内蒙古东部红山子复式岩体晚侏罗世黑云母花岗岩地球化学特征及地质意义

祝洪涛1),巫建华2),唐大伟1),郭恒飞1),杨东光2),王良玉1),吴仁贵3)

1) 核工业二四三大队,内蒙古赤峰,024000;2) 东华理工大学核资源与环境国家重点实验室,南昌,330013; 3)东华理工大学地球科学学院,南昌,330013

内容提要: 位于沽源—红山子铀成矿带北东段的红山子复式岩体,由晚侏罗世早期碱长花岗岩、黑云母花岗岩和早白垩世早期细粒黑云母花岗岩、花岗斑岩组成,并以晚侏罗世早期碱长花岗岩、黑云母花岗岩为主体。晚侏罗世早期黑云母花岗岩包括中细粒黑云母花岗岩和似斑状黑云母花岗岩两种,它们均具高硅、富碱、钾和铁、贫铝和低钙、镁的主量元素特征,SiO2分别为75.2%~76.6%和74.6%~75.3%,(K2O+Na2O)分别为8.19%~8.96%和8.78%~9.10%, K2O/Na2O分别为1.19~1.39和1.29~1.35,在SiO2—MALI图解中落入钙碱值与碱钙值A型花岗岩区域内;Al2O3的含量分别为11.5%~12.3%和12.5%~12.7%,CaO 分别为0.30%~1.24%和0.76%~0.83%,A/CNK分别为0.90~0.97和0.93~0.96,均不含标准矿物刚玉;FeO+Fe2O3分别为2.23%~2.65%和2.33%~2.48%(均>1.00%),锆石饱和温度分别为834~869℃和819~839℃(均>800℃),具有A型花岗岩的富铁和高温特征。中细粒黑云母花岗岩和斑状黑云母花岗岩稀土含量较高、富集轻稀土、重稀土分异不明显和Eu强烈亏损,富集大离子亲石元素Rb、Th、K等和高场强元素Zr、Hf、Nd、Ta、Y等,亏损大离子亲石元素Ba、Sr等,Zr+Nb+Ce+Y的含量分别为897×10-6~1236×10-6和513×10-6~643×10-6(均>350×10-6),10000Ga/Al值分别为6.28~6.90和3.28~3.98(均大于2.6),具有A型花岗岩的微量元素特征。在Nb—Y—3Ga、Nb—Y—Ce和Y/Nb—Rb/Nb图解中显示A1和A2型过渡型花岗岩的特征,微量元素构造判别图解显示板内拉张构造环境。中细粒黑云母花岗岩和斑状黑云母花岗岩具有较低的较高的εNd(t)、较年轻的TDM2、较低的和较低的δ18OV-SMOW,表明岩浆源于年轻下地壳底部的部分熔融,且经历了高温热液蚀变作用。可见,中细粒黑云母花岗岩和斑状黑云母花岗岩是在板内拉张构造环境下,由源于Ⅰ型富集地幔的基性岩浆底侵于下地壳和少量古老下地壳混染后,形成的年轻下地壳再部分熔融形成的A2型花岗岩。根据中细粒黑云母花岗岩和斑状黑云母花岗岩U含量较高,分别为7.3×10-6~22.3×10-6(平均14.6×10-6)和4.53×10-6~6.90×10-6(平均6.01×10-6),并经历了高温热液蚀变作用,特别是前者与晚侏罗世火山岩的内、外接触带中已发现铀矿化,提出晚侏罗世黑云母花岗岩的内、外接触带是深入开展铀矿勘查的有利部位。

关键词:黑云母花岗岩;A型花岗岩;晚侏罗世;地球化学;沽源—红山子铀成矿带

图1 克什克腾旗红山子复式岩体地质图(据祝洪涛等,2019)
Fig. 1 Geological map of the Hongshanzi composite granitic intrusives, Hexigten Banner (after Zhu Hongtao et al., 2019&)
Q—第四系;N1h—中新统汉诺坝组;J3x—上侏罗统新民组;P1y—下二叠统于家北沟组;K1γ—早白垩世
花岗岩;J3γ—晚侏罗世花岗岩;P2γδ—中二叠世花岗闪长岩;λπ—流纹斑岩;γπ—花岗斑岩
Q—Quaternary; N1h—Miocene Hannuoba Formation; J3x—Upper Jurassic Xinmin Formation; P1y—Lower Permian Yujiabeigou Formation; K1γ—Early Cretaceous granite; J3γ—Late Jurassic granite; P2γδ—Middle Permian granodiorite; λπ—rhyolite porphyry; γπ—granite-porphyry

位于沽源—红山子铀成矿带北东段的红山子—广兴铀成矿亚带,侏罗—白垩纪发生了强烈的岩浆活动,不仅形成了多个晚侏罗世早期火山岩盆地(巫建华等,2013,2016,2017a;纪宏伟,2015;解开瑞等,2016;姜山等,2018),还形成了大量晚侏罗世早期、早白垩世早期花岗岩和花岗斑岩(丁辉等,2016;祝洪涛等,2019;王常东等,2019)。目前,该亚带已发现了红山子铀矿床、南窝铺铀矿床、灶火沟门铀矿床以及多处铀矿化、异常点(带),具有良好的找矿前景(吴仁贵等,2011;黎伟等,2017)。许多学者认为该亚带的铀矿化与晚侏罗世早期中酸性火山岩(巫建华等,2013,2016;蔡煜琦等,2015;纪宏伟,2015;解开瑞等,2016)和早白垩世早期花岗斑岩(丁辉等,2016;王常东等,2019)有关。研究表明,该带铀矿化多赋存在不同侵入体的内、外接触带中(巫建华等, 2017a,2017b;黎伟等,2017),且目前已发现在复式岩体内的晚侏罗世早期中细粒黑云母花岗岩与晚侏罗世火山岩的内、外接触带中存在铀矿化,表明该亚带是深入开展铀矿勘查的有利部位。然而,构成红山子复式岩体的晚侏罗世早期碱长花岗岩和黑云母花岗岩的地球化学特征还缺乏系统的研究,制约了铀成矿作用的深入研究。本文通过主量元素、微量元素和Sr—Nd—Pb—O同位素的系统测试,分析了红山子复式岩体晚侏罗世早期黑云母花岗岩的岩石类型、物质来源和形成的构造环境,并结合铀矿勘查的成果分析它们在铀矿化中作用。

1 区域地质背景

红山子复式岩体位于大兴安岭南端的克什克腾旗境内,大地构造位置处于西拉木伦河—长春缝合带以南、赤峰—开原断裂带以北的辽源地块上(图1a),位于沽源—红山子铀成矿带北东段。古亚洲洋自晚二叠世-早三叠世沿索伦山—西拉木伦缝合带拼合,“阿蒙兴造山带”(中亚造山带)拼合形成(汪相,2018),辽源地块上发育岛弧型岩浆岩(许文良等,2019)。中生代以来辽源地块不仅进入古亚洲洋构造域向古太平洋构造域转换阶段(翟明国等,2004;许文良等,2013;孟凡超等,2014),而且还受到蒙古—鄂霍茨克构造域的演化影响(张兴洲等,2012)。中侏罗世中期,鄂霍茨克洋闭合造山作用形成了额尔古纳S型花岗岩、孙吴地区白云母花岗岩等同碰撞花岗岩及高锶低钇中酸性(Adakitic, 埃达克质)岩体侵位(李宇等,2015;许文良等,2013),造成辽源地块及其以北地区中侏罗世地层以区域不整合的形式覆盖在之前的地层之上(许文良等,2019)。中侏罗世晚期一晚侏罗世早期,大兴安岭—燕山地区处于伸展构造环境,导致加厚的陆壳坍塌或拆沉(孟恩等,2011;许文良等,2013;李宇等,2015),在大兴安岭北部及满洲里—额尔古纳地区形成以为塔木兰沟组中基性火山岩组合为代表的火山活动(李萍萍等,2010;徐美君等,2011;赵忠华等,2011),在大兴安岭南部形成以新民组长英质火山熔岩、火山碎屑岩夹沉积岩组合的火山活动(陈英富等,2012;李可等,2012;杨扬等,2012;巫建华等,2013,2016,2017a;姜山等,2018),以及侵入岩大量发育,如内蒙古达来庙钾长花岗岩(薛富红等,2015)、西拉木伦碾子沟二长花岗岩(张晓静等,2010)、半砬山钼矿流纹斑岩(薛富红等,2015)和红山子复式岩体中的晚侏罗世花岗岩(祝洪涛等,2019)。晚侏罗世末期,在NW—SE向挤压作用之下,中亚造山带及华北北缘地区向南逆冲和继之左行走滑的构造变形,致使区内地壳明显挤压褶皱缩短、向东逃逸和地壳加厚形成褶皱逆冲带,与局部伸展形成的挤压挠曲盆地构成盆—山结构(葛肖虹等,2014;李锦轶等,2014;王永超等,2016)。早白垩世早期,大兴安岭—燕山地区岩浆活动强烈,形成了以兴安岭群或张家口组流纹岩—粗面岩组合、A型花岗岩和变质核杂岩,可能是对蒙古—鄂霍茨克以及环太平洋两大构造体系的双重演化有关的响应(Wang Tao et al.,2012,2015;许文良等,2013)。但辽源地块上仅见早白垩世早期细粒花岗岩和花岗斑岩(丁辉等,2016;王常东等,2019),未见以兴安岭群或张家口组流纹岩一粗面岩组合为代表的火山岩。

红山子复式岩体近似于三角形,呈NE向展布,面积约为290 km2(图1b),由晚侏罗世早期碱长花岗岩、黑云母花岗岩和早白垩世早期细粒黑云母碱长花岗岩、花岗斑岩组成,其中晚侏罗世早期碱长花岗岩、黑云母花岗岩最为发育,占复式岩体主体的80%以上,主要分布在岩体边部和南部(祝洪涛等,2019)。粗粒碱长花岗岩分布面积最大,细粒黑云母碱长花岗岩、斑状黑云母花岗岩和中细粒碱长花岗岩侵入其中;细粒黑云母碱长花岗岩与斑状黑云母花岗岩呈侵入接触,花岗斑岩则多以岩脉形式产出。

岩体围岩复杂,地层时代跨度较大。北部岩体侵入于二叠系于家北沟组,岩体接触带附近云英岩化发育;东北部与海西期花岗闪长岩呈侵入接触;西北部和东部侵入上侏罗统新民组高钾钙碱性流纹岩—碱性流纹岩组合,火山岩的SHRIMP锆石U-Pb年龄分别为155~157 Ma(巫建华等,2013,2017a;解开瑞等,2016;姜山等,2018);东南部为新近系汉诺坝组火山岩区。

复式岩体内部和边缘已发现多处放射性异常,岩体周围的火山盆地内分布着多个铀矿床(点)。其中,红山子盆地内分布有红山子中型铀矿床,芝瑞盆地内分布有南窝铺、灶火沟门2个小型铀矿床和大量铀矿点和铀矿化点,指示复式岩体内、外接触带具备良好的铀成矿条件(丁辉等,2016;黎伟等,2017)。

