祁漫塔格东段晚三叠世花岗岩与流纹岩岩浆同源性:年代学、地球化学及Nd、Pb同位素制约

徐博1,2),李玉龙1),史连昌1),张晖青1),马德庆1),任鑫1),王成勇1)

1)青海省地质调查局,西宁,810000;2)吉林大学地球科学学院,长春,130061

内容提要: 祁漫塔格位于东昆仑西段,对该地区晚三叠世火成岩的研究不仅有助于认识东昆仑造山带印支期构造—岩浆演化历史,而且为古特提斯洋俯冲时限及洋盆闭合时限提供约束。本次在克停哈尔南的二长花岗岩中获得了219.8±0.5 Ma的锆石U-Pb年龄,结合以往获得的年龄数据,可以确定该期火成岩为晚三叠世岩浆活动的产物。全岩地球化学分析结果显示,祁漫塔格东段晚三叠世火成岩为准铝到弱过铝质岩石,属高钾钙碱性系列,富集轻稀土和Rb、Th、K等大离子亲石元素,不同程度亏损Nb、Ta、P、Ti等高场强元素,具有明显的铕负异常,显示板块俯冲阶段的特征。花岗岩与流纹岩具有相似的Nd、Pb同位素组成,花岗岩εNd(t)值介于-4.66~-4.53之间,亏损地幔模式年龄TDM2为1363~1375 Ma,流纹岩εNd(t)值为-4.63,TDM2=1368 Ma。在n(143Nd)/n(144Nd)—n(206Pb)/n(204Pb)图解和Pb同位素组成图解中投影点均位于上地壳和EMII地幔端元附近。祁漫塔格东段晚三叠世花岗岩与流纹岩空间分布关系密切,形成时间相近,主、微量元素和Nd、Pb同位素特征方面都具有相似性或一致性,因此,笔者认为它们为同一时期、同一构造环境下的同源岩浆产物。结合区域资料和本文研究,初步分析认为东昆仑地区该时期处于板块俯冲阶段的活动大陆边缘弧环境,古特提斯洋尚未完全闭合。

关键词:晚三叠世;东昆仑造山带;祁漫塔格;地球化学;锆石U-Pb年龄;Nd—Pb同位素;同源岩浆

东昆仑造山带位于青藏高原北部,东西延伸约1500 km,西至阿尔金断裂,东被温泉断裂所截,南临巴颜喀拉,北侧为柴达木盆地,因其复杂而独特的构造演化史,受到地质学者的广泛关注。东昆仑造山带经历了多次大洋俯冲到陆内碰撞的转换过程(陈加杰等,2016)。目前对于古特提斯洋闭合时限也存在不同认识,有人认为在早—中二叠世(任纪舜,2004;Yang Jingsui et al.,2009),也有人认为是晚二叠世(Huang Hui et al.,2014),但多数学者认为印支晚期东昆仑进入陆内造山阶段(罗照华等,1999,2002;刘成东等,2003,2004;姜春发,2004;谌宏伟等,2005;莫宣学等,2007)。

祁漫塔格地区位于青海省西部、柴达木盆地西南缘,构造位置处东昆仑造山带的西段,其印支期火成岩十分发育,作为东昆仑造山带的有机组成部分和重要的岩浆作用记录,其侵入岩与火山岩的成因关系等问题一直受到人们关注。本文以祁漫塔格东段晚三叠世花岗岩和流纹岩为研究对象,进行LA-MC-IPC-MS锆石U-Pb年代学、元素地球化学、Nd、Pb同位素研究,分析岩石成因,对其同源性以及形成的大地构造环境进行初步探讨。

1 地质概况

研究区位于祁漫塔格山东段,大地构造位于柴达木陆块与东昆中陆块的结合部位(图1)。区内出露的主要地层为:古元古界金水口岩群片麻岩、斜长角闪岩,奥陶系祁漫塔格群台缘浅滩相碎屑岩、碳酸盐岩及基性火山岩,下泥盆统契盖苏组陆相碎屑岩、火山岩,上石炭统缔敖苏组近源滨浅海相碎屑岩、碳酸盐岩,上三叠统鄂拉山组陆相火山岩。岩浆侵入活动广泛而强烈,从加里东期至印支期均有出露,以印支期最为强烈。岩体多呈岩株状产出,在空间上呈透镜状、长条状沿北西—南东向展布,受断裂控制明显。区内构造活动强烈,断裂以北西、北西西和北东向为主,组成了主体构造格架。

2 花岗岩与流纹岩的时空关系

区内晚三叠世花岗岩出露面积约421 km2,分布于阿格腾、肯得阿勒大湾、克停哈尔一带,构成北西向构造岩浆带。为一套酸性岩组合,主要岩性为:正长花岗岩、斑状二长花岗岩、二长花岗岩、花岗闪长岩。侵入金水口岩群、契盖苏组、缔敖苏组、鄂拉山组及志留纪、泥盆纪岩体。笔者在该期岩体中已经获得了220.7±0.4 Ma、220.7±0.5 Ma、220.6±1.4 Ma U-Pb同位素年龄(徐博等,2019),本次笔者在克停哈尔南的二长花岗岩中获得了219.8±0.5 Ma的U-Pb同位素年龄(图1)。

图1 东昆仑造山带祁漫塔格东段地质简图
Fig. 1 Simplified geological map of eastern Qimantage, East Kunlun orogenic belt
Q—第四系;T3—上三叠统;C2—上石炭统;D1—下泥盆统;O—奥陶系;Pt1—古元古界;ENKF—昆北断裂;ECKF—昆中断裂;ESKF—昆南断裂
Q—Quaternary; T3—Upper Triassic; C2—Upper Carboniferous; D1—Lower Devonian;O—Ordovician; Pt1—Paleoproterozoic; ENKF— North Kunlun fault; ECKF—Middle Kunlun fault; ESKF— South Kunlun fault

