膨大端略有发散,个别可见肋状平行保存(图3a—d, h),这种现象表明化石生物体在膨大端可能为中空的囊状,而在窄细端则渐变为圆筒状,并可能有加长生长为固着端的趋势(图3a)。这种叶状体类似披针形态、在细尖端出现长柄和固着构造的过渡化石(图3),最早在本地报道过的龙凤山藻科化石Longfengshaniaceae中就有所展示(唐烽等, 2006, 图1-1, 2, 5, 7, 14, 19),所以这类Tawuia化石极有可能是一种底栖固着类型宏体藻类的还未分化出固着器官的过渡类型。

图3 滇东玉溪地区江川生物群披针形Tawuia类化石

Fig.3 Tawuia-like macrofossils with lanceolate in shape of Jiangchuan Biota in eastern Yunnan

(a)表面可见肋状皱痕,紫色箭头;(b)—(d),(h)有不规则纵轴向褶皱纹饰,黄色箭头;(e)—(g)膜面光滑,碳质保存较少,残存黑色斑块,和端部的环状碳质构造(红色箭头),碳环中央碳膜较淡(g)。均产自云南江川旧城段,标尺为 1 mm

(a)ribbed creases with purple arrows are visible on the surface;(b)—(d),(h)irregular longitudinal axial fold ornamentation with yellow arrow;(e)—(g)the surface is smooth, less carbonaceous content preservation, residual black patches, and annular carbonaceous structures at the ends(red arrows), the central carbonaceous compression is light(g).All fossils from the Jiucheng Mb.of Dengying Fm., Jiangchuan, Yunnan, the scale bar is 1 mm

2.3 梭形或纺锤形

邢裕盛(1985)最早报道并将滇东产出的梭形Tawuia化石划分为新种Tawuia fusiformis sp.nov.,但一直没有进一步描述和图示模式标本,应为无效种名。但近年来的采集研究表明,梭形或纺锤形态的似Tawuia化石在滇东震旦纪旧城段的江川生物群中多有发现,而在其他地层、其他地区中均未见报道,可能是一类分布不广的区域类群。这类化石外表形态与上述的披针形基本类似,但独有的特征就是中间略见粗壮膨大,两端均缩小封闭,保存的碳膜表面也是光滑无饰(图4)。叶状体藻类这样双向对称均匀生长的模式,在前寒武纪宏体生物群中还是首次发现。而现生高级藻类中叶状体也基本呈现一端膨大优势生长的体型,除非在一些扁叶状具中轴的藻类叶状体上可以不规则随机生长出有浮力的膨大囊泡(Tseng, 1983)。推测这类梭形古老化石膨大的中间部分也可能是囊状略微中空的适于远洋漂浮的结构,沉积风化后的化石体两端仍然保留有较厚的碳质压膜,表明藻体两个端部有机质富集,都可能是活跃的生长点,即经过一段时期的光合漂浮生活,任意一端均可能附着在较硬底质上继续底栖阶段的生长。这有助于及时有效地占据透光带的水体中或底质表面上的生态位,可能是藻类演化过程中更为原始的性状特征之一。

图4 滇东玉溪地区江川生物群梭形或纺锤形Tawuia类化石

Fig.4 Tawuia-like macrofossils with fusiform or spindle in shape of Jiangchuan Biota in eastern Yunnan

(a)—(g)产自云南江川旧城段的梭形化石;(b),(d),(f)端部平面疑似接合面(红色箭头);(h)—(j)产自安徽寿县刘老碑组,叶状体接合保存的标本,(i)为(h)接合处放大,标尺为2 mm

(a)—(g)spindle-shaped fossils from the Jiucheng Mb.of Dengying Fm., Jiangchuan, Yunnan;(b),(d),(f)end parts suspected junction surface(red arrow);(h)—(j)specimens from Liulaobei formation, shouxian county, anhui province, thallus junction preserved,(i)is the junction magnification of(h); and the scale bar is 2 mm?倓

唐烽(1997)曾图示出露于安徽淮南寿县刘老碑组黄绿色页岩中富产的宏体藻类化石,这是国内最早发现前寒武纪宏体化石的产地及层位。其中包含很罕见的梭形或纺锤形的Tawuia类化石,个别标本可见大小两个个体,呈藕节状接合在一起保存,观察其接合处,褶皱纹饰在接合部位自然汇聚,未见叠压现象,明显为两个叶状体端部紧密黏合形成(图4h—k)。推测一个可能是藻体沉积保存时,两个体分泌的藻胶黏液恰好黏连在一处,最近的文献(Li Guangjin et al., 2020, 图4p—s)图示了这种可能性;另一可能则是藻体生活史中的某个阶段,小的个体从大的母体顶端增殖出来,生长到一定长度自行脱落,独立生存;上述标本的完整保存,类似现代多年生褐藻的海带类藻体的一种生长方式,由叶状体的端部以中间分生组织生成一新的藻体,自老的藻体上渐渐脱落。本文展示的部分标本一端保存疑似脱落的平坦接合面(图4b, d, f),可以解释为上述藻体增生后脱落为浮游型个体的可能性;从化石出露层位的白云质、泥质粉砂岩发育水平微层理,和上覆薄层粉屑白云岩可见变形层理,反映出潮下低能的斜坡沉积环境(唐烽等, 2007, 图3),而安徽淮南刘老碑组可以肯定是沉积于水动力条件更弱的页岩相静水环境,所以会有梭形Tawuia类化石个体藕节状接合状态的特异埋藏保存。

2.4 弯曲形(C、J、L、U、O、8字形)

以往国内外文献报道的弯曲变形的Tawuia类化石常见有C形和U形,一般是化石体较为细长时保存这种形态的化石较多(Hofmann and Aitken, 1979; Duan Chenghua, 1982, 图4; 符俊辉, 1989, 图1-2; 张仁杰等, 1989, 图2; Singh, 2009, 图4; 钱迈平等, 2009, 图11-6, 8),特别在我国华北东缘新元古代早期地层中出露的更为丰富(Sun Weiguo et al., 1986, 图7; Li Guangjin et al., 2019, 图4c; Li Guangjin et al., 2020, 图4; Tang Qing et al., 2021a, 图2, 图4)。张仁杰等(1989, 1991)报道过海南石碌群碳质板岩中产出的典型案例,图示了很多C形(马蹄铁形)和U形的Tawuia类化石,并统计了两个群类长宽比(L/W)的分布规律,发现的化石几乎都位于长宽比在5~10 之间(张仁杰等, 1991, 图2);较为短粗的圆弧状C形或马蹄铁形与化石体更为细长、两端加长至平行并列甚至末端黏合的U形明显分为不同的两个类群,表明两类均是加长生长的同时也在增宽,而显然在一定的长度和一定的宽度后,C形弯曲变化为U形弯曲,两者不存在个体发育上的成长关系。