2 岩相学特征

图2 克什克腾旗红山子复式岩体晚侏罗世黑云母花岗岩手标本及镜下照片
Fig. 2 Specimens and microphotographs of the Late Jurassic biotite granites from the Hongshanzi composite granitic intrusives, Hexigten Banner
(a)中细粒黑云母花岗岩手标本;(b)半自形斑状结构;(c)斜长石聚片双晶;(d)斑状黑云母花岗岩手标本;(e)基质细—微粒结构;(f)黑云母呈它形充填长石、石英间隙
(a)Medium—fine-grained biotite granites;(b) Semi-shaped patchy structure; (c) Plagioclase Polycrystalline; (d) Porphyritic biotite granites; (e) Matrix is Fine-particulate structure; (f) Biotite is filled with feldspar and quartz gaps

红山子复式岩体黑云母花岗岩主要采自铀矿勘查实施的钻孔中,部分采自岩体东部的地表新鲜露头,包括中细粒黑云母花岗岩和似斑状黑云母花岗岩。中细粒黑云母花岗岩呈灰白色,中粒半自形结构(图2a)。矿物组成为石英、斜长石、钾长石和黑云母;石英呈他形粒状,含量约为20%~25%;斜长石半自形板状(图2b),约占10%~15%左右;钾长石半自形—他形板状,含量约占60%(图2c);黑云母呈他形填充在石英、长石的间隙中,约占5%左右(图2c);斜长石发育较强的黏土化,部分黑云母发育绿泥石化及绿帘石化,沿黑云母边缘或解理见铁质矿物析出。副矿物主要为锆石、磁铁矿。似斑状黑云母花岗岩呈灰红色,似斑状结构,块状构造。斑晶主要为石英和条纹长石,有少量正长石斑晶,正长石斑晶可见环带状结构,条纹长石斑晶粒径4 mm为主,局部斑晶以巨斑—聚斑形式展布(图2d)。基质具细—微粒结构(图2e、3f),由长石、石英和黑云母组成,局部可见文象结构;黑云母约占整体的5%左右,粒径约为1 mm,呈它形填充在石英、长石的间隙中(图2e),此外,部分石英斑晶被溶蚀为次圆状,碱性长石发育较强的黏土化,黑云母发育绿泥石化。副矿物主要为锆石、磁铁矿。

3 分析方法

3.1 主量元素、微量元素分析

主量元素、微量元素(包括稀土元素)分析由河北省区域地质矿产调查研究所实验室完成。用于测试的样品均为新鲜、无裂隙及后期岩脉的样品,切除表皮后分装、标定,经风干后细碎过20目筛,再用玛瑙研钵磨至200目以下,供分析测试使用。主量元素测试除FeO含量采用硫酸—氢氟酸溶矿、重铬酸钾滴定法测得外,其余主量元素采用熔片法和X射线荧光光谱方法测定,测试仪器为Axios max-X射线荧光光谱仪,样品采用无水四硼酸锂作为熔剂,分析相对误差小于2%。微量元素(包括稀土元素)采用ICP-MS方法测定,测试仪器为X Serise 2电感耦合等离子体质谱仪,实验温度在22~28℃,相对湿度为38%~60%,样品用1 mL浓HF+0.5 mL浓HNO3在190℃溶解48 h,以保证样品完全溶解;同时,在测试过程中采用F-基体匹配分析技术,以解决Nb、Ta、Zr、Hf等元素在稀硝酸介质中的不稳定性问题,对USGS国际标准样品(BHVO-2)的测定结果表明,样品测定值和推荐值的相对误差小于10%,且大多数微量元素的分析相对误差在5%以内,详细的样品制备、分析流程及其误差、精度等详见文献李林庆等(2010)、李献华等(2002),红山子复式岩体晚侏罗世中细粒黑云母花岗岩和斑状黑云母花岗岩主量元素、微量元素分析结果列于表1。

图 3 克什克腾旗红山子复式岩体晚侏罗世黑云母花岗岩稀土元素配分曲线(a)及微量元素蛛网图(b)(球粒陨石标准化值、原始地幔标准化值据 Sun and McDonough(1989)
Fig. 3 The rare earth elements chondrite normalized diagram (a) and trace elements spider diagram (b) of the Late Jurassic biotite granites from the Hongshanzi composite granitic intrusives, Hexigten Banner (elements contents of the chondrite and primitive mantle from Sun and McDonough (1989)
△—中细粒黑云母花岗岩;□—斑状黑云母花岗岩
△—Medium—fine-grained biotite granites;□—Porphyritic biotite granites

3.2 Sr—Nd—Pb—O同位素分析

Sr—Nd—Pb—O 同位素分析在核工业北京地质研究院分析测试中心完成。Sr同位素分析测试采用Phoenix热表面电离质谱仪,检测方法和依据参照EJ/T 692-1992《岩石矿物铷锶等时年龄测定》;Nd同位素分析测试采用ISOPROBE-T热表面电离质谱仪,检测方法和依据参照GB/T 17672-1999《岩石中铅、锶、钕同位素测定方法》;Pb同位素分析测试采用ISOPROBE-T热表面电离质谱仪,检测方法和依据参照DZ/T 0184.12-1997《岩石、矿物中微量铅的同位素组成的测定》;O同位素分析测试采用德国Finnigan公司生产的MAT 253稳定同位素质谱仪,测试方法和依据参照DZ/T 0184.13-1997《硅酸盐及氧化物矿物中氧同位素组成的五氟化溴法测定》。红山子复式岩体晚侏罗世中细粒黑云母花岗岩和斑状黑云母花岗岩Sr—Nd—Pb—O同位素分析结果及有关参数列于表2。

4 分析结果

4.1 主量元素特征

从表1可以看出,中细粒黑云母花岗岩和似斑状黑云母花岗岩具有高硅、较富碱和较高铁、较低铝、贫钙和镁的主量元素特征,SiO2含量分别为75.2%~76.6%和74.6%~75.3%,K2O含量分别为4.24%~4.65%,Na2O含量分别为3.57%~4.14%,K2O+Na2O值分别为8.19%~8.96%和8.78%~9.10%,K2O/Na2O值分别为1.19~1.39和1.29~1.35,Al2O3的含量分别为11.5%~12.3%和12.5%~12.7%,CaO 分别为0.30%~1.24%和0.76%~0.83%,(FeO+Fe2O3)分别为2.23%~2.65%和2.33%~2.48%,MgO值分别为0.05%~0.08%和0.17%~0.20%,P2O5值分别为0.01%~0.02%和0.02%~0.03%。具有较高的分异指数(DI=92.6~94.8)和较低的镁值(分别为Mg#=3.42~5.31和11.3~13.1),表明岩浆的分异演化程度较高。

4.2 微量元素特征

中细粒黑云母花岗岩和似斑状黑云母花岗岩均表现出稀土含量较高、富集轻稀土、重稀土分异不明显和Eu强烈亏损的特点,ΣREE分别为533×10-6~895×10-6和319×10-6~452×10-6,(La/Yb)N分别为2.96~3.76和7.72~8.88,(La/Sm)N分别为3.40~3.68和5.56~35.97,(Gd/Yb)N分别为0.59~0.71和0.97~1.02,δEu分别为0.03~0.04和0.16~0.18,Ce含量分别为205×10-6~345×10-6和135×10-6~205×10-6,Zr含量分别为300×10-6~432×10-6和245×10-6~306×10-6,Nb含量分别为140×10-6~247×10-6和49.8×10-6~61.8×10-6,Y含量分别为184×10-6~311×10-6和59.9×10-6~70.1×10-6, Ga含量分别为39.3×10-6~43.1×10-6和22.0×10-6~256.5×10-6(表1)。在球粒陨石标准化配分曲线图(图3a)上,呈右倾轻稀土富集型,且轻稀土曲线相对较陡,重稀土曲线较平缓,呈典型右倾“V”字型配分曲线特征,指示岩浆有富集轻稀土的矿物(如褐帘石、独居石、磷灰石等)分离结晶(苏玉平等,2005),而Eu的显著亏损,指示岩浆演化过程中发生明显的分离结晶作用或部分熔融过程中斜长石残留在源区。富集大离子亲石元素Rb、K、U、Th等和高场强元素Zr、Hf、Nb、Ta等元素,亏损大离子亲石元素Ba、Sr等,在微量元素原始地幔标准化蛛网图(图3b)上,显示Rb、U、Th、Pb峰和Ba、Sr、P、Ti谷的特点。

表1 克什克腾旗红山子复式岩体晚侏罗世黑云母花岗岩主量元素(%)、微量元素(×10-6)分析结果及有关参数
Table 1 Analysis results for major(%) and trace elements(×10-6) of the Late Jurassic biotite granites from the Hongshanzi composite granitic intrusives, Hexigten Banner

样品号HS36HS37HS38HS40HS41HS42HS65HS66HS67HS68HS69HS70岩性中细粒黑云母花岗岩似斑状黑云母花岗岩SiO276.076.075.276.675.975.774.874.974.674.875.374.8TiO20.080.080.090.090.080.090.190.180.170.170.180.18Al2O311.911.912.311.511.912.212.612.612.712.712.512.6Fe2O30.870.720.880.890.830.870.360.240.290.440.430.42FeO1.781.511.751.721.581.612.122.162.111.891.972MnO0.060.060.060.060.060.060.090.080.080.080.080.09MgO0.060.060.080.050.070.050.190.180.20.180.190.17CaO1.141.241.170.651.170.300.830.770.820.770.760.81Na2O3.463.473.593.713.434.093.873.913.993.883.843.96K2O4.774.784.894.644.774.865.15.085.165.224.945.13P2O50.010.010.020.010.010.010.020.020.020.020.020.03烧失量1.171.11.10.891.090.610.770.750.760.770.670.67总量99.999.999.999.999.999.999.999.999.999.999.999.9K2O+Na2O8.248.268.478.358.198.968.978.999.159.108.789.09K2O/Na2O1.381.381.361.251.391.191.321.301.291.351.291.29FeOT2.13 1.79 2.11 2.11 1.94 2.00 1.91 1.84 1.83 1.80 1.87 1.87 Mg#4.01 4.72 5.31 3.42 5.09 3.59 12.2 11.9 13.1 12.3 12.6 11.3 A/CNK0.920.910.920.930.920.970.940.950.930.950.960.93A/NK1.101.091.091.031.101.011.061.061.051.061.071.05Q35.035.033.135.735.332.330.130.229.230.031.629.8An2.842.822.880.9930.4421.971.531.92.231.53Ab29.429.5430.4831.5329.1234.8432.8533.233.8832.9532.5733.6Or28.328.429.027.628.428.930.330.130.630.929.330.4A55.055.356.758.054.763.261.161.362.862.059.662.4P5.525.495.632.085.790.964.044.013.143.814.533.14Di2.432.862.491.932.410.881.731.472.11.531.232.03Hy0.620.160.580.790.431.152.072.341.941.782.081.63Il0.150.150.170.170.150.170.360.340.330.330.340.34Mt1.261.041.291.291.21.270.530.350.420.630.630.61Ap0.030.030.040.030.030.020.060.050.050.050.050.06DI92.792.992.694.892.896.193.393.593.693.893.493.8tZr(℃)872863834864869854838833819830839816La15410811018615211510591.690.675.995.187.6Ce293205212345289216205162160135184154Pr34.424.324.439.734.025.521.018.217.815.418.917.4Nd11478.480.413011286.769.059.558.551.263.157.8Sm26.818.619.831.726.621.211.39.819.548.610.69.63Eu0.280.220.220.300.270.250.550.520.550.440.510.49Gd24.817.118.228.924.719.210.28.778.697.939.328.81Tb5.083.553.856.105.114.231.691.481.461.351.581.49Dy38.226.929.445.838.433.19.688.488.457.888.998.60Ho8.425.926.4910.08.457.431.981.711.751.611.811.74Er23.516.818.028.123.721.55.915.115.254.845.435.22Tm5.083.663.895.925.144.661.261.071.101.011.141.10Yb28.421.122.133.429.426.28.156.977.296.647.297.13Lu3.852.932.924.423.553.411.271.131.151.041.141.12ΣREE760533552895752584452376372319409362(La/Yb)N3.663.473.363.763.492.968.678.888.407.728.818.31(La/Sm)N3.613.673.503.683.593.405.845.885.975.565.635.73(Gd/Yb)N0.710.660.670.700.680.591.011.020.970.971.041.00δEu0.030.040.040.030.030.040.160.170.180.160.160.16Rb134412251318109413201034551497454439541458Sr42.547.744.725.046.111.927.726.024.522.628.526.1Ba87.595.599.348.299.332.5209218177171225167U22.313.314.812.318.07.236.666.815.046.906.134.53Th10290.085.562.010530.634.231.027.825.435.727.0Zr432406300388420342306287254281301245Hf17.215.913.616.615.815.712.111.69.5511.011.69.24Nb16718718819224714061.852.951.549.859.052.6Ta8.3710.410.211.212.67.604.774.183.983.934.694.11Y25718419631125523570.159.961.755.861.960.5Ga43.039.342.340.043.142.026.522.822.822.024.923.2Zr+Nb+Ce+Y11499828971236121293364356152752260751310000Ga/Al6.906.286.586.606.896.533.983.423.403.283.803.50Rb/Sr31.625.729.543.728.687.219.919.118.619.419.017.6Nb/Ta19.918.018.617.219.618.412.912.712.912.712.612.8Ti/Y1.962.472.871.661.972.1715.918.116.418.217.517.5Rb/Nb8.076.567.005.705.347.398.929.388.818.829.178.72Y/Nb1.540.981.041.621.031.681.141.131.201.121.051.15Ti/Zr1.171.121.881.321.201.503.653.793.983.613.594.33

