武夷地块北东部迪口地区下元岩体和红叶岗岩体锆石La-ICP-M.U-Pb年龄及其地质意义

刘欢1),赵希林1),葛延鹏2),张金国2),江涧2),覃显著3)

1)中国地质调查局南京地质调查中心,南京,210016;2)合肥工业大学,合肥,230009; 3)成都理工大学,成都,610059

内容提要: 迪口地区的下元岩体和红叶岗岩体位于武夷山地区东、西武夷俯冲碰撞增生杂岩带(450~440 Ma)中。我们对下元岩体中的三个岩石样品进行了锆石La-ICP-MS U-Pb测年,获得岩体的侵位结晶年龄分别为420±4 Ma、430±4 Ma和434±4 Ma,证明该岩体为加里东岩体,而非早期认为的印支期花岗岩。红叶岗岩体进行La-ICP-MS锆石U-Pb测年获得的年龄为398±4 Ma,表明红叶岗岩体为加里东晚期岩体,而非前人认为的燕山期花岗岩。结合武夷山地区最新的研究成果分析,我们认为迪口地区下元岩体和红叶岗岩体可能形成于东、西武夷地块碰撞后拉张裂解环境。迪口地区下元岩体和红叶岗岩体的侵位时代为武夷地块加里东期的构造演化提供了更进一步的时代约束。

关键词:武夷地块;华夏地块;华南板块;加里东运动;花岗岩

一般认为,扬子板块与华夏地块在晋宁期(约970~850 Ma)沿江山—绍兴断裂带发生碰撞拼合形成统一的华南大陆(舒良树,2006;Zhao Junhong et al., 2011;Yin Changqing et al., 2013)。850 Ma之后,华南受地幔岩浆上涌活动的影响,开始发生裂解(Li Zhengxiang et al., 2003; Li Xianhua et al., 2003),其中华夏地块裂解为武夷地块、赣中南地体、云开地体3个地体(舒良树,2006)。

早古生代发育的加里东运动是奠定华南板块构造格局的又一次重大的构造—热事件,该构造运动使得已经裂解的地体重新汇聚拼合,形成了著名的华南加里东造山带(Tian Hongshui et al., 2013;任纪舜和李崇,2016)。华南加里东造山带的构造属性一直存在争议。部分学者认为华南加里东造山带是陆内造山(周新民,2003;舒良树,2006,2012;Wang Yuejun et al., 2007, 2013, 2014;舒良树等,2008;张芳荣等,2009;Li Zhengxiang et al., 2010);另有部分学者认为华南在加里东时期发生洋—陆俯冲碰撞造山活动(Lin Shoufa et al., 2018;仇根根等,2019)。

图1 华南大陆大地构造地质图(据Li Jianhua et al., 2016修改)
Fig. 1 Tectonic geological map of the South China continent (modified from Li Jianhua et al., 2016&)

加里东运动使华南内部不仅形成了强烈的褶皱变形带和区域地层不整合(胡召齐等,2010;李聪等,2014),而且伴随着广泛而强烈的花岗质岩浆活动 (舒良树,2006;王鹤年和周丽娅,2006;Wang Yuejun et a1., 2007; Mao Jianren et al., 2008;华仁民等,2013),早期的研究认为,华南加里东期花岗岩主要沿武夷山、白云山、云开大山、诸广山、大瑶山和雪峰山等分布(图1),呈面状广泛分布于华夏地块及其与扬子地块的交界地区,但越来越多的同位素地质年代数据显示加里东期岩浆作用可能比前人认识的更加广泛(杨世文等,2017),许多原来被认为是印支期的花岗岩体其实也是加里东期花岗岩(徐先兵等,2009;张爱梅等,2010;王彦斌等,2010;隰弯弯和陈世忠,2019)。目前大多数研究者认为华南加里东早期花岗岩(>420 Ma)属地壳物质重熔形成的壳源花岗岩类(吴俊华和王祥发,1993;李献华,1993;周新民,2003;舒良树,2006;伍光英等,2008;刘锐等,2008;张芳荣等,2009),岩体的成因类型为“S”型,并认为它们主要形成于同碰撞的挤压环境;加里东晚期花岗岩(<420 Ma)是造山后花岗岩,形成于华夏地块与扬子地块碰撞之后的拉张条件下。此外,近年来亦有新的研究报告和新的地质数据表明华南某些加里东期花岗岩类为adakitic(高锶低钇,有人译为“埃达克质”)(许德如等,2006)。

武夷地块作为华南大陆中重要的微地体,在华南的大地构造演化中占有重要的地位。传统意义上的武夷地块主要位于福建省内(图2),以政和—大埔断裂为界,武夷地块又被分为东武夷(微)地块和西武夷(微)地块。其中西武夷(微)地块以南平—宁化构造岩浆带又分为北武夷微地块和南武夷微地块(赵希林等,2019)。整个武夷地块中加里东期花岗岩发育广泛,主要呈北东向分布,岩石类型主要由花岗闪长岩、花岗岩和钾长花岗岩组成。研究区迪口地区主要位于东、西武夷拼合的构造带内,区内发育有大量的花岗岩类岩体。这些岩体的年代学研究对限定东、西武夷的碰撞时代及武夷地块的汇聚拼合具有重要的意义,同时对我们理解华南加里东花岗岩类的形成与侵位具有一定的促进作用。

本文利用锆石La-ICP-MS U-Pb测年方法,对迪口地区的岩体进行了详细的年代学测定,发现原来被定性为印支期和燕山期的下元岩体和红叶岗岩体,时代归属应为加里东期。这些新数据的获得为武夷地块加里东时期的构造演化提供了更为精细的时代约束。

图2 武夷地块大地构造分区(a)和地质简图(b, 虚线椭圆为下元岩体和红叶岗岩体所在位置)
Fig. 2 Geotectonic zones of Wuyi block (a) and its schematic geological map (b, the dotted ellipse shows the location of Xiayuan intrusives and Hongyegang intrusives)

1 地质背景和岩体样品

迪口地区总体位于武夷地块北东部(图2),且处于龙泉—建瓯构造混杂岩带内,西侧为闽西北断裂(Lin Shoufa et al., 2018;仇根根等,2019),向东为政和—大埔断裂,向南为南平—宁化构造岩浆岩带。区内发育大面积的建瓯构造混杂岩(即传统意义的迪口岩组),主要由基质和岩块组成,基质岩性较为单一,以深灰、灰黑色黑云斜长变粒岩(或片麻岩)为主,夹云母(石英)片岩、黑云变粒岩等,变质程度达低角闪岩相,原岩为以长石砂岩为主的砂泥质岩类;岩块主要由辉岩类、角闪(片)岩、透辉石英岩、石英岩、大理岩等组成,构造混杂岩带的形成年龄在加里东期450~440 Ma(赵希林等,2019)。区内西侧和北侧零星发育较小的岩体(图3),岩性以二长花岗岩和花岗闪长岩为主,其中规模相对较大的有下元岩体和红叶岗岩体。