图7 滇东玉溪地区江川生物群中U形的Tawuia类化石

Fig.7 U-shaped Tawuia-like macrofossils from Jiangchuan Biota in eastern Yunnan

(a)—(f)产自云南江川旧城段,标尺为 2 mm。(a)较长的黄铁矿化U形标本,一端因压埋而折曲(绿色箭头指示折曲处),化石体表面可见几段横纹保留(白色箭头),弯曲两端的近端部几乎平行,拐点偏于其中一端;(b),(c)(e)弯曲呈较窄的U形,拐点也略偏于化石的一端;(d),(f)为非常粗壮的U形化石,内侧边缘略有接近(d)和略有贴近重叠(虚线),显示碳膜很厚且有干裂纹(d和f图中的白色箭头)

(a)—(f)from the Jiucheng Mb.of Dengying Fm., Jiangchuan, Yunnan, the scale bar is 2 mm.(a)a long pyritic U-shaped specimen, one end of which is bent due to compress and bury(green arrow indicates the bend), several transverse stripes can be seen on the surface of the fossil(white arrow).The curved and proximal ends are almost parallel, and the inflection point is partial to one end;(b),(c),(e)curve in a narrow U-shape, and the inflection point is slightly towards one end of the fossil;(d),(f)are very robust U-shaped fossils with medial edges slightly(d)and close to overlap(dashed lines), indicating the thick and carbonaceous compression with dry cracks(white arrows d and f)

滇东江川生物群中C形和U形的Tawuia类化石并不丰富,没有进一步的统计分析。而且,滇东弯曲形的化石新发现了L形以及罕见的O形和8字形。

C形与直棒状化石(图2)相比多数个体较小,呈腰果状,保存长度5 mm以下,宽度不到2 mm,未见细长如马蹄铁形的化石,曲率小、圆周切角均为钝角(图5);L形略粗长,一般在个体中央位置打折成明显的直角或锐角,而不是圆弧状弯曲,两侧缘并不是一直保持平行延长,保存的宽度在端部可见膨大,个别端部还见到塌陷变形,表明生物体可能是圆筒状体或囊状体(图6);U形化石在江川生物群中更加少见,几乎是偏于一端弯曲的标本,拐点的一端生长较长而一端较短,这与其他地区的弯曲面两侧基本平行对称的U形化石保存不大一样(图7),个别粗壮的标本甚至弯曲成圆饼状,内侧缘部分重叠存留很厚的碳膜(图7f)。

图6 滇东玉溪地区江川生物群中折尺状或L形的Tawuia类化石

Fig.6 Tawuia-like macrofossils with folding ruler or L-shape from Jiangchuan biota in eastern Yunnan

(a)—(k)产自云南江川旧城段,标尺为 2 mm。(a)弯折处碳膜加厚干裂呈现不规则横纹(红色箭头);(b)内折处碳膜脱落出现围岩(紫色箭头);(b),(c),(k)在端部及弯折位置出现裂纹(红色箭头);(d),(e)和(f),(g)互为正负模;(d),(e)在端部也出现横贯化石体的碳膜剥落,并有局部的塌陷变形(橙色箭头),显示生物体可能是中空囊状的圆柱体;(h)在弯曲的外缘局部可见较厚碳膜残留的疑似横节纹(红色箭头);(i)—(k)标本可见不同程度的端部膨大;(k)化石膨大宽度可达弯曲直径的近两倍(虚线)

(a)—(k)from the Jiucheng Mb.of Dengying Fm., Jiangchuan, Yunnan, the scale bar is 2 mm.(a)the carbonaceous compression at the bend is thickened and cracked, showing irregular transverse stripes(red arrows);(b)the carbonaceous compression falls off at the inner fold and wall rocks appear(purple arrow);(b)—(c),(k)cracking at the end and bending position(red arrow);(d),(e)and(f),(g)are holotypes and paratypes of each other;(d)—(e)also show carbonaceous compression peeling across the fossil at the end, with local collapse deformation(orange arrow), indicating that the organism may be a hollow and sac-like cylinder;(h)suspected transverse stripes with relatively thick carbonaceous residue(red arrow)can be seen on the curved outer edge.Specimens(i)—(k)show varying degrees of enlargement at the end, and the expansion width of k reaches nearly twice the bending diameter(dashed line)

O形或环状的化石在滇东产地迄今只发现了4件标本(图8),可识别出是香肠状化石弯曲成闭合的环状保存而成,两端接合处均可见部分重叠,碳质膜面光滑,环状边缘清晰,内、外缘均保存有较厚碳膜,特别是内缘可见碳膜的斜面和横向纹饰,有明显的立体感,表明化石生物弯曲时可能是圆筒形的(图8e,g)。

图8 滇东玉溪地区江川生物群中环状或O形的Tawuia类化石

Fig.8 Tawuia-like macrofossils with annular or O-shape from Jiangchuan biota in eastern Yunnan

(a)—(f)产自云南江川旧城段,标尺为 2 mm。(a),(c)为弯曲成近环形的正负模化石,(b)为(a)的局部放大,显示环形连接的端部(虚线);(d)—(f)为较小的弯曲并有端部叠压(虚线显示)的环形标本(d),(f)的端部重叠在左上角,(e)的端部疑似在右下角;(d)中央有碳膜脱落(内缘断处虚线连接)出现的白底围岩(箭头所指);(f)化石右下角的锲状碳膜构造的成因或功能不明,但疑似叠压的另一件化石,或化石生物压埋时破裂翻出来的体壁碎片(箭头);(g)为f标本的下部放大,可见环形内缘有较为明显的碳膜残留呈现规则的一系列横纹,显示化石有一定的立体厚度,圆环宽度下窄上宽,表明压埋应力是右下至左上的方向

(a)—(f)from the Jiucheng Mb.of Dengying Fm., Jiangchuan, Yunnan, the scale bar is 2 mm.(a),(c)are holotypes and paratypes to bend into a near ring,(b)is the local magnification of(a), showing the end of the ring connection(dashed line);(d)—(f)are small curved ring specimens with overlapping ends(dashed line), the ends of(d)and(f)overlap in the upper left corner, and the end of(e)is suspected to be in the lower right corner.In(d), there is a white wall rock in the center where carbonaceous compression has fallen off(dotted line connection at the inner edge)(arrow points).In(f), the origin or function of the awl-shaped carbonaceous structure in the lower right corner of the fossil is unknown, but it is another fossil suspected to be superimposed, or the body’s fragments are broken and turned out during the burial of organisms(arrow);(g)is the magnification of lower part, it can be seen that there are relatively obvious carbonaceous residues in the inner edge of the ring, showing a series of regular transverse stripes, indicating that the fossil has a certain three-dimensional thickness.The width of the ring is narrow at the bottom and wide at the top, indicating that the compressive and buried compression is in the direction from the bottom at the right to the left

本文记述的8字形化石仅有一例,明显为香肠状生物的两端不是如上述几种都是向一侧方向的弯曲,而是向两侧反向弯曲,保存的化石呈现8字形,一端强烈内卷闭合,中央残存较厚碳膜,另一端基本以相同曲率卷曲但未闭合,化石体边界清楚,弯曲两端部碳膜保存较多(图9a—c)。

