四川盆地西北部中二叠统栖霞组砂糖状白云岩特征及成因机制
——以广元上寺剖面为例

李明隆1,2), 谭秀成1,2,3), 苏成鹏1,2),芦飞凡1,2),张本健4),潘政屹5),肖笛1,2,6)

1) 油气藏地质及开发工程国家重点实验室,西南石油大学,成都, 610500;2) 中国石油天然气集团有限公司碳酸盐岩储层重点实验室西南石油大学研究分室,成都, 610500;3) 天然气地质四川省重点实验室,西南石油大学,成都, 610500;4) 中石油西南油气田分公司川西北气矿,四川江油, 621700;5) 中石油西南油气田分公司勘探开发研究院,成都, 610041;6) 南京大学地球科学与工程学院,南京, 210023

内容提要: 四川盆地西北部中二叠统栖霞组砂糖状白云岩储层勘探获得重大突破,但钻探结果表明此类砂糖状白云岩发育层位和规模变化极大,因而对其成因的把握是这类白云岩储层分布预测的关键。本文以四川盆地西北部上寺剖面栖霞组为例,通过宏微观岩石学、碳氧同位素和电子探针分析发现砂糖状白云岩具有如下特征:① 主要分为层状白云岩与斑块状白云岩两类,其中层状白云岩主要位于栖二段中部,斑状白云岩则分布较为广泛,位于栖一段底部和栖二段层状白云岩上部与下部;② 层状白云岩由中—粗晶白云石构成,呈砂糖状,阴极射线下发红光,MgO/CaO 为 0.68,δ13CPDBδ18OPDB均值为2.42‰与-6.18‰;③ 栖一段底部白云质灰岩内的白云石化斑块由细—粉晶白云石构成,阴极射线下多不发光,MgO/CaO 为 0.54,δ13CPDBδ18OPDB均值为1.69‰与-1.23‰;④ 栖二段顶部与底部斑块均呈砂糖状,阴极射线下顶部为具有不发光的核心与发红光环带的细晶白云石组成,而底部为发暗红光的中粗晶白云石组成,MgO/CaO 分别为0.59和0.68,δ13CPDBδ18OPDB均值分别为2.16‰、-6.50‰和3.32‰、-3.75‰。基于以上野外工作与室内分析结果认为,① 栖霞组底部发育两个准同生暴露面,其下为斑状岩溶系统,岩溶系统多被白云石化;② 栖霞组顶部发育早成岩期暴露面,岩溶分带清晰可见,岩溶系统均被白云石化;③ 砂糖状白云岩是由于重卤水回流渗透白云石化与热液白云石化叠合形成,但由于岩溶发育的位置与程度的不同导致两期白云石化叠合的结果存在差异。

关键词:四川盆地西北部;中二叠统栖霞组;白云岩成因;岩溶;回流渗透白云石化;热液白云石化

砂糖状白云岩是指一类岩石风化面形态类似白砂糖的白云岩(Archie,1957;Murray,1960)。其广泛发育于全球各个地区、各个时代,且通常具有优良的孔渗物性参数,常作为一种重要的碳酸盐岩油气储集层。因此,该类白云岩是碳酸盐沉积学家和储层地质学家长期关注的热点(张永生等,1997;Westphal et al.,2004;钱一雄和尤东华,2006;Gaswirth et al.,2007;Maliva et al.,2011;伊海生等,2014)。

图1 四川盆地及周边地质背景、剖面位置图
Fig. 1 Geologic settings of Sichuan Basin and the study section location
(a) 华南构造图、四川盆地位置(灰色部分)与剖面位置(红色五角星);(b) 地质背景及剖面位置(红色标记)图;(c) 上寺剖面中二叠统栖霞组岩性柱状图;(d) 四川盆地西北部栖霞组二段沉积相平面图
(a) structural map of South China, location of Sichuan Basin (gray) and study section location(red asterisk); (b) geological map and study section location(red triangle); (c) lithological column of Chihsia(Qixia) Formation in Shangsi Section;(d) sedimentary facies plan of Chihsia Formation member 1 in Northwest Sichuan Basin

近年来,四川盆地西北部(简称“川西北”)双鱼石构造砂糖状白云岩储层勘探获得了重大突破,构造带内10余口探井中多达7口钻井测试日产能超过30×104 m3,且最高测试产能超过80×104 m3(沈平等,2015;张本健,2018),展现了该地区砂糖状白云岩储层具有巨大的勘探前景。然而,进一步钻探也揭示了这类砂糖状白云岩储层非均质性较强,其纵向发育层位相对欠稳定、横向规模变化大。针对该类非均质性较强的砂糖状白云岩,长期以来对其成因机理与储集空间形成机制争议很大。就成因机理而言,包括差异性原始灰岩成分、结构的控制(Iannace et al.,2011,2014;Giorgioni et al.,2016),复杂成岩流体导致的非均质过白云石化胶结作用(Gaswirth et al.,2007)以及非均质的溶蚀与沉淀充填(朱东亚等,2015;Bai Xiaoliang et al.,2016;Jiang Lei et al.,2016;蒋裕强等,2018)等观点;而储集空间形成机制的观点也多种多样,如热液(Liu Hong et al.,2016;刘建强等,2017;蒋裕强等,2018)、大气淡水(Bai Xiaoliang et al.,2016)、埋藏阶段含油气流体的溶蚀作用(朱东亚等,2015)以及硫酸盐热化学还原作用(TSR)(蒋裕强等,2018)等。

为拓展川西北地区中二叠统砂糖状白云岩储层勘探领域,指导勘探部署方向,厘清砂糖状白云岩特征和成因显得尤为必要。鉴于此,笔者以广元上寺长江沟剖面栖霞组为例,通过宏微观岩石学特征和地球化学分析,厘清不同产状类型白云岩特征及其与暴露岩溶系统的关系,进而解译栖霞组不同类型砂糖状成因。其结果将对非均质砂糖状白云岩的成因与储层形成机理研究具有重要的基础理论与实践应用意义。

1 区域地质概况

四川盆地位于扬子板块西北缘(图1a),是在上扬子克拉通上发育有海陆两相地层并经历多期构造演化的叠合盆地(何登发等,2011)。盆地各个时期的地层均有发育,其中震旦系—中三叠统为海相地层,上三叠统—第四系为陆相地层(黄涵宇等,2017)。晚石炭世—早二叠世期间,四川盆地以隆升剥蚀作用为主,使整个四川盆地及其邻近地区缺失下二叠统地层。一直到早中二叠世梁山—栖霞组沉积时期,受冈瓦纳大陆冰川消融与构造活动的影响,盆地发生大规模海侵(向娟等,2011;田景春等,2012;王海真等,2013),西侧彭灌古陆与北侧汉南古陆均被淹没,只有西南侧康滇古陆和东侧江南古陆以岛链或是孤岛的形式出露于水面,整体为半局限台地-台地边缘相沉积。栖霞组沉积于属滨岸相的梁山组铝土质泥岩、粉砂岩及薄煤层之上与属开阔台地相的茅口组眼球眼皮状灰岩之下(黄涵宇,2017)。

广元上寺剖面位于四川盆地西北缘的矿山梁构造西侧(图1b),整体构造较为稳定,地层保存较好,剖面位于背斜的南东翼(图1b),从石炭系马平组至三叠系飞仙关组连续出露,其中栖霞组出露良好,无断层发育。栖一段整体为半局限台地相,为三级层序的海侵体系域中。该剖面底部与梁山组铝土质泥岩整合接触,并发育数米混积的含泥质砂质灰岩,为半局限海沉积(图1c)。混积岩之上则发育一套潮坪—潮缘滩沉积,岩性以白云质生屑泥晶灰岩、泥晶生屑灰岩为主,栖一段中部可见台内滩沉积,岩性为白云质亮—泥晶砂屑生屑灰岩,上部为局限海与台内洼地亚相相互叠置,并在近栖一段顶部时达到最大海泛面,岩性为生屑泥晶灰岩与少量薄层状泥晶灰岩(图1c)。栖二段整体为台地边缘相(图1c、d),处于高位体系域之中,发育多套颗粒滩与滩间海沉积,岩性为(白云质)亮晶砂屑生屑灰岩、(白云质)泥—亮晶砂屑生屑灰岩与(白云质)泥晶生屑灰岩,中部还存在十多米的层状砂糖状白云岩(图1c)。栖霞组顶部存在暴露面,暴露之后海平面迅速上升,形成了属于开阔台地相的茅口组一段地层(图1c)。

2 材料与方法

此次实测上寺剖面栖霞组共采样93块,磨制薄片104件。本文选取层状白云岩、斑状白云岩和其对应的基质灰岩、未白云石化斑块中的灰岩(溶沟灰岩)共计69件,在西南石油大学碳酸盐岩储层重点实验室进行实验,详情如下:利用牙钻钻取白云岩和与其相对应的基质灰岩5 g/件,以同位素比质谱仪Delta V Advantage,在温度24 ℃、湿度60%的检测环境下,依据《有机物和碳酸盐岩碳、氧同位素分析方法》SY/T 5238-2008进行检测。测试条件:High voltage: 3.034 kV;box emission: 0.9 mA;trap emission: 0.6 mA。阴极发光测试中,使用英国CAMBRIDGE IMAGE TECHNOLOGY 公司生产的CI8200 MK5阴极发光显微镜与相关拍照系统,选取野外剖面样品24件,针对晶粒大小不同、产出状态不同、层位不同的白云岩进行拍照记录,并通过其不同的阴极发光特征对判断白云岩成岩流体性质与演化提供一定的佐证。电子探针测试中,使用日本电子(JEOL)JXA-8230系列电子探针显微分析仪,选取薄片17件,主要针对白云岩打点21个。