注:(邓晋福等,2015);tZr(℃)的计算方法见Watson and Harrison(1983)或 熊双才等(2019)。

4.3 Sr—Nd—Pb—O同位素特征

红山子复式岩体中细粒黑云母花岗岩和斑状黑云母花岗岩Sr—Nd—Pb—O同位素变化不大,主要有以下特征:

(1)中细粒黑云母花岗岩和似斑状黑云母花岗岩的分别为0.702488~0.707742和0.702482~ 0.708654(表2),与现代大洋玄武岩的值(0.702~0.706,肖成东等,2004)一致,也与红山子复式岩体早白垩世早期细粒黑云母花岗岩(0.704435~0.705415,王常东等,2019)、花岗斑岩(0.704732~0.707756,王常东等,2019)和红山子盆地晚侏罗世新民组流纹岩(0.703039~ 0.705849,巫建华等,2016)的[n(87Sr)/n(86Sr)]i值一致,略低于芝瑞晚侏罗世新民组流纹岩(0.706510~0.709821,解开瑞等,2016)和托河盆地晚侏罗世新民组流纹岩(0.709244~0.713168,姜山等,2018)的值。

(2)εNd(t) 值分别为-5.40~-4.30和-2.79~-1.62(表2),均大于汉诺坝二辉麻粒岩包体的εNd(t)值(-18~-8; 张国辉,1998)和富集地幔的εNd(t)值(-13~ -8.0,樊祺诚等,1996,1998;Yang Jinhui et al.,2004a,b),略大于芝瑞晚侏罗世新民组流纹岩(-7.11~-4.44,解开瑞等,2016)和托河盆地晚侏罗世新民组流纹岩(-8.76~-8.42,姜山等,2018)的εNd(t)值,但前者与红山子复式岩体早白垩世早期细粒黑云母花岗岩(-5.1~-3.99,王常东等,2019)、花岗斑岩(-4.93~-2.72,王常东等,2019)和红山子盆地晚侏罗世新民组流纹岩(-5.56~-4.67,巫建华等,2016)的εNd(t)值大体一致;fSm/Nd分别为-0.44~-0.36和-0.28~-0.29,均在-0.6~-0.2之间,给出的有明确地质意义的TDM2值分别为1291 Ma ~1381 Ma和1073 Ma~1168 Ma(表2),属中元古代,与红山子复式岩体早白垩世早期细粒黑云母花岗岩(1251~1341 Ma,王常东等,2019)、花岗斑岩(1148~1327 Ma,王常东等,2019)的TDM2值基本一致,略小于红山子盆地晚侏罗世新民组流纹岩(1395~1323 Ma,巫建华等,2016)、芝瑞盆地晚侏罗世新民组流纹岩(1521 Ma ~1304 Ma,解开瑞等,2016)和托河盆地晚侏罗世新民组流纹岩(1521 Ma~1304 Ma,姜山等,2018)的TDM2值。

表2 克什克腾旗红山子复式岩体晚侏罗世黑云母花岗岩Sr—Nd—Pb—O同位素分析结果及有关参数
Table 2 The analysis results and related parameters of Sr—Nd—Pb—O isotopic of the Late Jurassic biotite granites in the Hongshanzi composite granitic intrusives, Hexigten Banner

样品号Rb(×10-6)Sr(×10-6)n(86Rb)n(87Sr)n(87Sr)/n(86Sr)测值±1σn(87Sr)n(86Sr) iSm(×10-6)Nd(×10-6)HS36134442.550.30.8117880.0000160.70248826.8114HS37122547.749.50.8151300.0000140.70760018.678.4HS38131844.756.20.8298400.0000210.70774319.880.4HS4010942553.80.8203710.0000170.70360731.7130HS41132046.148.20.8072370.0000190.70262826.6112HS6555127.742.20.7948560.0000180.70248211.369HS6745424.531.80.7780350.0000150.7086549.5458.5HS6843922.641.40.7955130.0000130.7051868.651.2HS6954128.540.50.7941980.0000130.70584110.663.1HS7045826.1390.7914110.0000150.7063629.6357.8样品号n(147Sm)n(144Nd)n(143Nd)/n(144Nd)测值(1σ)n(143Nd)n(144Nd) iεNd(t)fSm/NdtDM2n(206Pb)/n(204Pb)测值(1σ)HS360.14970.5123150.0000090.512441-5.39-0.24138017.8490.002HS370.1490.5123320.0000070.512441-5.04-0.2132917.9740.002HS380.15750.5123550.0000120.512441-4.76-0.21129117.7970.002HS400.15590.5123770.0000060.512441-4.30-0.24138117.8190.003HS410.14930.5123140.0000090.512441-5.30-0.22129717.9650.002HS650.10120.5124150.0000110.512313-2.47-0.49114318.0260.002HS670.10210.512460.0000090.512357-1.62-0.48107318.0580.003HS680.10690.5124180.0000130.512311-2.53-0.46114718.0430.002HS690.10580.5124230.0000110.512317-2.41-0.46113718.0480.003HS700.10530.5124030.0000120.512297-2.79-0.46116818.0830.003样品号n(207Pb)n(204Pb)n(208Pb)n(204Pb)测值1σ测值1σn(206Pb)n(204Pb) in(207Pb)n(204Pb) in(208Pb)n(204Pb) iδ18OV-SMOW(‰)HS3615.4360.00238.1910.00417.3515.4337.455.1HS3715.4750.00238.5180.00417.6215.4737.746.3HS3815.4220.00138.1960.00317.515.4237.634.5HS4015.460.00238.3030.00617.5615.4637.874.9HS4115.4530.00238.4450.00417.4615.4537.475.3HS6515.510.00238.0270.00517.7315.5137.544.3HS6715.5060.00338.0140.00617.7415.537.441.9HS6815.4910.00237.9490.00517.6215.4937.451.9HS6915.4950.00337.9760.00717.7415.4937.41.2HS7015.5150.00238.0440.00617.8115.5137.520.3

注:参数计算中,t分别采用LA-ICP-MS锆石 U-Pb年龄153.6 Ma(祝洪涛等,2019),各参数的计算方法见巫建华等(2016)。

图4 克什克腾旗红山子复式岩体晚侏罗世黑云母花岗岩TAS图解(a)(Le maitre,2002)及SiO2—MALI图解(b) (底图据Frost et al., 2001)
Fig. 4 TAS (a) (after Le maitre,2002) and SiO2—MALI (after Frost et al., 2001) diagrams (b) of the Late Jurassic biotite granites from the Hongshanzi composite granitic intrusives, Hexigten Banner
△—中细粒黑云母花岗岩;□—斑状黑云母花岗岩
△—Medium—fine-grained biotite granites;□—Porphyritic biotite granites

(3)Pb同位素组成总体偏低,分别为17.35~17.62和分别为15.42~15.47和分别为37.45~37.87和37.44~37.54(表2),与红山子复式岩体早白垩世早期细粒黑云母花岗岩花岗斑岩(王常东等,2019)和红山子盆地晚侏罗世新民组流纹岩(巫建华等,2016)、 芝瑞盆地晚侏罗世新民组流纹岩(解开瑞等,2016)、托河盆地晚侏罗世新民组流纹岩(姜山等,2018)的铅同位素组成一致。

(4)δ18OVSMOW值分别为4.5‰~6.3‰和0.3‰~4.3‰(表2),均低于正常地幔的δ18OVSMOW值(5.3‰±0.3‰,Valley et al.,1998),也低于正常δ18O花岗岩δ18OVSMOW值(6‰~10‰),属低δ18O花岗岩,指示高温热液作用的存在(郑永飞和陈江峰,2000),与芝瑞盆地晚侏罗世新民组流纹岩(4.0‰~5.1‰,巫建华等,2017a)和托河盆地晚侏罗世新民组流纹岩(4.1‰~ 4.5‰,姜山等,2018)的δ18OVSMOW大体一致,略高于红山子复式岩体早白垩世早期花岗斑岩的δ18OVSMOW(-4.6‰~-0.4‰,王常东等,2019),但明显低于红山子复式岩体早白垩世早期细粒黑云母花岗岩的δ18OVSMOW(8.9‰~11.4‰,王常东等,2019)。

5 地质意义

5.1 岩石系列的厘定

图5 克什克腾旗红山子复式岩体晚侏罗世黑云母花岗岩A/CNK—A/NK(a)图解(底图据Maniar and Piccoli,1989)及SiO2—FeOT/(FeOT+MgO)(b)图解(底图据Frost et al.,2001)
Fig. 5 A/CNK—A/NK (a) (after Maniar and Piccoli,1989) and SiO2—FeOT/(FeOT+MgO) (b) (after Frost et al., 2001) diagrams of the Late Jurassic biotite granites from the Hongshanzi composite granitic intrusives, Hexigten Banner
△—中细粒黑云母花岗岩;□—斑状黑云母花岗岩
△—Medium—fine-grained biotite granites;□—Porphyritic biotite granites