下元岩体位于迪口西侧(图3),被晚三叠世焦坑组不整合覆盖,白云母K-Ar同位素年龄为209 Ma(1∶5万迪口、夏道幅区调报告,1981),故早期研究将其时代归于印支期(图3); 为了确定下元岩体的侵位时代,笔者采集了三个岩石样品,样品DK18-6灰白色花岗闪长岩,采自闽北建瓯市迪口镇高桐村(26°41′26″,118°17′05″),岩石新鲜面呈灰白色(图4a),中—细粒,主要矿物成分为斜长石、角闪石、石英等(图4b);样品DK18-7灰白色花岗闪长岩体,采自闽北建瓯市迪口镇上楼村(26°43′06″,118°17′22″),野外出露露头好,岩石新鲜面呈灰白色,主要矿物成分为斜长石、角闪石、石英等,中—细粒结构;样品DK18-8采自闽北建瓯市迪口镇下元村(26°43′06″,118°16′28″),花岗闪长岩,岩性同样品DK18-6和DK18-7相同。

红叶岗岩体位于迪口北西侧(图3),福建省地质局将其侵位时代置于燕山早期(1∶5万迪口、夏道幅区调报告),福建省地质调查研究院根据岩体超单元划分,亦将其时代归于侏罗纪(1∶25万三明市幅区调报告)。为了确定其精确的侵位时代,我们在闽北建瓯市迪口镇红叶岗北东侧采取了样品DK18-10(26°48′54″,118°22′05″),岩性为浅肉红色花岗岩,野外出露较好(图4c),岩石新鲜面浅肉红色,主要由钾长石,斜长石、石英及少量云母组成(图4d),结晶颗粒粗大,可见典型钾长石卡式双晶。

图3 武夷地块北东部迪口地区地质构造简图(据1∶5万迪口幅简化,图中岩体时代未做改动和更新)
Fig. 3 Simplified geological map of Dikou area, Wuyi block (simplified from the 1∶50000 Dikou, the intrusives ages in the map have not been revised or updated)

2 锆石U-Pb ICP-MS 测年

2.1 分析方法

所有样品的锆石挑选、CL照相和制靶均委托廊坊市宇能岩石矿物分选技术服务有限公司进行,首先采取常规粉碎,接着用浮选和电磁方法进行分选,挑选出单颗粒锆石。对于将进行LA-ICP-MS U-Pb年龄测定的锆石样品,将其粘贴在环氧树脂表面,抛光后制成样品靶。样品靶制好之后对其进行阴极发光照射;根据阴极发光的结果,选取了大量的锆石样品点的U-Pb年代学测试,锆石U-Pb测年和微量元素分析在合肥工业大学资源与环境工程学院完成,采用的仪器型号为Agilent 7500a,激光剥蚀系统为Coherent Inc公司生产的ComPex102 ArF准分子激光剥蚀系统。分析时激光束斑直径为32 μm,激光脉冲重复频率为6 Hz。应用Nist610玻璃作为微量元素外标,锆石标样91500进行同位素分馏校正,锆石标样Plesovice作为同位素监控样,实验外标测试标准及要求、实验原理和详细的测试方法见闫峻等(2012)。ICP-MS的分析数据通过ICPMSDataCal程序计算获得同位素比值、年龄和误差(Liu Yongsheng et al., 2008, 2010)。普通铅校正采用Andersen (2002)的方法进行,校正后的结果用ISOPLOT程序(ver.4.15)完成年龄计算和谐和图的绘制(Ludwig, 2001)。

图4 武夷地块北东部迪口地区下元岩体和红叶岗岩体野外岩石学特征及镜下特征
Fig. 4 Field and microscopic photographs of the Xiayuan intrusives and Hongyegang intrusives, Wuyi block
(a)下元岩体代表性样品DK18-6野外岩石学特征;(b)下元岩体代表性样品DK18-6显微镜下特征;(c)红叶岗岩体代表性样品DK18-10野外岩石学特征;(d)红叶岗岩体代表性样品DK18-10显微镜下特征;Hbl—普通角闪石;Pl—斜长石;Qtz—石英;Srt—绢云母
(a) the field photograph of the representative sample DK18-6 in Xiayuan intrusives; (b) the microscopic photograph of the representative sample DK18-6 in Xiayuan intrusives; (c) the field photograph of the representative sample DK18-10 in Hongyegang intrusives; (d) the microscopic photograph of the representative sample DK18-6 in Hongyegang intrusives; Hbl—hornblende;Pl—plagioclase;Qtz—quartz;Srt—sericite

2.2 测年结果

样品DK18-6,锆石晶形发育较好,晶形自形—半自形,呈柱状,以长柱状为主,长轴大小70~200 μm,阴极发光照片显示(图5a),锆石具有显著的岩浆成因的生长韵律环带。对该样品进行了30点的锆石U-Pb ICP-MS测试分析,测年结果显示(表1),所有测试点的锆石年龄具有较好的谐和性(图6a),锆石颗粒的n(232Th)/n(238U)值普遍大于0.4(表1),谐和线交点年龄为415±6 Ma,加权平均年龄为420±4 Ma,代表了岩体的结晶年龄。

图5 武夷地块北东部迪口地区代表性锆石CL图像及测点年龄(红圈表示打点位置,圈内数字表示测试点号)
Fig. 5 The CL images and measuring point ages of the representative zircons from the Xiayuan intrusives and Hongyegang intrusives in Dikou area, Wuyi block (the red circle represents the dotted position, and the number in the circle represents the test point number)

图6 武夷地块北东部迪口地区锆石U-Pb年龄谐和图和年龄加权平均图
Fig. 6 U-Pb concordia diagrams and weighted average age diagrams of zircons from the Xiayuan intrusives and Hongyegang intrusives in Dikou area, Wuyi block

样品DK18-7,锆石晶形发育较好,晶形自形—半自形,锆石颗粒以长柱状为主,长轴大小100~200 μm,平均为150 μm,阴极发光照片显示(图5b),锆石具有显著的岩浆成因的生长韵律环带。对该样品进行了30点的锆石U-Pb ICP-MS测试分析,测年结果显示(表1),绝大部分锆石测试点的n(232Th)/n(238U)值大于0.4,除了一个测试点的谐和度较低以外(点24),其他测试点的锆石年龄具有较好的谐和性(图6b),谐和线交点年龄为430±5 Ma,加权平均年龄为430±4 Ma,代表了岩体的结晶年龄。