晚三叠世鄂拉山组火山岩主要分布于喀雅克登塔格以东,尕林格以西的阿格腾地区,控制厚度大于2930.76 m,出露面积约235 km2。由火山碎屑岩及火山熔岩组成,其中火山碎屑岩以火山角砾岩、含角砾晶屑凝灰岩为主,火山熔岩以流纹岩、英安岩为主。部分地段被第四系覆盖,不整合于晚泥盆世岩体和古元古界金水口岩群之上,局部与契盖苏组呈断层接触。前人在鄂拉山组火山岩中获得的年龄均在208~222 Ma(刘红涛,2001),笔者等在阿格腾地区流纹岩中获得了215.3±0.5 Ma的同位素年龄(徐博等,2019;图1)。

晚三叠世花岗岩与鄂拉山组火山岩空间分布关系密切,具有相互依存的空间环境,呈北西向带状展布,受断裂控制明显,形成时间相近,均为印支晚期构造岩浆活动的产物。

3 样品采集和分析方法

3.1 样品采集

本次用于锆石U-Pb测年、主元素、稀土元素、微量元素分析的样品均取自克停哈尔南的二长花岗岩中,地理坐标:E92°38′23″,N36°42′03″。岩石呈灰红色—肉红色,细粒花岗结构,块状构造。主要矿物成分:斜长石(34%~38%)、钾长石(33%~39%)、石英(20%~25%)、黑云母(2%~5%)、角闪石(约1%),副矿物有锆石、磷灰石等。另外还采集了3件Nd同位素样品和5件Pb同位素样品,采样位置见图1。

3.2 分析方法

锆石U-Pb同位素测年在中国地质调查局天津地质调查中心实验室完成,首先将样品粉碎至100 μm左右,利用重液和电磁法分选,然后在双目镜下选择透明、无包裹体具有代表性的锆石颗粒,将待测的锆石颗粒制成环氧树脂样品靶,打磨抛光并使其露出中心部位,进行CL显微结构观察,在此基础上选择合适的锆石颗粒进行U-Pb年龄测定,利用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICP-MS)进行了微区原位U-Pb同位素测定,数据处理及作图采用ICPMSDataCal和ISOPLOT程序。详细测试流程见文献(李怀坤等,2009)。

岩石化学分析在湖北省地质实验测试中心完成。主元素采用X-射线荧光光谱法(XRF)完成,分析相对误差小于5%,其中Fe2O3的计算公式为Fe2O3=Fe2O3T-FeO×1.11134。稀土、微量元素采用酸溶法制备样品,采用原子发射光谱法(ICP-AES)和电感耦合等离子质谱法(ICP-MS)完成,分析相对误差小于5%~10%。

图2 东昆仑造山带祁漫塔格东段克停哈尔南二长花岗岩(JD029)锆石阴极发光图像及定年结果
Fig. 2 CL images and dating results of the zircons from monzogranite(JD029)in southern Ketinghaer, eastern Qimantage, East Kunlun orogenic belt

Nd和Pb同位素分析在中国地质调查局天津地质调查中心实验室利用热电离质谱仪(Triton)分析完成,详细的分析流程见李潮峰等(2011)。

4 分析结果

4.1 形成时代

本次共选取25颗锆石,在透射光下均为无色或浅黄褐色,大部分为自形晶,主要为短柱状—长柱状,长130~260 μm,长短轴比位于1.1∶1~2.3∶1之间,阴极发光图像显示具有很好的岩浆振荡环带结构(图2),为典型的岩浆结晶锆石。25个测点的n(206Pb)/n(238U)年龄在217~221 Ma,加权平均年龄为219.8±0.5 Ma(表1,图3)。此外笔者等已经在阿格腾地区流纹岩、阿格腾南二长花岗岩、阿格腾东正长花岗岩中获得了215.3±0.5 Ma(JD026)、220.7±0.5 Ma(JD024)、220.6±1.4 Ma(JD037)、220.7±0.4 Ma(JD027)的U-Pb同位素年龄(徐博等,2019;图1)。结合地质特征,笔者等认为该期火成岩形成于晚三叠世。

4.2 主量元素

祁漫塔格东段晚三叠世花岗岩及流纹岩主、微量元素分析结果见表2。从表中可以看出:花岗岩SiO2含量介于66.46%~75.42%,平均70.20%;Na2O 2.45%~4.74%,平均3.46%;K2O 3.08%~5.15%,平均3.93%;在TAS图解中主要落入O3及R区(图4a)。K2O/Na2O平均值为1.16,属高钾钙碱性系列(图4b)。Al2O3含量为12.65%~15.73%,平均14.28%,铝饱和指数A/CNK为0.95~1.2,为准铝质到弱过铝质花岗岩(图4c)。

流纹岩SiO2含量较高70%~77.37%,平均73.28%;Na2O 2.45%~4.08%,平均3.39%;K2O 4.25%~4.58%,平均4.45%;在TAS图解中主要落入R区(图4a)。K2O/Na2O平均值为1.38,属高钾钙碱性系列(图4b)。Al2O3含量为11.41%~14.55%,平均13.30%,铝饱和指数A/CNK为0.98~1.35,为准铝质到弱过铝质(图4c)。