主量元素方面,红山子复式岩体中细粒黑云母花岗岩和似斑状黑云母花岗岩具有高硅、较富碱和较高铁、较低铝、贫钙和镁的特征。SiO2与P2O5显示出较好的负相关性(图略);在TAS图解中落入亚碱性花岗岩区域内(图4a),在SiO2—MALI图解中落入钙碱值与碱钙值A型花岗岩区域内(图4b);铝饱和指数(ASI)即A/CNK分别为0.90~0.97和0.93~0.96,均小于1,碱度指数(AI)均大于0,即A/NK分别为1.01~1.1和1.05~1.07,均大于1,在A/CNK—A/NK图解(图5a)中也落入准铝质范围,指示该花岗岩为准铝质花岗岩(王强等,2000;贾小辉等,2009;仝立华等,2013);FeOT含量分别为1.79%~2.13%和1.80%~1.91%,均大于1.00%,在SiO2— FeOT/(FeOT+MgO)图解中落入铁质A型花岗岩范围内(图5b);锆石饱和温度分别为834~869℃和819~839℃,均大于800℃,具有A型花岗岩的高温特征;标准矿物(CIPW)计算结果显示不含刚玉(C)和锥辉石(Ac),并且长石间隙结构中的黑云母呈它形填充在石英、长石的间隙中,指示花岗岩具有准铝质A型花岗岩矿物学特征(仝立华等,2013)。以上特征明显不同于标准矿物刚玉>1%、P2O5—SiO2显示正相关性或基本不变的S型花岗岩(White,1992;吴福元等,2007)和较低的(FeO+Fe2O3)含量(通常<1.00%)和较低的形成温度(764℃)的高分异I型花岗岩(王强等,2000;贾小辉等,2009)的特征,与A型花岗岩较高的(FeO+Fe2O3)含量(通常>1.00%)和较高的形成温度(>800℃)的特征(王强等,2000;贾小辉等,2009)一致。

图6 克什克腾旗红山子复式岩体晚侏罗世黑云母花岗岩岩石成因类型判别图解(据Whalen,1987)
Fig. 6 Petrogenetic classification diagrams of the Late Jurassic biotite granites in the Hongshanzi composite granitic intrusives, Hexigten Banner (after Whalen, 1987)
△—中细粒黑云母花岗岩;□—斑状黑云母花岗岩
△—Medium—fine-grained biotite granites;□—Porphyritic biotite granites

微量元素方面,红山子复式岩体中细粒黑云母花岗岩和斑状黑云母花岗岩具有较高含量的Ga、Ce、Zr、Nb、Y,Zr+Nb+Ce+Y含量为513×10-6~1236×10-6,10000Ga/Al值为3.28~6.90,均大于A型花岗岩Zr+Nb+Ce+Y的下限值350×10-6和10000Ga/Al的下限值2.6(Whalen,1987),相比周边盆地花岗质岩石,与红山子、芝瑞和托河盆地新民组A型流纹岩的Zr+Nb+Ce+Y含量(808×10-6~1474×10-6)和10000Ga/Al值(3.14~4.78)一致(巫建华等,2016;解开瑞等,2016;姜山等,2018),但明显高于红山子复式岩体早白垩世早期I型细粒黑云母碱长花岗岩、花岗斑岩(Zr+Nb+Ce+Y=143×10-6~234×10-6,10000Ga/Al=2.62~3.62,王常东等,2019)和侵入红山子盆地新民组流纹岩的早白垩世早期I型花岗斑岩(Zr+Nb+Ce+Y=248×10-6~294×10-6,10000Ga/Al=2.86~3.23,丁辉等,2016)的Zr+Nb+Ce+Y含量和10000Ga/Al值,并且在花岗岩岩石成因类型判别图解中均落入A型花岗岩范围内(图6);同时岩石富集Rb、K、Th等大离子亲石元素和Zr、Hf等高场强元素而亏损Ba、Sr、Eu等元素,表现出典型的A型花岗岩微量元素分布的特征(苏玉平等,2005)。由此可见,红山子复式岩体晚侏罗世中细粒黑云母花岗岩和斑状黑云母花岗岩属准铝质A型花岗岩。

5.2 物质来源

中细粒黑云母花岗岩和斑状黑云母花岗岩具有高SiO2,FeOT/MgO,Rb和Nb,低MgO和CaO (A12O3)含量的特征,显示出花岗质地壳脱水熔融产物的特征。岩石明显的富集轻稀土元素和大离子亲石元素Rb、K、U、Th等元素,亏损大离子亲石元素Ba、Sr和高场强元素P、Ti,具有地壳属性的地球化学特征,暗示它们的物源可能是壳源(周新华等,2009;Pearce,1983;Zhou et al.,2015);同时,中细粒黑云母花岗岩和斑状黑云母花岗岩Rb/Sr、Ti/Y、Ti/Zr的值分别为25.7~87.2和17.6~19.9、1.66~2.17和15.9~18.2、1.12~1.88和3.59~4.33,均位于壳源岩浆范围(Rb/Sr>0.5,Ti/Y<100,Ti/Zr<20,Pearce,1983;Tischendorf et al.,1985;Wilson,1989)内,指示它们的物源是壳源。另外,岩石富集高场强元素Nb、Ta、Zr、Hf,表现出幔源岩浆结晶分异或基性原岩部分熔融形成的岩浆岩的特征(Zhou Zhenhua et al.,2015;吴福元等,2007),这可能反映了岩石壳源源区物质组成可能有幔源成分的加入。

图7 克什克腾旗红山子复式岩体晚侏罗世黑云母花岗岩图解
Fig. 7 Diagram of (a) and (b) of the Late Jurassic biotite granites from the Hongshanzi composite granitic intrusives, Hexigten Banner
△—中细粒黑云母花岗岩;□—斑状黑云母花岗岩。HIMU—具有高U /Pb值的地幔;DMM—亏损地幔端元;EM(I、II)—富集地幔端元,据Zindler and Hart (1986);NHRL—北半球参考线,据Hart (1984)
汉诺坝麻粒岩的范围据张国辉(1998);华北克拉通下地壳、上地壳的范围据 Jahn Bor-ming 等(1999);DMM、EMⅠ、EMⅡ、HIMU 和MORB 据 Hart(1984)和 Zindler et al.(1986),灰色阴影部分代表红山子地区晚侏罗世流纹岩、流纹斑岩,数据引自巫建华等(2016,2017a)、解开瑞等(2016)、姜山等(2018),虚线部分代表红山子复式岩体早白垩世细粒碱长花岗岩和花岗斑岩,数据引自丁辉等(2016)和王常东等(2019),下文相同。
△—Medium—fine-grained biotite granites;□—Porphyritic biotite granites. HIMU—mantle with high U/Pb ratio; EMI, EMII—enriched mantle, after Zindler and Hart (1986); NHRL—the northern hemisphere reference line, after Hart (1984)
Boundary of the granulite in Hannoba area from Zhang Guohui(1998&); boundaries of the upper and lower crust from Jahn Bor-ming et al.(1999); DMM、EMⅠ、EMⅡ、HIMU and MORB boundaries from Hart(1984) and Zindler and Hart (1986); grey shaded area is the area of Late Jurassic rhyolite and rhyolitic porphyry in Hongshanzi area, data from Wu Jianhua et al. (2016&, 2017a&), Xie Kaiduan et al.(2016&), Jiang Shan et al.(2018&); dashed line area is Early Cretaceous fine grained alkali feldspar granite and granite porphyry, data from Ding Hui et al. (2016&) and Wang Changdong et al.(2019&)

图8 克什克腾旗红山子复式岩体晚侏罗世黑云母花岗岩图解
Fig. 8 Diagram of (a) and (b) of the Late Jurassic biotite granites from the Hongshanzi composite granitic intrusives, Hexigten Banner△—中细粒黑云母花岗岩;□—斑状黑云母花岗岩。HIMU—具有高U/Pb值的地幔;DMM—亏损地幔端元;EM(I、II)—富集地幔端元,据Zindler and Hart (1986);NHRL—北半球参考线,据Hart (1984)。 余见图7
△—Medium—fine-grained biotite granites;□—Porphyritic biotite granites. HIMU—mantle with high U/Pb ratio; EMI, EMII—enriched mantle, after Zindler and Hart (1986); NHRL—the northern hemisphere reference line, after Hart (1984). Others see fig. 7

中细粒黑云母花岗岩和斑状黑云母花岗岩的分别为0.702488~0.707742和0.702482~0.708654,与公认的幔源岩浆岩的值(0.702~0.706)基本一致,指示岩浆来源与地幔物质有关。εNd(t)值为负值,分别为-5.40~-4.30和-2.79~-1.62,指示岩浆来源与地壳或富集地幔有关(邵济安等,2010),但εNd(t)值远高于华北克拉通古老下地壳(-44~-32,Jahn Bor-ming et al., 1999)的εNd(t)值,而与汉诺坝二辉麻粒岩包体的εNd(t)值(-18~-8,张国辉,1998)和富集地幔的εNd(t) 值(-13~-8,Yang Jinhui et al., 2004a,2004b;Zhang Hongfu et al., 2005)接近(图7a),但又低于松辽地块(+2.11~+5.93,周漪等,2011)的εNd(t) 值,指示岩浆来源与华北克拉通古老下地壳关系较远、与汉诺坝二辉麻粒岩包体的来源相近,研究表明,汉诺坝二辉麻粒岩包体是幔源玄武质岩浆底侵改造下地壳并形成年轻下地壳的一部分(樊祺诚,2001;张国辉,1998),其源区可能与富集地幔有关(巫建华等,2016);TDM2值分别为1291~1381 Ma和1073~1168 Ma,显示岩浆有来源于中元古代地壳物质。在 图解(图7b)中落在Ⅰ型富集地幔附近,表明其物质来源与EM Ⅰ 型富集地幔有关;在图解(图8a)中落于上地壳演化线与地幔演化线之间,且靠近地幔演化线和趋近于Ι型富集地幔的范围,在(图8b)中落于下地壳演化线与地幔演化线之间,且靠近地幔演化线和趋近于Ι型富集地幔的范围,暗示岩浆来源除与EM Ι富集地幔密切相关外,可能还与地壳有关。由于Th元素的地球化学性质一般比铀元素要稳定,其衰变年龄也比U长得多,而208Pb是钍放射性衰变系列的最终产物,因此利用n(208Pb)/n(204Pb)可以更有效地阐明成岩物质的来源,说明红山子复式岩体晚侏罗世中细粒黑云母花岗岩和斑状黑云母花岗岩的物质来源与EM Ι富集地幔和下地壳有关。

可见,中细粒黑云母花岗岩和斑状黑云母花岗岩的主量元素、微量元素和Sr—Nd—Pb同位素特征既有地壳来源的特征也有地幔来源的特征。Frost(2011)和仝立华等(2013)认为准铝质铁质花岗岩类(A型花岗岩)的形成受控于基性岩浆结晶分异和地壳物质混染、熔融这两种机制的联合作用。巫建华等(2016)曾采用“两阶段模式”解释红山子盆地晚侏罗世流纹岩存在的这种现象,上述几位学者关于A型花岗岩的成因有基本一致的观点,即准铝质A型花岗岩浆的液相线温度高于900℃,高温的基性岩浆在A型花岗岩的形成过程中起到了重要作用。因此红山子复式岩体的准铝质A型花岗岩的成因可以解释为:源于Ⅰ型富集地幔的基性岩浆底侵于下地壳和少量古老下地壳混染后形成年轻下地壳,年轻下地壳再部分熔融形成了中细粒黑云母花岗岩和斑状黑云母花岗岩,期间基性岩浆不仅提供了壳源岩石部分熔融所需的热能,而且通过自身的分异以及与壳源岩石的混染还为A型花岗岩浆提供了大量的物质来源。两者岩相学区别可能是由于红山子复式岩体内部与边缘冷却速度不同造成的。