样品DK18-8,锆石晶形发育较好,晶形自形—半自形,锆石颗粒以长柱状为主,长轴大小100~150 μm,平均为120 μm,阴极发光照片显示(图5c),锆石具有显著的岩浆成因的生长韵律环带。对该样品进行了30点的锆石U-Pb ICP-MS测试分析,测年结果显示(表1),所有锆石测试点的n(232Th)/n(238U)值大于0.4,且所有测试点的锆石年龄具有较好的谐和性(图6c),谐和线交点年龄为435±4 Ma,加权平均年龄为434±4 Ma,代表了岩体的结晶年龄。

表1 武夷地块北东部迪口地区下元岩体和红叶岗岩体锆石U-Pb La-ICP-MS测年结果
Table 1 The results of U-Pb La-ICP-MS ages of the zircons from the Xiayuan and Hongyegang intrusives in Dikou area, Wuyi block

测点号元素含量(×10-6)PbThUTh/U同位素比值同位素年龄(Ma)n(207Pb)/n(206Pb)n(207Pb)/n(235U)n(206Pb)/n(238U)n(207Pb)/n(206Pb)n(207Pb)/n(235U)n(206Pb)/n(238U)测值1σ测值1σ测值1σ测值1σ测值1σ测值1σ谐和度(%)样品DK18-6(下元岩体)133.36 237.94 378.18 0.63 0.0588 0.0022 0.5749 0.0214 0.0716 0.0020 561 82 461 14 446 12 96230.16 281.69 343.73 0.82 0.0582 0.0023 0.5383 0.0210 0.0676 0.0019 600 82 437 14 422 11 96323.46 222.20 268.70 0.83 0.0574 0.0026 0.5349 0.0226 0.0689 0.0019 509 100 435 15 430 12 98423.46 146.59 283.61 0.52 0.0562 0.0023 0.5302 0.0213 0.0689 0.0019 461 91 432 14 430 11 99517.68 129.28 211.74 0.61 0.0592 0.0026 0.5484 0.0244 0.0678 0.0019 572 96 444 16 423 12 95625.56 252.59 289.36 0.87 0.0530 0.0021 0.4859 0.0188 0.0669 0.0019 328 93 402 13 418 11 96726.30 227.05 304.09 0.75 0.0556 0.0021 0.5121 0.0186 0.0673 0.0019 439 81 420 12 420 11 99845.71 594.68 464.31 1.28 0.0567 0.0020 0.5292 0.0189 0.0679 0.0018 480 84 431 13 423 11 98934.34 366.73 388.88 0.94 0.0529 0.0021 0.4820 0.0178 0.0647 0.0017 324 87 399 12 404 11 981023.92 211.98 268.53 0.79 0.0558 0.0026 0.5248 0.0233 0.0681 0.0019 456 100 428 16 424 11 991121.74 228.42 243.21 0.94 0.0533 0.0023 0.4890 0.0203 0.0668 0.0019 343 98 404 14 417 11 961227.12 260.78 306.65 0.85 0.0572 0.0025 0.5318 0.0227 0.0671 0.0019 498 62 433 15 419 11 961320.48 191.00 229.44 0.83 0.0566 0.0025 0.5379 0.0242 0.0686 0.0019 476 100 437 16 428 12 971424.55 213.91 288.24 0.74 0.0580 0.0026 0.5408 0.0232 0.0673 0.0018 532 101 439 15 420 11 951534.79 306.08 383.04 0.80 0.0564 0.0024 0.5457 0.0235 0.0699 0.0020 478 94 442 15 435 12 981630.39 282.12 351.64 0.80 0.0577 0.0027 0.5447 0.0243 0.0680 0.0020 517 104 442 16 424 12 951728.88 174.29 358.34 0.49 0.0592 0.0026 0.5536 0.0242 0.0668 0.0019 576 129 447 16 417 11 921830.87 306.60 357.89 0.86 0.0570 0.0023 0.5265 0.0208 0.0665 0.0018 500 89 429 14 415 11 961927.78 288.97 309.74 0.93 0.0545 0.0024 0.5001 0.0208 0.0661 0.0018 391 106 412 14 412 11 992022.36 204.62 259.57 0.79 0.0560 0.0026 0.5221 0.0223 0.0660 0.0018 454 104 427 15 412 11 962168.68 988.82 681.70 1.45 0.0572 0.0020 0.5353 0.0187 0.0675 0.0018 498 78 435 12 421 11 962218.75 142.50 228.33 0.62 0.0532 0.0025 0.4874 0.0222 0.0662 0.0018 345 103 403 15 414 11 972323.44 188.10 256.70 0.73 0.0601 0.0029 0.5899 0.0251 0.0703 0.0019 606 102 471 16 438 12 922428.57 219.71 349.56 0.63 0.0563 0.0022 0.5110 0.0202 0.0656 0.0018 465 87 419 14 409 11 972530.20 355.44 332.34 1.07 0.0558 0.0024 0.5067 0.0206 0.0663 0.0018 443 96 416 14 414 11 992626.23 213.12 309.21 0.69 0.0585 0.0022 0.5374 0.0196 0.0666 0.0018 550 81 437 13 416 11 952724.34 218.67 294.08 0.74 0.0567 0.0024 0.5047 0.0212 0.0648 0.0018 480 90 415 14 405 11 972825.43 228.12 292.91 0.78 0.0572 0.0023 0.5248 0.0203 0.0668 0.0018 498 89 428 14 417 11 972921.48 162.81 256.12 0.64 0.0539 0.0023 0.4942 0.0189 0.0665 0.0019 365 62 408 13 415 11 983016.63 125.74 200.65 0.63 0.0582 0.0030 0.5270 0.0259 0.0663 0.0019 600 119 430 17 414 11 96样品DK18-7(下元岩体)133.86 243.14 393.19 0.62 0.0549 0.0021 0.5394 0.0199 0.0712 0.0020 409 88 438 13 443 12 98227.58 139.26 346.51 0.40 0.0558 0.0022 0.5346 0.0210 0.0688 0.0019 456 82 435 14 429 11 98335.18 258.69 404.91 0.64 0.0539 0.0022 0.5382 0.0204 0.0721 0.0019 365 91 437 13 449 12 97431.07 149.94 386.24 0.39 0.0556 0.0022 0.5412 0.0207 0.0706 0.0019 435 89 439 14 440 12 99535.25 160.22 450.13 0.36 0.0553 0.0020 0.5306 0.0191 0.0692 0.0019 433 80 432 13 432 11 99639.76 229.71 500.10 0.46 0.0559 0.0020 0.5326 0.0191 0.0688 0.0019 456 80 434 13 429 12 98739.37 238.73 474.70 0.50 0.0622 0.0023 0.5997 0.0222 0.0696 0.0019 680 78 477 14 434 12 90848.11 341.32 570.83 0.60 0.0554 0.0020 0.5394 0.0194 0.0704 0.0019 428 81 438 13 439 12 99923.54 115.70 293.02 0.39 0.0552 0.0025 0.5349 0.0234 0.0702 0.0020 420 100 435 15 437 12 991022.83 129.41 269.04 0.48 0.0567 0.0023 0.5666 0.0226 0.0724 0.0020 483 91 456 15 451 12 981146.96 323.18 574.80 0.56 0.0557 0.0021 0.5209 0.0187 0.0678 0.0019 443 79 426 12 423 11 991233.89 167.94 436.86 0.38 0.0544 0.0020 0.5130 0.0187 0.0679 0.0018 387 88 420 13 424 11 991339.66 224.46 493.73 0.45 0.0556 0.0020 0.5244 0.0192 0.0681 0.0019 435 81 428 13 425 11 991446.12 340.29 554.78 0.61 0.0537 0.0021 0.5121 0.0179 0.0674 0.0018 361 61 420 12 420 11 991541.20 241.65 508.21 0.48 0.0558 0.0020 0.5322 0.0190 0.0689 0.0019 456 80 433 13 429 11 991626.35 132.25 327.03 0.40 0.0550 0.0022 0.5392 0.0212 0.0697 0.0020 413 91 438 14 434 12 991710.82 50.70 141.29 0.36 0.0555 0.0032 0.5078 0.0273 0.0652 0.0019 435 132 417 18 407 11 971835.26 259.72 417.95 0.62 0.0593 0.0021 0.5575 0.0202 0.0680 0.0019 576 78 450 13 424 11 941921.40 123.28 263.94 0.47 0.0584 0.0027 0.5421 0.0233 0.0677 0.0019 546 100 440 15 422 12 952031.00 212.58 367.56 0.58 0.0584 0.0022 0.5589 0.0208 0.0694 0.0019 546 86 451 14 432 12 952140.11 294.35 484.68 0.61 0.0554 0.0022 0.5162 0.0192 0.0676 0.0018 428 92 423 13 422 11 992228.24 152.43 356.53 0.43 0.0590 0.0024 0.5531 0.0212 0.0679 0.0019 569 87 447 14 424 11 942337.02 257.57 441.74 0.58 0.0562 0.0021 0.5240 0.0189 0.0682 0.0019 461 83 428 13 425 11 992468.46 143.14 191.90 0.75 0.1617 0.0056 5.9283 0.2390 0.2568 0.0087 2473 59 1965 35 1473 45 712569.55 547.76 811.79 0.67 0.0550 0.0020 0.5216 0.0178 0.0686 0.0019 413 81 426 12 428 11 992638.35 241.89 476.29 0.51 0.0549 0.0022 0.5146 0.0194 0.0680 0.0019 406 89 422 13 424 11 992731.21 135.23 388.35 0.35 0.0567 0.0021 0.5492 0.0203 0.0700 0.0019 480 81 444 13 436 11 982818.17 93.89 213.54 0.44 0.0618 0.0028 0.5894 0.0263 0.0694 0.0020 666 96 470 17 432 12 912948.90 351.96 580.15 0.61 0.0527 0.0020 0.5004 0.0173 0.0688 0.0019 317 119 412 12 429 11 953012.72 82.25 150.47 0.55 0.0612 0.0032 0.5785 0.0286 0.0698 0.0020 656 112 463 18 435 12 93样品DK18-8(下元岩体)133.64 283.32 373.84 0.76 0.0539 0.0022 0.5459 0.0210 0.0734 0.0021 369 91 442 14 456 12 96233.84 307.71 371.70 0.83 0.0550 0.0020 0.5422 0.0196 0.0710 0.0019 413 84 440 13 442 11 99324.50 154.68 288.96 0.54 0.0570 0.0022 0.5572 0.0211 0.0709 0.0019 500 85 450 14 441 12 98414.97 88.15 170.24 0.52 0.0557 0.0024 0.5570 0.0225 0.0726 0.0020 443 94 450 15 452 12 99529.27 198.92 323.42 0.62 0.0551 0.0020 0.5585 0.0201 0.0734 0.0020 417 77 451 13 457 12 98630.25 254.65 337.94 0.75 0.0554 0.0020 0.5390 0.0192 0.0702 0.0019 428 80 438 13 437 11 99732.98 262.95 372.14 0.71 0.0528 0.0019 0.5124 0.0183 0.0701 0.0019 320 81 420 12 436 11 96823.17 145.13 277.89 0.52 0.0554 0.0021 0.5251 0.0191 0.0687 0.0019 432 90 429 13 428 11 99920.50 138.02 240.03 0.58 0.0566 0.0023 0.5379 0.0208 0.0689 0.0019 476 89 437 14 429 11 98