祁漫塔格东段花岗岩与的流纹岩化学成分基本相近,同属高钾钙碱性系列,为准铝质到弱过铝质岩石,Al2O3、CaO、FeO、MgO、TiO2、P2O5含量均具有相同的变化趋势,随着SiO2含量增高而降低,K2O与SiO2呈正相关,Na2O与SiO2之间的协变关系不明显。固结指数SI值(表2)有明显递增趋势,显示了它们可能为同源岩浆演化而来(卢成忠等,2007)。

表2 东昆仑造山带祁漫塔格东段火成岩主量元素(%)和稀土、微量元素(×10-6)分析结果
Table 2 Analytical results of major(%), rare earth and trace elements(×10-6) of igneous rocks in eastern Qimantage, East Kunlun orogenic belt

样品号Gs1030Gs2172GS026GS029GS027GS024BGS6501GS037BGS6401BGS6615BGS6520岩性流纹岩二长花岗岩正长花岗岩斑状二长花岗岩二长花岗岩花岗闪长岩SiO277.3772.4870.0075.4274.5668.4670.7770.1468.0867.7066.46TiO20.160.290.230.060.110.480.390.340.470.441.10Al2O311.4113.9514.5513.1412.6514.3614.7014.2915.7315.2714.13Fe2O31.702.552.110.401.091.310.921.131.361.520.95FeO0.180.970.200.980.682.701.851.582.202.104.75MnO0.030.030.030.050.050.100.050.070.060.080.10MgO0.130.370.230.220.260.970.890.611.131.741.66CaO0.230.721.790.661.162.382.321.173.133.982.45Na2O3.652.454.084.043.254.053.374.743.182.622.45K2O4.254.584.534.255.153.823.724.293.653.453.08P2O50.030.050.040.030.030.170.090.110.110.100.25总量99.1498.4497.7999.2598.9998.8099.0798.4799.1099.0097.38A/CNK1.041.350.981.060.970.951.070.981.061.001.20A/NK1.081.551.251.171.161.331.541.151.711.901.92SI1.313.392.062.222.497.558.284.949.8115.2212.88La43.8744.9058.3021.3036.7544.2435.6066.2533.7730.7548.96Ce89.8795.00112.0040.9060.7590.8064.50121.0058.7055.7097.44Pr10.7811.3013.004.657.499.546.9614.616.806.3712.02Nd39.0043.3046.0015.4024.3436.3522.3046.5222.0721.8043.23Sm8.228.988.913.174.497.173.848.243.973.998.89Eu0.651.461.090.300.721.340.390.580.850.941.66Gd7.628.238.483.053.346.333.516.513.343.427.97Tb1.431.381.310.550.501.070.531.050.540.561.29Dy8.717.838.093.372.936.302.906.333.103.156.93Ho1.831.611.650.690.571.240.591.310.640.651.40Er5.334.944.662.001.683.551.843.921.841.903.81Tm0.850.780.740.320.280.570.320.630.320.310.60Yb5.575.124.832.081.793.672.224.172.092.173.62Lu0.890.790.730.300.270.550.350.620.330.350.53ΣREE224.62235.62269.7998.09145.90212.72145.85281.74138.36132.06238.35LREE/HREE5.976.687.856.9311.848.1410.8910.4810.349.568.11δEu0.250.510.380.290.550.600.320.230.700.760.59δCe0.970.990.940.950.841.020.930.900.880.910.94(La/Yb)N5.315.918.146.9013.848.1310.8110.7110.899.559.12Sr34.6699.0392.086.0152.011.6217.041.1151.066.7241.0Rb163113117167122118171141189260116Ba637721796501507875646496752198625Th18.507.7230.5029.4010.8014.4020.5010.8023.9024.0012.90Ta1.450.681.621.190.741.011.281.371.630.701.12Nb16.4011.7023.6014.206.6011.0013.3014.5020.108.708.14Zr28523729310297.115017168.7258117204Hf8.906.909.394.083.405.306.002.208.104.107.10Y47.0025.7049.1020.9015.7811.5823.2015.3024.0924.1023.50

注:GS029为本文数据,其余均引自徐博等,

图3 东昆仑造山带祁漫塔格东段克停哈尔南二长花岗岩U-Pb同位素年龄谐和图
Fig. 3 Zircon U-Pb concordia diagram of monzogranite in southern Ketinghaer, eastern Qimantage, East Kunlun orogenic belt

表3 东昆仑造山带祁漫塔格东段火成岩Sm-Nd同位素组成
Table 3 Sm-Nd isotopic composition of igneous rocks in eastern Qimantage, East Kunlun orogenic belt

样品号岩性SmNd(×10-6)n(147Sm)n(144Nd)n(143Nd)/n(144Nd)测值±2δT(Ma)n(143Nd)n(144Nd) iTDM2(Ma)εNd(0)εNd(t)fSm/NdGS026流纹岩8.2641.310.12100.512294±0.000003215.3±0.50.5121231368-6.71-4.63-0.38GS027正长花岗岩4.0421.830.11210.512277±0.000002220.7±0.40.5121151375-7.04-4.66-0.43GS029二长花岗岩3.6117.580.12440.512302±0.000008219.8±0.50.5121231363-6.55-4.53-0.37

4.3 稀土及微量元素

从稀土元素组成(表2)及球粒陨石标准化配分曲线上看(图5a),花岗岩与流纹岩稀土元素分布型式基本一致,配分曲线表现为右倾的轻稀土富集型,具有明显的负铕异常。铕的负异常可能由于地壳岩石部分熔融过程中,残余相中大量斜长石的存在所引起,或由于母岩浆演化过程中分异出大量的斜长石(邱家骧和林景仟,1991;李昌年,1992)。