图2 四川盆地西北部中二叠统栖霞组上寺剖面层状白云岩宏微观特征
Fig. 2 Macro- and microstructures of massive dolomite from Shangsi section in Northwest Sichuan Basin
(a) 栖二段中部层状白云岩宏观特征,块状;(b) 砂糖状白云岩,晶粒白云岩,发育大量粒(晶)间(溶)孔,取自图a中取样位置(红色方框);(c) 砂糖状白云岩,取自图a中取样位置(红色圆圈);(d) 图b局部微观特征(红色方框),粗晶白云岩;(e) 图c局部微观特征(红色方框),中—粗晶白云岩,较为致密;(f) 中—粗晶白云岩,他形—半自形镶嵌状,较为致密;(g) 粗晶白云岩,见大量颗粒幻影,半自形—自形状;(h) 图g的阴极发光特征,粗晶白云石晶粒均发红光;(i) 图f的阴极发光特征,中—粗晶白云石晶粒均发偏暗红光
(a) macrostructures of massive dolomite from the middle of Chihsia Formation member 2; (b) the sucrosic dolomite, sampled from the red rectangle on a;(c) the sucrosic dolomite with numerous pores and caves, sampled from the red circle on a; (d) microstructures of the red rectangle on b, coarse dolomite; (e) microstructures of the red rectangle on c, compact medium—coarse dolomite;(f) compact medium—coarse dolomite with anhedral— subhedral mosaic texture; (g) coarse dolomite with residual particle structure and subhedral—euhedral texture; (h) cathode Luminescence characteristics of g, coarse dolostone with red luminous; (i) cathode Luminescence characteristics of f, medium—coarse dolostone with dark red luminous

3 砂糖状白云岩类型与特征

3.1 层状白云岩

栖二段中部发育一套灰白色厚层—块状的中粗晶白云岩(30~32层,共厚12.50 m)(图2a),断面呈糖粒状(图2b、c),见大量粒间溶孔、晶间(溶)孔和顺层溶洞(图2a、b),部分区域存在相对致密塑性角砾(图2c、e)。残余溶洞边缘常充填少量鞍形白云石(图2c)。微观下白云石主要呈两种形态,一种为半自形—自形中粗晶白云石,雾心亮边结构明显,可见残余颗粒幻影,晶间(溶)孔或溶扩残余粒间孔发育,局部孔隙为亮晶方解石充填(图2d、g);另一种为他形—半自形镶嵌状中粗晶白云石,相对致密,偶见晶间孔与生屑残余(图2e、f)。阴极射线下,疏松砂糖状白云岩整体发强烈的红光(图2h),致密砂糖状白云岩,整体亦发红光,但相对偏暗(图2i)。疏松的白云岩δ13CPDBδ18OPDB均值1.87‰和-8.50‰,而较致密的白云岩则为δ13CPDBδ18OPDB均值2.42‰和-6.18‰(表1),两者MgO与CaO含量为21.159%~21.280%与31.155%~31.238%,平均21.220%与31.197%,MgO/CaO 为 0.68(表2)。

表1 四川盆地西北部中二叠统栖霞组上寺剖面不同位置碳酸盐岩C—O同位素平均值表

Table 1 Carbonate average values of C—O isotope on different stratum from Shangsi section in Northwest Sichuan Basin

位置类型δ13CPDB(‰)δ18OPDB(‰)样本数目栖一段底部白云石化斑块1.69-1.238灰岩围岩1.05-5.257未白云石化斑块0.68-7.351栖二段底部白云石化斑块2.16-6.5012灰岩围岩0.50-6.7910栖二段中部致密砂糖状白云岩1.87-8.502疏松砂糖状白云岩2.42-6.185栖二段顶部白云石化斑块3.32-3.7511灰岩围岩2.48-5.5512未白云石化斑块0.26-7.091

表2 四川盆地西北部中二叠统栖霞组上寺剖面不同位置白云岩镁钙含量表

Table 2 Contents of MgO ang CaO in dolomite on different stratum from Shangsi section in Northwest Sichuan Basin

位置样品号MgO(%)CaO(%)MgO/CaO平均值栖一段底部白云石化斑块CJG-2-4-118.998 33.304 CJG-2-4-217.719 33.284 CJG-2-5-117.863 32.898 CJG-2-5-218.276 33.816 CJG-2-5-318.723 33.214 CJG-3-2-118.264 32.963 CJG-3-2-216.021 32.816 CJG-4-1-115.787 34.030 CJG-4-3-118.491 33.446 CJG-4-3-218.551 33.883 0.54 栖二段下部白云石化斑块CJG-22-1-121.764 30.650 CJG-22-1-221.324 31.253 CJG-26-1-1 20.067 31.991 CJG-26-1-2 21.021 31.601 CJG-26-1-3 21.840 30.696 0.68 栖二段中部层状白云岩CJG-31-1-2-121.159 31.155 CJG-31-1-2-221.280 31.238 0.68 栖二段顶部白云石化斑块CJG-35-1-1 19.553 33.084 CJG-35-1-219.551 33.386 CJG-39-2-1 18.770 32.314 CJG-39-2-2 19.878 32.541 0.59

3.2 斑状白云质灰岩

上寺剖面栖霞组共发育3套不同层位的斑状白云质灰岩,下面根据纵向分布的不同依次进行描述。

栖一段底部发育一套斑块白云质灰岩(2~6层与11层,厚6.15 m与2.35 m)(图1c)。其中,3~6层的斑块白云质灰岩呈厚—中层状(图3a),风化面白云石化斑块呈深灰色,未白云石化斑块呈浅褐色(图6a),灰岩围岩为灰色,新鲜断面上白云石化斑块为深灰色—黑灰色,呈细砂糖状,而灰岩则呈浅褐灰色(图3b、c)。白云质斑块宏观上多垂直于层面,具有囊状及枝状等多种形态,大小不一,直径多在5~12 cm,可见白云质斑块切割灰岩而形成的似角砾化(图3b)。镜下斑块主要由半自形粉—细晶白云石构成(图3d、e),偶见雾心亮边结构。白云质斑块内见生屑残余,白云质斑块与围岩呈渐变过渡(图3d)。其围岩为泥晶生屑灰岩,可见大量藻类、有孔虫类、介壳类和腕足生屑颗粒(图3d、e)。阴极射线下,白云石晶粒整体不发光,灰岩发暗红光(图3f)。该类型白云岩δ13CPDBδ18OPDB均值为1.69‰和-1.23‰,其灰岩围岩δ13CPDBδ18OPDB均值为1.05‰和-5.25‰(表1)。白云岩的MgO与CaO含量为15.787%~18.998%与32.816%~34.030%,平均17.869%与33.365%,MgO/CaO 0.54(表2)。11层的白云石化斑块与3~6层白云石化斑块具有相似的特征,唯一的区别在于其灰岩围岩为泥—亮晶砂屑生屑灰岩。

栖二段底部白云质斑块(22~29层,共厚21.64 m)发育于厚层—块状灰岩中(图4a),新鲜面上白云质斑块呈蓝灰色(图4b,图6d),而围岩呈浅灰色—灰白色(图4b,图6d)。灰岩中可见海百合茎、腕足等化石。白云石化斑块具有囊状、枝状、飘带状等多种形态,其大小不一,直径多在3~10 cm(图4b)。镜下白云石化斑块由不等粒细—中晶白云石构成,半自形—他形镶嵌状,雾心亮边特征不明显(图4c、e)。白云质斑块中残余孔洞充填沥青或黏土质(图4c),偶见鞍形白云石(图4d)。围岩为亮晶砂屑生屑灰岩,生屑颗粒多为强烈泥晶化的有孔虫。阴极射线下,白云石晶粒整体发暗红光,晶粒边缘颜色相对较亮(图4f)。该类型白云岩δ13CPDBδ18OPDB均值2.16‰和-6.50‰,其灰岩围岩δ13CPDBδ18OPDB均值为0.50‰和-6.79‰(表1)。白云岩的MgO与CaO含量为20.067%~21.840%与30.650%~31.991%,平均21.203%与31.238%,MgO/CaO 0.68(表2)。

图3 四川盆地西北部中二叠统栖霞组上寺剖面栖一段底部斑块白云质灰岩宏微观特征
Fig. 3 Macro- and microstructures of leopard dolomitic limestone on the lower part of Chihsia Formation member 1 from Shangsi section in Northwest Sichuan Basin
(a) 栖一段底部斑块白云质灰岩宏观特征,厚—中层状;(b) 白云石化斑块多垂直于层面,图a局部放大(红色方框);(c) 斑块白云质灰岩,白云石化斑块断口呈细砂糖状,取自图a中取样位置(红色圆圈);(d) 斑块白云质灰岩微观特征,斑块为粉—细晶白云石,围岩为泥晶生屑灰岩;(e) 斑块白云质灰岩微观特征,斑块以生屑壳体为边界;(f) 图e阴极发光特征,白云石晶粒不发光,灰岩围岩发红光
(a) macrostructures of leopard dolomitic limestone from the lower part of Chihsia Formation member 1, medium- and thick-bedded ; (b) the dolomitized leopard is perpendicular to stratum , close-up view of red rectangle on a; (c) leopard dolomitic limestone with micro-sucrose texture, sampled from the red circle on a; (d) microstructures of leopard dolomitic limestone, the lepard is powder-fine-crystalline dolostone and the surrounding rock is packstone; (e) microstructures of leopard dolomitic limestone, the leopard is bounded by bioclastics; (f) cathode Luminescence characteristics of e, dolostone with non-luminous and limestone with red luminous

图4 四川盆地西北部中二叠统栖霞组上寺剖面栖二段底部斑块白云质灰岩宏微观特征
Fig. 4 Macro- and microstructures of leopard dolomite on the lower part of Chihsia Formation member 2 from Shangsi section in Northwest Sichuan Basin
(a)栖二段底部斑块白云质灰岩宏观特征,厚层—块状;(b)白云石化斑块多垂直于层面;(c)白云石化斑块微观特征,溶洞、裂缝充填沥青;(d)鞍形白云石,见晶间孔,正交偏光;(e)白云石化斑块微观特征,中晶白云石,呈他形镶嵌状;(f)图E阴极发光特征,白云石晶粒整体发暗红光
(a) macrostructures of leopard dolomitic limestone from the lower part of Chihsia Formation member 2, thick- and massive bedded; (b) the dolomitized leopard is perpendicular to stratum; (c) microstructures of dolomitized leopard limestone, the caves and fractures are filled with bitumen; (d) saddle dolomite with intergranular pores, under cross-polarized light; (e) microstructures of dolomitized leopard, medium crystalline dolostone with anhedral mosaic texture; (f) cathode Luminescence characteristics of e, dolostone with dark red luminous