汉诺坝麻粒岩的范围据张国辉,1998;华北克拉通下地壳、上地壳的范围据 Jahn Bor-ming 等(1999);DMM、EMⅠ、EMⅡ、HIMU 和MORB 据 Hart(1984)和 Zindler and Hart(1986),灰色阴影部分代表红山子地区晚侏罗世流纹岩、流纹斑岩,数据引自巫建华等(2016,2017a)、解开瑞等(2016)、姜山等(2018),虚线部分代表红山子复式岩体早白垩世细粒碱长花岗岩和花岗斑岩,数据引自丁辉等(2016)和王常东等(2019),下文相同。

图9 克什克腾旗红山子复式岩体晚侏罗世黑云母花岗岩Nb—Y—3Ga(a)、Nb—Y—Ce(b)及Y/Nb—Rb/Nb图解(c)(底图据Eby等,1992)
Fig. 9 diagram of Nb—Y—3Ga (a)、Nb—Y—Ce (b) and Y/Nb—Rb/Nb(c) of the Late Jurassic biotite granites from the Hongshanzi composite granitic intrusives, Hexigten Banner (after Eby et al., 1992)
△—中细粒黑云母花岗岩;□—斑状黑云母花岗岩
△—Medium—fine-grained biotite granites;□—Porphyritic biotite granites

5.3 构造环境

区域地质背景一节中已经指出,红山子复式岩体所在的大兴安岭—燕山地区中侏罗世晚期一晚侏罗世早期处于伸展构造环境。大量研究表明,A型花岗岩形成于地壳减薄的伸展构造环境下,并且可以分出非造山和后造山两种构造环境,分别称为A1型及A2型(Eby, 1992;Bonin,2007)。因此,作为一种特殊的岩石类型,A型花岗岩往往能够指示一定的构造意义。

在中侏罗世期间,包括研究区在内的大兴安岭—燕山地区,处于“东亚多向汇聚”的构造体制中(翟明国等,2004;董树文等,2007),在西伯利亚与华北—蒙古联合陆块碰撞形成的蒙古—鄂霍茨克构造域作用下,形成了额尔古纳S型花岗岩、孙吴地区白云母花岗岩等同碰撞花岗岩及高锶低钇中酸性(Adakitic, 埃达克质)侵入岩侵位(张兴洲等,2012;李宇等,2015;许文良等,2013),并且辽源地块及其以北地区中侏罗世地层以区域不整合的形式覆盖在之前的地层之上,中侏罗世晚期—晚侏罗世早期,大兴安岭—燕山地区进入后造山伸展构造环境,伴随着相应的侵入岩发育、火山活动等,火山岩和侵入岩属于碱性—钙碱性系列岩石,具有A型花岗岩的特征(解开瑞等,2016)。红山子复式岩体中晚侏罗世早期岩体正是在此时形成,即形成于后造山(A2型)构造环境。

(图8b)中落于下地壳演化线与地幔演化线之间,且靠近地幔演化线和趋近于Ι型富集地幔的范围,暗示岩浆来源除与EM Ι富集地幔密切相关外,可能还与地壳有关。由于Th元素的地球化学性质一般比铀元素要稳定,其衰变年龄也比U长得多,而208Pb是钍放射性衰变系列的最终产物,因此利用n(208Pb)/n(204Pb)可以更有效地阐明成岩物质的来源,说明红山子复式岩体晚侏罗世中细粒黑云母花岗岩和斑状黑云母花岗岩的物质来源与EM Ι富集地幔和下地壳有关。

图10 克什克腾旗红山子复式岩体晚侏罗世黑云母花岗岩微量元素构造环境判别图解(底图据Pearce et al.,1984)
Fig. 10 Trace elements discrimination diagrams of the tectonic settings from the Late Jurassic biotite granites from the Hongshanzi composite granitic intrusives, Hexigten Banner (after Pearce et al.,1984 )
△—中细粒黑云母花岗岩;□—斑状黑云母花岗岩。WPG—板内花岗岩;VAG—火山弧花岗岩;syn-COLG—同碰撞花岗岩;ORG—洋脊花岗岩;圈内为后碰撞花岗岩
△—Medium—fine-grained biotite granites;□—Porphyritic biotite granites. WPG—within plate granites; VAG—volcanic arc granites; syn-COLG—syn-collision granites; ORG—ocean ridge granites

在Nb—Y—3Ga、Nb—Y—Ce和Y/Nb—Rb/Nb图解(图9)中基本落入A1和A2型过渡范围内,并且更接近A2型范围,与红山子、芝瑞和托河盆地晚侏罗世A型流纹岩、流纹斑岩(巫建华等,2016,2017a;解开瑞等,2016;姜山等,2018)的落点范围基本一致;在微量元素构造环境判别图解(图10)中,与红山子、芝瑞和托河盆地晚侏罗世A型流纹岩、流纹斑岩一样(巫建华等,2016,2017a;解开瑞等,2016;姜山等,2018),基本落入板内花岗岩(WPG)范围内。因此,红山子复式岩体晚侏罗世早期中细粒黑云母花岗岩和斑状黑云母花岗岩与红山子—托河地区的晚侏罗世A型流纹岩、流纹斑岩构造环境一致,均属于板内后造山花岗岩(A2型),形成于板内伸展拉张构造环境。

5.4 与铀成矿的关系

中细粒黑云母花岗岩和斑状黑云母花岗岩的U含量分别为7.3×10-6~22.3×10-6(平均14.6×10-6)和4.53×10-6~6.90×10-6(平均6.01×10-6),铀含量远远高于上地壳丰度(约2.5×10-6),也高于地壳克拉克值(3×10-6~4×10-6);尤其是中细粒黑云母花岗岩,其U含量是克拉克值的4~5倍。Cuney(2009)指出,具有板内特征的A型火山岩和花岗岩U含量通常较高,并且U主要存在于火山岩的玻璃基质或以包裹体存在于黑云母等暗色矿物及其它造岩矿物中,在流体作用过程中,玻璃基质和黑云母等易蚀变的矿物中的U很容易被淋滤出来,为铀矿化提供物质来源。已有的研究和勘查结果表明,红山子复式岩体及其周边晚侏罗世火山岩中的热液型铀矿主要赋存在晚侏罗世早期和早白垩早期花岗岩、花岗斑的内、外接触带中(丁辉等,2016;巫建华等,2016;黎伟等,2017;祝洪涛等,2019)。

中细粒黑云母花岗岩和斑状黑云母花岗岩的δ18OVSMOW值分别为4.5‰~6.3‰和0.3‰~4.3‰,属低δ18O花岗岩,指示存在高温热液作用。由于δ18OVSMOW值变化范围较大,若再结合芝瑞盆地晚侏罗世新民组流纹岩(4.0‰~5.1‰,巫建华等,2017a)、托河盆地晚侏罗世新民组流纹岩(4.1‰~4.5‰,姜山等,2018)、红山子复式岩体早白垩世早期花岗斑岩(-4.6‰~-0.4‰,王常东等,2019)和细粒黑云母花岗岩(8.9‰~11.4‰,王常东等,2019)、沽源—丰宁铀成矿亚带多本沟晚侏罗世新民组流纹岩(5.1‰~6.0‰,宋凯等,2017)、御道口晚侏罗世新民组流纹岩(6.6‰~9.5‰,巫建华等,2019)的δ18OVSMOW值,说明沽源红山子铀成矿带赋矿晚侏罗世早期和早白垩世早期流纹岩—流纹斑岩—花岗斑岩—花岗岩的δ18OVSMOW值变化范围为-4.6‰~11.4‰。δ18OVSMOW值如此大的变化范围支持赋矿低δ18O岩浆岩可能是正常δ18O岩浆岩与大气降水发生高温水岩反应的结果。在后造山板内拉张减薄环境下,伸展中心同时具有较高的温度和充足的地表水,大规模的拉伸和脆性断裂能使大量的岩浆上升进入到先成的火山岩中,同时断裂导致地壳渗透性显著提高能使地表水进入到深处发生显著的水岩反应,使先成的正常δ18O岩浆岩经高温蚀变形成的低δ18O岩浆岩(Riishuus et al.,2015;He Qiang et al.,2016;Cheong et al.,2017;Olianti and Harris,2018)。因此,确认红山子复式岩体及其周边晚侏罗世早期流纹岩、流纹斑岩绝大多数具有低δ18O特征,为深入开展与火山岩、花岗岩有关的热液型铀矿的成因研究打开了新的窗口,也为进一步开展与火山岩、花岗岩有关的热液型铀矿的勘查提供了新的标志。

6 结论

综上所述,可以得出以下结论:

(1)红山子复式岩体晚侏罗世早期黑云母花岗岩包括中细粒黑云母花岗岩和斑状黑云母花岗岩两种,黑云母呈它形填充在石英、长石的间隙中,岩石具高硅、低铝、富碱、富钾、贫钙镁及低铁的特征,微量元素明显富集Rb、Th、K等大离子亲石元素和Zr、Hf等高场强元素而强烈亏损元素Ba、Sr、Eu,同时岩石全铁(FeO+Fe2O3)含量大于1.00%,锆石饱和温度TZr(℃)大于800℃,具有A型花岗岩的富铁、高温的特征,是典型的A型花岗岩。微量元素构造判别图解进一步确认,中细粒黑云母花岗岩和斑状黑云母花岗岩是板内拉张构造环境的产物。

(2)晚侏罗世早期A型中细粒黑云母花岗岩和斑状黑云母花岗岩具有较低的较高的εNd(t)值、较年轻的TDM2、较低的和较低的δ18OVSMOW,显示岩浆源于正常厚度地壳的年轻下地壳底部部分熔融,且经历了高温热液蚀变作用。

(3)低δ18O中细粒黑云母花岗岩和斑状黑云母花岗岩U含量较高,且其内、外接触带中已发现铀矿化,为深入研究高温热液蚀变作用与热液型铀矿成矿作用之间的关系打开了新的窗口,也为进一步开展与火山岩、花岗岩有关的热液型铀矿的勘查提供了新的思路。

致谢:参加部分野外采样工作和室内分析测试工作的还有硕士研究生刘斐耀、韦昌袭等,在此一并致谢。

参 考 文 献

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

蔡煜琦,张金带,李子颖,郭庆银,宋继叶,范洪海,刘武生,漆富成,张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报,89(6):1051~1069.

陈英富,王根厚,段炳鑫. 2012. 内蒙古东乌珠穆沁旗辉音敖包一带晚侏罗世火山岩特征及时代. 中国地质,39(6):1690~1699.

邓晋福,刘翠,冯艳芳,肖庆辉,狄永军,苏尚国,赵国春,段培新,戴蒙. 2015. 关于火成岩常用图解的正确使用: 讨论与建议. 地质论评,61(4):717~734.