此外,滇东化石群弯曲变形的Tawuia类化石中也包含有极少数的一端逐渐窄细而一端膨大浑圆的披针形个体(图9d,e),这也是在其他国内外相关生物群中迄今未见报道过的。

图9 滇东玉溪地区江川生物群中“8”字形和弯曲的披针形Tawuia类化石

Fig.9 Tawuia-like macrofossils with “figure-eight” or crooked lanceolate-shape from Jiangchuan biota in eastern Yunnan

(a)—(c)8字形标本,产自云南江川旧城段,标尺为 2 mm。(b)为(a)的左端放大,显示强烈卷曲闭合,(c)为(a)右端放大,卷曲未闭合,末端楔状突起疑为压埋时有机质被挤压溢出的痕迹(箭头所指);(d),(e)分别为弯曲成C形及L形一端膨大的披针形化石(橙色箭头指示弯折部位)

(a)—(c)“figure-eight” specimens from the Jiucheng Mb.of Dengying Fm., Jiangchuan, Yunnan, the scale bar is 2 mm.(b)is the magnification of the left end of(a), showing strong crimping and closing;(c)is the magnification of the right end of(a), showing the crimping is not closed, the wedge-like protrusion at the end is suspected to be the trace of the extrusion and overflow of the organic matter during compressed burial(arrow);(d),(e)are the lanceolate fossils that bend into C-shape and L-shape fossils respectively(orange arrows indicate the bend)

3 对比及讨论

3.1 推测有动物亲缘的似Tawuia化石形态学及埋藏学对比

如上所述,云南江川生物群中的似Tawuia化石形态多样,个体大小也很悬殊;弯曲保存的化石约占20%~30%,与加拿大Little Dal群和我国淮南生物群的比例类似;但香肠/直棒形化石一般较大,尤其出现了独特的梭形/纺锤形标本,而出露的C、L、U和8形标本多数较小,极似直棒形生物弯曲的幼体;结合生物群中同时产出更加多样化、具固着器的Longfengshania类,表明与国内外“雪球”冰期前相似形态的化石应该有继承性,但同样有很大的差别。

华北燕山地区发育大量的呈直棒形的 T. sinensis(Duan Chenghua et al., 1982),很少发现其他变形弯曲的标本(刘傲然, 2019),更未见原始定义的较强烈弯曲呈“U”形的T. dalensis(Hofmann and Aitken, 1979)。而在华南的海南石碌群曾发现更多的Tawuia类化石呈“C”形或“U”形弯曲的种,比例较大(约84%; 张仁杰等, 1991),个体超大,特别是“U”形化石很多,且多数在化石体中部强烈弯曲,致使两侧躯体并列靠拢甚至接触叠压,在层面上更是不规则、无定向分布,非常醒目。对此,尽管更早的资料都将这类U形管化石称作“石碌虫”,但原作者(张仁杰等, 1989, 1991)显然默认了原命名者(Hofmann, 1985)将此弯曲类型作为主要原生特征归入宏观藻类的观点,而没有进一步做埋藏统计学的研究。苏皖北部的淮南生物群中也以个体很大的“C”形或“U”形弯曲的种 T. dalensis最为发育, 许多碳膜标本可见明显的末端小圆盘及局部(近端部或弯折部)表面具臼齿状横肋和细密的横纹(钱迈平等, 2009; Li Guangjing et al., 2020; Tang Qing et al., 2021a);但早有学者认为具横向纹饰的化石,其大小和形态更加接近现代绿藻类中的蠕环藻(Neomeris annulata),而所有的弯曲形态都被推断是因埋藏状况呈现的各种变形(钱迈平等, 2009)。

现代藻类中圆筒状、长囊状且具横向环纹的种类非常罕见,浅水潮下带易钙化的蠕环藻(N. annulata)是最典型的类型之一(Tseng, 1983),该藻最早的化石记录尚不清楚。而现生最常见的具环纹蠕形生物的最早代表在寒武纪早、中期的云南澄江动物群和加拿大布尔吉斯页岩化石群就有所记录(Briggs et al., 1994; Hou Xianguang et al., 2017),现生典型种类是环节动物门的蚯蚓。其在生活状态下自主蜷曲的形态与本文引述、描述的弯曲型Tawuia化石相当(图10a—h),特别是与江川生物群中的小微个体出现的8字形和U形等及弯曲处具细密横纹的保存特征比较一致。由此,笔者等赞成前人提出的新元古代大冰期前即已广泛出现、形态构造简单的ChuariaTawuia组合可能是多源的,尤其是依据原始定义特征的Tawuia极可能是一个“大口袋”形态属(郑文武等, 1994; 陈孟莪, 2000),其亲缘属性复杂,可能更具多解性。其中许多弯曲形态的原定为多细胞宏体藻类埋藏变形的、近来又被认为是“巨细胞”多核体绿藻类的Tawuia dalensis(Li Guangjin et al., 2020; Tang Qing et al., 2021b),目前来看,更有可能具管状的蠕形动物亲缘。其一,在国内外主要的宏体化石群中产出的似Tawuia化石,如果是随机飘浮或表栖的多细胞藻类,必然在定向水流作用下,沉积时才可能呈现出特殊的弯曲保存形态;而在海南石碌、华北东缘的苏皖及鲁西和加拿大等地出露的类似形态的化石,在层面上却是杂乱分布,没有显示出任何定向的特点;化石富集层位也是页岩、泥岩或粉砂岩性及具水平微层理的静水或弱水动力沉积环境。其二,石碌的巨大弯曲的Tawuia化石丰度更是比直棒状的多出约4倍,应该不可能是同沉积层中直棒状化石受埋藏变形影响的结果,且化石富集层的石碌群第6层碳质板岩和其他几个著名产地化石层位的泥质/碳质页岩中均没有定向水动力的沉积记录。其三,中国石碌、淮南和加拿大小达尔的生物群中均出现较多的弯曲变形T. dalensis化石,只是大多数标本弯曲曲率最大点都在化石体中部,强烈弯曲还导致两端躯体平行甚至端部靠拢叠压,这种稳定姿态的保存方式是直棒状个体死亡后经水流冲刷、随机埋藏成因难以解释的;其四,江川生物群中化石B组合的产出层位岩性为粉砂质、泥质页岩和白云质、泥质粉砂岩互层,相邻层位存在陕西迹化石Shaanxilithes富集的泥岩和包卷层理的记录(图1b; 唐烽等, 2007),从化石组合变化和岩性过渡都表明是向上缓慢海侵渐次水深的弱水动力沉积环境,但产出的U型等多种形态弯曲变形的Tawuia类化石(本文图5—图9)明显微小,丰度也少,与香肠状、鞋屐状较大化石相比差别甚巨(图2~图4);所以,至少在江川生物群中这些变形的类别不大可能是死亡沉积的藻类被动扭曲后埋藏,更可能是小型或幼年管状或香肠状动物亲缘的活体如蚯蚓般(图10a—h)主动卷曲形成的保存状态(图10i)。