图5 四川盆地西北部中二叠统栖霞组上寺剖面栖二段顶部斑块白云质灰岩宏微观特征
Fig. 5 Macro- and microstructures of leopard dolomite on the upper part of Chihsia Formation member 2 from Shangsi section in Northwest Sichuan Basin
(a)栖二段顶部斑块白云质灰岩宏观特征,块状;(b)白云石化斑块多垂直于层面;(c)斑块白云质灰岩微观特征,斑块界线处发育缝合线,灰岩围岩为亮晶砂屑生屑灰岩;(d)斑块白云质灰岩微观特征,灰岩围岩为亮晶颗粒灰岩,靠近斑块界线处,颗粒具有一定的定向性并被压实融合;(e)白云石化斑块微观特征,细晶白云石,半自形—自形状,晶间充填未白云石化的碳酸盐岩砂;(f)图e阴极发光特征,白云石晶粒核心不发光,具有一期发红光环带
(a) macrostructures of leopard dolomitic limestone from the upper part of Chihsia Formation member 2, massive bedded; (b) the dolomitized leopard is perpendicular to stratum; (c) microstructures of leopard dolomitic limestone, stylolite is developed at the boundary of the leopard with grain stone as surrounding rock; (d) microstructures of leopard dolomitic limestone with grain stone as surrounding rock, the particles have a certain orientation and are assembled near the boundary; (e) microstructures of dolomitized leopard, fine crystalline dolostone with subhedral—euhedral texture; (f) cathode Luminescence characteristics of e, dolostone with non-luminous core inside and a red luminous rim outside

栖二段顶部斑块白云质灰岩(33~40层,共厚20.33 m),块状(图5a),白云质斑块呈灰色—浅褐色,灰岩围岩呈浅灰色(图5b)。灰岩中可见珊瑚、腕足、棘皮类、腹足等生物化石。白云质斑块宏观上多垂直于层面,具有囊状、枝状、飘带状等多种形态,直径多在5~15 cm。其规模远大于栖二底部白云石化斑块,略微大于栖一段底部白云石化斑块,可见白云石化斑块切割灰岩而形成的原地似角砾化(图5b)。镜下白云质斑块由半自形-自形状细晶雾心亮边白云石构成,表面较脏(图5c、d、e)。晶间充填有微晶方解石基质(图5e),偶尔可见残余的生物化石,如海百合茎、介壳、有孔虫等,斑块与灰岩围岩边界多相对截然,可见缝合线(图5d)与生屑壳体作为白云岩边界。灰岩围岩多为亮晶砂屑生屑灰岩、亮—泥晶生屑灰岩(图5c、d),可见白云岩边界外侧泥晶化的生屑颗粒与砂屑颗粒因压实作用而相互融合,并具有一定的定向性(图5d)。阴极射线下,白云石晶粒具有不发光的内核与一期发红光环带(图5f)。该类型白云岩δ13CPDBδ18OPDB均值3.32‰和-3.75‰,其灰岩围岩δ13CPDBδ18OPDB均值为2.48‰和-5.55‰(表1)。白云岩的MgO与CaO含量为18.770%~19.878%与32.314%~33.386%,平均19.438%与32.831%,MgO/CaO 0.59(表2)。

4 砂糖状白云岩与岩溶关系

图6 四川盆地西北部中二叠统栖霞组上寺剖面栖霞组岩溶宏微观特征
Fig. 6 Macro- and microstructures of penecontemporaneous and eogenetic karst from Shangsi section in Northwest Sichuan Basin

(a) 栖一段底部未白云石化斑块宏观特征;(b) 栖一段底部准同生期暴露面(红色虚线),暴露面之下具有近原地角砾;(c) 栖一段底部斑块微观特征,斑块完全白云石化部分为离解带,外侧半离解带部分白云石化不完全,围岩灰岩为亮—泥晶生屑砂屑灰岩;(d) 栖二段底部岩溶发育特征,岩溶系统被白云石化,见溶洞充填鞍形白云石,灰岩围岩为亮晶颗粒灰岩;(e) 栖二段底部白云石化斑块微观特征,晶间充填黏土等不溶残余;(f) 栖二段中部岩溶特征;(g) 图f局部放大的粗光面(红色方框);(h) 图g局部微观特征(红色方框),岩溶系统充填物被白云石化,见晶间孔,基岩白云石化,基质孔隙被保留,溶洞被鞍形白云石全充填;(i) 栖二顶部岩溶系统特征;(j) 栖二顶部白云石化斑块特征;(k) 栖二段顶部未白云石化岩溶系统微观特征,溶沟内部充填大量黏土;(l) 栖二段顶部白云石化斑块微观特征,自形白云石晶间充填大量未白云石化碳酸盐岩砂
(a) macrostructures of un-dolomitized leopard from the lower part of Chihsia Formation member 1; (b) the penecontemporaneous erosional surface from lower part of Chihsia Formation member 1, in-situ breccias developing under the surface; (c) microstructures of leopard from lower part of Chihsia Formation member 1, dissociated zone is dolomitized and half-dissociated zone is half dolomitized, with spartic packstone as surrounding rock; (d) macrostructures of eogenetic karst from the lower part of Chihsia Formation member 2, karst system is dolomitized, and caves are filled with saddle dolostone, with grainstone as surrounding rock; (e) microstructures of dolomitized leopard from lower part of Chihsia Formation member 2, intergranular is filled with clay; (f) macrostructures of eogenetic karst from the middle part of Chihsia Formation member 2; (g) polished slab of dolomite, sampled from the red rectangle on f; (h) microstructures of red rectangle from g, karst system fillings are dolomitized with intergranular pores, surrounding rock are dolomitized with intergranular pores and caves are filled with saddle dolostone; (i) macrostructures of karst from the upper part of Chihsia Formation member 2; (j) macrostructures of dolomitized leopard from the upper part of Chihsia Formation member 2; (k) macrostructures of un-dolomitized karst system from the upper part of Chihsia Formation member 2, solution grooves is filled with clay; (l) microstructures of dolomitized leopard from the upper part of Chihsia Formation member 2, un-dolomitized carbonate sands filled between euhedral dolostone crystalline grain

前人研究认为栖霞组顶部存在侵蚀不整合(王海真等,2013;谭秀成等,2015;杨柳等,2015;胡安平等,2018)。在栖霞组末期暴露时,地层正处于早成岩期之中,形成的为软岩石岩溶(谭秀成等,2015;Xiao Di et al.,2017),即早成岩期岩溶(Vacher and Mylroie,2002)。该类岩溶系统与通常认为的“经典喀斯特”—表生岩溶在物质基础与渗流通道上明显不同(James and Choquette,1988)。表生岩溶为晚成岩期岩溶,岩性本身较为致密,其渗流通道主要为裂缝、节理和层理面,在一些特殊情况下,岩溶水也会以保留下来的先期孔渗层作为渗流通道(Jin Mindong et al.,2014;谭秀成等,2015)。而早成岩期岩溶则受控于沉积相带,其岩溶水的主要通道为基质粒间孔(Vacher and Mylroie,2002;谭秀成等,2015;肖笛等,2015;Xiao Di et al.,2017)。岩溶水在孔渗性的碳酸盐岩漫流溶蚀,最终形成三维空间上交织分布的管道系统,其横截面上呈海绵状的溶蚀形态(谭秀成等,2015)。

在上寺剖面栖霞组普遍发育穿层状的白云石化斑块,斑块的形态与分布状况与早成岩期溶蚀作用形成的岩溶优势通道具有极大的相似性,未白云石化的斑块的δ13CPDB相对其灰岩围岩均具有负偏趋势(表1)。结合前人研究结果,认为上寺剖面栖霞组普遍遭受到不同程度的早成岩期暴露岩溶作用的影响,其普遍具有的斑块状构造为早期岩溶的优势通道。

4.1 岩溶特征及识别标志

在栖一段底部,斑块状构造多被白云石化,同时也存在未白云石化(半白云石化)的褐色斑块(图6a、c)。斑块多垂直于层面展布,并存在相互交织使得灰岩围岩角砾化(图6a),这些斑块为早期岩溶的优势通道。这些岩溶系统发育于高频旋回顶部,表明该岩溶系统为四~五级层序界面暴露所形成的准同生岩溶系统(图6b,图7,图9),而准同生暴露面之下常可见近原地角砾(图6a、b)。偏光显微镜下斑块局部泥质含量较高,白云石化斑块与灰岩边界多为过渡状,可区分出软岩石岩溶典型标志之一的离解带与半离解带(图6c),未白云石化的斑块在宏观与微观上同样也能识别出相似的早期岩溶的标志(图7)。

栖二段可见囊状和近水平状的岩溶系统,其在顶部表现为岩溶系统充填的碳酸盐岩砂被白云石化,形成白云石化斑块,这些穿层状的囊状岩溶系统多垂直于层面,并存在相互交织使得灰岩围岩角砾化(图5b,图6j)。偏光显微镜下可见斑块与灰岩围岩多具有相对截然的接触关系(图6k、l),白云石化的斑块内的自形白云石晶间充填未白云石化的碳酸盐岩砂(图5e、f,图6l)。栖二段中部的层状岩溶系统均被白云石化,可见大量顺层溶洞(图2a),其中一些小型溶洞被鞍形白云石半充填—全充填(图6f)。该段塑性角砾较为发育,颜色较浅,白云石呈砂糖状,见晶间孔(图6f、g、h)。角砾间为白云石化的碳酸盐岩砂,颜色较深,呈砂糖状(图6f、g、h)。栖二段底部同样发育穿层囊状溶蚀系统,表现为蓝灰色白云岩斑块切割灰岩围岩,其规模小于其余两种斑块,尺寸亦较小(图4b,图6d)。偏光显微镜下,斑块内可见少量溶洞被鞍形白云石半充填—全充填,偶见晶间孔,部分白云石化斑块内具有晶间漫流溶蚀特征,并充填大量黏土,角砾少见(图6e)。