丁辉,巫建华,祝洪涛,吴仁贵,余达淦. 2016. 大兴安岭南部红山子盆地花岗斑岩SHRIMP锆石U-Pb年龄、地球化学特征及其地质意义. 东华理工大学学报(自然科学版),39(1):1~9.

董树文,张岳桥,龙长兴. 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报,81(11):1449~1461.

樊祺诚,刘若新. 1996. 汉诺坝玄武岩中高温麻粒岩捕掳体. 科学通报,41(3):235~238.

樊祺诚,刘若新,李惠民,李霓,隋建立,林卓然. 1998. 汉诺坝捕虏体麻粒岩锆石年代学与稀土元素地球化学. 科学通报,43(2):133~137.

樊祺诚,隋建立,刘若新,周新民. 2001. 汉诺坝榴辉岩相石榴辉石岩——岩浆底侵作用新证据. 岩石学报,17(1):1~6.

葛肖虹,刘俊来,任收麦,袁四化. 2014. 中国东部中—新生代大陆构造的形成与演化. 中国地质,41(1):19~38.

纪宏伟. 2015. 内蒙古克什克腾旗红山子铀钼矿床成矿作用研究. 导师:李子颖. 北京:核工业北京地质研究院博士学位论文.

贾小辉,王强,唐功建. 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学,33(3):465~480.

姜山,巫建华,王常东,祝洪涛,赵博,刘洋. 2018. 赤峰托河盆地流纹岩年代学、地球化学特征及其地质意义. 高校地质学报,24(6):896~906.

黎伟,祝洪涛,巫建华,吴仁贵,张海龙,赵博,王常东. 2017. 内蒙古红山子—广兴铀矿田控矿因素探讨和找矿靶区优选. 东华理工大学学报(自然科学版),40(2):115~125.

李锦轶,张进,刘建峰,曲军峰,李亚萍,孙桂华,朱志新,冯乾文,王励嘉. 2014. 中国大陆主要变形系统. 地学前缘,21(3):226~245.

李可,张志诚,李建锋,汤文豪,冯志硕,李秋根. 2012. 内蒙古西乌珠穆沁旗地区中生代中酸性火山岩SHRIMP锆石U-Pb年龄和地球化学特征. 地质通报,31(5):671~685.

李林庆,潘立成,张桂凤. 2010. 地球化学样品无污染加工流程. 地质调查与研究,33(3):238~240.

李萍萍,葛文春,张彦龙. 2010. 海拉尔盆地西北部火山岩地层划分的锆石 U-Pb年代学证据. 岩石学报,26(8):2482~2494.

李献华,刘颖,涂湘林,胡光黔,曾文. 2002. 硅酸盐岩石化学组成的ICPAES和ICPMS准确测定:酸溶与碱熔分解样品方法的对比. 地球化学,31(3):289~294.

李宇,丁磊磊,许文良,王枫,唐杰,赵硕,王子进. 2015. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学:对蒙古—鄂霍茨克洋闭合时间的限定. 岩石学报,31(1):56~66.

孟恩,许文良,杨德彬,邱昆峰,李长华,祝洪涛. 2011. 满洲里地区灵泉盆地中生代火山岩的错石U-Pb 年代学、地球化学及其地质意义. 岩石学报,27(4):1209~1226.

孟凡超,刘嘉麒,崔岩,高金亮,刘祥,童英. 2014. 中国东北地区中生代构造体制的转变:来自火山岩时空分布与岩石组合的制约. 岩石学报,30(12):3569~3586.

邵济安,牟保磊,朱慧忠,张履桥. 2010. 大兴安岭中南段中生代成矿物质的深部来源与背景. 岩石学报,26(3):649~656.

宋凯,巫建华,牛子良,吴仁贵,刘帅. 2017. 冀北多本沟盆地流纹岩年代学、地球化学特征及地质意义. 东华理工大学学报(自然科学版),40(4):323~333.

苏玉平,唐红峰. 2005. A型花岗岩的微量元素地球化学. 矿物岩石地球化学通报,24(3):245~251.

仝立华,汪洋. 2013. 铁质花岗岩:定义、分类及成因. 矿物岩石地球化学通报,32(3):370~378.

王常东,巫建华,张海龙,祝洪涛,杨东光,张韶华. 2019. 红山子复式岩体早白垩世细粒黑云母碱长花岗岩和花岗斑岩的地球化学特征及地质意义. 地球化学,48(4):356~369.

王强,赵振华,熊小林. 2000. 桐柏—大别造山带燕山晚期A型花岗岩的厘定. 岩石矿物学杂志,19(4):297~306.

王永超,董树文,施炜,岑敏,李江瑜. 2016. 华北晚中生代构造演化过程——根据太行山北部盆地沉积记录. 地球学报,37(1):35~45.

汪相. 2018. 白云鄂博超大型稀土—铌—铁矿床的成矿时代及成因探析——兼论 P—T 之交生物群灭绝事件和“阿蒙兴造山运动. 地质论评,64(2):299~345.

巫建华,武珺,祝洪涛,郭国林,吴仁贵,刘帅,余达淦. 2013. 大兴安岭红山子盆地火山岩系岩石地层对比. 高校地质学报,19(3):472~483.

巫建华,解开瑞,祝洪涛,吴仁贵,刘帅. 2016. 大兴安岭南端红山子盆地流纹岩的成因:元素和Sr—Nd—Pb同位素制约. 吉林大学学报(地球科学版),46(6):1724~1739.

巫建华,郭佳磊,祝洪涛,吴仁贵,刘帅. 2017a. 内蒙古东南缘芝瑞盆地流纹斑岩年代学、地球化学特征及地质意义. 高校地质学报,23(3):383~396.

巫建华,郭国林,郭佳磊,张旗,吴仁贵,余达淦. 2017b. 中国东部中生代岩浆岩的时空分布及其与热液型铀矿的关系. 岩石学报,33(5):1591~1614.

巫建华,宋凯,牛子良,郭恒飞,刘帅. 2019. 河北围场御道口盆地流纹岩锆石U-Pb年龄、地球化学特征及其地质意义. 地质通报,38(7):1191~1205.

吴福元,李献华,杨进辉,郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报,23(6):1217~1238.

吴仁贵,于振清,申科峰,姜山,徐喆. 2011. 沽源—红山子地区中生代火山作用与铀成矿关系. 铀矿地质,27(4):200~205.

肖成东,张忠良,赵利青. 2004. 东蒙地区燕山期花岗岩Nd、Sr、Pb同位素及其岩石成因. 中国地质,31(1):57~63.

解开瑞,巫建华,祝洪涛,吴仁贵,刘帅. 2016. 大兴安岭南端芝瑞盆地流纹岩年代学、地球化学及岩石成因. 地球化学,45(3):249~267.

熊双才,张征峰,李广,刘润泽,华叙登,赵富庄,周鹏飞,李关禄.2019.东准噶尔老爷庙地区碱性花岗岩锆石U- Pb定年、地球化学及其地质意义. 地质论评,65(1):221~231.

徐美君,许文良,孟恩,王枫. 2011. 内蒙古东北部额尔古纳地区上护林—向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征. 地质通报,30(9):1321~1338.

许文良,王枫,裴福萍,孟恩,唐杰,徐美君,王伟. 2013. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约. 岩石学报,29(2):339~353.

许文良,孙晨阳,唐杰,栾金鹏,王枫. 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学,44(5):1620~1646.

薛富红,张晓晖,邓江夏,袁玲玲. 2015. 内蒙古中部达来地区晚侏罗世A型花岗岩:地球化学特征、岩石成因与地质意义. 岩石学报,31(6):1774~1788.

杨扬,高福红,陈井胜,周漪,张健,金鑫,张彦龙. 2012. 赤峰地区中生代火山岩锆石U-Pb年代学证据. 吉林大学学报(地球科学版),42(S2):257~268.

翟明国,孟庆任,刘建明,侯泉林,胡圣标,李忠,张宏福,刘伟,邵济安,朱日祥. 2004. 华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨. 地学前缘,11(3):285~297.

张国辉. 1998. 河北汉诺坝玄武岩中麻粒岩类和辉石岩类捕虏体Sr、Nd、Pb同位素特征及其地质意义. 岩石学报,14(2):190~197.

张兴洲,马玉霞,迟效国,张凤旭,孙跃武,郭冶,曾振. 2012. 东北及内蒙古东部地区显生宙构造演化的有关问题. 吉林大学学报(地球科学版),42(5):1269~1285.

赵忠华,孙德有,苟军,任云生,付长亮,张学元,王晰,柳小明. 2011. 满洲里南部塔木兰沟组火山岩年代学与地球化学. 吉林大学学报(地球科学版),41(6):1865~1880.

郑永飞,陈江峰. 2000. 稳定同位素地球化学. 北京:科学出版社.

周新华,英基丰,张连昌,张玉涛. 2009. 大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约. 地球科学——中国地质大学学报,34(1):1~10.

周漪,葛文春,王清海. 2011. 大兴安岭中部乌兰浩特地区中生代花岗岩的成因—地球化学及Sr—Nd—Hf同位素制约. 岩石矿物学杂志,30(5):901~923.

祝洪涛,吴仁贵,姜山,巫建华,刘洋,赵博,王常东. 2019. 内蒙古红山子复式岩体地质时代的厘定及其地质意义. 岩石矿物学杂志,38(4):453~464.

Bonin B. 2007. A-type granites and related rocks:Evolution of a concept,problems and prospects. Lithos,97(1~2):1~29.

Cai Yuqi,Zhang Jindai,Li Ziying,Guo Qingyin,Song Jiye,Fan Honghai,Liu Wusheng,Qi Fucheng. Zhang Minglin. 2015&. Outline of uranium resources characteristics and metallogenetic regularity in China. Acta Geologica Sinica,89(6):1051~1069.

Chen Yingfu,Wang Genhou,Duan Bingxin. 2012&. Zircon SHRIMP geochronology and geochemistry of Late Jurassic volcanic rocks in Huiyin Obo area of Dong Ujimqin Banner,Inner Mongolia. Geology in China,39(6):1690~1699.

CheongA C S,Sohn Y K,Jeong Y J,Jo H J,Park K H,Lee Y S, Li Xianhua. 2017. Latest Pleistocene crustal cannibalization at Baekdusan (Changbaishan) as traced by oxygen isotopes of zircon from the Millennium Eruption. Lithos,284~285:132~137.

Cuney M. 2009.The extreme diversity of uranium deposits. Mineralium Deposita,44(1):3~9.

Deng Jinfu,Liu Cui, Feng Yanfang, Xiao Qinghui, Di Yongjun, Su Shangguo, Zhao Guochun, Duan Peixin, Dai Meng. 2015&. On the correct application in the common igneous petrological diagrams: discussion and suggestion. Geological Review, 61(4):717~734.

Ding Hui,Wu Jianhua,Zhu Hongtao,Wu Rengui,Yu Dagan. 2016&. SHRIMP zircon U-Pb dating and geochemistry characteristics of granite-porphyrys from Hongshanzi Basin and its geological significance in south Great Hinggan Range. Journal of East China Institute of Technology(Natural Science Edition),39(1):1~9.

Dong Shuwen,Zhang Yueqiao,Longchangxing,2007&. Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement. Acta Geologica Sinica,81(11):1449~1461.