图10 现生蠕形的蚯蚓卷曲图(a—h)及弯曲的Tawuia类化石沉积埋藏前的生态复原图(i)

Fig.10 The images of living earthworm(a—h)and the ecological diagram of Tawuia-like fossils in the latest Ediacaran seafloor(i)

(a)—(d)为扭曲呈C、U形的个体;(e)和(f)为扭曲成8字形的蚯蚓;(g)为S形蚯蚓活体; h呈略扭曲的L形活体; 注意蚯蚓体表横节纹的疏密变化。标尺为1 cm;(i)为江川生物群Tawuia类化石各类型生态复原,注意无任何定向水动力的标志

(a)—(d)are individuals distorted in the C-shape and U-shape specimens;(e)and(f)are earthworms twisted into figure-eight;(g)is S-shaped earthworm;(h)is a slightly distorted L-shaped living body; Notice the density changes of the transverse stripes on the surface of the earthworm.The scale is 1 cm;(i)is the ecological restoration of all types of Tawuia fossils in Jiangchuan biota, and note that there is no sign of directional hydrodynamic force

近年在滇东江川生物群主要产地层位邻近的磷矿区寒武系底部磷块岩层中,又发现有规则平行且细密的横、纵纹饰,在新类型的条带状宏体碳膜化石Rugosusivitta表面同时出现(Tang Feng et al., 2021);依据其扁带状折曲、横纹疏密相间和固着(较细)端出现多条平行纵纹等性状特征而被推测为扁形动物的始祖类别(唐烽等, 2020),在形态大小上基本可以与国外伊迪卡拉系—寒武系过渡地层中多见的印痕/铸型化石Harlaniella可以对比(Li Yulan et al., 2022, in review)。多种岩性层中印痕化石和碳膜化石共存有横、纵纹的镶嵌性状,表明在伊迪卡拉纪末期原口动物中两侧对称动物底部的无体腔或假体腔类型,已经有两种体制策略在不同的沉积环境中辐射发生;甚至管状有环节/体节或有体腔的蠕形动物已经出现丰富的化石记录(华洪等, 2020a)。为了增大生态空间和运动能力,“基础动物”开始首次创新爆发,个别两侧对称生命的先驱很可能已经演化出肌肉组织和神经组织(舒德干和韩健, 2020)。基础动物向原口动物演化的可能路径应该是纵向的直纹牵引肌(蛋白),通过差异牵引或螺旋滚动使躯体弯曲或扭曲前进;横向原始体节的发生更进一步让体节内体液游移从而驱动躯体蠕动成为可能,新报道的Rugosusivitta呈现横纹间距大至小的变化特征(Li Yulan et al., 2022, in review),这样蠕动应该是能量损耗较低的方式,也促使真体腔开始出现,可以有效隔离消化和循环器官的功能。

江川生物群中Tawuia类化石迄今所发现的弯曲变形类型最多(表1),对弯曲变形的机制解释更倾向于动物属性的早期生命自主卷曲后保存,而非水流冲刷弯曲后埋藏;在弯曲处碳膜横节纹保存显示可能有体壁环节的存在,新出露标本尤其在周缘普遍保存较厚的碳膜也表明这类变形化石的体壁可能是多层或很厚的有机质致密层,富含柔韧易于变形的肌肉组织,与早期多细胞藻类外壁组成应该是差别很大,抵抗沉积风化的能力更强。但是大约同时代国内外均已发生多层共管或套管的管状有节动物如CloudinaConotubusSinotubulites及相当形态化石类型的繁盛辐射(华洪等, 2020a, 2020b),相比于新元古代早期地层中即已出现并传承至伊迪卡拉纪末期的Tawuia弯曲变形类别,明显是蠕曲效率更高的进化类型。但是以上思考推测还需要更加充分的化石证据。

表1 弯曲变形的Tawuia类化石报道统计

Table 1 Reported statistics of bent and deformed Tawuia fossils

时代形态类型产地地层参考文献伊迪卡拉纪L、J、C、U、O、8型扬子滇东 渔户村组旧城段Tang Feng et al., 2007; 本文拉伸纪—伊迪卡拉纪J、C型华北东缘辽南地区(复州、旅大、金州)钓鱼台组,南芬组长岭子组,南芬组—南关岭组林蔚兴, 1984; 陈梦莪, 1991 J、C、U、L型华北东缘辽南地区长岭子组,营城子组,南关岭组洪作民, 1991J、C、U、L型华北东缘徐淮地区刘老碑组,九里桥组Xing Yusheng, 1979; 郑文武, 1979; 符俊辉, 1989拉伸纪J、C、U型J型J、C型C型海南微板块石碌群张仁杰等, 1989, 1991加拿大北部小达尔群(Little Dal Gr.)Hofmann, 1979, 1985华北燕山、怀来、兴隆、涿鹿、昌平、宽城、丰宁、蓟县骆驼岭组,景儿峪组唐烽, 1995; 杜汝霖, 1982; 杜汝霖等, 1985, 1986, 1989加拿大北极区维恩尼亚塔组(Wynniatt Fm.)Hofmann and Rainbird, 1985挪威斯瓦尔巴特群岛 卡佩罗德组(Kapp Lord Fm.)Knoll, 1982

3.2 Tawuia化石“盘口”形构造的地化分析与动物属性猜测

本文记述的香肠状Tawuia化石端部发现有椭圆形的缺口,暴露出碳膜缺失后的下部围岩(图2b);另外还发现有个别标本,膜面上保存功能不明的偏于一侧端部的环状碳质构造,而碳环中央碳膜较淡(图3g)。苏皖北部淮南生物群中香肠状的宏体化石也存在类似的构造(Dong Lin et al., 2008, 图8-1, 3; 钱迈平等, 2009, 图6, 11)。而与同物异名的小双盘体(郑文武等, 1994, 图1-4),乃至最新发现的华北东缘Tonian纪石旺庄组Tawuia端部明显的铁矿化似“盘口”构造均可能是同源的原生构造(Tang Qing et al., 2021a, 图6c—f)。运用新技术手段对该构造及其他化石区域进行了背散射电子扫描、能谱分析获得的图件(Tang Qing et al., 2021a, 图7),原作者观察推测为脱落构造(abscission structures),换言之,这样的圆盘构造具有吸附和脱落的功能,但经过我们的分析解读,得出了可能不同的推断:

(1)该圆盘区由颗粒状物质堆积而成,由贫铝、硅和富铁、氧的颗粒物质组成,碳、硫含量亦低,可得出该区域有机物及亲生物元素硫明显流失或者缺失,与化石体其余部位碳质含量高更有显著差别,而高于围岩的铁氧富集特征更可能表明这些颗粒为次生的磁铁矿、赤铁矿或褐铁矿一类物质。