在成岩过程中,若有大气淡水影响,δ13C和δ18O会呈明显负偏,而温度则对其影响不大(黄思静,2010;杨西燕等,2015)。此次发现栖一段底部与栖二段顶部存在未白云石化斑块,该白云石化斑块的δ13CPDBδ18OPDB分别为0.68‰和-7.35‰、0.26‰和-7.09‰,而与此对应的灰岩围岩的δ13CPDBδ18OPDB分别为1.00‰和-3.98‰、2.71‰和-4.50‰(表1)。两组数据均有明显的负偏特征,表明其均受到过大气淡水淋滤。就负偏程度上来说,栖二段顶部溶沟灰岩负偏程度明显大于底部,表明栖一段底部为较短时间的准同生起暴露,栖霞组顶部则为时间相对较长的早成岩期暴露。

4.2 纵向岩溶发育特征

经典的大气淡水岩溶可在垂向上划分出垂直渗流带与水平潜流带(James and Choquette,1988)。上寺剖面栖一段底部的准同生岩溶系统仅发育垂直渗流带。这些岩溶系统与生屑浅滩关系密切,仅在高频的滩体旋回顶部有发育,且影响深度较浅(图9)。

上寺剖面栖二段则发育完整的岩溶分带。其顶部为斑状溶蚀系统,且在近顶部的位置由于岩溶系统的纵横相切割使得原岩形成近原地角砾化(图5b),该现象向深部地层则逐渐减弱,并表现为岩溶系统多垂直于岩层面(图6i)。该套岩溶系统的形态亦受到岩性控制,整体上来说,在颗粒滩为主的地层中,斑块展布相对密集,产出形态多样,角砾化特征明显(图5a、b),而在滩间海沉积为主的地层中,斑块密度较低,多呈穿层状,横向展布有限,角砾化不明显(图6i)。

图7 四川盆地西北部中二叠统栖霞组上寺剖面栖霞组底部准同生岩溶综合柱状图
Fig. 7 The column of penecontemporaneous karst on the lower part of Chihsia Formation member 1 from Shangsi section in Northwest Sichuan Basin
(a) 栖一段底部准同生岩溶系统微观特征,离解带、半离解带角砾清晰可见,取自图(a′)红色方框;(a′) 栖一段底部准同生岩溶系统光面特征; (b)栖一段底部准同生岩溶系统微观特征,离解带-半离解带、角砾清晰可见(a) microstructures of penecontemporaneous karst system from the lower part of the Member 1 of the Chihsia Formation with dissociated zone and half-dissociated zone, sampled from the red rectangle on phote (a′); (a′) polished slab of pene- contemporaneous karst system from lower part of the Member 1 of the Chihsia Formation; (b) microstructures of penecontemporaneous karst system from the lower part of the Member 1,Chihsia Formation, with dissociated zone, half-dissociated zone and breccias

栖二段中部的层状岩溶系统发育大量顺层溶洞(图2a),且在横向上有良好的延续性。该层状岩溶系统同样也受到沉积相的控制。在颗粒滩为主的地层中,溶蚀孔洞发育,为疏松的砂糖状白云岩(图2b、d),保留下基质孔隙也较为发育(图6h),而在滩间海该类致密层段,岩溶系统内部的砂糖状白云岩较为疏松,颜色较深,而白云石化的围岩则为致密的砂糖状白云岩(图2c、e、f)。

栖二段底部的岩溶系统规模远小于栖二段顶部,其溶蚀通道尺寸较小,密度较低,且从上往下,规模迅速减小,直到消失于栖二段底界线之上。岩溶系统白云石化形成的斑块颜色较深,整体上不具有垂直层面的特征,更多的是具有向四周漫流溶蚀的形态。偏光显微镜下可见白云石晶面较脏,晶间空隙多充填黏土等不溶残余(图6d、e)。

栖二段的三段岩溶系统则为栖霞组末期早成岩期暴露岩溶作用而形成的岩溶分带,即栖二段顶部白云石化斑块为垂直渗流带,栖二段层状白云岩为水平潜流带,栖二段底部白云石化斑块为深部缓流带(图9)。

栖一段底部岩溶特征较栖二段相对单调,仅仅发育垂直渗流带(图9),岩溶系统可分为已白云石化与未白云石化两种,未白云石化岩溶系统切割原岩形成近原地角砾化,显微镜下则可明显识别出离解带、半离解带与角砾(图6c,图7)。已白云石化的岩溶系统同样存在切割原岩而使之形成近原地角砾化的状况(图3b,图6a),白云石化使的岩溶系统在露头剖面上更易识别。两种岩溶系统顶部均有明显的暴露面特征(图6b,图7),且纵向上岩溶系统的发育规模逐渐减小。根据该岩溶系统的发育特征,认为该套岩溶系统为准同生起暴露岩溶所形成(图7)

4.3 岩溶与白云岩关系

上寺剖面栖霞组古岩溶普遍发育,白云岩也呈多种形态产出,所以厘清两者之间的关系对白云岩成因解释起着重要作用。

剖面上常见缝合线构造,白云石化斑块与灰岩围岩常以缝合线作为边界,后期的充填方解石的裂缝则切割白云石化斑块与灰岩围岩(图5b,图6j)。前人研究认为,缝合线主要形成于早成岩晚期,岩石基本固结成岩之后(李方正和张俊华,1990),或者在埋深500~800 m的地层中(Moore,2001;Fu Qilong,2019)。根据上寺剖面的白云石化斑块与缝合线的接触关系,表明白云石化在形成缝合线之前的浅埋藏阶段发生。栖霞组的白云石化斑块在形态上具有与海绵状溶蚀系统相似的特征。偏光显微镜下可见顶部白云岩斑块内白云石多呈自形状,这表明白云石生长时具有较大空间,而如此良好的生长空间在早成岩期只能是存在与岩溶系统内部或者为高能颗粒滩自身所具有的粒间孔。基于这两点认识,认为白云岩主要发育于岩溶系统之中,白云石化主要发生在岩溶之后。未白云石化的斑块主要为破碎的生屑颗粒与黏土等不溶残余所充填(图6k)。而白云石化斑块内的自形白云石晶间可见的未白云石化碳酸盐岩砂(图5e、f,图6l),亦可证明白云岩形成于岩溶系统之中。

5 不同类型白云石化形成机理和模式

5.1 白云石化时间

栖霞组砂糖状白云岩产出形态与地化参数极具特征,因此也被认为是经历了多种白云石化过程的产物(李波等,2012;田景春等,2014;胡安平等,2018)。较早的研究更加趋向于混合水成因(张荫本,1982;宋文海,1985;陈明启,1989;石新等,2005),认为栖霞晚期频繁的四级到五级的海平面升降,使得川西北的生屑浅滩受到大气淡水影响,在成岩早期发生混合水白云石化(石新等,2005;冯明友等,2015)。随着研究的深入,有学者发现该套白云岩与中二叠世特殊的热事件存在联系(何幼斌和冯增昭,1996),提出了峨眉山玄武岩为白云石化提供了镁离子来源(金振奎和冯增昭,1999)。亦有大量学者认为其白云石化与发生在中二叠世末、晚二叠世初的构造热液有关(黄思静等,2012,2013,2014;江青春等,2014)。栖霞组白云岩内鞍形白云石与自身热液矿物的存在,以及鞍形白云石的溶解,被认为是浅埋藏的热液活动的证据之一(黄思静等,2012),而瓜德鲁普统末期峨眉地幔柱的剧烈活动(施泽进,2019)则为其提供了相应背景(黄思静,2010)。研究表明峨眉山大火成岩省的喷发最早位于J. altudaensis 带(Bond et al.,2010;Sun Yadong et al.,2010),或NeomisllinaYabeina带(Zhu Bei et al.,2019),即卡匹敦期早期,263~264 Ma。此时栖霞组的埋深较浅,属于浅埋藏阶段,岩石属于未完全固结的早成岩期,为热液白云石化的初始时限。而形成白云石晶粒核部(图5f)的白云石化作用,亦发生在其之前。

上寺剖面栖霞组顶部的白云石化斑块与缝合线、裂缝的关系(图5b)在前文已有描述,通过三者的切割关系,认为栖霞组的两期白云石化时间均在浅埋藏期,第一期发生于栖霞组沉积末期发生的早成岩期暴露岩溶作用之后,与热液白云石化之前,第二期的热液白云石化主要发生于峨眉山地幔柱的活跃时期。栖一段底部白云石化斑块形成于高频海平面震荡导致的准同生期暴露而形成的岩溶系统之中,表明其主要的白云石化时间位于准同生期后期到早成岩期早期这段时间之中。

5.2 白云岩成因机理和模式

前文已经判断上寺剖面栖霞组白云岩形成于早成岩期,白云岩不同产状是由于岩溶分带与期次的不同而导致的。现结合以上岩石学与地球化学资料,对该剖面不同类型白云岩的成因作综合讨论。

白云岩中CaO和MgO含量变化能反映白云石交代方解石程度。MgO和CaO呈线性正相关反映白云岩为沉积成因,呈线性负相关反映白云岩为交代或重结晶成因(郑剑锋等,2012)。上寺剖面栖霞组两类白云岩的MgO和CaO呈明显线性负相关(图8),显示为交代或重结晶成因。与前人研究的图版(郑剑锋等,2012;He Xunyun et al.,2014)比对,发现其与回流渗透白云岩类似。且底部白云石化斑块高CaO低MgO的特征表明其在四种白云岩中白云石化程度最低,其次为栖顶白云石化斑块,栖二段中部和下部白云岩白云石化程度最强(表2,图8)。

图8 四川盆地西北部中二叠统栖霞组上寺剖面栖霞组不同类型白云岩镁钙交汇图版
Fig. 8 Crossplot of carbonate MgO/CaO ratio values with different dolomites from Shangsi section Chihsia Formation in Northwest Sichuan Basin

在碳酸盐岩的成岩过程中,若有大气淡水影响会导致δ13C明显负偏,而温度则对其影响较小(黄思静,2010;任影等,2018)。δ18O受大气淡水和温度影响均较大,淡水和高温均会导致δ18O负偏,且受温度影响更为显著(Liu Hong et al.,2016)。前人研究认为,海水在蒸发过程中或冰期期间,轻的氧同位素最先逸出或向冰盖迁移,因此δ18O随着盐度的升高而增加(Epstein and Mayeda,1953)。所以δ18O可以反映海水的受限程度,随着海水受限程度的增加δ18O增大。