Eby N G. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology,7 (20):641~644.

Fan Qincheng,Liu Ruoxin. 1996#. High temperature granulite xenolith in basalt at Hanuoba. Chinese Science Bulletin,41(3):235~238.

Fan Qicheng,Liu Ruoxin,Li Huimin,Li Ni,Sui Jianli,Lin Zhuoran. 1998#. Zircon chronology and REE geochemistry of granulite xenolith at Hannuoba. Chinese Science Bulletin,43(2):133~137.

Fan Qicheng,Sui Jianli,Liu Ruoxin,Zhou Xinmin. 2001&. Eclogite facies garnet-pyroxenolite xenolith in Hannuoba area:New evidence of magma underplatin. Acta Petrologica Sinica,17(1):1~6.

Frost B R,Acrulus R J,Barnes C G,Collins W J,Ellis D J,Frost C D. 2001. A geochemical classification of granitic rocks. Journal of Petrology,42:2033~2048.

Ge Xiaohong,Liu Junlai,Ren Shoumai,Yuan Sihua. 2014&. The formation and evolution of the Mesozoic—Cenozoic continental tectonics in eastern China. Geology in China,41(1):19~38.

Hart S R. 1984. A large scale isotope anomaly in the Sourthern Hemisphere mantle. Nature,309:753~757.

He Qiang,Zhang Shaobing,Zheng Yongfei. 2016. High temperature glacial meltwater—rock reaction in the Neoproterozoic:Evidence from zircon in-situ oxygen isotopes in granitic gneiss from the Sulu orogen. Precambrian Research,284:1~13.

Jahn Bor-ming,Wu Fuyuan,Lo Chinghua,et al. 1999. Crust—mantle interaction induced by deep subduction of the continental crust:geochemical and Sr—Nd isotropic evidence from post-colloisional mafic—ultramafic intrusion of the northern Dabie complex,central China. Chem. Geol., 157(1):119~146.

Ji Hongwei. 2015&. Study on mineralization of Hongshanzi uranium—molybdenum deposit in Keshiketengqi,Inner Mongolia. Tutor: Li Ziying. Beijing:Beijing Research of Institute of Uranium Geology.

Jia Xiaohui,Wang Qiang,Tang Gongjian. 2009&. A-type granites:Research progress and implications. Geotectonica et Metallogenia,33(3):465~480.

Jiang Shan,Wu Jianhua,Wang Changdong,Zhu Hongtao,Zhao Bo,Liu Yang. 2018&. Geochronology,geochemical characteristics,and geological significance of the rhyolite from Tuohe Basin,in Chifeng. Geological Journal of China Universities,24(6):896~906.

Le Maitre R W. 2002. Igneous Rocks,A classification and Glossary of Terms. Cambridge:Cambridge University Press (2nd ed):1~236.

Li Wei, Zhu Hongtao,Wu Jianhua,Wu Rengui,Zhang Hailong,Zhao Bo,Wang Changdong. 2017&. Discussion on ore controlling factors and the validation of optimal prospecting target area in Hongshanzi—Guangxing uranium ore-field Inner Mongolia. Journal of East China Institute of Technology (Natural Science Edition),40(2):115~125.

Li Jinyi,Zhang Jin,Liu Jianfeng,Qu Junfeng,Li Yaping,Sun Guihua,Zhu Zhixin,Feng Qianwen,Wang Lijia. 2014&. Major deformation systems in the Mainland of China. Earth Science Frontiers,21(3):226~245.

Li Ke,Zhang Zhicheng,Li Jianfeng,Tang Wenhao,Feng Zhishuo,Li Qiugen. 2012&. Zircon SHRIMP U-Pb age and geochemical characteristics of the Mesozoic volcanic rocks in Xi Ujimqin Banner,Inner Mongolia. Geological Bulletin of China,31(5):671~685.

Li Linqing,Pan Licheng,Zhang Guifeng. 2010&. Non-contamination powdering procedures for geochemical samples. Geological Survey and Research,33(3):238~240.

Li Pingping.,Ge Wenchun, Mang Yanlong. 2010&. Division of volcanic strata in the northwestern part of Hailar basin:Evidence from zircon U-Pb dating. Acta Petrologica Sinica,26(8):2482~2494.

Li Xianhua,Liu Ying,Tu Xianglin,Hu Guangqian,Ceng Wen. 2002&. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS:A comparative study of sample digestion techniques of alkali fusion and acid dissolution. Geochimica,31(3):289~294.

Li Yu,Ding Leilei,Xu Wenliang,Wang Feng,Tang Jie,Zhao Shuo,Wang Zijin. 2015&. Geochronology and geochemistry of muscovite granite in Sunwu area,NE China:Implications for the timing of closure of the Mongol—Okhotsk Ocean. Acta Petrologica Sinica,31(1):56~66.

Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. GSA. Bull., 101: 635~643.

Meng En,Xu Wenliang,Yang Debin,Qiu Kunfeng,Li Changhua,Zhu Hongtao. 2011&. Zircon U-Pb chronology,geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications. Acta Petrologica Sinica,27(4):1209~1226.

Meng Fanchao,Liu Jiaqi,Cui Yan,Gao Jinliang,Liu Xiang,Tong Ying. 2014&. Mesozoic tectonic regimes transition in the Northeast China:Constriants from temporal—spatial distribution and associations of volcanic rocks. Acta Petrologica Sinica,30(12):3569~3586.

Olianti C and Harris C. 2018. A low-δ18O intrusive breccia from Koegel Fontein,South Africa:Remobilisation of basement that was hydrothermally altered during global glaciation? Lithos,300~301:33~50.

Pearce J A. 1983.Role of the sub-continental lithosphere in magma genesis at active continental margins. Journal of the Electrochemical Society, 147(6):2162~2173.

Pearce J A,Harris N B W,Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4):956~983.

Peccerillo A,Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area,northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63~81.

Rickwood P C. 1989.Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4):247~263.

Riishuus M S,Harris C,Peate D W,Christian T,Wilson J R,Brooks C K. 2015. Formation of low-δ18O magmas of the Kangerlussuaq Intrusionby addition of water derived from dehydration of foundered basaltic roof rocks. Contributions to Mineralogy and Petrology,169:41~57.

Shao Ji’an,Mu Baolei,Zhu Huizhong,Zhang Qiao. 2010&. Material source and tectonic settings of the Mesozoic mineralization of the Da Hinggan Mts. Acta Petrologica Sinica,26(3):649~656.

Song Kai,Wu Jianhua,Nu Ziliang,Wu Rengui,Liu Shuai. 2017&. Geochronology,Geochemical characteristics and its geological implications of the rhyolite of the Duobengou Basin in Weichang,Hebei Province. Journal of East China Institute of Technology(Natural Science Edition),40(4):323~333.

Su Yuping,Tang Hongfeng. 2005&. Trace element geochemistry of A-type granites. Bulletin of Mineralogy,Petrology and Geochemistry,24(3):245~251.

Sun S S,Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. Geological Society of London Special Publications, 42:313~345.

Tischendorf G,Paelchen W. 1985. Zur Klassfication von Granitoiden/Classification of granitoids.Zeitschrift fuer Geologische Wissenschaften, 13(5):615~627.

Tong Lihua,Wang Yang. 2013. Ferroan granitoids: Definition,classification and origination. Bulletion of Mineralogy, Petrology and Geochemistry,32(3):370~378.

Valley J W,Kinny P D,Schulze D J,et al. 1998. Zircon megacrysts from kimberlite:Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology,133:1~11.

Wang Changdong,Wu Jianhua,Zhang Hailong,Zhu Hongtao,Yang Dongguang,Zhang Shaohua. 2019&. Geochemistry features and its geological implication of Early Cretaceous fine-grained biotite alkali-feldspar granite and granite porphyry in Hongshanzi compound granitic body. Geochimica, 48(4):356~369.

Wang Qiang,Zhao Zhenhua,Xiong Xiaolin. 2000&. The ascertainment of Late-Yanshanian A-type granite in Tongbai—Dabie orogenic belt. Acta Petrologica et Mineralogica,19(4):297~306.

Wang Tao,Guo Lei,Zheng Yadong,Tatiana Donskaya,Dmitry Gladkochub,Zeng Lingsen,Li Jianbo,Wang Yanbing,Anatoliy Mazukabzov. 2012. Iming and processes of late Mesozoic mid—lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton:Mainly constrained zircon U-Pb ages from metamorphic core complexes. Lithos,154(6):315~345.

Wang Tao,Guo Lei,Zhang Lei,Yang Qidi,Zhang Jianjun,Tong Ying,Ye Ke. 2015. Timing and evolution of Jurassic—Cretaceous granitoid magmatisms in the Mongol~Okhotsk belt and adjacent areas,NE Asia:Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. Journal of Asian Earth Sciences,97 (Part B):365~392.

Wang Yongchao,Dong Shuwen,Shi Wei,Cen Min,Li Jiangyu. 2016&. An analysis of late Mesozoic tectonic evolution process in northern China:Based on basin sedimentary records in northern Taihang Mountains. Acta Geoscientica Sinica,37(1):35~45.

Wang Xiang. 2018&. Analysis on the oreforming time and genesis of the Bayan Obo REE—Nb—Fe deposit: with a discussion on the mass extinction at the P—T boundary and “AMH Orogeny”. Geological Review, 64(2):299~345.

Watson E B,Harrison T M. 1983. Zircons saturation revisited:termperature and composition effect in avariety of crustal magmas types. Earth and Planetary Science Letters, 64:295~304.

White B W C A. 1992. I- and S-type granites in the Lachlan Fold Belt. GSA Special Papers,(272):1~26.

Whalen J B. 1987. A-type granites:geochemical characteristics,discrimination and petrogenesis. Contrib. Mineral. Petrol., 95(4):407~419.

Wilson M B. 1989. Igneous Petrogenesis:A Global Tectonic Approach. London: Unwin Hyman: 1~466.

Wu Jianhua,Wu Jun,Zhu Hongtao,Guo Guolin,Wu Rengui,Liu Shuai,Yu Dagan. 2013&. Lithostratigraphical correlation of the volcanic rock series in Hongshanzi Basin in Great Hingan Range. Geological Journal of China Universities,19(3):472~483.

Wu Jianhua,Xie Kairui,Zhu Hongtao,Wu Rengui,Liu Shuai. 2016&. Petrogenesis of rhyolite from Hongshanzi Basin in southern Greater Xing’an Range:Elements and Sr—Nd—Pb isotope constraints. Journal of Jilin University (Earth Science Edition),46(6):1724~1739.

Wu Jianhua,Guo Jialei,Zhu Hongtao,Wu Rengui,Liu Shuai. 2017a&. Geochronology,geochemical characteristics and its geological significances of the rhyolite porphyry in Zhirui Basin,southeastern Inner Mongolia Autonomous Region. Geological Journal of China Universities,23(3):383~396.

Wu Jianhua,Guo Guolin,Guo Jialei,Zhang Qi,Wu Rengui,Yu Dagan. 2017b&. Spatial—temporal distribution of Mesozoic igneous rock and their relationship with hydrothermal uranium deposits in eastern China. Acta Petrologica Sinica,33(5):1591~1614.

