破火山口研究述评

丁 毅^{1,2,3)},孙继明³⁾,吴云霞⁴⁾

- 1) 河北地质大学交叉科学学院,石家庄,050031;
- 2) 河北地质大学地质调查研究院,石家庄,050022;

3)河北地质大学非洲资源与环境研究中心,050022;4)河北地质大学地球科学院,石家庄,050031

内容提要: 破火山研究是火山学研究的一个重要分支,也是国内外学者持续关注的热点,这是因为形成破火山口的岩浆演化时间长,多是大型多金属、贵金属、铀矿等矿床的聚集地,大型破火山口的形成在地球生物进化史中影响很大。本文对破火山口的概念、容易混淆使用的分类和名词、世界知名破火山口及其形成理论研究、大型破火山口的研究认识与矿床形成的关系、中国破火山研究和今后努力的方向进行了一个总结。实际上在科学研究的阶梯上搭了一个向上继续向上的阶。期待学者在这方面又高水平的研究,为国家战略资源保障和为世界破火山口研究做出中国贡献。

关键词:破火山口;矿产

破火山口研究是国内外学者持续关注的热点, 因为:① 大型破火山口的形成地质年代的研究有助 于理解地球生物演化过程;② 监视和防范大型破火 山口的复活避免对人类的伤害;③ 有助于理解板块 构造理论与破火山口的成因关系;④ 破火山口区域 范围常有铀、多金属、贵金属等大型矿产。这些重要 意义造就了破火山口研究已经成为了火山学一个重 要的分支,这个重要的分支在全球的研究进展的述 评十分必要,特别是每经过三至五年,一个学科分支 研究需要总结,将全球在这个学科分支上的研究成 果进行归纳、集合、评论,这就等于在科研的梯子上 不断向上搭阶,这是提升一个国家整体科研水平的 一个手段,今后的科研就是踩在一层一层的梯子上 的"阶"继续向上攀登。本文正是出于这个目的,对 全球破火山口方面的研究作个述评。

1 破火山口的概念

火山口的大小决定了我们称其为普通的火山口 还是破火山口。Lipman (1997)认为与火山活动有 关、直径大于1km、具有陡峭的火山口内壁和相对 平坦的底部。在形成特点上,破火山口是由于火山 爆发形成初始火山建造之后,火山底板下的岩浆房 内的岩浆经过一定的地质时期的演化,火山活动复 活再次喷发或挤出而导致岩浆房中岩浆的体量被掏 空,而火山口底板失去支撑而沉降,而形成了更大的 火山口(Lipman, 1997; Geshi et al., 2002; Cole et al., 2005; Michon et al., 2011),因此,破火山口具 有演化时间长、多次爆发的特点。还有另外一种情 况就是当岩浆爆发碎屑喷出地表后没有继续喷发. 则半熔融状态的火山底板岩石失去支撑,从而岩浆 房的顶部塌陷形成较大规模的凹陷(subsidence)。 岩浆以侵入或喷出都使得从地下深部上到岩浆房中 的岩浆体量大减而导致塌陷(Branney and Acocell, 2015)。地质调查、数值计算(Holohan et al., 2015) 和实验研究(Acocell, 2007)都证实了形成破火山口 的这一多次喷发而沉降理论。整个破火山口的形成 过程经历了:(1)岩浆沿火山管道系统的侵入和喷 发阶段,即在破火山口形成之前的火山喷发或岩浆 侵入活动:(2)部分或全部相关的火山口崩塌导致 管道系统的破坏:(3)随机分散在火山口内或沿区 域构造趋势分布的岩浆侵入形成在破火山口中心部 分隆起,这种隆起也可能是由岩床复合体侵入引起 的;(4)热液矿化,这可能发生在火山口的整个形成 过程,但在最后的这一过程呈主导活动(Cole et al.,

注:本文为河北省教育局 2021 引智项目(编号: 360208)的成果。

收稿日期:2022-06-04;改回日期:2022-07-07;网络首发:2022-07-20;责任编辑:章雨旭。Doi: 10.16509/j.georeview.2022.07.095 作者简介:丁毅,男,1957年生,教授,主要从事火山和火山岩、火山地貌、金伯利岩、陨石坑等研究; Email: chinakimberlite@126.com, vwsource@hotmail.com。