测点号元素含量(×10-6)PbThUTh/U同位素比值同位素年龄(Ma)n(207Pb)/n(206Pb)n(207Pb)/n(235U)n(206Pb)/n(238U)n(207Pb)/n(206Pb)n(207Pb)/n(235U)n(206Pb)/n(238U)测值1σ测值1σ测值1σ测值1σ测值1σ测值1σ谐和度(%)1040.08 327.72 433.37 0.76 0.0545 0.0019 0.5391 0.0184 0.0715 0.0019 391 78 438 12 445 11 981123.38 178.04 271.88 0.65 0.0545 0.0022 0.5137 0.0197 0.0681 0.0018 394 89 421 13 425 11 991224.11 169.63 271.16 0.63 0.0553 0.0020 0.5436 0.0196 0.0711 0.0019 433 81 441 13 443 11 991325.95 211.52 296.92 0.71 0.0565 0.0023 0.5332 0.0206 0.0684 0.0018 472 86 434 14 427 11 981422.49 153.66 258.05 0.60 0.0544 0.0022 0.5232 0.0197 0.0698 0.0019 387 86 427 13 435 11 981532.16 256.11 354.19 0.72 0.0610 0.0025 0.5957 0.0241 0.0706 0.0019 639 89 475 15 440 12 921623.77 162.03 276.44 0.59 0.0595 0.0025 0.5655 0.0229 0.0688 0.0019 587 88 455 15 429 11 941726.56 198.37 300.81 0.66 0.0589 0.0024 0.5659 0.0225 0.0697 0.0019 565 89 455 15 434 12 951825.72 177.23 292.46 0.61 0.0609 0.0025 0.5847 0.0230 0.0699 0.0019 635 89 467 15 435 12 921929.38 210.71 328.22 0.64 0.0572 0.0022 0.5619 0.0218 0.0712 0.0020 498 87 453 14 444 12 972024.36 172.48 286.48 0.60 0.0557 0.0023 0.5243 0.0203 0.0685 0.0019 439 91 428 14 427 11 992124.83 165.64 285.01 0.58 0.0603 0.0024 0.5840 0.0228 0.0702 0.0019 617 85 467 15 438 11 932221.36 136.60 249.24 0.55 0.0542 0.0022 0.5251 0.0204 0.0704 0.0019 376 97 429 14 439 12 972334.51 282.34 394.44 0.72 0.0554 0.0021 0.5293 0.0192 0.0692 0.0019 428 83 431 13 431 11 992419.61 130.03 237.86 0.55 0.0568 0.0025 0.5328 0.0223 0.0668 0.0019 483 100 434 15 417 11 962521.87 143.37 259.68 0.55 0.0576 0.0023 0.5477 0.0210 0.0691 0.0019 522 82 443 14 431 11 972615.76 92.68 186.21 0.50 0.0565 0.0026 0.5376 0.0246 0.0692 0.0019 472 104 437 16 432 11 982727.16 180.19 323.35 0.56 0.0556 0.0022 0.5292 0.0212 0.0695 0.0019 435 91 431 14 433 12 992827.69 190.53 330.44 0.58 0.0583 0.0023 0.5530 0.0204 0.0679 0.0018 543 87 447 13 423 11 942923.10 177.41 273.25 0.65 0.0560 0.0024 0.5125 0.0205 0.0676 0.0019 450 96 420 14 421 11 993022.70 156.70 271.89 0.58 0.0536 0.0025 0.5039 0.0207 0.0665 0.0019 354 106 414 14 415 11 99样品DK18-10(红叶岗岩体)135.13 268.42 446.18 0.60 0.0566 0.0024 0.5061 0.0205 0.0650 0.0018 476 90 416 14 406 11 97228.21 178.47 356.29 0.50 0.0631 0.0028 0.5752 0.0256 0.0659 0.0018 722 96 461 17 411 11 88394.55 492.91 1113.01 0.44 0.0711 0.0089 0.7918 0.1826 0.0788 0.0062 959 258 592 104 489 37 80434.49 274.66 437.13 0.63 0.0555 0.0022 0.4938 0.0181 0.0634 0.0017 432 87 407 12 396 10 97540.50 319.54 510.72 0.63 0.0563 0.0022 0.4994 0.0188 0.0643 0.0018 465 85 411 13 402 11 97655.36 363.15 748.71 0.49 0.0563 0.0020 0.4796 0.0167 0.0620 0.0017 465 78 398 11 388 10 97749.23 363.12 631.48 0.58 0.0557 0.0021 0.4898 0.0177 0.0640 0.0017 439 83 405 12 400 10 98