Wu Jianhua,Song Kai,Niu Ziliang,Guo Hengfei,Liu Shuai. 2019&. Zircon U-Pb age and geochemical characteristics of the rhyolite of the Yudaokou basin in Weichang,Hebei Province,and their geological implications. Geological Bulletin of China,38(7):1191~1205.

Wu Fuyuan,Li Xianhua,Yang Jinhui,Zheng Yongfei. 2007&. Discussions on the petrogenesis of granites. Acta Petrologica Sinica,23(6):1217~1238.

Wu Rengui,Yu Zhenqing,Shen Kefeng,Jiang Shan,Xu Zhe. 2011&. The relational of Mesozoic volcanism to uranium mineralization in Guyuan—Hongshanzi area. Uranium Geology,27(4):200~205.

Xiao Chengdong,Zhang Zhongliang,Zhao Liqing. 2004&. Nd, Sr and Pb isotope geochemistry of Yanshanian granitoids in eastern Inner Mongolia and their origins. Geology in China,31(1):57~63.

Xie Kairui,Wu Jianhua,Zhu Hongtao,Wu Rengui,Liu Shuai. 2016&. Petrogenesis of early Late Jurassic rhyolites from the Zhirui Basin in southern Daxing’an Range:Their chronologic and geochemical constrains. Geochimica,45(3):249~267.

Xiong Shuangcai,Zhang Zhengfeng,Li Guang,Liu Runze,Hua Xudeng, Zhao Fuzhuang, Zhou Pengfei, Li Guanlu. 2019&. Zircon U- Pb dating, geochemical characteristics of alkali-granites in Laoyemiao area, eastern Junggar, and geological significance. Geological Review,65(1):221~231.

Xu Meijun,Xu Wenliang,Meng En,Wang Feng. 2011&. LA-ICP-MS zircon U-Pb chronology and geochemistry of Mesozoic volcanic rocks from the Shanghulin—Xiangyang basin in Ergun area,northeastern Inner Mongolia. Geological Bulletin of China,30(9):1321~1338.

Xu Wenliang,Wang Feng,Pei Fuping,Meng En,Tang Jie,Xu Meijun,Wang Wei. 2013&. Mesozoic tectonic regimes and regional ore-forming background in NE China:Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrologica Sinica,29(2):339~353.

Xu Wenliang,Sun Chenyang,Tang Jie,Luan Jinpeng,Wang Feng. 2019& . Basement nature and tectonic evolution of the Xing’an—Mongolian Orogenic Belt. Earth Science——Journal of China University of Geosciences,44(5):1620~1646.

Xue Fuhong,Zhang Xiaohui,Deng Jiangxia,Yuan Lingling. 2015&. Late Jurassic A-type granite from the Dalai region of central Inner Mongolia:Geochemistry,petrogenesis and tectionic implication. Acta Petrologica Sinica,31(6):1774~1788.

Yang Jinhui,Chung Sunlin,Zhai Mingguo,Zhou Xinhua. 2004a. Geochemical and Sr—Nd—Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula,China:Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73(34):145~160

Yang Jinhui,Wu Fuyuan,Chung Sunlin,Wild S A, Chu Meifei. 2004b. Multiple sources for the origin of granites:Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves,northeast China. Geochimica et Cosmochimica Acta, 68(21):4469~4483.

Yang Yang,Gao Hongfu,Chen Jingsheng,Zhou Yi,Zhang Jian,Jin Xing,Zhang Yanlong. 2012&. Zircon U-Pb ages of mesozoic volcanic rocks in Chifeng area. Journal of Jilin University (Earth Science Edition),42:257~268.

Zhai Mingguo,Meng Qingren,Liu Jianming,Hou Quanlin,Hu Shengbiao,Li Zhong,Zhang Hongfu,Liu Wei,Shao Ji’an,Zhu Rixiang. 2004&. Geological features of Mesozoic tectonic regime inversion in eastern North China and implication for geodynamics. Earth Science Frontiers,11(3):285~297.

Zhang Hongfu,Sun Min,Zhou Xinhua,Ying Jifeng. 2005. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications. Lithos, 81(1~4):297~317.

Zhang Guohui. 1998&. Sr,Nd and Pb isotopic characteristics of granulite and pyroxenite xenoliths in Hannuoba basalts,Hebei Province,and their implication for geologic processes. Acta Petrologica Sinica,14(2):190~197.

Zhang Xingzhou,Ma Yuxia,Chi Xiaoguo,Zhang Fengxu,Sun Yuewu,Guo Ye,Zeng Zhen. 2012&. Discussion on Phanerozoic tectonic evolution in northeastern China. Journal of Jilin University (Earth Science Edition),42(5):1269~1285.

Zhao Zhonghua,Sun Deyou,Gou Jun,Ren Yunsheng,Fu Changliang,Zhang Xueyuan,Wang Xi,Liu Xiaoming. 2011&. Chronology and geochemistry of volcanic rocks in Tamulangou Formation from southern Manchuria,Inner Mongolia. Journal of Jilin University(Earth Science Edition),41(6):1865~1880.

Zheng Yongfei,Chen Jiangfeng. 2000#. Stable Isotope Geochemistry. Beijing: Science Press.

Zhou Xinhua,Ying Jifeng,Zhang Lianchang,Zhang Yutao. 2009&. The petrogenesis of late Mesozoic volcanic rock and the contributions from ancient micro-continents:Constraints from the zircon U-Pb dating and Sr—Nd—Pb—Hf isotopic systematics. Earth Science——Journal of China University of Geosciences,34(1):1~10.

Zhou Yi,Ge Wenchun,Wang Qinghai. 2011&. Petrogenesis of Mesozoic granite in Wulanhaote region,central Da Hinggan Mountains:Constraints from geochemistry and Sr—Nd—Hf isotope. Acta Petrologica et Mineralogica,30(5):901~923.

Zhou Zhenhua,Mao Jingwen,Liu Jun,Ouyang Hegen,Che Hewei,Ma Xinghua. 2015. Early Cretaceous magmatism and ore mineralization in Northeast China:Examples from Taolaituo Mo and Aobaotu Pb—Zn deposits. International Geology Review,57(2):229~256.

Zhu Hongtao,Wu Rengui,Jiang Shan,Wu Jianhua,Liu Yang,Zhao Bo,Wang Changdong. 2019&. The definition and geological significance of Hongshanzi complex rock in Inner Mongolia. Acta Petrologica et Mineralogica,38(4):453~464.

Zindler A,Hart S R. 1986. Chemical geodynamics. Annual Reviews of Earth and Planetary Sciences,14:493~571.

Geochemistr.o.Lat.Jurassi.biotit.granit.i.th.Hongshanz.area, Hexigte.Banner, Inne.Mongolia, an.it.geologica.implications

ZHU Hongtao1),WU Jianhua2),TANG Dawei1), GUO Hengfei1),YANG Dongguang2),WANG Liangyu1),WU Rengui3)

1) No. 243 Geological Party of Nuclear IndustryCNNCChifengInner Mongolia,024000;2) State Key Laboratory of Nuclear Resources and EnvironmentEast China University of TechnologyNanchang,330013;3) School of Earth ScienceEast China University of TechnologyNanchang,330013

Objectives:The Hongshanzi complex intrusives located in the northeastern part of the Guyuan—Hongshanzi uranium belt, which is composed of early Late Jurassic alkali feldspar granite,biotite granite and early Cretaceous early fine-grained biotite granite and granite porphyry. The composition of the rock is dominated by the alkali-feldspar granite and biotite granite in the early Jurassic. The early Late Jurassic biotite granites include medium—fine-grained biotite granites and porphyritic biotite granites, At present, uranium mineralization has been found in the inner and outer contact zone between the Early—Late Jurassic mid—fine-grained biotite granite and the Late Jurassic volcanic rock in the compound rock body, indicating that this zone is a favorable place for further uranium exploration. However, the geochemical characteristics of the Late Jurassic alkaline feldspar granite and biotite granite that make up the Hongshanzi complex rock mass have not been systematically studied, which restricts the in-depth study of uranium mineralization.

Methods:Based on detailed observations of occurrence of Hongshanzi complex rock mass in the field, we have studied the petrology, geochemistry, Sr—Nd—Pb radio isotope and O isotope of these biotite granite to discuss nature of source region and tectonic setting, than, we have discussed the relationship between biotite granite and uranium mineralization.

Results:All of biotite granite are characterized by high SiO2 (75.2%~76.6% and 74.6%~75.3%, respectively), (K2O+Na2O) (8.19%~8.96% and 8.78%~9.10%, respectively), and K2O/Na2O (1.19~1.39 and 1.29~1.35, respectively), low Al2O3 (11.5%~12.3% and 12.5%~12.7%), CaO (0.30%~1.24% and 0.76%~0.83%, respectively). It does not contain standard mineral corundum, indicating that the magma source area is magmatic rock; FeOT is 1.79%~2.13% and 1.80%~1.91%, respectively, both greater than 1.00%, with iron-rich characteristics of A-type granite; zircon saturation temperatures are 834~869℃ and 819~839℃, greater than 800℃, with the high-temperature characteristics of A-type granite. The contents of Al2O3 are 11.5%~12.3% and 12.5%~12.7%, respectively. A/CNK are 0.90~0.97 and 0.93~0.96, respectively. Enrichment of large ion lithophile elements Rb, Th, K, etc. and high field strength elements Zr, Hf, Nd, Ta, Y, etc. Loss of large ion lithophile elements Ba, Sr, etc. (Zr+Nb+Ce+Y) are 897×10-6~1236×10-6 and 513×10-6~643×10-6, both of which are greater than 350×10-6, and the values of 104*Ga/Al are 6.28~6.90 and 3.28~3.98, respectively, greater than 2.6, with trace element characteristics of type A granite, which is the product of the intraplate tensile structure. Their lower higher εNd(t), younger TDM2, lower and lower δ18OV-SMOW.

Conclusions:The results indicates the magma originated from the partial melting of the young lower crust by type EMⅠ mantle-derived basic magma bottom infiltrating the lower crust, and experienced high-temperature hydrothermal alteration. The U content of medium—fine-grained biotite granite and porphyritic biotite granite is 7.3×10-6~22.3×10-6 (average 14.6×10-6) and 4.53×10-6~6.90×10-6 (average 6.01×10-6), especially the uranium mineralization has been found in the inner and outer contact zones of the former and the Late Jurassic volcanic rocks, which is a favorite part for deep exploration of uranium deposits.

Keywords: biotite granite; A-type granite; Late Jurassic; geochemistry; Guyuan—Hongshanzi uranium belt

注:本文为中国核工业地质局铀矿地质勘查项目(编号:201801);国家自然科学基金资助项目(编号:41372071);中国核工业集团公司项目(编号:中核地计[2008]74)的成果。

收稿日期:2019-09-25;改回日期:2020-02-14;责任编辑:章雨旭。Doi: 10.16509/j.georeview.2020.03.017

作者简介: 祝洪涛,男,1983年生,高级工程师,主要从事铀矿地质勘查工作;Email:122550259@qq.com。

Firs.author:ZHU Hongtao, Male, born in 1983, senior engineer, mainly engaged in uranium geology and exploration; Email: 122550259@qq.com

Manuscript received on:2019-09-25;Accepted on:2020-02-14; Edited by: ZHANG Yuxu

Doi: 10.16509/j.georeview.2020.03.017