(2)该圆盘区域显然没有附着黏土(因铝、硅含量很低),但它从环境中选择性吸附了铁离子。不论该类生物体是悬浮生活在水体中还是栖息于泥质基底上,该生物死后埋藏都保存在泥质页岩的浅海带,但却使圆盘与化石本体有显著差别(即圆盘不粘黏土),应该是死后该圆盘部位仍具有不被黏土污染的能力。

对上述两点差异,如是宏体藻类的脱落盘,则很难解释,真正的藻类接合/脱落面应该如前文图示(图4h—i)的藕节状接合的保存方式,碳质压膜的藻类化石仅可见较为平坦的端面,而不是较纯净的黄铁矿化圆盘状斑痕。对此用动物原口来推测则很好理解:因为早期动物死亡被压埋后,身体不同的组织器官均缓慢降解,但腐解速度不一样,往往动物表皮长期与环境直接接触,因适应当时环境而腐解较慢,但象内部的软体组织会在生命停止后优先降解腐败;腐败产生大量小分子物质,如蛋白质变为多肽再变为氨基酸,脂肪会降解成脂肪酸和醇类,多糖类会分解成小分子醇类等,最后释出二氧化碳、氨气、甲烷等,这些腐解后的小分子气体极易通过动物腔肠的腐烂通道被压移,而通过圆盘状原口或者后口(“盘口”)溢出,冲出的气体会将盘口附近的砂泥黏土吹走,即“吹除其附近的细小脏物”,通常在端口处呈较为平整的形态,不会形成不规则状或放射状。紧随后面的中分子醇类及脂肪酸类物质被压出,在盘口处形成一层黏滞的胶体,该胶体常溶掉氢为阴离子胶束,一般呈负电性(赵通林, 2018),进而吸附周围的铁离子、钙离子等正电性物质(硅酸盐及铝硅酸盐因表面带负电性(卢寿慈, 1988)而不会被吸附),最终使盘口出现了铝硅低而铁高的现象;后来在缓慢的化石化过程中,其身体其他部位的有机残留使其具有一定的高于环境的碳,并且铝硅等来自环境的元素也被吸附进去,导致与盘口处铁高、铝硅低的现象完全不同。后期的氧化中铁可能与氧结合造成出露的化石盘口位置铁氧富集呈现黄褐色的现象,而不是黄铁矿充填的现象。本文图示(图3g)的端部碳环构造也是在后期缓慢进行的干酪根(kerogen)化作用会使有机内含物逐渐富集,围绕盘口呈较为规则的环形碳质加厚沉积而保存下来的。另外从Tang Qing(2021a, b)、Li Guangjin(2020)等文献的化石图版中还可见到盘口中心很黑的碳质残留及轴部碳黑条带,特别是化石体中不规则分布的碳核体,我们的推测更可能是有些难于溶解的或被外层胶体包裹保护的大分子量有机物如干酪根、沥青质一直残留,并在生物尸体中运移富集保存的结果(周林飞等, 2016; 焦存礼, 2021, 私人通信)。

Tang Qing等(2021a, b)也认为这些Tawuia类的直棒形标本端部的黄色圆盘应是生物本身的构造,故其死亡后沉积下来的圆盘为规则的;但却认为黄色斑痕是大量的黄铁矿充填的现象,以及这些标本是多核体的真核藻类或外共生的真核生物共同保存的化石体。而一般情况下,若是体表较为均一的生物有机体,比如叶状体藻类,被埋藏时逐渐压实、放气、收缩等的化石化过程中,才会随机在边缘寻找压扁的薄弱口形成一些平整的不规则裂纹或放射性的构造。迄今已知的藻类生物从没有发育端部的功能不明的圆盘状原生构造。

不过这些形态特征简单的宏体碳膜化石表面构造的成因显然也存在多解性,如果要确定出最合理的生物属性解释,还需要更多的证据加持。

4 结论

国内、外比较公认的Tawuia化石出现于新元古代早期,基本形态为直棒I形和香肠形,若干化石富集的产地和层位中还伴生有弯曲马蹄C形和U形,直至新元古代全球大冰期前,保存形态均比较稳定。而冰期之后华南滇东新元古代末期江川生物群产出的Tawuia类化石则形态明显多样化,除了直棒形、哑铃形和鞋履形以外,比较多的出现了披针形和梭形(纺锤形)的类别,以及弯曲变形的L、C和U形,特别发现有环状的O形和反向弯转的8字形。依据这些弯曲化石赋存的沉积环境和保存状态,以及近期在华北东缘淮南和鲁西地区报道的完美化石记录,本文推断Tawuia大类亲缘属性复杂,部分直棒形、香肠形、披针形和梭形、纺锤形化石归属多核体或多细胞藻类基本无疑;而其他规则变形保存为C、L、J、U、O、S、8字形的化石很难解释为死亡藻类沉积埋藏时被动变形所致,更可能是两侧对称动物亲缘的近海底栖生物的主动弯曲状态,经特异埋藏而保存;部分保存有特殊盘口状构造的标本,进一步解读其地化分析结果也倾向于软躯体动物腐解风化缓慢压埋而成。

致谢:谨以此文祝贺杨文采主编80华诞!贵州省地质调查院副总工程师陈建书研究员、贵州大学王约教授多次参与野外工作,中国地质科学院硕士研究生顾鹏、云南大学博士研究生张光旭参与野外化石采集和剖面测制,耶鲁大学的Lidya TARHAN助理教授对本文的英文摘要进行了修改。

参考文献 References

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

陈孟莪.1991.峡东区上震旦统陡山沱组发现宏体化石.地质科学, 26(4): 317~324.

陈孟莪.2000.评中元古界常州沟组发现碳质压型化石及多细胞组织结构.地质论评, 46(1): 21.

杜汝霖, 田立富.1985.燕山青白口系宏观藻类龙凤山藻属的发现和初步研究.地质学报, 59(3): 183~190.

杜汝霖.1982.冀西北青白口系Chuaria等化石的发现及其意义.地质论评, 28(1): 1~7.

杜汝霖,田立富.1986.燕山地区青白口纪宏观藻类.石家庄: 河北科学技术出版社: 1~114.

符俊辉.1989.安徽寿县晚前寒武纪淮南生物群新材料.古生物学报, 28(1): 72~77.

顾鹏, 钟玲, 张国栋, 宋思存, 唐烽, 凌茂前, 高林志.2018.华南埃迪卡拉(震旦)系顶部地层划分及与寒武系界线FAD分子的选择.地质学报, 92(3): 449~465.

洪作民, 黄振福, 杨欣德, 兰晶, 咸炳才, 杨雅君, 梁岩, 孙铜, 王福君, 宋绍.1986.辽南震旦系兴民村组发现后生动物化石.辽宁地质,(4): 289~298.

洪作民, 杨雅君, 黄镇福.1991.辽东半岛南部晚先寒武纪宏体生物序列.辽宁地质,(3): 219~236.