样品DK18-10,锆石晶形发育较好,晶形自形—半自形,锆石颗粒以长柱状为主,颗粒大小较为均匀,平均为180 μm,阴极发光照片显示(图5d),锆石具有显著的岩浆成因的生长韵律环带。对该样品进行了30点的锆石U-Pb ICP-MS测试分析,测年结果显示(表1),除了两个测试点的谐和度较低以外(点3和点27),其他测试点的锆石年龄具有较好的谐和性(图6d),且锆石测试点的n(232Th)/n(238U)值普遍大于0.4,谐和线交点年龄为399±4 Ma,加权平均年龄为398±4 Ma,代表了红叶岗岩体的结晶年龄。

3 讨论

3.1 岩体时代归属

对于下元岩体,早期地质学者根据白云母K-Ar同位素年龄209 Ma,认为其时代归于印支期(1∶5万迪口幅区调报告,1981),我们新的锆石U-Pb ICP-MS年代学数据表明,样品DK18-6的加权平均年龄为420±4 Ma,样品DK18-7的加权平均年龄为430±4 Ma,样品DK18-8的加权平均年龄为434±4 Ma,均为岩体的侵位结晶年龄,因此,我们认为下元岩体的侵位时代应归于加里东早期,而不是前人认为的印支期。由于白云母的封闭年龄较低,岩体中白云母K-Ar同位素年龄209 Ma可能是岩体后期遭受印支运动的影响,导致岩体中白云母K-Ar同位素体系重置的结果。

对于红叶岗岩体,其侵入时代一直缺乏相关的同位素年代学数据,开展的多轮区域地质调查均将其归于燕山期。我们新的锆石U-Pb ICP-MS年代学数据表明,样品DK18-10的加权平均年龄为398±4 Ma,与谐和年龄399±4 Ma在误差范围内几乎一致,代表了红叶岗岩体的侵位形成年龄。因此,红叶岗岩体的时代应归于加里东晚期。

图7 武夷地块北东部迪口地区加里东期花岗岩形成模式简图
Fig. 7 Schematic formation model of the Caledonian granites in Dikou area, Wuyi Block

3.2 岩体形成的大地构造背景

华南广泛出露加里东期面状分布的S型花岗岩,缺乏幔源岩浆活动,一直被作为华南加里东期陆内造山的重要证据之一。然而近几年来,新的研究发现和新的数据对该观点提出了挑战。Wang Yuejun 等(2013)报道了西华夏地块中南岭和云开信宜地区四处志留纪(434~423 Ma)辉长岩(高镁且部分富Nb),虽然其将辉长岩成因解释为由古俯冲带改造的地幔楔残留(新元古代?)加里东期受到陆内造山作用扰动再次部分熔融的产物,但陆内造山模式仍难以解释华夏地块中高压变质作用(Lin Shoufa et al., 2018);Zhang Chuanlin 等(2015)在钦杭结合带的江西省新于县松溪镇附近发现奥陶纪(450.3±1.9 Ma)具有岛弧特征的辉长岩,并提出华夏早古生代的造山作用是发生在古老大陆基底之上,沿政和—大埔断裂带的俯冲对华夏地区的大陆地壳造成了进一步的加厚,从而阻止了地幔岩浆的上升,导致只有少量来自被交代岩石圈地幔的岩浆沿构造薄弱带侵入到大陆地壳中;浙江1∶25万衢州幅区调项目在浙江龙游溪口地区发现了加里东期超基性岩,其中的辉石橄榄岩La-ICP-MS锆石U-Pb年龄为414.5±1.3 Ma。越来越多的研究表明,华南在早古生代(加里东期)存在多(微)地块的洋—陆俯冲增生—陆陆碰撞复合造山作用(Lin shoufa et al., 2018;仇根根等,2019)。