2

 $2005)_{\,\circ}$

2 破火山口的分类

2.1 根据地貌形态分类

有三种类型:与层火山(stratovolcanoes)崩塌有 关的火山口湖型破火山口(crater-lake type),与盾 状火山(shield volcanoes)顶部坍塌有关的玄武质型 破火山口(basaltic calderas),大型火山形成后又经 历多点喷发且崩塌的复活型破火山口(resurgent calderas)。为避免汉语音译造成不必要的混淆,例 如:仅 Vulcanian(式)火山就有伏尔加诺(式)、瓦尔 加诺(式)、乌尔加诺(式)火山,本文提及的火山或 破火山口的名称采用原文。

火山口湖型破火山口是在 Plinian 式火山喷发的主要阶段之后,火山口下面的岩浆房被掏空失去支撑,导致之前形成的火山口塌陷,周围形成较厚的熔结凝灰岩,这是火山口湖型破火山口的标志,但并非是识别这种破火山口的必要条件。最典型的也是根据这一火山口的名字命名的就是美国俄勒冈州的火山口湖(Crater Lake)。

火山碎屑密度流(PDC, Pyroclastic Density Currents)是一种沉积性的流体, Plinian 火山爆发碎 屑柱体倾斜在火山侧面,碎屑物和高温的气体混合 物受重力控制形成片流层(Acocella, 2021),碎屑物 包括岩浆源碎屑和由流体流动时裹挟的地面原有的 碎屑(Brown and Andrews, 2015)。大小不同的火山 喷发都可以形成 PDC (Acocella, 2021)。在 Plinian 火山爆发和亚 Plinian 火山爆发时,常形成浮石和火 山灰为主的沉积物,称之为 ignimbrite 「教科书译为 熔结凝灰岩:魏海泉等曾译为伊格尼姆岩:魏海泉 等(2022)译为"浮岩流",以强调其喷发柱塌陷高速 向外泛滥的富浮岩质火山碎屑流成因;丁毅(2022) 强调岩浆的炽热,认为译为"熔接凝灰岩",更能对 应于英文的 welding]。包含岩浆上侵—火山爆发整 个过程的源岩浆碎屑,体量小的熔结凝灰岩的成分 变化为玄武质--安山质,体量大的熔结凝灰岩的成 分为英安质—流纹质(Acocella, 2021)。熔结凝灰 岩含有岩屑、晶屑,塑变玻屑、浆屑等。塑性碎屑常 形成压扁拉长(如形成:纺锤体),绕过刚性碎屑形 成平行排列的火山碎屑结构显示出可塑性和延展 性,手掌大小的浮石碎片被炽热基质紧密包裹中,这 种流动性又显得非常黏稠,形成焊接角砾碎屑流,其 中的浮石碎块和岩屑大小从火山弹状至砾状都有, 周围是更细的玻璃、晶体和岩屑的基质,经过流动变 形、压实、熔结和沉积后形成(Camp, 2022)。

玄武质型破火山口,许多盾型火山的顶部地区 都有破火山口,如夏威夷的 Mokuaweoweo 破火山口 和 Kilauea 破火山口,埃塞俄比亚的 Erta Al caldera 火山口,法属 Reunion 岛的 Piton del la Fournaise 火 山口,以及 Galapagos 群岛 Fernandina 盾状火山口。 地球上大多数玄武质盾状火山喷口的直径为 1~5 km。然而,在火星上观测到的盾形火山巨大,如: Olympus Mons 破火山口,直径超过 60 km。

复活型破火山口,火山活动经过地质年代较长 的时期复活再度喷发和侵入,形成多点喷发且复活 崩塌的破火山口,是地球上规模较大的破火山口。 通常是地下岩浆房较大、演化时间长、多次喷发所形 成的直径在 15 到 100 km 之间的火山口湖,这些破 火山口与火山口湖型破火山的形成过程相似,区别 在于直径超大、中间有直径约1km的隆起(图2)。 这些复活的火山口中地质年代最年轻的是印度尼西 亚苏门答腊岛 Toba 火山口,是 74 ka 前形成的。在 美国有三个不到 1.5 Ma 前的复活火山口:美国新墨 西哥州的 Valles 火山口、美国加利福尼亚州的 Long Valley 火山口和美国怀俄明州的 Yellowstone 火山 口。复活崩塌的破火山口底部通常有流纹岩流、玄 武岩流呈层状铺垫,也有岩浆侵入岩穹出现。火山 口的形成始于地壳隆起,伴随着大量富含气体的流 纹岩浆溢出,它们沿环形裂缝从岩浆通道向外溢流 到地表,同时各种气体随同岩浆一起逃逸。岩浆减 压导致大规模的气泡的形成和火山灰向高层大气中 的爆炸性喷发。随着喷发减弱,火山碎屑流开始沿 环形裂缝溢出, 岩浆室中的岩浆被耗尽的同时其地 壳顶部开始坍塌。火山口底部的复活阶段大约需要 1~100 ka才能完成。这一时期的抬升可能是由岩 浆房坍塌顶板下剩余岩浆的压缩或新岩浆进入岩浆 房控制的 (Goff et al., 1994)。