此次碳氧稳定同位素的测试结果表明,灰岩的δ18OPDB均大于-10‰,δ13CPDBδ18OPDB的相关系数为0.19,相关性差,表明灰岩受到的成岩蚀变作用不强。白云岩则主要受到多期白云石化流体的影响,其δ13C、δ18O主要代表着白云石化流体以及部分白云石化前灰岩围岩的特征。除此之外,上寺剖面栖霞组地层其后所受到的埋藏成岩作用均会对灰岩与白云岩产生一定的影响,但是,这种影响并不存在选择性,所以灰岩与白云岩δ13C、δ18O的差异性主要受控于早期大气淡水与白云石化流体的综合控制。因此,灰岩围岩的δ13C、δ18O反映白云石化之前原始沉积碳酸盐岩本身的地化性质,溶沟灰岩δ13C、δ18O反映大气淡水影响的结果,白云岩反映大气淡水和白云石化流体综合影响的结果。总之,此次不同岩类的碳氧稳定同位素的测试结果进行相互对比分析,可以表明多期流体的差异性。

上扬子地区受晚古生代大冰期的影响,缺乏大量下二叠统沉积,所以上寺剖面栖霞组的沉积时期应该位于空谷期的末期(沈树忠等,2019)。根据此次测试的灰岩δ13C数据(图9)与前人的二叠纪δ13C变化曲线作对比,发现该剖面栖霞组沉积时期位于空谷末期的祥播亚期,持续时长约3~4 Ma。该时期华南正处于低纬度地区,且石炭—二叠纪大冰期已逐渐结束,全球气候逐渐进入温室期(沈树忠等,2019)。在热带地区,高频海平面变化与沉积微古地貌高地频繁暴露的情况下,极易引起海水不同程度的咸化,而这种咸化的海水势必会在早期沉积物中发生回流渗透白云石化。由于水体咸度并未达到石膏沉淀的饱和度,所以亦被称为中等盐度回流渗透白云石化(Sun S Qing,1994)。此白云石化模式已经得到模拟实验的证实(Simms,1984)。基于上寺剖面栖霞组白云岩的氧同位素特征及缺乏蒸发岩沉积的情况,因此推断该白云岩亦受中等盐度回流渗透白云石化的影响。

与峨眉山玄武岩喷发事件相关的构造—热液事件主要发生在川西南地区(张若祥等,2006)。近年来研究表明,整个四川盆地中二叠统都受到了异常热事件的影响(黄思静等,2012,2013,2014;江青春,2014;Liu Hong et al.,2016;韩晓涛等,2016;蒋裕强等,2018)。特提斯超级地幔柱的活动被认为自中泥盆世开始对大陆裂解产生作用,而峨眉地幔柱可能只是其最后最强烈一幕活动的(部分)记录(肖龙等,2005)。总之,中二叠世上扬子地区正处于构造转化与调整的阶段,构造活动呈多幕式进行,产生大量基底断裂,为热液上涌提供了运移通道,从而为热液改造奠定了基础。

图10 四川盆地西北部中二叠统栖霞组上寺剖面碳酸盐岩碳氧同位素交汇图版
Fig. 10 Crossplot of carbonate C—O isotope values from Shangsi section Chihsia Formation in Northwest Sichuan Basin

图11 上寺长江沟剖面白云石化模式图
Fig. 11 Dolomitization model in Shangsi section
(a) 栖一段沉积早期水平面高频震荡使部分滩体暴露;(b) 栖一段沉积早期由于蒸发作用加强与滩体的阻隔,在滩体之间形成局限环境,出现重卤水回流渗透白云石化;(c) 栖霞组沉积末期由于海退造成滩体暴露;(d) 栖霞组沉积末期由于蒸发作用加强与滩体的阻隔,在滩体之间形成局限环境,出现重卤水回流渗透白云石化。(e) 茅口组沉积时期由于东吴运动逐渐增强,产生基底断裂沟通栖霞组岩溶系统与地底热液
(a) on early age of Chihsia Formation, part of shoals was exposed to meteoric water by high-frequency oscillations of sea level; (b) on early age of Chihsia Formation, due to the enhancement of evaporation and the barrier of shoal, the restricted environment is formed, and the seepage reflux dolomitization occured; (c) on late age of Chihsia Formation, shoals was exposed to meteoric water by fall of sea level; (d) on later age of Chihsia Formation, due to the enhancement of evaporation and the barrier of shoal, the restricted environment is formed, and the seepage reflux dolomitization occured; (e) on age of Maokou Formation, intensive tectonic movement formed faults to connect karst system and hydrothermal fluid

从测试结果可以明显看出,白云石化作用使得白云岩δ13C明显大于灰岩δ13C(表1,图9,图10)。栖霞组底部颗粒灰岩中的白云石化斑块δ18O大于灰岩围岩,说明白云石化流体为咸化水体(表1,图10i)。该区栖霞组早期的古地理背景使得在近滨岸的微古地貌高地极容易发育相对高能的颗粒滩沉积,而这些颗粒滩在栖霞初期的海侵过程中,由于海平面高频振荡,极易暴露遭受准同生期岩溶作用(图9),同时形成受限的水体。在蒸发作用较强的时期,准同生期暴露形成的岩溶系统作为受限水体回流渗透的优势通道,对处于海平面以下的斑状岩溶系统充填物进行白云石化,而处于海平面之上的斑状岩溶系统多未被白云石化或部分白云石化(图9)。因为准同生期暴露时间和水体受限时间均较短,所以栖一段底部的岩溶作用较弱,斑块的白云石化程度也较低,主要为自形程度一般的粉—细晶白云石(图3e)。栖霞早期主要沉积一套混积岩,其中具有大量陆源石英颗粒。大量陆源注入带来了大量Fe3+,使水体相对富集Fe3+。而在浅埋藏时,大量Fe3+被还原为Fe2+,并在白云石化时进入白云石晶格内形成铁白云石, 使得其在阴极射线下不发光(图3f)。该段岩层非均质性较强,岩溶系统孔渗条件一般,导致后期热液流体经断裂向上运移时,很难充分进入斑块之内对其产生影响。(11a、b)栖顶白云岩δ18O也大于灰岩围岩(表1,图9,图10Ⅱ),说明白云石化流体为高盐度水体,结合栖霞末期海退的古地理背景,其白云石化成因与栖底白云石化成因相同。然而,二者在岩溶时间和白云石化程度方面也存在明显不同。岩溶作用方面,栖顶早成岩期暴露岩溶时间明显长于栖底准同生期暴露,属于由三级层序的海平面变化与构造运动共同驱使所造成的,这可以从栖顶未白云石化的的溶沟灰岩的碳同位素值较灰岩围岩的负偏程度高于栖底得到证明(图10Ⅳ、Ⅴ,图9,表1)。白云石化程度方面,栖顶白云石化程度明显高于栖底,其镁钙比相对较高(表2),白云石化斑块中的白云石主要呈自形状、中—细晶状产出(图5e)。阴极发光特征表明栖二段顶部白云石化斑块中的白云石至少受两期次白云石化流体改造。第一期为回流渗透白云石化,直接交代原始碳酸盐颗粒,阴极发光下不发光(雾心);第二期为热液白云石化,较强的热液影响使得回流渗透形成的白云石晶粒增大且更为自形,阴极发光下发亮红光(亮边)(图5f,图11c、d)。栖二段中部层状白云岩和栖二段底部白云石化斑块的δ18O与该段的灰岩围岩相当(表1,图9,图10Ⅲ),这可能是因为其不仅受到了回流渗透白云石化的影响,同时还叠加了后期热液的影响——栖二晚期中等盐度回流渗透白云石化造成δ18O正偏,随后的热液白云石化作用又使δ18O负偏,从而使白云岩和灰岩具有大致相当的δ18O值。纵向上来看,栖二段底部、中部、顶部的白云岩虽然都受回流渗透和热液两期白云石化流体叠合影响(图11e),但热液影响也具有明显的层位性(图9)。栖二段底部影响较强,回流渗透白云石化作用形成的不发光雾心已变成暗红色(图4f),δ18O主要表现为热液特征(图9,图10Ⅲ);中部影响更强,层状白云岩位于水平潜流带,孔渗良好,为热液白云石化提供了优势通道,无论是疏松的砂糖状白云岩还是致密的砂糖状白云岩,热液都完全覆盖了前一期流体对其的影响,使其整体发红光(图2h、i),δ18O值主要表现为热液特征(图9,图10Ⅲ),疏松的砂糖状白云岩的特征更为典型。

6 结论

(1)根据白云岩的宏微观特征与地球化学特征,将上寺剖面白云岩划分2类,即层状白云岩与白云石化斑块,根据层位的不同,还可细分为:①栖霞组底部的白云石化斑块;②栖二段底部白云石化斑块;③栖二段中部层状白云岩;④栖二段顶部白云石化斑块。

(2)根据上寺剖面栖霞组地层的岩石学特征与δ13C特征,认为栖霞组一段底部的生屑滩顶部遭受准同生暴露溶蚀作用;栖霞组顶部遭受早成岩期暴露作用,并形成岩溶分带。两种岩溶作用均为白云石化流体提供了优势通道。

(3)上寺剖面白云岩成因均为局限重卤水回流渗透白云石化叠合后期热液影响,不同的是由于岩溶发育特征的不同,使其受后期热液叠加影响的规模不同。其中栖一段底部白云石化斑块受热液影响较弱,栖二段顶部白云石化斑块受热液影响稍强,而栖二段底部白云石化斑块与中部层状白云岩受热液影响最强,白云石化作用最强。

致谢:参与此专题的专家对本次研究提出宝贵的建议,责任编辑和审稿专家对论文提出了建设性的意见,在此一并表示感谢。

参 考 文 献

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

陈明启. 1989. 川西南下二叠阳新统白云岩成因探讨. 沉积学报, 7(2): 45~50.