华洪, 蔡耀平, 闵筱, 柴姝, 代乔坤.2020a.埃迪卡拉纪末期管状动物的大辐射.西北大学学报(自然科学版), 50(2): 141~174.

华洪, 蔡耀平, 闵筱, 柴姝, 代乔坤, 崔再航.2020b.新元古代末期高家山生物群的生态多样性.地学前缘, 27(6): 28~46.

刘傲然.2018.河北怀来新元古代青白口纪龙凤山宏观藻类生物群特征与地质意义.导师:冯庆来.北京: 中国地质大学.博士学位论文: 1~158.

林蔚兴.1984.辽东半岛南部晚前寒武纪地层中炭质宏观化石(Carbonaceous megafossils)的初步研究.中国地质科学院沈阳地质矿产研究所文集, 10: 135~153.

卢寿慈.1988.矿物浮选原理.北京: 冶金工业出版社: 1~276.

罗惠麟, 武希彻, 欧阳麟, 蒋志文, 宋学良.1988.扬子地台震旦系寒武系界线剖面地层对比的新认识.云南地质, 7(1): 13~27.

钱迈平, 姜杨, 余明刚.2009.苏皖北部新元古代宏体碳质化石.古生物学报, 48(1): 73~88.

舒德干, 韩健.2020.澄江动物群的核心价值: 动物界成型和人类基础器官诞生.地学前缘, 27(6): 1~27.

唐烽.1995.北京地区青白口纪长龙山期宏观藻类的新发现.地层古生物论文集, 26(2): 24~34.

唐烽, 宋学良, 尹崇玉, 刘鹏举, Awramik S M, 王自强, 高林志.2006.华南滇东地区震旦(Ediacaran)系顶部Longfengshaniaceae藻类化石的发现及意义.地质学报, 50(11): 1~7.

唐烽, 尹崇玉, 高林志, 刘鹏举, 王自强, 陈寿铭.2009.华北克拉通东部新元古代宏体化石生物地层序列.地质论评, 55(3): 305~317.

唐烽, 高林志, 尹崇玉, 王约, 顾鹏.2015.华南伊迪卡拉(震旦)系顶部建阶层型和界线层型新资料.地质通报, 34(12): 2150~2162.

唐烽, 尹崇玉, 刘鹏举, 王自强, 高林志.2007.滇东埃迪卡拉(震旦)系顶部旧城段多样宏体化石群的发现.古地理学报, 9(5): 533~540.

唐烽.1997.华北地台东缘晚前寒武纪地层及宏体化石研究.导师: 邢裕盛.北京: 中国地质科学院博士学位论文.

唐烽, 陈建书, 任留东, 高林志, 华洪.2020.动物世界的先驱—中国第一个候选“金钉子”梅树村剖面实证记录及对比.昆明: 云南科技出版社: 1~498.

邢裕盛.1985.云南昆明附近震旦纪宏观藻类化石的发现及其地层意义.中国地质科学院地质研究所所刊, 12: 118.

张仁杰, 冯少南, 徐光洪, 杨德骊, 鄢道平, 李志宏.1989.ChuariaTawuia生物群在海南岛石碌群的发现及意义.中国科学,(3): 304~311.

张仁杰, 冯少南, 马国干, 徐光洪, 鄢道平.1991.海南岛晚前寒武纪宏观藻类化石.古生物学报, 30(1): 115~125.

周林飞, 赵言稳, 芦晓峰.2016.不同生活型植物腐解过程对人工湿地水质的影响研究.生态环境学报, 25(4): 664~670.

赵通林.2018.浮选.北京: 冶金工业出版社: 1~204.

郑文武.1979.“淮南生物群”的主要特征及其在地层研究中的意义.合肥工业大学学报, 2(2): 97~106.

郑文武, 穆玉英, 郑学信, 王家文, 邢乐澄.1994.皖北上前寒武系史家组碳质大化石的发现及生物地层意义.古生物学报, 33(4): 455~471.

Briggs D E G, Erwin Douglas, Collier F J.1994.The Fossils of the Burgess Shale.Washington and London: Smithsonian Institution Press.

Chen Menge.1991&.Discovery of the the macrofossils in the upper simian Doushantuo Formation at miaohe, eastern Yangtze Gorges.Earth Science, 26(4): 317~324.

Chen Menge.2000#.Evaluating the carbonaceous compression fossils and multicellular structure found in the Changzhougou Formation in Mesoproterozoic.Geological Review, 46(1): 21.

Dong Lin, Xiao Shuhai, Shen Bing, Yuan Xunlai, Yan Xianqin, Peng Yongbo.2008.Restudy of the worm-like carbonaceous compression fossils Protoarenicola, Pararenicola, and Sinosabellidites from early Neoproterozoic successions in North China.Palaeogeography, Palaeoclimatology, Palaeoecology, 258(3): 138~161.

Du Rulin and Tian Lifu.1985&.Discovery and preliminary study of mega-alga Longfengshania from the Qingbaikou system of the Yanshan Mountain Area.Journal of Geology, 59(3): 183~190.

Du Rulin.1982&.The discovery of the fossils such as Chuaria in the Qingbaikou system in Northeastern Hehei and their significance.Geological Review, 64(5): 1045~1054.

Du Rulin and Tian Lifu.1986.Mega-alga from the Qingbaikou System of the Yanshan Mountain Area.Shijiazhuang: Hebei Science & Technology Press: 1~114.

Duan Chenghua.1982.Late Precambrian algal megafossils Chuaria and Tawuia in some areas of eastern China.Alcheringa: An Australasian Journal of Palaeontology, 6(1): 57~68.

Fu Junhui.1989&.Assemblage of Huainan Biota and its characteristics.Journal of Palaeontology, 28(1): 72~77.

Gu Peng, Zhong Lin, Zhang Guodong, Song Sicun, Tang Feng, Ling Maoqian, Gao Linzhi.2018&.The Division of the Late Ediacaran—Cambrian boundary interval stratigraphy and new options of index fossil FAD in South China.Acta Geologica Sinica, 92(3): 449~465.

Hua Hong, Cai Yaoping, Min You, Chai Shu, Dai Qiaokun.2020a&.Tubular animal radiation at the terminal Ediacaran stage.Journal of Northwest University(Natural Science Edition), 50(2): 141~174.

Hua Hong, Cai Yaoping, Min You, Chai Shu, Dai Qiaokun, Cui Zaihang.2020a&.Ecological diversity in the terminal Ediacaran Gaojiashan biota.Earthscience Frontier, 27(6): 28~46.

Hofmann H J, Aitken J D.1979.Precambrian biota from the Little Dal Group, Mackenzie Mountains, northwestern Canada.Can.J.Earth Sci, 16: 150~166.

Hofmann H J.1985.Precambrian carbonaceous megafossils.Paleoalgology: Contemporary Research and Applications, 20~33.

Hofmann H J and Rainbird R H.1994.Carbonaceous megafossils from the Neoproterozoic shaler supergroup of arctic Canada.Palaeontology, 37(4):721~731.