武夷地块作为华夏地体中的重要组成部分,主要由南武夷微地块、北武夷微地块和东武夷地块组成。新的研究表明,南武夷微地块和北武夷微地块在约696~450 Ma发生碰撞拼合形成统一的西武夷地块,并在约450~440 Ma与东武夷地块碰撞拼合形成统一的武夷地块(图12),至此西华夏地体进入同一的构造演化阶段,(龙泉)建瓯构造混杂岩带为东、西武夷地块在早古生代碰撞形成的俯冲增生杂岩带(赵希林等,2019)。迪口地区下元岩体形成时代为420~434 Ma,红叶岗岩体形成时代为398±4 Ma,两者均位于东、西武夷地块碰撞俯冲增生杂岩带中,侵位年龄稍滞后于俯冲增生杂岩带的形成时代,且下元岩体和红叶岗岩体未见强烈变形或混合岩化,因此下元岩体和红叶岗岩体的成因解释并不能归于东、西武夷同碰撞花岗岩;Lin Shoufa 等(2018)通过构造解析和大量的同位素年代学统计分析,提出在古生代中晚期,已经拼合的统一华夏地块又发生了拉张裂解,且裂解带正是沿着分割东、西武夷地块的俯冲碰撞增生杂岩带展布,即建瓯构造混杂岩带。Wang Yuejun 等(2013)在西华夏地块中南岭和云开信宜地区志留纪辉长岩的发现和浙江龙游溪口地区加里东期超基性岩的发现为华夏地块古生代中晚期拉张裂解提供了间接证据,基性辉长岩的侵位时代434~423 Ma、超基性岩辉石橄榄岩的形成时代414.5±1.3 Ma与迪口地区加里东期花岗岩岩体的形成时代十分吻合,因此,我们认为迪口地区下元岩体和红叶岗岩体均有可能形成于东、西武夷地块碰撞后拉张裂解环境(图7),而红叶岗岩体可能形成于相对较晚一些的拉张裂解后期。

4 结论

(1)迪口地区下元岩体三个岩石样品的锆石U-Pb加权年龄分别为420±4 Ma、430±4 Ma和434±4 Ma,表明下元岩体为加里东期花岗岩,而非前人认为的印支期花岗岩。红叶岗岩体进行La-ICP-MS锆石U-Pb测年获得的年龄为398±4 Ma,表明红叶岗岩体为加里东晚期岩体,而非前人认为的燕山期岩体。

(2)结合地学领域现有的、最新的研究成果,我们认为迪口地区下元岩体和红叶岗岩体可能形成于东、西武夷地块碰撞后拉张裂解环境。迪口地区下元岩体和红叶岗岩体的侵位时代为武夷地块加里东期的构造演化提供了更进一步的时代约束。

致谢:锆石测年过程中得到了合肥工业大学李龙明教授和李全忠教授的帮助。匿名评审人对本文提出了很多宝贵的修改意见。在此一并表示感谢。

注 释 / Notes

❶福建省地质局. 1981. 1∶5万迪口、夏道幅区调报告.

❷福建省地质调查研究院. 2001. 1∶25万三明市幅区调报告.

参 考 文 献

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

胡召齐, 朱光, 张必龙, 张力. 2010. 雪峰隆起北部加里东事件的K-Ar年代学研究. 地质论评, 56(4): 490~500.

华仁民, 张文兰, 陈培荣, 翟伟, 李光来. 2013. 初论华南加里东花岗岩与大规模成矿作用的关系. 高校地质学报, 19(1): 1~11.

李聪, 陈世悦, 张鹏飞, 冯建松, 王倩, 李旭, 史英, 左虎. 2014. 湘东南—赣西地区加里东期沉积演化特征. 地质论评, 60(5): 1167~1174.

李献华. 1993. 万洋山一诸广山加里东期花岗岩的形成机制微量元素和稀土元素地球化学证据. 地球化学, 1: 35~44.

刘锐, 张利, 周汉文, 钟增球, 曾雯, 向华, 靳松, 吕新前, 李春忠. 2008. 闽西北加里东期混合岩及花岗岩的成因: 同变形地壳深熔作用. 岩石学报, 24(6): 1205~1222.

仇根根, 方慧, 吕琴音, 彭炎. 2019. 武夷山北段及相邻区深部电性构造与成矿分析: 基于三维大地电磁探测结果. 中国地质, 46(4): 775~785.

任纪舜, 李崇. 2016. 华夏古陆及相关问题——中国南部前泥盆纪大地构造. 地质学报, 90(4): 607~614.

舒良树. 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418~431.

舒良树, 于津海, 贾东, 王博, 沈渭洲, 张岳桥. 2008. 华南东段早古生代造山带研究. 地质通报, 27(10): 1581~1593

舒良树. 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035~1053.

王鹤年, 周丽娅. 2006. 华南地质构造的再认识. 高校地质学报, 12(4): 457~465.

王彦斌, 王登红, 韩娟, 陈郑辉, 王清利. 2010. 湖南益将稀土—钪矿的石英闪长岩锆石U-Pb定年和Hf同位素特征: 湘南加里东期岩浆活动的年代学证据. 中国地质, 37(4): 1062~1070.

吴俊华, 王祥发. 1993. 诸广山北段加里东期花岗岩地球化学特征及其形成的地球动力学过程. 江西地质, 7(4): 273~280.

伍光英, 侯增谦, 肖庆辉, 王涛, 闫全人, 陈辉明, 马铁球. 2008. 湘南多金属矿集区燕山期成矿花岗岩的稀土地球化学特征和成岩成矿作用探讨. 中国地质, 35(3): 410~420.

隰弯弯, 陈世忠. 2019. 福建政和地区加里东期花岗岩的厘定. 地质学报, 93(4): 804~815.

徐先兵, 张岳桥, 舒良树, 贾东, 王瑞瑞, 许怀智. 2009. 闽西南玮埔岩体和赣南菖蒲混合岩锆石La-ICP-MS U-Pb年代学: 对武夷山加里东运动时代的制约. 地质论评, 55(2): 277~285.

许德如, 陈广浩, 夏斌, 李鹏春, 贺转利. 2006. 湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义. 高校地质学报, 12(4): 507~521.

闫峻, 彭戈, 刘建敏, 李全忠, 陈志洪, 史磊, 刘晓强, 姜子朝. 2012. 下扬子繁昌地区花岗岩成因:锆石年代学和Hf—O同位素制约. 岩石学报, 28(10): 3209~3227.

杨世文, 楼法生, 张芳荣, 丁沛勋, 曹员兵, 徐喆, 孙超, 冯增会, 凌联海. 2017. 赣南岐山岩体深熔—幕式岩浆活动: 来自锆石U-Pb精细年代学研究. 地质学报, 91(4): 864~875.

张爱梅, 王岳军, 范蔚茗, 张菲菲, 张玉芝. 2010. 闽西南清流地区加里东期花岗岩锆石U-Pb年代学及Hf同位素组成研究. 大地构造与成矿学, 34(3): 408~418.