冯明友, 张帆, 李跃纲, 张本健, 尹宏, 李波. 2015. 川西地区中二叠统栖霞组优质白云岩储层特征及形成机理. 中国科技论文, 10(3): 280~286.

韩晓涛, 鲍征宇, 谢淑云. 2016. 四川盆地西南中二叠统白云岩的地球化学特征及其成因. 地球科学, 41(1): 167~176.

何登发, 李德生, 张国伟, 赵路子, 樊春, 鲁人齐, 文竹. 2011. 四川多旋回叠合盆地的形成与演化. 地质科学, 46(3): 589~606.

何幼斌, 冯增昭. 1996. 四川盆地及其周缘下二叠统细—粗晶白云岩成因探讨. 石油天然气学报, 18(4): 15~20.

胡安平, 潘立银, 郝毅, 沈安江, 谷明峰. 2018. 四川盆地二叠系栖霞组、茅口组白云岩储层特征、成因和分布. 海相油气地质, 23(2): 39~52.

胡明毅, 魏国齐, 胡忠贵, 杨威, 胡九珍, 刘满仓, 吴联钱, 向娟. 2010. 四川盆地中二叠统栖霞组层序——岩相古地理. 古地理学报, 12(5): 515~526.

黄涵宇, 何登发, 李英强, 王贝. 2017. 四川盆地及邻区二叠纪梁山—栖霞组沉积盆地原型及其演化. 岩石学报, 33(4): 1317~1337.

黄思静. 2010. 碳酸盐岩的成岩作用. 北京: 地质出版社; 1~288.

黄思静, 潘小强, 吕杰, 齐世超, 黄可可, 兰叶芳, 王春梅. 2013. 川西栖霞组的热液白云化作用及其后的倒退溶解——不彻底的回头白云化作用. 成都理工大学学报(自然科学版), 40(3): 288~300.

黄思静, 兰叶芳, 黄可可, 吕杰. 2014. 四川盆地西部中二叠统栖霞组晶洞充填物特征与热液活动记录. 岩石学报, 30(3): 687~698.

黄思静, 李小宁, 黄可可, 兰叶芳, 吕杰, 王春梅. 2012. 四川盆地西部栖霞组热液白云岩中的自生非碳酸盐矿物. 成都理工大学学报(自然科学版), 39(4): 343~352.

江青春, 胡素云, 汪泽成, 王铜山, 李秋芬, 翟秀芬. 2014. 四川盆地中二叠统中—粗晶白云岩成因. 石油与天然气地质, 35(4): 503~510.

蒋裕强, 谷一凡, 李开鸿, 李顺, 罗明生, 何冰. 2018. 四川盆地中部中二叠统热液白云岩储渗空间类型及成因. 天然气工业, 38(2): 16~24.

金振奎, 冯增昭. 1999. 滇东—川西下二叠统白云岩的形成机理——玄武岩淋滤白云化. 沉积学报, 17(3): 383~389.

李波, 颜佳新, 薛武强, 马志鑫, 李傲竹. 2012. 四川广元地区中二叠世斑状白云岩成因及地质意义. 地球科学, 37(s2): 136~146.

李方正, 张俊华. 1990. 缝合线构造的成因类型. 长春地质学院学报, 20(1): 21~28.

刘建强, 郑浩夫, 刘波, 刘红光, 石开波, 郭荣涛, 张学丰. 2017. 川中地区中二叠统茅口组白云岩特征及成因机理. 石油学报, 38(4): 386~398.

钱一雄, 尤东华. 2006. 塔中地区西北部奥陶系白云岩(化)成因分析. 新疆石油地质, 27(2): 146~150.

任影, 钟大康, 高崇龙, 彭浩, 贾浪波, 谢瑞, 杨雪琪, 付明星, 李臣. 2018. 渝东地区寒武系龙王庙组高分辨率碳酸盐岩碳同位素记录及其古海洋学意义. 地质学报, 92(2): 359~377.

沈平, 张健, 宋家荣, 洪海涛, 唐大海, 王小娟, 汪华, 罗文军. 2015. 四川盆地中二叠统天然气勘探新突破的意义及有利勘探方向. 天然气工业, 35(7): 1~8.

沈树忠, 张华, 张以春, 袁东勋, 陈波, 何卫红, 牟林, 林巍, 王文倩, 陈军, 吴琼, 曹长群, 王玥, 王向东. 2019. 中国二叠纪综合地层和时间框架. 中国科学:地球科学, 49(1): 160~193.

石新, 王兴志, 张帆, 李耀刚, 杨跃明, 朱永刚. 2005. 川西北地区栖霞组白云岩储集层研究. 西南石油大学学报(自然科学版), 27(2): 13~16.

施泽进, 张瑾, 李文杰, 田亚铭, 王勇, 尹观. 2019. 四川盆地 Guadalupian 统碳酸盐岩稀土元素和碳—锶同位素特征及地质意义. 岩石学报, 35(4): 1095~1106.

宋文海. 1985. 四川盆地二叠统白云岩的分布及天然气勘探. 天然气工业, 5(4): 16~23.

谭秀成, 肖笛, 陈景山, 李凌, 刘宏. 2015. 早成岩期喀斯特化研究新进展及意义. 古地理学报, 17(4): 441~456.

田景春, 郭维, 黄平辉, 林小兵. 2012. 四川盆地西南部茅口期岩相古地理. 西南石油大学学报(自然科学版), 34(2): 1~8.

田景春, 林小兵, 张翔, 彭顺风, 杨辰雨, 罗寿兵, 徐亮. 2014. 四川盆地中二叠统栖霞组滩相白云岩多重成因机理及叠加效应. 岩石学报, 30 (3): 679~686.

王海真, 池英柳, 赵宗举, 江青春, 鲁卫华. 2013. 四川盆地栖霞组岩溶储层及勘探选区. 石油学报, 34(5): 833~842.

向娟, 胡明毅, 胡忠贵, 孟令俊, 吴联钱. 2011. 四川盆地中二叠统茅口组沉积相分析. 石油地质与工程, 25(1): 14~19.

肖笛, 谭秀成, 郗爱华, 刘宏, 山述娇, 夏吉文, 程遥, 连承波. 2015. 四川盆地南部中二叠统茅口组碳酸盐岩岩溶特征:古大陆环境下层控型早成岩期岩溶实例. 古地理学报, 17(4): 457~476.

肖龙, 徐义刚, 何斌. 2005. 试论地幔柱构造与川滇西部古特提斯的演化. 地质科技情报, 24(4): 1~6.

杨柳, 谷明峰, 杨迅, 厚刚福, 姚倩颖. 2015. 川西北二叠系栖霞组白云岩储层结构的井筒高精度刻画——以矿2井为例. 海相油气地质, 20(4): 65~72.

杨西燕, 包洪平, 任军峰, 马占荣. 2015. 鄂尔多斯盆地马家沟组马五5亚段白云岩类型及稳定同位素特征. 天然气地球科学, 26(4): 650~656.

伊海生, 陈志勇, 季长军, 杨晓萍, 夏国清, 吴驰华. 2014. 羌塘盆地南部地区布曲组砂糖状白云岩埋藏成因的新证据. 岩石学报, 30(3): 737~746.

张本健, 谢继容, 尹宏, 胡欣, 王宇峰, 杨迅, 裴森奇. 2018. 四川盆地西部龙门山地区中二叠统碳酸盐岩储层特征及勘探方向. 天然气工业, 38(2): 33~42.

张若祥, 王兴志, 蓝大樵, 康保平. 2006. 川西南地区峨眉山玄武岩储层评价. 天然气勘探与开发, 29(1): 17~20.

张荫本. 1982. 四川盆地二迭系中的白云岩化. 石油学报, 3(1): 33~37+105~106.

张永生, 张传录, 康祺发. 1997. 鄂尔多斯盆地奥陶系马家沟群块状白云岩的包体研究. 岩石矿物学杂志, 16(3): 213~219.

郑剑锋, 沈安江, 刘永福, 陈永权. 2012. 多参数综合识别塔里木盆地下古生界白云岩成因. 石油学报, 33(s2): 145~153.

朱东亚, 张殿伟, 张荣强, 冯菊芳, 何治亮. 2015. 中国南方地区灯影组白云岩储层流体溶蚀改造机制. 石油学报, 36 (10): 1188~1198.

Archie G E. 1957. Classification of carbonate reservoir rocks and petrophysical considerations. AAPG Bulletin, 36: 278~298.

Bai Xiaoliang, Zhang Shaonan, Huang Qingyu, Zhang Siyang, Ye Ning, Li Yingtao. 2016. Dolomitization of the Lower—Middle Ordovician Yingshan Formation in the Tazhong area, Tarim Basin, western China. Arabian Journal of Geosciences, 9(2): 87.

Bond D P G, Wignall P B, Wang Wei, Izon G, Jiang Haishui, Lai Xulong, Sun Yadong, Newton R J, Shao Longyi, Védrine Stéphanie and Cope H. 2010. The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(1~2): 282~294.

Chen Mingqi. 1989&. A discussion of the origin of Yangxin dolomite of lower Permian in southwest Sichuan. Acta Sedimentology Sinica, 7(2): 45~50.

Epstein S and Mayeda T. 1953. Variation of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta, 4(5): 213~224.

Feng Mingyou, Zhang Fan, Li Yuegang, Zhang Benjian, Yin Hong and Li Bo. 2015&. Characteristics and formation mechanism of Qixia Formation (middle Permian) dolomite reservoirs in western Sichuan Basin. China Sciencepaper, 10(3): 280~286.

Fu Qilong. 2019. Characterization and discrimination of paleokarst breccias and pseudobreccias in carbonate rocks: Insight from Ordovician strata in the northern Tarim Basin, China. Sedimentary Geology, 382: 61~74.

Gaswirth S B, Budd D A and Lang F G. 2007. The role and impact of freshwater—seawater mixing zones in the maturation of regional dolomite bodies within the proto Floridan Aquifer, USA. Sedimentology, 54(5): 1065~1092.

Giorgioni M, Iannace A, D'Amore M, Dati F, Galluccio L, Guerriero V, Mazzoli S, Parente M, Strauss C, Vitale S. 2016. Impact of early dolomitization on multi-scale petrophysical heterogeneities and fracture intensity of low-porosity platform carbonates (Albian—Cenomanian, southern Apennines, Italy). Marine and Petroleum Geology, 73: 462~478.

