AMT 法在河北省青龙地区干沟火山岩型铀矿床的应用效果

乔宝强，程纪星，罗毅，孙祥
核工业北京地质研究院，北京，100029

河北省青龙地区是我国重要的火山岩型铀矿分布区之一，在该区已经发现大型铀矿床 2 处，铀矿点 20 多处，显示了很好的找矿前景 ${ }^{[1]}$ 。本项目瞄准青龙火山岩型铀矿远景调查区，开展音频大地电磁测深（AMT）法，查明含矿构造的空间分布，产状，地质结构，基底埋深，起伏特征及深部成矿构造环境。在物探异常反演结果基础上，编制综合解释推断成果图，为进一步的工程验证提供依据。

1 地质概况

干沟铀矿床处于秦皇岛岩浆弧（Ar3）III级构造单元区干沟东西向中侏罗世火山断陷盆地的南缘。盆地的基底为新太古界混合花岗片麻岩，古元古界富铀钾质似斑状黑云母花岗岩；盆地盖层为中侏罗统海房沟组富铀凝灰岩，凝灰质砂砾岩，花岗质砾岩和中侏罗统蓝旗组中基性火山熔岩盖构成。含矿层为中侏罗统海房沟组，富铀火山——沉积凝灰质碎屑岩建造 ${ }^{[1]}$ 。

2 工作方法

在该区采用了对成矿预测比较有效的音频大地电磁测深（AMT）法。它利用天然的大地电磁场作为场源，测定地下岩石的电性参数，并通过研究地电断面的变化达到了解地质构造，找矿，找水等目的 ${ }^{[2]}$ 。采用加拿大凤凰公司生产的V8 多功能电法仪。它有 3 个磁道和 3 个电道，其通讯方式可以无线，也可以有线，所有的记录单元均通过GPS时间保持同步 ${ }^{[3]}$ 。

3 试验剖面验证

工作中首先完成对已知试验剖面 GI 的物探测量工作，将 GI 的视电阻率反演成果与钻孔资料进

行对比，在取得两者结果一致的前提下，完成对其它剖面的地球物理勘探任务。

从如图1－a 观察，该剖面在 $100 \sim 1600$ 米之间有一规模很大的低阻塌陷。塌陷南浅北深。剖面 $100 \sim 200$ 米之间的低阻与此处的断裂和河流有关。在剖面水平距离 $300 \sim 800$ 米之间， $900 \sim 1300$ 米之间的浅部为高阻区。在 600 米和 $800 \sim 900$ 米之间有一电性过渡区。在剖面 $1300 \sim 1600$ 米之间为干沟，受河流影响和断裂构造控制，此处电阻率较低。

图 1 干沟 GI 号剖面物探成果图
上－物探视电阻率反演结果；下－推断地质剖面图；1－安山岩；2－海房沟组； 3 －破碎带； 4 －黑云母花岗岩； 5 －断裂

根据物探视电阻率反演结果和地质情况，对 GI剖面的地质推断结果如图 1－b。推断在剖面 300 米， 600 米， 900 米， 1700 米为断裂构造。其中 600 米处为主干断裂破碎带， 1700 米处为垮庄断裂。四条断裂构造均与实际地质情况一致。从剖面水平距离观察，推断 300 米到终点的上部为安山岩，下部为

[^0]海房沟组。剖面底部为花岗岩基底。在 $300 \sim 1600$米之间，基底深度从南向北逐渐变深。根据钻孔资料，钻孔打到的基底深度同样从南向北变深。根据剖面 1170 米处已知钻孔资料，海房沟组的顶部深度在 350 米左右，底部深度在 450 米左右。从地质推断结果（图 1－b）图看， 1170 米处顶部电性分界面接近 350 米，与实际吻合。底部电性分界面在 650米左右，比已知钻孔资料深。推断可能是受河流及断裂破碎的影响，深部基底岩石电阻率变低，导致电性分界面比钻孔打到的基底要深。总体上看，物探的视电阻率反演结果与钻孔资料基本吻合，同时各条断裂构造的位置与地质情况也基本一致，证明了此方法在该工区的有效性，为下一步工作提供了基础。

图2 干沟 GIII 号剖面物探成果图
上－物探视电阻率反演结果；下－推断地质剖面图；1－似斑状黑云母花岗岩；2－安山岩；3－海房沟组；4－断裂

4 GIII 号剖面物探解释结果

GIII 号剖面位于 GI 号剖面东约 1 公里处。该剖面从物探电阻率反演结果（图2－a）观察，在剖面水平距离 $300 \sim 600$ 米之间，有一电阻率的过渡区域。在剖面水平距离 900 米，低阻区从浅到深向南北两侧逐渐扩大，此处为干沟，推断受河流影响和断裂构造的控制。在剖面 1200～1900 米之间有

一处低阻异常，深度到 800 米左右。其中在 1600米处电阻率最低。对 GIII 号剖面的地质推断解释结果如图 2－b。在 $300 \sim 600$ 米之间的低阻过渡区推断为受 F1，F2 两条断裂控制。900 米处低阻异常为 F3 断裂。推断 $1200 \sim 1900$ 米之间的低阻区域两侧受 F4，F6 两条断裂控制。 1600 米处的低阻区为垮庄断裂，与 GI 号剖面中的垮庄断裂为同一断裂。在 F1 和 F6 断裂之间的浅部推断为安山岩，安山岩下部为海房沟组。剖面基底为花岗岩。GIII 号剖面位于 GI 号剖面东约 1 公里处。该剖面从物探电阻率反演结果（图2－a）观察，在剖面水平距离 300～ 600 米之间，有一电阻率的过渡区域。在剖面水平距离 900 米，低阻区从浅到深向南北两侧逐渐扩大，此处为干沟，推断受河流影响和断裂构造的控制。在剖面 $1200 \sim 1900$ 米之间有一处低阻异常，深度到 800 米左右。其中在 1600 米处电阻率最低。对 GIII 号剖面的地质推断解释结果如图 2－b。在 300～ 600 米之间的低阻过渡区推断为受 F1，F2 两条断裂控制。900 米处低阻异常为 F3 断裂。推断 1200～ 1900 米之间的低阻区域两侧受 F4，F6 两条断裂控制。1600 米处的低阻区为垮庄断裂，与 GI 号剖面中的垮庄断裂为同一断裂。在 F1 和 F6 断裂之间的浅部推断为安山岩，安山岩下部为海房沟组。剖面基底为花岗岩。

5 结论

通过已经剖面 GI 的验证，物探测量结果与实际钻探结果基本相符，并与实际地质情况吻合，证明此方法在这个工作区的有效性，为下一步工作奠定了基础。音频大地电磁（AMT）法在干沟地区的应用，基本查明了各断裂构造的空间分布形态，圈定了主要成矿带海房沟组的位置及埋深，为进一步找矿提供了依据。

参 考 文 献／References

［1］罗毅，孙祥．辽宁兴城－河北青龙地区火山岩型铀矿远景调查［R］．核工业北京地质研究院， 2012
［2］陈文华．音频大地电磁法及其今后的研究方向［J］．石油地球物理勘探，1981，（2）：62－74
［3］吴有信．V8 多功能数字电法仪及其应用［J］．西部探矿工程，2006，（11）：171－172．

[^0]: 收稿日期：2013－03－13；改回日期：2013－03－31；责任编辑：黄敏。
 作者简介：作者简介：乔宝强（1982—），河北唐山，工程师，从事地球物理专业。Email：baoqiang qiao＠163．com