张芳荣, 舒良树, 王德滋, 于津海, 沈渭洲. 2009. 华南东段加里东期花岗岩类形成构造背景探讨. 地学前缘, 16(1): 248~260.

赵希林, 徐敏成, 张彦杰, 姜杨, 邢光福. 2019. 武夷造山带前泥盆纪构造演化取得新进展. 中国地质调查成果快讯, 5(1): 1~4.

周新民. 2003. 对华南花岗岩研究的若干思考. 高校地质学报, 9(4): 556~565.

Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1~2): 59~79.

Hu Shaoqi, Zhu Guang, Zhang Bilong, Zhang Li. 2010&. K-Ar geochronology of the Caledonian event in the Xuefeng uplift. Geological Review, 56(4): 490~500.

Hua Renmin, Zhang Wenlan, Chen Peirong, Zhai Wei, Li Guanglai. 2013&. Relationship between Caledonian granitoids and large-scale mineralization in Souht China. Geological Journal of China Universities, 19(1): 1~11.

Li Cong, Chen Shiyue, Zhang Pengfei, Feng Jiansong, Wang Qian, Li Xu, Shi Ying, Zuo Hu. 2014&. Characteristics of sedimentary evolution in the southeastern Hunan—western Jiangxi region in Caledonian stage. Geological Review, 60(5): 1167~1174.

Li Jianhua, Shi Wei, Zhang Yueqiao, Dong Shuwen, Ma Zhili. 2016. Thermal evolution of the Hengshan extensional dome in central South China and its tectonic implications: New insights into low-angle detachment formation. Gondwana Research, 35: 425~441.

Li Xianha. 1993&. On the genesis of Caledonian granitoid rocks at Wanyangshan and Zhuguangshan, southeast China: evidence from trace elements and rare-earth elements geochemistry. Geochimica, 1: 35~44.

Li Xianhua, Li Zhengxiang, Ge Wenchun, Zhou Hanwen, Li Wuxian, Ying Wingate, Michael T D. 2003. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ac. 825 Ma? Precambrian Research, 136: 51~66.

Li Zhengxiang, Li Xianhua, Kinny P D, Wang Junpeng, Zhang S.H., Zhou Hanwen. 2003. Geochronology of Neoproterozoic syn rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle super plume that broke up Rodinia. Precambrian Research, 122: 85~109.

Li Zhengxiang, Li Xianhua, Wartho Jo-Anne, Clark Chris, Li Wuxian, Zhang Chuanlin, Bao Chundan. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi—Yunkai orogeny, southeastern South China: New age constraints and pressure—temperature conditions. Geological Society of America Bulletin, 122: 772~793.

Lin Shoufa, Xing Guangfu, Davis Donald W, Yin Changqing, Wu Meiling, Li Longming, Jiang Yang, Chen Zhihong. 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China. Geology, 46(4): 319~322.

Liu Rui, Zhang li, Zhou Hanwen, Zhong Zengqiu, Zeng Wen, Xiang Hua, Jin Song, Lu Xinqian, Li Chunzhong. 2008&. Petrogenesis of the Caledonian migmatites and related granites in northwestern Fujian province, south China: syn-deformational crustal anatexis. Acta Petrologica Sinica, 24(6): 1205~1222.

Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt—peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51(1/2): 537~571.

Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther Detlef, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by La-ICP-MS without applying an internal standard. Chemical Geology, 257: 34~43.

Ludwig K R. 2001. ISOPLOT 2.49: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre, Special Publication, 1: 1~58.

Mao Jianren, Zeng Qingtao, Li Zilong, Hu Qing, Zhao Xilin, Ye Haimin. 2008. Precise dating and geological significance of the Caledonian Shangyou pluton in south Jiangxi province. Acta Geologica Sinica (English Edition), 82(2): 399~408.

Qiu Gengen, Fang Hui, Lu Qinyin, Peng Yan. 2019&. Deep electrical structures and metallogenic analysis in the north section of Wuyishan Mountains and its adjacent areas: Based on three-dimensional magnetotelluric sounding result. Geology in China, 46(4): 775~785.

Ren Jishun, Li Chong. 2016&. Cathaysia old land and relevant problems: pre-Devonian tectonics of southern China. Acta Geologica Sinica, 90(4): 607~614.

Shu Liangshu, Yu Jinhai, Jia Dong, Wang Bo, Shen Weizhou, Zhang Yueqiao. 2008&. Early Palezoic orogenic belt in the eastern segment of South China. Geological Bulletin of China, 27(10): 1581~1593.

Shu Liangshu. 2006&. Predevonian tectonic evolution of south China: from Cathaysian Block to Caledonian period folded orogenic belt. Geological Journal of China Universities, 12(4): 418~431.

Shu Liangshu. 2012&. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China, 31(7): 1035~1053.

Tian Hongshui, Zhang Zengqi, Zhang Banghua, Zhu Jiewang, Sang Zhongxi, Li Hongkui. 2013. Tectonic taphrogenesis and paleoseismic records from the Yishu fault zone in the initial stage of the Caledonian movement. Acta Geologica Sinica (English Edition), 87(4): 936~947.

Wang Henian, Zhou Liya. 2006&. A further understanding in geological structure of South China. Geological Journal of China Universities, 12(4): 457~465.

Wang Yanbin, Wang Denghong, Han Juan, Chen Zhenghui, Wang Qingli. 2010&. U-Pb dating and Hf isotopic characteristics of zircons from quartz-diorite in the Yijiang REE—Sc deposit, Rucheng County, Hunan: constraints on the timing of Caledonian magmatic activity in South China. Geology in China, 37(4): 1062~1070.

Wang Yuejun, Fan Weiming, Zhang Guowei, Zhang Yanhua. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research, 23: 1273~1305.

Wang Yuejun, Fan Weiming, Zhao Guochun, Ji Shaocheng, Peng Touping, 2007. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Research, 12: 404~416.

Wang Yuejun, Zhang Yuzhi, Fan Weiming, Geng Hongyan, Zou Heping, Bi Xianwu. 2014. Early Neoproterozoic accretionary assemblage in the Cathaysia Block: Geochronological, Lu-Hf isotopic and geochemical evidence from granitoid gneisses. Precambrian Research, 249: 144~161.

Wu Guangying, Hou Zengqian, Xiao Qinghui, Wang Tao, Yan Quanren, Chen Huiming, Ma Tieqiu. 2008&. REE geochemistry and petrogenesis and mineralization of the Yanshannian mineralized granites in the southern Hunan polymetallic deposit concentration region. Geology in China, 35(3): 410~420.

Wu Junhua, Wang Xiangfa. 1993&. The geochemical features of the Caledonian granite in the northern division of zhuguangshan and its geodynamic process. Geology of Jiangxi, 7(4): 273~280.