在微量元素原始地幔标准化蛛网图上(图5b),花岗岩与流纹岩的配分曲线相似,富集Rb、Th、K等大离子亲石元素,明显亏损Nb、Ta、P、Ti等高场强元素,相对于Rb和Th明显亏损Ba,显示大陆弧背景下造山花岗岩的特征(李昌年,1992)。

4.4 Sm-Nd同位素特征

本次研究共对3件样品进行了Sm-Nd同位素分析(表3),GS026、GS027、GS029分别与测年样品JD026、JD027、JD029采自相同地点(图1)。花岗岩n(147Sm)/n(144Nd)为0.1121~0.1244,n(143Nd)/n(144Nd)为0.512277~0.512302,fSm/Nd为-0.37~ -0.43,双阶段模式年龄TDM2为1363~1375 Ma,εNd(t)=-4.66~-4.53(李献华,1996)。流纹岩n(147Sm)/n(144Nd)为0.1210,n(143Nd)/n(144Nd)为0.512294,fSm/Nd为-0.38,TDM2为1368 Ma,εNd(t)=-4.63。花岗岩与流纹岩Sm-Nd同位素组成相似,εNd(t)都为负值,表明其源岩以地壳物质为主。

图4 东昆仑造山带祁漫塔格东段火成岩TAS图解(a,据 Middlemost,1994)、K2O—SiO2图解(b,据Rickwood,1989)、A/CNK—A/NK图解(c,据Maniar and Piccoli,1989)
Fig. 4 TAS diagram (a,after Middlemost,1994), K2O—SiO2 diagram(b, after Rickwood,1989), A/CNK—A/NK diagram(c, after Maniar and Piccoli,1989) of igneous rocks in eastern Qimantage, East Kunlun orogenic belt

4.5 Pb同位素特征

本次研究共对5件样品进行了Pb同位素分析(表4),GS024、GS026、GS027、GS029、GS037分别与测年样品JD024、JD026、JD027、JD029、JD037采自相同地点(图1)。花岗岩当前n(206Pb)/n(204Pb)为19.2928~19.4679,n(207Pb)/n(204Pb)为15.5978~15.6412,n(208Pb)/n(204Pb)为38.8877~39.5308,经计算同位素初始比值[n(206Pb)/n(204Pb)]i为18.8974~19.3100,[n(207Pb)/n(204Pb)]i为15.5840~15.6273,[n(208Pb)/n(204Pb)]i为38.4939~39.4257。流纹岩当前n(206Pb)/n(204Pb)为19.7863,n(207Pb)/n(204Pb)为15.6528,n(208Pb)/n(204Pb)为39.8132,经计算同位素初始比值[n(206Pb)/n(204Pb)]i为19.5779,[n(207Pb)/n(204Pb)]i为15.6425,[n(208Pb)/n(204Pb)]i为39.0041。

5 讨论

5.1 岩浆来源与同源性

岩浆常常能继承源岩同位素成分,并且在高温下达到均一,并且在其形成后的封闭体系内发生分异作用时也保持不变,因此可以通过火成岩了解地球深部同位素特征。锶、钕、铅同位素是探讨岩石物质来源的非常有效的示踪剂。尤其是Sm-Nd同位素对,在包括高级变质作用和地表风化作用在内的各种后期叠加作用过程中表现得最为稳定(洪大卫等,1999)。

图5 东昆仑造山带祁漫塔格东段火成岩稀土(a)、微量(b)元素配分曲线(据 Sun and McDonough,1989)
Fig. 5 Chondrite-normalized REE and primitive mantle-normalized trace element diagrams of igneous rocks in eastern Qimantage, East Kunlun orogenic belt (after Sun and McDonough,1989)

祁漫塔格东段晚三叠世花岗岩与流纹岩n(143Nd)/n(144Nd)均低于原始地幔现代值(0.512638,Jacobson and Wasserburg,1980),εNd(t)十分接近,且都为负,表明它们主要来源于地壳物质的重融。花岗岩亏损地幔模式年龄TDM2为1363~1375 Ma,流纹岩为1368 Ma,表明他们源自中元古代结晶基底。在n(143Nd)/n(144Nd)— n(206Pb)/n(204Pb)图解(图6)中花岗岩与流纹岩均位于EMII地幔区附近,EMII地幔端元与俯冲地壳物质密切相关(Hart,1989)。花岗岩与流纹岩都具有较高的n(207Pb)/n(204Pb)、n(208Pb)/n(204Pb),在Pb同位素组成图解中(图7),投影点多位于北半球参考线上方,上地壳、EMII地幔附近,考虑到地幔岩浆分异一般不可能直接形成长英质花岗岩,那么祁漫塔格东段晚三叠世花岗岩和流纹岩的岩浆应主要来源于地壳,可能伴有幔源岩浆参与。

表4 东昆仑造山带祁漫塔格东段火成岩Pb同位素组成
Table 4 Pb isotopic composition of igneous rocks in eastern Qimantage, East Kunlun orogenic belt

样品号岩性T(Ma)UThPb(×10-6)n(206Pb)n(204Pb)n(207Pb)n(204Pb)n(208Pb)n(204Pb)n(206Pb)n(204Pb) in(207Pb)n(204Pb) in(208Pb)n(204Pb) iGS024斑状二长花岗岩220.7±0.50.150.614.3019.389415.619039.530819.310015.615139.4257GS026流纹岩215.3±0.52.5630.527.519.786315.652839.813219.577915.642539.0041GS027正长花岗岩220.7±0.41.3110.310.519.467915.641239.234519.184915.627338.5098GS029二长花岗岩219.8±0.57.1329.433.219.383815.616239.524518.897415.592238.8712GS037二长花岗岩220.6±1.41.566.7712.619.292815.597838.887719.014215.584038.4939