Han Xiaotao, Bao Zhengming and Xie Shuyun. 2016&. Origin and Geochemical Characteristics of Dolomites in the Middle Permian Formation, SW Sichuan Basin. Earth Science, 41(1): 167~176.

He Dengfa, Li Desheng, Zhang Guowei, Zhao Luzi, Fan Chun, Lu Renqi and Wen Zhu. 2011&. Formation and evolution of multi-cycle superposed Sichuan Basin, China. Chinese Journal of Geology (Scientia Geologica Sinica), 46(3): 589~606.

He Youbin and Feng Zhenzhao. 1996&. Origin of fine- to coarse-grained dolostones of lower Permian in Sichuan Basin and its peripheral regions. Journal of Oil and Gas Technology, 18(4): 15~20.

He Xunyun, Shou Jiaofeng, Shen Anjiang, Wu Xingning, Wang Yongshen, Hu Yuanyuan, Zhu Yin and Wei Dongxiao. 2014. Geochemical characteristics and origin of dolomite: A case study from the middle assemblage of Majiagou Formation Member 5 of the west of Jingbian Gas Field, Ordos Basin, North China. Petroleum Exploration and Development, 41(3): 417~427.

Hu Anping, Pan Liyin, Hao Yi, Shen Anjiang and Gu Mingfeng. 2018&. Origin, characteristics and distribution of dolostone reservoir in Qixia Formation and Maokou Formation, Sichuan Basin, China. Marine Origin Petroleum Geology, 23(2): 39~52.

Hu Mingyi, Wei Guoqi, Hu Zhonggui, Yang Wei, Hu Jiuzhen, Liu Mancang, Wu Lianqian and Xiang Juan. 2010&. Sequence—lithofacies palaeogeography of the Middle Permian Qixia Formation in Sichuan Basin. Journal of Palaeogeography, 12(5): 515~526.

Huang Huanyu, He Dengfa, Li Yinqiang and Wang Be. 2017&. The prototype and its evolution of the Sichuan sedimentary basin and adjacent areas during Liangshan and Qixia stages in Permian. Acta Petrologica Sinica, 33 (4): 1317~1337.

Huang Sijing. 2010#. Carbonate Diagenesis. Beijing: Geological Publishing House: 1~288.

Huang Sijing, Pan Xiaoqiang, Lü Jie, Qi Shichao, Huang Keke, Lan Yefang, Wang Chunmei. 2013&. Hydrothermal dolomitization and subsequent retrograde dissolution in Qixia Formation, West Sichuan: a case study of incomplete and halfway—back dolomitization. Chengdu University of Technology (Science & Technology Edition), 40(3): 288~300.

Huang Sijing, Lan Yefang, Huang Keke and Lü Jie. 2014&. Vug fillings and records of hydrothermal activity in the Middle Permian Qixia Formation, western Sichuan Basin. Acta Petrologica Sinica, 30(3): 687~698.

Huang Sijing, Li Xiaoning, Huang Keke, Lan Yefang, Lü Jie and Wang Chunmei. 2012&. Authigenic noncarbonate minerals in hydrothermal dolomite of Middle Permian Qixia Formation in the west of Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 39(4): 343~352.

Iannace A, Capuano M and Galluccio L. 2011. “Dolomites and dolomites” in Mesozoic platform carbonates of the Southern Apennines: Geometric distribution, petrography and geochemistry. Palaeogeography Palaeoclimatology Palaeoecology, 310(3): 324~339.

Iannace A, Frijia G, Galluccio L, Parente M. 2014. Facies and early dolomitization in Upper Albian shallow-water carbonates of the southern Apennines (Italy): paleotectonic and paleoclimatic implications. Facies, 60(1): 169~194.

James N P and Choquette P W. 1988. Paleokarst. New York: Springer Verlag.

Jiang Lei, Cai Chunfang, Worden R H, Crowley S F, Jia Lianqi, Zhang Ke and Duncan Ian J. 2016. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China. Sedimentology, 63(7): 2130~2157.

Jiang Qingchun, Hu Suyun, Wang Zecheng, Wang Tongshan, Li Qiufen and Zhai Xiufen. 2014&. Genesis of medium—macro-crystalline dolomite in the Middle Permian of Sichuan Basin. Oil and Gas Geology, 35(4): 503~510.

Jiang Yuqiang, Gu Yifang, Li Kaihong, Li Shun, Luo Mingsheng and He Bing. 2018&. Space types and origins of hydrothermal dolomite reservoirs in the Middle Permian strata, Central Sichuan Basin. Natural Gas Industry, (2): 16~24.

Jin Mindong, Zeng Wei, Tan Xiucheng, Li Ling, Li Zongyin, Luo Bing, Zhang Jinglei and Liu Jiwei. 2014. Characteristics and controlling factors of beach-controlled karst reservoirs in Cambrian Longwangmiao Formation, Moxi—Gaoshiti area, Sichuan Basin, NW China. Petroleum Exploration and Development, 41(6): 712~723.

Jin Zhenkui and Feng Zhenzhao. 1999&. Origin of dolostones of the Lower Permian in East Yunnan—West Sichuan ——dolomitization through leaching of basalts. Acta Sedimentology Sinica, 17(3): 383~389.

Li Bo, Yan Jiaxin, Xue Wuqiang, Ma Zhixin and Li Aozhu. 2012&. Origin of patchy dolomite and its geological signification from Middle Permian, Guangyuan, Sichuan Province. Earth Science——Journal of China University of Geosciences, 37(s2): 136~146.

Li Fangzheng and Zhang Junhua. 1990&. Genetic types of the stylolites. Journal of Changchun University of Earth Science, 20(1): 21~28.

Liu Hong, Ma Teng, Tan Xiucheng, Zeng Wei, Hu Guang, Xiao Di, Luo Bing, Shan Shujiao and Su Chengpeng. 2016. Origin of structurally controlled hydrothermal dolomite in epigenetic karst system during shallow burial: An example from Middle Permian Maokou Formation, central Sichuan Basin, SW China. Petroleum Exploration and Development, 43(6): 1000~1012.

Liu Jianqiang, Zheng Haofu, Liu Bo, Liu Hongguan, Shi Kaibo, Guo Rongtao and Zhang Xuefeng. 2017&. Characteristics and genetic mechanism of the dolomite in the Middle Permian Maokou Formation, central Sichuan area. Acta Petrolei Sinica, 38(4): 386~398..

Maliva R G, Budd D A, Clayton E A, Missimer T M and Dickson J A D. 2011. Insights Into the Dolomitization Process and Porosity Modification in Sucrosic Dolostones, Avon Park Formation (Middle Eocene), East—Central Florida, U.S.A. Journal of Sedimentary Research, 81(3~4): 263~276.

Moore C H. 2001. Carbonate Diagenesis and Porosity. Amsterdam: Elsevier Science Publisher.

Murray R C. 1960. Origin of porosity in carbonate rocks. Journal of Sedimentary Petrology, 30(1): 59~84.

Qian Yixiong and You Donghua. 2006&. An analysis of Ordovician dolomitization origin in Northwestern Tazhong area. Xinjiang Petroleum Geology, 27(2): 146~150..

Ren Ying, Zhong Dakang, Gao Chonlong, Peng Hao, Jia Liangbo, Xie Rui, Yang Xueqi, Fu Mingxing and Li Chen. 2018&. High-Resolution carbon isotopic of carbonatic rocks of the lower Cambrian Longwangmiao Formation in East Chongqing, China and its palaeoenvironment significance. Acta Geologica Sinica, 92(2): 359~377.

Shen Ping, Zhang Jian, Song Jiarong, Hong Haitao, Tang Dahai, Wang Xiaojuan, Wang Hua and Luo Wenjun. 2015&. Significance of new breakthrough in and favorable targets of gas exploration in the Middle Permian system, Sichuan Basin. Natural Gas Industry, 35(7): 1~8.

Shen Shuzhong, Zhang Hua, Zhang Yichun, Yuan Dongxun, Chen Bo, He Weihong, Mu Lin, Lin Wei, Wang Wenqian, Chen Jun, Wu Qiong, Cao Changqun, Wang Yue and Wang Xiangdong. 2019. Permian integrative stratigraphy and timescale of China. Science China Earth Sciences, 62: 154~188.

Shi Xin, Wang Xingzhi, Zhang Fan, Li Yaogang, Yang Yueming and Zhu Yonggang. 2005&. The study of dolomite in Qixia Formation in the Northwest of Sichuan region. Journal of Southwest Petroleum Institute, 27(2): 13~16.

Shi Zejin, Zhang Jin, Li Wenjie, Tian Yaning, Wang Yong and Yin Guan. 2019&. Characteristics of rare earth element and carbon—strontium isotope and their geological significance of Guadalupian carbonate in Sichuan Basin. Acta Petrologica Sinica, 35(4): 1095~1106.

Simms M. 1984. Dolomitization by groudwater-flow system in carbonate platforms. AAPG Bulletin, 34(68): 411~420.

Song Wenhai. 1985&. Distribution of Permian dolomite and natural gas exploration in Sichuan Basin. Natural Gas Industry, 5(4): 22~23.

Sun S Q. 1994. A reappraisal of dolomite abundance and occurrence in the Phanerozoic. Journal of Sedimentary Research, 64(2): 396~404.

Sun Yadong, Lai Xulong, Wignall P B, Widdowson M, Ali J R, Jiang Haishui, Wang Wei, Yan Chunbo, Bond D P G and Védrine S. 2010. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models. Lithos, 119: 20~33.

Tan Xiucheng, Xiao Di, Chen Jingshan, Li Ling and Liu Hong. 2015&. New advance and enlightenment of eogenetic karstification. Journal of Palaeogeography, 17(4): 441~456.

Tian Jingchun, Guo Wei, Huang Pinghui and Lin Xiaobing. 2012&. Lithofacies Palaeogeography of Maokou Period in Southwestern Sichuan Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 34(2): 1~8.