Hong Zuomin, Huang Zhenfu, Yang Xinde, Lan Jing, Xian Bingcai, Yang Yajun, Liang Yan, Sun Tong, Wang Fujun, Song Shao.1986&.The finding of metazoan fossils from Xingmingcun Formation of Sinian in South Liaoning.Liaoning Geology, 4: 289~298.

Hong Zuomin, Yang Yajun, Huang Zhenfu.1991&.Macrofossil sequence of the late Precambrian from the southern Liaodong Peninsula.Liaoning Geology, 3: 219~236.

Hou Xianguang, Aldridge R J, Bergstrom J, Siveter David J, Siveter Derek J.2017.The Cambrian Fossils of Chengjiang, China(The Flowering of Early Animal Life)II Cnidaria.Oxford: Blackwell Science, 1~376.

Knoll A H.1982.Microfossil-based biostratigraphy of the Precambrian Hecla Hoek sequence, Nordaustlandet, Svalbard.Geol.Mag.119(3): 269~279.

Li Guangjin, Pang Ke, Chen Lei, Zhou Guangzhao, Han Chunmei, Yang Le, Wang Wei, Yang Fengjie, Yin Leiming.2019.Organic-walled microfossils from the Tonian Tongjiazhuang Formation of the Tumen Group in western Shandong, North China Craton and their biostratigraphic significance.Gondwana Research, 76: 260~289.

Li Guangjin, Chen Lei, Pang Ke, Zhou Guangzhao, Han Chunmei, Yang Le, Lu Weiguo, Wu Chengxi, Wang Wei, Yang Fengjie.2020.An assemblage of macroscopic and diversified carbonaceous compression fossils from the Tonian Shiwangzhuang Formation in western Shandong, North China.Precambrian Research, 346: 105801.

Li Yulan, Zhang Lijun, Song Sicun, Li Ming, Liang Yongzhong, Tang Feng.2022.Two ribbon-like macrofossils in contrasting preserved forms from the Ediacaran—Cambrian intervals.Frontiers in Earth Science(In Peer reviewed).

Liu Aoran.2018.The characteristics and geological significance of Longfengshan macroalgal biota in Tonian, Neoproterozoic, Hebei hualai.Supervisor: Feng Qinglai.Beijing: China University of Geosciences, Ph.D.thesis,1~158.

Lin Weixing.1984.Preliminary study on carbonaceous macrofossils of Late Precambrian strata in southern Liaodong Peninsula.Shenyang Institute of Geology and Mineral Resources, Chinese Academy of Geological Science, 10: 135~153.

Lu Shouci.1988.Principle of mineral flotation.Beijing: Metallurgical Industry Press, 1~276.

Luo Huilin.1988&.New correlation opinions in the sections of Sinian—Cambrian boundary in the Yangze Platfrom.Yunnan Geology, 7(1): 13~27.

Qian Maiping, Jiang Yang, Yu Minggang.2009&.Neoproterozoic millimetric—centimetric carbonaceous fossils from northern Anhui and Jiangsu, China.Journal of Palaeontology.48(1): 73~88.

Singh V K, Babu R, Shukla M.2009.Discovery of carbonaceous remains from the Neoproterozoic shales of Vindhyan Supergroup, India.Journal of Evolutionary Biology Research, 1(1): 1~17.

Shu Degan and Han Jian.2020&.Core value of the Chengjiang fauna: formation of the animal kingdom and the birth of basic human organs.Earth Science Frontiers, 27(6): 1~27.

Sun Weiguo, Wang Guixiang, Zhou Benhe.1986.Macroscopic worm-like body fossils from the Upper Precambrian(900~700Ma), Huainan district, Anhui, China and their stratigraphic and evolutionary significance.Precambrian Research, 31(1986): 377~403.

Tang Feng, Song Xueliang, Yin Chongyu, Liu Pengju, Wang Ziqiang, Awramik S M, Gao Linzhi.2007.Discoveries of new Longfengshaniaceae from the uppermost Ediacaran in eastern Yunnan, South China and the significance.Front.Earth Sci.China, 1(2): 142~149.

Tang Feng, Yin Chongyu, Liu Pengju, Gao Linzhi, Zhang Wenyan.2008.A New Diverse Macrofossil Lagerstatte from the Uppermost Ediacaran of Southwestern China.Acta Geologica Sinica, 82(6): 1095~1103.

Tang Feng, Song Sicun, Zhang Guangxu, Chen Ailin, Liu Junping.2021.Enigmatic ribbon-like fossil from Early Cambrian of Yunnan, China.China Geology, 4(2), 205~214.

Tang Qing, Pang Ke, Li Guangjin, Chen Lei, Yuan Xunlai, Sharma Mukund, Xiao Shuhai.2021.The Proterozoic macrofossil Tawuia as a coenocytic eukaryote and a possible macroalga.Palaeogeography, Palaeoclimatology, Palaeoecology, 576(2021): 110485.

Tang Qing, Pang Ke, Li Guangjin, Chen Lei, Yuan Xunlai, Xiao Shuhai.2021.One-billion-year-old epibionts highlight symbiotic ecological interactions in early eukaryote evolution.Gondwana Research, 97: 22~33.

Tang Feng.1995&.Macroalgal fossils of Changlongshan State in Beijing Region and their significance.Proceedings of Stratigraphic Paleontology, 26: 24~34.

Tang Feng.1997.Megafossils and stratigraphy of the late Precambrian Strata in estern margin of the North China Platform.Supervisor: Xing Yusheng.Beijing: Chinese Academy of Geological Science, Ph.D.thesis, 1~53.

Tang Feng, Song Xueliang, Yin ChongYu, Liu Pengju, Awramik S M, Wang Zhiqiang, Gao Linzhi.2006&.Discoveries of Longfengshaniaceans from the Uppermost Ediacaran(Sinian)in Eastern Yunnan,South China and Significances.Journal of Geology, 50(11): 1~7.

Tang Feng, Yin Chongyu, Gao Linzhi, Liu Pengju, Wang Ziqiang, Gao Linzhi.2007&.Discovery of diverse macrofossil assemblages from the Jiucheng Member of uppermost Ediacaran in eastern Yunnan.Journal of Palaeogeography, 9(5): 533~540.

Tang Feng, Yin Chongyu, Gao Linzhi, Liu Pengju, Wang Ziqiang, Chen Shouming.2009&.Macrofossil records of the Neoproterozoic in the eastern of North China Craton: An implement of Neoproterozoic biostratigraphy.Geological Review, 55(3): 305~317.

Tang Feng, Gao Linzhi, Yin Chongyu, Wang Yue, Gu Peng.2015&.Macrofossil biotas in the Late Ediacaran—Cambrian boundary interval of South China and stratotype correlation.Geological Bulletin of China, 34(12): 2150~2162.

Tang Feng, Chen Jianshu, Ren Liudong, Gao Linzhi, Hua Hong.2020.The Trailblazer of animals—The fossil documents and comparative study of the first candidate GSSP Meishucun section in China.Kunming: Yunnan Science and Technology Press: 1~498.