祁漫塔格东段晚三叠世花岗岩与流纹岩空间分布关系密切,形成时间相近,主、微量元素、Nd同位素、Pb同位素特征方面都具有相似性或一致性,因此,笔者等认为它们为同一时期、同一构造环境下的同源岩浆产物。岩石中富集大离子亲石元素(LILE),亏损高场强元素(HFSE)通常被认为具有俯冲(消减)带的特征(Ionov and Hofmann,1995),另外典型的Nb、Ta和Ti亏损是判别岛弧构造环境的重要标志之一(赵振华,2007)。刘洪涛(2001)认为祁漫塔格晚三叠世火山岩形成与B型消减事件具有成因联系,其大地构造环境应当类似于安第斯的活动大陆边缘。阿格腾地区晚三叠世火成岩富集Rb、Th、K等大离子亲石元素,亏损Nb、Ta、P、Ti等高场强元素,Zr/Y=4.49~12.95,平均值7.65,基本介于大陆边缘弧的范围之内(Zr/Y=4~12,Condie,1989),结合该区地质背景,笔者认为祁漫塔格东段晚三叠世花岗岩与流纹岩形成于活动大陆边缘弧环境。俯冲板片脱水产生富水和大离子亲石元素、亏损高场强元素的流体,流体交代上覆地幔楔引发其部分熔融,形成的岩浆不断上涌,带来了足够的热源,使地壳物质部分熔融,最终形成了祁漫塔格东段晚三叠世火成岩。

图6 东昆仑造山带祁漫塔格东段火成岩n(143Nd)/n(144Nd)—n(206Pb)/n(204Pb)图解(DM、EMI、EMII、HIMU、原始地幔据Zindler and Hart,1986;前人数据引自丰成友等,2012)
Fig. 6 n(143Nd)/n(144Nd)—n(206Pb)/n(204Pb) diagrams of igneous rocks in eastern Qimantage, East Kunlun orogenic belt(DM,EMI,EMII,HIMU and Primitive Mantle after Zindler and Hart,1986;previous data after Feng Chengyou et al.,2012&)

5.2 构造背景

古特提斯洋的打开时间普遍被认为是在晚石炭世,但是对于其闭合时限仍存在不同认识。 有人认为古特提斯洋的闭合和大陆碰撞开始的时间在早—中二叠世(任纪舜,2004;Yang Jingsui et al.,2009),也有人认为是晚二叠世(Huang Hui et al.,2014),还有人认为在230 Ma东昆仑地区进入陆内造山阶段(郭正府等,1998)。

图7 东昆仑造山带祁漫塔格东段火成岩Pb同位素组成图解(EMI、EMII、HIMU、原始地幔、地球等时线、北半球参考线
据Zindler and Hart,1986;下地壳、成熟弧、上地壳据Zartman and Doe,1981;前人数据引自丰成友等,2012)
Fig. 7 Pb isotopic compositions diagrams of igneous rocks in eastern Qimantage, East Kunlun orogenic belt(DM,EMI,EMII,HIMU and Primitive Mantle after Zindler and Hart,1986; lower crust, mature arc and upper crust after Zartman and Doe,1981;previous data after Feng Chengyou et al.,2012&)

东昆仑地区发育大量早—中三叠世中酸性火成岩,且多为岛弧岩浆活动的产物(王冠等,2014;熊富浩,2014),区域上出露的下三叠统洪水川组、中—下三叠统闹仓坚沟组具弧前沉积特点(闫臻等,2008),说明在早—中三叠世东昆仑地区仍为俯冲相关的陆缘弧环境。草木策地区的上三叠统八宝山组下部产海相动物化石,并有较多灰岩夹层,沉积环境属海陆交互相(青海省地质矿产局,1991)。治多—当江一带的上三叠统清水河组中夹数层不纯硅质岩或硅质页岩,且在横向上硅质岩分布较稳定,具有由半深海-深海-浅海沉积环境特征(青海省地质矿产局,1991)。古特提斯洋的关闭时间可能稍早于200~180 Ma,导致了沿康西瓦一带的高绿片岩相的变质作用并形成了沿康西瓦分布的一套中生代的增生杂岩(张传林等,2019)。晚三叠世由于昆仑洋壳向其北侧的塔里木陆块之下发生强烈的B型消减作用,因而在塔里木陆块南缘的祁漫塔格山一带发生了大规模的钙碱质弧岩浆活动(刘洪涛,2001)。这些研究都表明晚三叠世古特提斯洋尚未完全闭合。祁漫塔格东段晚三叠世火成岩具有明显的俯冲型岩浆特征,其稀土元素配分曲线和微量元素蜘蛛网图与火山弧花岗岩较为相似(图5),在微量元素构造环境判别图解中(图8),大部分样品投于火山弧花岗岩区域。综合以往研究及区域地质背景笔者等认为,该时期该地区处于板块俯冲阶段的活动大陆边缘弧环境,古特提斯洋尚未完全闭合。

图8 东昆仑造山带祁漫塔格东段花岗岩微量元素构造环境判别图解(据 Pearce et al.,1984)
Fig. 8 Tectonic setting discrimination diagrams of granites in eastern Qimantage, East Kunlun orogenic belt (after Pearce et al.,1984)

6 结论

(1) 东昆仑造山带祁漫塔格东段克停哈尔南二长花岗岩形成年龄为219.8±0.5 Ma,说明其形成时代为晚三叠世。

(2) 祁漫塔格东段晚三叠世花岗岩与流纹岩主、微量元素、Nd、Pb同位素特征方面都具有相似性或一致性,为同一时期、同一构造环境下的同源岩浆产物,主要源于地壳物质的部分熔融。

(3) 祁漫塔格东段晚三叠世火成岩为中—高钾钙碱性系列、准铝质到弱过铝质岩石,富集Rb、Th、K等大离子亲石元素,亏损Nb、Ta、P、Ti等高场强元素,具负Eu异常,有明显的俯冲型岩浆特征。

(4) 晚三叠世东昆仑地区处于板块俯冲阶段的活动大陆边缘弧环境,古特提斯洋尚未完全闭合。

参 考 文 献

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

谌宏伟,罗照华,莫宣学,刘成东,柯珊.2005.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制.中国地质,32(3): 386~395.