Tian Jingchun, Lin Xiaobing, Zhang Xiang, Peng Shunfeng, Yang Chenyu, Luo Shoubing and Xu Liang. 2014&. The genetic mechanism of shoal facies dolomite and its additive effect of Permian Qixia Formation in Sichuan Basin. Acta Petrologica Sinica, 30(3): 679~686.

Vacher H L and Mylroie J E. 2002. Eogenetic karst from the perspective of an equivalent porous medium. Carbonates and Evaporites, 17(2): 182~196.

Wang Haizhen, Chi Yinliu, Zhao Zongjun, Jiang Qingchun and Lu Weihua. 2013&. Karst reservoirs developed in the Middle Permian Qixia Formation of Sichuan Basin and selection of exploration regions. Acta Petrolei Sinica, 34(5): 833~842.

Westphal H, Eberli G P, Smith L, Grammer G M and Kislak J. 2004. Reservoir characterization of the Mississippian Madison Formation, Wind River basin, Wyoming. AAPG Bulletin, 88(4): 405~432.

Xiang Juan, Hu Mingyi, Hu Zhonggui, Meng Lingjun and Wu Lianqian. 2011&. Sedimentary facies analysis of Maokou Formation of Middle Permian in Sichuan Basin. Petroleum Geology and Engineering, 25(1): 14~19.

Xiao Di, Tan Xiucheng, Xi Aihua, Liu Hong, Shan Shujiao, Xia Jiwen, Cheng Yao and Lian Chengbo. 2015&. Palaeokarst characteristics of carbonate rocks of the Middle Permian Maokou Formation in southern Sichuan Basin: Example of strata-bound eogenetic karst in palaeo-continental settings. Journal of Palaeogeography, 17(4): 515~526.

Xiao Di, Tang Xiucheng, Zhang Daofeng, He Wei, Li Ling, Shi Yunhe, Chen Juanping and Cao Jian. 2019. Discovery of syngenetic and eogenetic karsts in the Middle Ordovician gypsum-bearing dolomites of the eastern Ordos Basin (central China) and their heterogeneous impact on reservoir quality. Marine and Petroleum Geology, 99: 190~207.

Xiao Di, Zhang Benjian, Tan Xiucheng, Liu Hong, Xie Jirong, Lian Chengbo, Yang Xun and Ma Teng. 2017. Discovery of a shoal-controlled karst dolomite reservoir in the Middle Permian Qixia Formation, northwestern Sichuan Basin, Southwest China. Energy Exploration & Exploitation, 36(2): 686~704.

Xiao Long, Xu Yigang and He Bin. 2005&. Mantle plume tectonics and Tethyan evolution: a preliminary interpretation in Sichuan and Western Yunnan Province. Geological Science and Technology Information, 24(4): 1~6.

Yang Liu, Gu Mingfeng, Yang Xun, Hou Gangfu and Yao Qianying. 2015&. High-resolution characterization of borehole-scaled reservoir structure: A case of Lower Permian Qixia dolostone reservoir in well Kuang-2, Northwest of Sichuan Basin. Marine Origin Petroleum Geology, 20(4): 65~72.

Yang Xiyan, Bao Hongping, Ren Junfeng and Ma Zhanrong. 2015&. Types of dolomites and characteristics of stable isotope from the Ma 55 sub- member of Ordovician Majiagou Formation in Ordos Basin. Natural Gas Geoscience, 26(4): 650~656.

Yi Haisheng, Chen Zhiyong, Ji Changjun, Yang Xiaoping, Xia Guoqing and Wu Chihua. 2014&. New evidence for deep burial origin of sucrosic dolomites from Middle Jurrasic Buqu Formation in southern Qiangtang Basin. Acta Petrologica Sinica, 30(3): 737~746.

Zhang Benjian, Xie Jirong, Yon Hong, Hu Xin, Wang Yufeng, Yang Xun, Pei Senqi. 2018&. Characteristics and exploration direction of the Middle Permian carbonate reservoirs in the Longmenshan mountain areas, western Sichuan Basin. Natural Gas Industry, 38(2): 33~42.

Zhang Ruoxiang, Wang Xingzhi, Lan Daqiao and Kang Baoping. 2006&. Reservoir evaluation of Emeishan basalts in Southwest Sichuan. Acta Petrologica Sinica, 29(1): 17~20.

Zhang Yinben. 1982&. Dolomitization in Permain rocks in Sichuan Basin. Acta Petrolei Sinica, 3(1): 33~37+105~106.

Zhang Yongsheng, Zhang Chuanlu and Kang Qifa. 1997&. Dolomitization in Permain rocks in Sichuan Basin. Acta Petrologica et Mineralogica, 16(3): 213~219.

Zheng Jianfeng, Shen Anjiang, Liu Yongfu and Chen Yongquan. 2012&. Multi-parameter comprehensive identification of the genesis of Lower Paleozoic dolomite in Tarim Basin, China. Acta Petrolei Sinica, 33(s2): 145~153.

Zhu Bei, Guo Zhaojie, Zhang Shaonan, Ukstins I, Du Wei and Liu Runchao. 2019. What triggered the early-stage eruption of the Emeishan large igneous province? GSA Bulletin, 36(10): 1188~1198 .

Zhu Dongya, Zhang Dianwei, Zhang Rongqiang, Feng Jufang and He Zhiliang. 2015&. Fluid alteration mechanism of dolomite reservoirs in Dengying Formation, South China. Acta Petrolei Sinica, 36(10): 1188~1198.

Characteristic.an.genesi.o.sucrosi.dolomit.i.Middl.Permia.Chihsi.Formation,Northwes.Sichua.Basin:.cas.stud.fro.Shangs.section

LI Minglong1, 2),TAN Xiucheng1, 2,3), SU Chengpeng1, 2), LU Feifan1, 2), ZHANG Benjian4), PAN Zhengyi5), XIAO Di1, 2, 6)

1) State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu, 610500;2) Southwest Petroleum University, Division of Key Laboratory of Carbonate Reservoirs, CNPC, Chengdu, 610500;3) Sichuan Province Key Laboratory of Natural Gas Geology, Chengdu, 610500;4) Branch of Chuanxibei Gas Field, PetroChina Southwest Oil and Gas Field Company, Jiangyou, Sichuan, 621700;5) Research Institute of Exploration and Development, PetroChina Southwest Oil and Gas Field Company, Chengdu, 610041;6) School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023

Objectives:A major breakthrough has been made in the gas exploration on sucrosic dolomite reservoir of the middle Permian Chihsia(Qixia) Formation in the northwest Sichuan Basin. However, recent cores show that the development horizon and scale of the sucrosic dolomite is of great variability. Therefore, the key to the distribution prediction of this type of dolomite reservoir is to figure the genetic mechanism out. To solve the problem, study has been carried out on the Chihsia Formation in Shangsi section, such as petrological characteristics, carbon—oxygen isotopes and EPMA(electron probe micro analyzer) of the dolomite, to establish dolomitization model of Chihsia Formation.

Methods:The dolomite development in field and petrological characteristics were studied through the outcrop observation, microscope analysis and Cathodo Luminescence observation. The paper combines the in-situ micro-electron probe analysis, isotope geochemistry characterization, petrological characteristics and geological background to trace dolomitization fluids.

Results:Four characteristics of the sucrosic dolomite were summarized, including: massive dolomite, developing well in the middle of Chihsia Formation member 2, and leopard dolomite from dolomitic limestone, developing in the lower part of member 1, lower and upper part of member 2. ① Massive dolomite is characterized by medium—coarse crystalline and red luminous under CL(Cathode Luminescence), with Mg/Ca values 0.68,δ13CPDB and δ18OPDB average values 2.42‰ and -6.18‰ respectively; ② Leopard dolomite developing in the lower part of Chihsia Formation member 1 is characterized by powder—fine-crystalline, micro-sucrose texture and non-luminous under CL, with MgO/CaO values 0.54, δ13CPDB and δ18OPDB average values 2.42‰ and -6.18‰ respectively; ③ The upper part dolomite with medium—fine-crystalline structure shows a non-luminous core inside and a red luminous rim outside under CL, while the lower part dolomite with medium—coarse-crystalline structure shows dark red luminous under CL. Their MgO/CaO, δ13CPDB and δ18OPDB average values are 0.59 and 0.68, 2.16‰ and -6.50‰, 3.32‰ and -3.75‰ respectively.

Conclusion:Based on the results from filed work and indoor materials arrangement, The results suggest that ① in the lower part of Chihsia Formation, there are two penecontemporaneous exposure surfaces, below which leopard porphyritic karst system developed. ② Eogenetic exposure surface has been identified on the top of Chihsia Formation with clear vertical zonation of karst developed below. Most of the karst dominant channels was dolomitized. ③ Both types of dolomites were formed by superposition of seepage—reflux dolomitization and hydrothermal dolomitization. Due to the vertical zonation and influence degree of karstification, there are differences between the result of two phases dolomitization.

Keywords northwest Sichuan Basin; Middle Permian Chihsia Formation(Qixia Formation); dolomite genesis; karst; seepage—reflux dolomitization; hydrothermal dolomitization

注:本文为国家科技重大专项(编号:2016ZX05004002-001)和国家自然科学基金资助项目(编号:41802147)的成果。

收稿日期:2019-07-16;改回日期:2020-03-16;责任编辑:刘志强。Doi:10.16509/j.georeview.2020.03.005

作者简介:李明隆,男,1995年生,硕士研究生,岩石学、矿物学、矿床学专业,Email:lmllml264@126.com。

通讯作者:谭秀成,男,1970年生,教授,博士生导师; Email: tanxiucheng70@163.com。

Acknowledgements:This study was funded by National Science and Technology Major Projects (No. 2016ZX05004002-001), National Natural Science Foundation of China (No. 41802147)

Firs.author:LI Minglong, born in 1995, Master candidate in Southwest Petroleum University, mainly engaged in sedimentology analysis. Email: lmllml264@126.com

Correspondin.author:TAN Xiucheng, born in 1970, Professor, Southwest Petroleum University. Major in sedimentology and petroleum geology. Email: tanxiucheng70@163.com

Manuscript received on: 2019-07-16;Accepted on: 2020-03-16; Edited by: LIU Zhiqiang

Doi: 10.16509/j.georeview.2020.03.005