Xi Wanwan, Chen Shizhong. 2019&. Identification of Caledonian granite in the Zhenghe area, Fujian province and its tectonic significance. Acta Geologica Sinica, 93(4): 804~815.

Xu Deru, Chen Guanghao, Xia Bin, Li Pengchun, He Zhuanli. 2006. The Caledonian adakite-like granodiorites in Banshanpu area, eastern Hunan province, south China: petrogenesis and geological significance. Geological Journal of China Universities, 12(4): 507~521.

Xu Xianbing, Zhang Yueqiao, Shu Liangshu, Jia Dong, Wang Ruirui, Xu Huaizhi. 2009&. Zircon La-ICP-MS U-Pb dating of the Weipu granitic pluton in southwest Fujian and the Changpu migmatite in south Jiangxi: constrains to the timing of Caledonian movement in Wuyi mountains. Geological Review, 55(2): 277~285.

Yan Jun, Peng Ge, Liu Jianmin, Li Quanzhong, Chen Zhihong, Shi Lei, Liu Xiaoqiang, Jiang Zichao. 2012&. Petrogenesis of granites from Fanchang district, the Lower Yangtze region: Zircon geochronology and Hf—O isotopes constrains. Acta Petrologica Sinica, 28(10): 3209~3227.

Yang Shiwen, Lou Fasheng, Zhang Fangrong, Ding Peixun, Cao Yuanbin, Xu Zhe, Sun Chao, Feng Zenghui, Ling Lianhai. 2017&. Anatexis—Ceremonies magmatism activity of the Qishan granitic pluton in southern Jiangxi: Chronological study of zircon U-Pb precise dating. Acta Geologica Sinica, 91(4): 864~875.

Yin Changqing, Lin Shoufa, Donald W D, Xing Guangfu, William J D, Cheng Guanghua, Xiao Wenjiao, Li Longming. 2013. Tectonic evolution of the southeastern margin of the Yangtze Block: Constraints from SHRIMP U-Pb and La-ICP-MS Hf isotopic studies of zircon from the eastern Jiangnan Orogenic Belt and implications for the tectonic interpretation of South China. Precambrian Research, 236: 145~156.

Zhang Aimei, Wang Yuejun, Fan Weiming, Zhang Feifei, Zhang Yuzhi. 2010&. La-ICP-MS zircon U-Pb geochronology and Hf isotopic compositions of Caledonian granites from the Qingliu area, southwest Fujian. Geotectonica et Metallogenia, 34(3): 408~418.

Zhang Chuanlin, Santosh M, Zhu Qingbo, Chen Xiangyan, Huang Wencheng. 2015. The Gondwana connection of South China: Evidence from monazite and zircon geochronology in the Cathaysia Block. Gondwana Research, 28: 1137~1151.

Zhang Fangrong, Shu Liangshu, Wang Dezi, Yu Jinhai, Shen Weizhou. 2009&. Discussions on the tectonic setting of Caledonian granitoids in the eastern segment of South China. Earth Science Frontiers, 16(1): 248~260.

Zhao Junhong, Zhou Meifu, Yan Danping, Zheng Jianping, Li Jianwei. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39(4): 299~302.

Zhao Xilin, Xu Mincheng, Zhang Yanjie, Jiang Yang, Xing Guangfu. 2019#. New progress has been made in the pre-Devonian tectonic evolution of the Wuyi orogenic belt. China geological survey results, 1(5): 1~4.

Zhou Xinmin. 2003&. My thinking about granite geneses of south China. Geological Journal of China Universities, 9(4): 556~565.

U-P.datin.o.zircon.fro.Xiayua.an.Hongyegan.intrusive.i.Diko.are.an.thei.geologica.significance

LIU Huan1), ZHAO Xilin1), GE Yanpeng2), ZHANG Jinguo2), JIANG Jian2), QIN Xianzhu3)

1) China Geological survey (Nanjing Center), Nanjing, Jiangsu, 210016;2)School of Resources and Environment, Hefei University of Technology, Hefei, Anhui, 230009;3)College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan, 610059

Objectives:A lot of intrusives are located in the subduction—collision—accretion complex belt, which formed in 450~440 Ma, between the east and west Wuyi massif. The study of the geochronology of these intrusives is significant for defining the age of collision between east and west Wuyi massif and the convergence of Wuyi blocks, and also plays a certain role in promoting our understanding of the formation and emplacement of the Caledonian granitoids in South China.

Methods:The Xiayuan and Hongyegang intrusives in Dikou area are typically developed in the subduction—collision—accretion complex belt. In this paper, the zircon LA-ICP-MS U-Pb dating method is used to make a detailed geochronology of the intrusives in this area.

Result.an.Conclusions:Three rock samples taken from the Xiayuan granitic pluton in Dikou area were dated by zircons La-ICP-MS U-Pb technique, which show that the emplacement crystal ages of the Xiayuan intrusives were 420±4 Ma, 430±4 Ma and 434±4 Ma, respectively. It indicates that the Xiayuan granitic pluton is Caledonian intrusives, rather than Indosinian granite by the previous understanding. The zircon U-Pb age in Hongyegang granite was 398±4 Ma, indicates that the Hongyegang granite is a late Caledonian intrusives rather than Yanshanian granite. Combined with the analysis of the latest research results in Wuyi Mountain area, we suggest that the Xiayuan and Hongyegang intrusives in Dikou area may be formed in the extensional rift environment after the collision between the east and west Wuyi massif. The obtained emplacement ages of the Xiayuan and Hongyegang intrusives in Dikou area provide precise constraints for the Caledonian tectonic evolution of the Wuyi Blocks.

Keywords: Wuyi Blocks; Cathaysia Block; South China Block; Caledonian Movement; granite

Doi: 10.16509/j.georeview.2020.03.007

注: 本文为武夷山松溪—庆元地区区域地质调查项目(编号:DD20190045)的成果。

收稿日期:2019-08-31;改回日期:2020-01-23;责任编辑:刘志强。Doi:10.16509/j.georeview.2020.03.008

作者简介:刘欢,男,1988年生,博士,助理研究员,主要从事构造地质学研究; Email:liuhuanhefei@163.com。

Acknowledgements:The zircon dating process was assisted by Prof. LI Longming and Prof. LI Quanzhong from Hefei University of Technology. The anonymous reviewers made a number of valuable suggestions to this article.

Firs.author:LIU Huan, male, born in 1988, structure geology Ph. D from Hefei University of Technology, now works at Nanjing Center, China Geological Survey, major interested in the structure geology and the regional geological mapping; Email: liuhuanhefei@163.com

Manuscript received on: 2019-08-31; Acceptedon: 2020-01-23; Editedby: LIU Zhiqiang

Doi: 10.16509/j.georeview.2020.03.008