陈加杰,付乐兵,魏俊浩,田宁,熊乐,赵玉京,张玉洁,祁月清.2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学,41(11):1863~1882.

丰成友,王松,李国臣,马圣钞,李东生. 2012. 青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义. 岩石学报, 28(2): 665~678.

郭正府,邓晋福,许志琴,莫宣学,罗照华.1998.青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程.现代地质,12(3):344~352.

洪大卫,谢锡林,张季生.1999. 从花岗岩的Sm-Nd同位素探讨华南中下地壳的组成、性质和演化.高校地质学报,5(4):361~371.

姜春发.2004.手风琴式运动与开合构造.地质论评,50(3):267~269.

李昌年.1992.火成岩微量元素岩石学.武汉:中国地质大学出版社:97~109.

李潮峰,李献华,郭敬辉,李向辉,李怀坤,周红英,李国占. 2011.微量岩石样品中 Rb-Sr 和 Pb 一步分离及高精度热电离质谱测试. 地球化学,40(5): 399 ~406.

李怀坤,耿建珍,郝爽,张永清,李惠民.2009.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究.矿物学报,29(Z1):600~601.

李献华. 1996.Sm-Nd 模式年龄和等时线年龄的适用性与局限性.地质科学,31(1): 97~104.

刘成东,莫宣学,罗照华,喻学惠,谌宏伟,李述为,赵欣.2003.东昆仑造山带花岗岩类Pb—Sr—Nd—O 同位素特征.地球学报,24(6):584~588.

刘成东,莫宣学,罗照华,喻学惠,谌宏伟,李述为,赵欣.2004.东昆仑壳—幔岩浆混合作用:来自锆石 SHRIMP 年代学的证据.科学通报,49(6):506~602.

刘红涛.2001.祁漫塔格陆相火山岩: 塔里木陆块南缘印支期活动大陆边缘的岩石学证据.岩石学报,17(3): 337~351.

卢成忠,汪庆华,顾明光.2007.杭州河上地区新元古代火山岩与侵入岩的岩浆同源性.高校地质学报,13(4):694~702.

罗照华,邓晋福,曹永清,郭正府,莫宣学.1999.青海省东昆仑地区晚古生代—早中生代火山活动与区域构造演化.现代地质,13(1):51~56.

罗照华,柯珊,曹永清,邓晋福,谌宏伟.2002.东昆仑印支晚期幔源岩浆活动.地质通报,21(6):292~297.

莫宣学,罗照华,邓晋福,喻学惠,刘成东,谌宏伟,袁万明,刘云华.2007.东昆仑造山带花岗岩及地壳生长.高校地质学报,13(3): 403~414.

青海省地质矿产局. 1991. 青海省区域地质志. 北京: 地质出版社:138~178.

邱家骧,林景仟.1991.岩石化学.北京: 地质出版社:1~276.

任纪舜.2004.昆仑—秦岭造山系的几个问题.西北地质,37(1):1~5.

王冠,孙丰月,李碧乐,李世金,赵俊伟,杨启安.2014.东昆仑夏日哈木矿区闪长岩锆石U-Pb年代学、地球化学及其地质意义.吉林大学学报(地球科学版),44(3):876~891.

熊富浩.2014.东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义.导师:马昌前.武汉:中国地质大学博士学位论文:1~191.

徐博,李海宾,南燕云,王成勇,岳涛,赵明福.2019.祁漫塔格山阿格腾地区晚三叠世火成岩LA- MC- ICP- MS 锆石U- Pb年龄、地球化学特征及构造意义.地质论评,65(2):353~369.

闫臻,边千韬,Korchagin O A,Pospelov I I,李继亮,王宗起.2008.东昆仑南缘早三叠世洪水川组的源区特征:来自碎屑组成、重矿物和岩石地球化学的证据.岩石学报,24(5):1068~1078.

张传林,马华东,朱炳玉,叶现韬,邱林,赵海香,刘晓强,丁腾,王倩,郝晓姝.2019.西昆仑—喀喇昆仑造山带构造演化及其成矿效应.地质论评,65(5):1077~1102.

赵振华.2007.关于岩石微量元素构造环境判别图解使用的有关问题.大地构造与成矿学,31(1):92~103.

Chen Hongwei,Luo Zhaohua,Mo Xuanxue,Liu Chengdong, Ke Shan. 2005&.Underplatingmechanism of Triassic granite of magma mixing origin in the East Kunlun orogenic belt.Geology in China,32(3):386~395.

Chen Jiajie,Fu Lebing,Wei Junhao,Tian Ning,Xiong Le,Zhao Yujing,Zhang Yujie,Qi Yueqing. 2016&. Geochemical characteristics of Late Ordovician granodiorite in gouli area,eastern Kunlun orogenic belt, Qinghai Province: Implications on the evolution of Proto-Tethys ocean. Earth Science,41(11):1863~1882.

Condie K C.1989. Geochemical changes in baslts and andesites across the Archean—Proterozoic boundary: Identification and significance. Lithos,23(1~2):1~18.