Tseng C K.1983.Common seaweeds of China.Beijing: Science Press, 1~316.

Xing Yusheng.1979.The Sinian System of China.In: The General Bureau of Geology and Mineral Resources of China(Editor), Scientific Papers on Geology for International Exchange(Stratigraphy and Palaeontology).Beijing: Geological Publishing House(in Chinese), 2: 158.

Xing Yusheng.1985#.Macroscopic fossil algae from simian near Kunming and its stratigraphical significance.Journal of Institute of Geology, Chinese Academy of Geological Science, 12: 118.

Zhang Renjie, Feng Shaonan, Xu Guanghong, Yang Deli, Jun Daoping, Li Zhihong.1989#.Discovery and significance of ChuariaTawuia biota in Shilu Group, Hainan Island.China Science, 3: 304~311.

Zhang Renjie, Feng Shaonan, Ma Guogan, Xu Guanghong, Yan Daoping.1991&.Late Precambrian macroscopic fossil algae from Hainan Island.Acta Palaeontologica Sinica, 3: 304~311.

Zhao Tonglin.2018.flotation.Beijing: Metallurgical Industry Press, 1~204.

Zheng Wenwu.1979&.Principal characteristics of “Huainan biota” and its stratigraphic significance.Journal of Hefei Polytechnic University, 2(2): 97~106.

Zheng Wenwu, Mu Yuying, Zheng Xuexin, Wang Jiawen, Xin Lechen.1994&.Discovery of carbonaceous megafossils from upper Precambrian Shijia Formation, North Anhui and its stratigraphic significance.Journal of Palaeontology, 33(4): 455~471.

Zhou Linfei, Zhao Yanwen, Lu Xiaofeng.2016&.Effects of Aquatic Plant Decomposition on Water Quality in Constructed Wetland.Ecology and Environmental Sciences, 25(4): 664~670.

Zhu Shixing, Sun Shufen, Huang Xueguang, He Yuzhen, Zhu Gengxin, Sun Lixin, Zhang Kuan.2000.Discovery of carbonaceous compressions and their multicellular tissues from the Changzhougou Formation(1800 Ma)in the Yanshan range, North China.Chinese Science Bulletin, 45(9): 841~847.

Sausage-like macrofossils from the Ediacaran Jiangchuan Biota in eastern Yunnan
——New phylogenetic interpretation of Tawuia

LI Yulan1,2,3),WANG Hao2),LIU Aoran4),LI Ming2),LIANG Yongzhong5),ZHOU Ying6),TANG Feng2),REN Liudong1)

1)College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China;2)Key Laboratory of Stratigraphy and Paleontology, MNRC, Institute of Geology, Chinese Academy of Geological, Beijing, 100037, China;3)Guizhou Bureau of Geology and Mineral Resources 111 Geological Brigade, Guiyang, Guizhou, 550081, China;4)College of Earth Sciences, Hebei University of Geosciences, Shijiazhuang, Hebei, 050031, China; 5)Yunnan Yuntianhua Environmental and technological limited company, Kunming, Yunnan, 650300, China;6)Department of Earth Sciences, University College London, London, WC1E6BT, United Kingdom

Abstract: The Jiangchuan biota of the Ediacaran(Sinian)upper Dengying Formation in eastern Yunnan is another rich and diverse macrofauna preserved by carbonaceous compressions in South China.A large number of sausage-shaped macroscopic fossils of carbonaceous compressions were found in this biota, which are extremely similar in size and shape to Tawuia carbonaceous fossils that were widely distributed in Mesoproterozoic and Neoproterozoic strata prior to the Cryogenian Snowball Earth episodes.We report that these fossils have a maximum width of 4.5 mm, a maximum length of 4cm, and a length—width ratio greater than 2.The surface appears to be smooth and unornamented.Dark peripheral rings can be observed on some fossil specimens with particularly carbonaceous margins.However, these fossils appear to be more morphologically variable than classic Tawuia, which are commonly characterized by rod-shaped, I-shaped, U-shaped and C-shaped morphologies; we additionally observe fossils with right-angled L-shaped, figure-8-shaped, wide U-shaped, and annular O-shaped morphologies.Individual specimens are also characterized by bending carbon residue, marginal carbon thickening and transverse ridges are associated with protruding structures of different sizes.Although previous studies have interpreted Tawuia as the thallus of a planktonic alga, we find that the morphological variability we observe in these Tawuia-like fossils cannot be easily reconciled with such an interpretation.These fossils may, alternatively, be related to vermiform animals of macrosomic fossil groups predating the Cryogenian glacials in the lower Neoproterozoic of West Shandong and Huainan.The newly discovered fossil morphology suggests that the Tawuia-like carbonaceous compression fossils may represent an early polyphyletic affinity.The fossils with short to long banded thallus, short peduncles and suspected holdfast structures can be identified as benthic macroalgae.Most of the thalli are assumed to be sausage-shaped or long and saccular, including various life stages of pelagic planktonic organisms, which may belong to primitive unbranched multinucleate algae or early differentiated hollow sac-like multicellular algae.Some of the regularly deformed Tawuia-like fossils shown in this paper are more likely to be bilaterally symmetrical relatives of early animals.Benthic organisms living in offshore marine settings may have experienced taphonomic processes of deformation and burial distinct from those experienced by planktonic organisms or algae transported from more terrestrially proximal settings.

Keywords: Jiucheng Member; Ediacaran; Jiangchuan biota; Tawuia-like fossil; polyphyletic affinity; bilaterally symmetrical animal

注:本文为国家自然科学基金资助项目(编号:42172035,41762001)和贵州科技项目(编号:2017-5788,2021-4001)的成果。

收稿日期:2022-05-06;改回日期:2022-07-31;网络首发:2022-08-20;责任编辑:刘志强。Doi: 10.16509/j.georeview.2022.08.111

作者简介:李玉兰,女,1986年生,博士研究生,高级工程师,主要从事古生物学和地层学研究;Email:413739242@qq.com。

通讯作者:唐烽,男,1965年生,博士,研究员,主要从事古生物学与地层学研究;Email:tangfeng65@qq.com。

Acknowledgements: We thank for assistant professor Lidya TARHAN additionally check this abstract.This study was supported by the National Natural Science Foundation of China(No.42172035)and the Science and Technology Project of Guizhou Province, China(Nos.2017-5788, 2021-4001)

First author:

LI Yulan,born in 1986, Ph.D., candidate, senior engineer, mainly engage in the research of paleontology and stratigraphy; Email: 413739242@qq.com

Corresponding author: TANG Feng, born in 1965, Ph.D., prof., mainly engage in the research of paleontology and stratigraphy; Email: tangfeng65@qq.com

Manuscript received on: 2022-05-06; Accepted on: 2022-07-31; Network published on: 2022-08-20

Doi: 10.16509/j.georeview.2022.08.111

Edited by: LIU Zhiqiang