Feng Chengyou,Wang Song,Li Guochen, Ma Shengchao, Li Dongsheng.2012&.Middle to Late Triassic granitoids in the Qimantage area,Qinghai Province,China: Chronology,geochemistry and metallogenic significances. Acta Petrologica Sinica,28(2):665~678.

Guo Zhengfu,Deng Jinfu,Xu Zhiqin,Mo Xuanxue ,Luo Zhaohua.1998&.Late Palaeozoic—Mesozoic intracontinental orogenic process and intermediate—acidic-igneous rocks from the eastern Kunlun Mountains of northwestern China. Geoscience,12(3):344~352.

Hart S R. 1989. Heterogeneous mantle domains: Signatures,genesis and mixing chronologies. Earth and Planetary Science Letters,90(3):273~296.

Hong Dawei, Xie Xilin, Zhang Jisheng.1999&. An exploration on the composition, nature and evolution of mid—lower crust in South China based on the Sm-Nd isotopic data of granites. Geological Journal of China Universities,5(4):361~371.

Huang Hui,Niu Yaoling,Nowell G, Zhao Zhidan,Yu Xuehui,Zhu Dicheng,Mo Xuanxue,Ding Shuo. 2014. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chemical Geology, 370(4):1~18.

Ionov D A,Hofmann A W.1995.Nb Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. Earth and Planetary Science Letters,131(3~4):341~356.

Jacobson S B,Wasserburg G J. 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters,50(1): 139~155.

Jiang Chunfa.2004#. Accordion movement and opening—closing tectonics. Geological Review, 50(3): 267~269.

Li Changnian. 1992#. Minor Elemental Petrography of Volcanics.Wuhan: China University of Geoscience Press:97~109.

Li Chaofeng,Li Xianhua,Guo Jinghui,Li Xianghui,Li Huaikun,Zhou Hongying,Li Guozhan.2011&.Single-step separation of Rb-Sr and Pb from minor rock samples and high precision determination using thermal ionization mass spectrometry. Geochimica,40 (5): 399~406.

Li Huaikun,Gen Jianzhen,Hao Shuang,Zhang Yongqing ,Li Huimin. 2009#. Study on zircon U-Pb dating by LA-ICP-MS. Acta Mineralogica Sinica, 29(S1):600~601.

Liu Chengdong,Mo Xuanxue,Luo Zhaohua,Yu Xuehui,Chen Hongwei,Li Shuwei, Zhao Xin.2003&. Pb—Sr—Nd—O isotope characteristics of granitoids in East Kunlun orogenic belt. Acta Geosicientia Sinica,24(6): 584~588.

Liu Chengdong,Mo Xuanxue,Luo Zhaohua,Yu Xuehui,Chen Hongwei,Li Shuwei ,Zhao Xin.2004#. Mixing events between the crust and mantle-derived magmas in eastern Kunlun: Evidence from zircon SHRIMP II chronology.Chinese Science Bulletin,49(6): 506~602.

Liu Hongtao. 2001&. Qimantage terrestrial volcanics: Petrologic evidence ofactive continental margin of Tarim plate during Late Indo-China epoch. Acta Petrologica Sinica,17(3): 337~351.

Li Xianhua. 1996&.A discussion on the model and isochron ages of Sm-Nd isotopic systematics: suitability and limitation. Chinese Journal of Geology, 31(1): 97~104.

Lu Chengzhong,Wang Qinghua,Gu Mingguang.2007&.Magmatic consanguinity of Neoproterozoic volcanic and intrusive rocks in Heshang area, Hangzhou region. Geological Journal of China Universities,13(4):694~702.

Luo Zhaohua,Deng Jinfu,Cao Yongqing,Guo Zhengfu,Mo Xuanxue.1999&.Volcanism andregional tectonic evolution during Late Paleozoic—Early Mesozoic period in the East Kunlun,Qinghai Province. Geoscience, 13(1): 51~56.

Luo Zhaohua,Ke Shan,Cao Yongqing,Deng Jinfu,Chen Hongwei.2002&.Late indosinian mantle-derived magmatism in the East Kunlun. Geological Bulletin of China,21(6):292~297.

Maniar P D,Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635~643.

Middlemost E A K.1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, (37): 215~224.

Mo Xuanxue, Luo Zhaohua, Deng Jinfu, Yu Xuehui, Liu Chengdong, Chen Hongwei, Yuan Wanming, Liu Yunhua. 2007&. Granitoids and crustal growth in the East Kunlun orogenic belt. Geological Journal of China Universities, 13 (3):403~414.

Pearce J A,Harris N B W,Tindle A G.1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25: 956~983.

Qinghai Bureau of Geology and Mineral Resources.1991#. Regional Geology of the Qinghai Province. Beijing:Geological Publishing House: 138~178.

Qiu Jiaxiang, Lin Jingqian.1991#.Petrochemistry. Beijing: Geological Publishing House: 1~276.

Ren Jishun. 2004&. Some problems on the Kunlun—Qinling orogenic system.Northwestern Geology,37 (1): 1~5.

Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos,22: 247~263.

Sun S S, McDonough W F. 1989. Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D and Norry MJ. eds. Magmatism in OceanBasins. Spec. Publ. Geol. Soc. Lond. ,42: 313~345.

Wang Guan,Sun Fengyue,Li Bile,Li Shijin,Zhao Junwei,Yang Qi’an.2014&.Zircon U-Pb geochronology and geochemistry of diorite in Xiarihamu ore district from East Kunlun and its geological significance. Journal of Jilin University: Earth Science Edition, 44(3):876~891.

Xiong Fuhao.2014&. Spatial—Temporal Pattern,Petrogenesis and Geological Implications of Paleo-Tethyan Granitoids in the East Kunlun Orogenic Belt (Eastern Segment). Tutor: Ma Changqian. Wuhan :China University of Geosciences (Ph.D thesis): 1~191.

Xu Bo, Li Haibin, Nan Yanyun, Wang Chengyong, Yue Tao, Zhao Mingfu.2019&. LA- MC- ICP- MS Zircon U- Pb ages, geochemical characteristics and tectonic significance of the Late Triassic igneous rocks in Ageteng area,Qimantage Mountains. Geological Review, 65(2): 353~369.

Yang Jingsui,Shi Rendeng,Wu Cailai,Wang Xibin.2009. Dur'ngoi ophiolite in EastKunlun,northeast Tibetan Plateau: Evidence for Paleo-Tethyan suturein northwest China. Journal of Earth Science,20(2): 303~331.

Yan Zhen,Bian Qiantao, Korchagin O A,Pospelov II,Li Jiliang,Wang Zongqi.2008&. Provenance of Early Triassic Hongshuichuan Formation in the southern margin of the East Kunlun Mountains: Constrains from detrital framework, heavy mineral analysis and geochemistry. Acta Petrologica Sinica,24(5):1068~1078.

Zartman R E, Doe B R.1981. Plumbotectonics: The model.Tectonophysics, 75(1~2): 135~162.

Zhang Chuanlin, Ma Huadong, Zhu Bingyu, Ye Xiantao, Qiu Lin, Zhao Haixiang, Liu Xiaoqiang, Ding Teng, Wang Qian, Hao Xiaoshu.2019&.Tectonic evolution of the western Kunlun—Karakorum Orogenic Belt and its coupling with the mineralization effect. Geological Review,65(5):1077~1102.

Zhao Zhenhua.2007&. How to use the trace element diagrams to discriminate tectonic settings. Geotectonica et Metallogenia, 31(1):92~103.

ZindlerA, Hart S R. 1986. Chemical geodynamics.Annual Review of Earth and Planetary Sciences, 14: 493~571.

Magmati.consanguinit.o.th.Lat.Triassi.granite.an.rhyolite.i.easter.Qimantage: Constraint.fro.geochronology, geochemistr.an.Nd—P.isotopes

XU Bo1,2), LI Yulong1), SHI Lianchang1), ZHANG Huiqing1), MA Deqing1), REN Xin1), WANG Chengyong1)

1) Qinghai Geological Survey Bureau,Xining, 810000; 2) College of Earth Sciences, Jilin University, Changchun,130061

Objectives:Qimantage is located in the western part of the East Kunlun belt. The study of the Late Triassic igneous rocks in this area not only helps to understand of the Indosinian tectonic—magmatic evolution history of the East Kunlun orogenic belt, but also can provide constraints for the subduction and the closing time of the Paleo-Tethys Ocean.

Methods:Detailed geological survey, LA-ICP-MS zircon U-Pb dating of monzogranite, whole rock geochemical and Nd—Pb isotopes analysis of igneous rocks in eastern Qimantage, East Kunlun orogenic belt.

Results:The zircon U-Pb dating of the monzogranite in southern Ketinghaer is 219.8±0.5 Ma, combining previous ages it can be ascertained that the igneous rocks are the products of Late Triassic magmatic activities.The whole-rock geochemical analyses show that the Late Triassic igneous rocks in eastern Qimantage lie in high K calc-alkaline fields, the Aluminium saturation index show the metalumininous and weak peraluminous features,integrated with enrichments of LREE and LILE(Rb, Th, K, etc.), depletions of Nb, Ta, P and Ti(HFSE)and obvious Eu negative anomaly, suggesting plate subduction-related geochemical affinities. Granites and rhyolites have similar Nd and Pb isotopic compositions.TheεNd(t) of granites range from -4.66 to -4.53,the model age of depleted mantle range from 1363 Ma to 1375 Ma. The εNd(t) of rhyolite is -4.63, and the TDM2 is 1368 Ma. Projection points in n(143Nd)/n(144Nd)—n(206Pb)/n(204Pb) diagram and Pb isotopic compositions diagrams are located near the upper crust and EMII mantle regions.

Conclusions:The Late Triassic granites and rhyolites in eastern Qimantage are closely related to their spatial distribution with similar formation time and similarity or consistency in major—trace elements and Nd—Pb isotopic compositions. Therefore, the authors believe that they are the products of homologous magma in the same period and tectonic environment. Combining achievements of predecessors with this study, it’s believed that the East Kunlun region was in the active continental margin arc environment during plate subduction, and the Paleo-Tethys Ocean was not completely closed in that period.

Keywords: Late Triassic; East Kunlun orogenic belt ;Qimantage; geochemistry; zircon U-Pb age; Nd—Pb isotopes; consanguineous magma

注: 本文为青海省祁漫塔格地区1∶5万多元地质信息集成与找矿预测项目(编号:12120114000201)的成果。

收稿日期:2019-11-08;改回日期:2020-02-02;责任编辑:章雨旭。Doi: 10.16509/j.georeview.2020.03.011

作者简介: 徐博,男,1988 年生,硕士,工程师,地质工程专业; Email:857243227@qq.com。

Acknowledgements:This research was supported by the project of 1∶50000 multiple geological information integration and ore prediction in Qimantage area, Qinghai (No.12120114000201)

Firs.author:XU Bo,male,born in 1988, master degree graduate, major of geological engineering. Email:857243227@qq.com

Manuscript received on: 2019-11-08;Accepted on: 2020-02-02; Edited by: ZHANG Yuxu

Doi: 10.16509/j.georeview.2020.03.011