2.2 根据成分分类

这种分类只有描述意义而不具成因意义,根据 喷发物的主要成分(玄武岩、过碱性岩、安山岩—英 安岩、流纹岩)对火山口进行描述,并给出了各大类 的特征。喷发类型可能是喷溢式或爆炸式,前者主 要是玄武岩流溢出,后者主要发生在安山岩—英安 岩、流纹岩和过碱性岩浆活动。

2.3 形状描述性分类

火山口是所有火山环境中的重要特征,通常是 地热活动和矿化的场所。然而,在过去 30 a 中,综 合分析破火山的剥蚀研究、火山口内部的地球物理

图 1 五种描述破火山口的几何类型 (基于 Acocella, 2021) Fig. 1 The five established geometric caldera types (based on Acocella, 2021)

分析、破火山形成的模拟模型的建立,对破火山进行 了完全的三维研究。随着越来越多地使用火山口的 数据,它们的个性变得明显。对破火山口的塌陷类 型(图 1)有成熟的五种名词来描述:活塞式 (piston),边部有环状构造;碎块式(piecemeal),破 火山口内断裂发育,形成内部起伏不同的块体;活板 门式(trapdoor),不均匀对称,一端构造发育另一端 呈挠曲下凹;下凹式(downsag),向内凹陷,但断裂不 发育;漏斗式(funnel),下沉垂直且比较窄(Walker, 1984; Lipman, 1997; Cole et al. 2005; Acocella, 2021)。

地面变形包括沉降或塌陷(破火山口的基本特征)、隆起或膨胀、复活引起的破裂。塌陷是一个描述破火山口形成过程中最常用的词汇。然而,在各种破火山口的形成中可能发生在先前存在的区域构造的基础上,例如:区域断层或火山口形成间产生的环形断裂,塌陷区域的形状将受岩浆房的深度、大小和形状的影响。破火山口的最终形态将取决于火山

图 2 破火山口形态、构造、岩浆活动特征示意图 [根据 Cole et al. (2005)和 Acocella(2021)修改]

Fig. 2 Schematic diagram of caldera morphology, structure and magmatic features (modified from Cole et al., 2005 and Acocella, 2021)

口底部的破裂方式、崩塌是在一个事件还是多个事件中发生的(垂直运动在整个喷发序列中是间歇的还是连续的)、中心块体是在一个或多个崩塌中心均匀或无序地沉降等(图2、图3)。

3 世界一些破火山口特征和研究

3.1 俄勒冈州的火山口湖破火山口

该火山口壁高出湖面 600m(图 4a),是北美最 深的淡水湖。这一巨大的凹陷是大约 6.85 ka 前

图 3 美国俄亥俄州的 Crater lake 火山口形成示意图(基 于 United States Geological Survey,略有修改): (a)火山 形成后,在侧面又有喷发,酸雨对地区气候有很大影响, 此时岩浆房没有大规模持续向上运移岩浆;(b)岩浆复 活阶段,大规模和多点式喷发,掏空岩浆房,造成初始火 山崩塌,形成很多的放射和环状断裂;(c)沿着断裂初 始火山形成前后的断裂、塌陷过程形成的放射性和环状 断裂,晚期矿化液体充填;(d)最后有中心或侧翼岩浆侵 入,形成小岩株穹窿或矿化穹窿

Fig. 3 Schematic diagram of the formation process of the Crater Lake caldera in Ohio, USA (based on the United States Geological Survey, a bit modified): (a) After the formation of the volcano, there were eruptions on the side. Acid rain had a great impact on the regional weather. At this time, the magma chamber did not continuously move upward on a large scale. (b) During the magma reactivated stage, large-scale and multi-point eruptions hollowed out the magma chamber, resulting in the initial volcanic collapse, forming a lot of radioactive and ring fractures. (c) Radioactive and ring fractures formed along the fracture and collapse process before and after the initial volcanic formation of the fracture, and late mineralized liquid filling. (d) Finally, the central or flank magma intruded to form the central dome of the small rock stock

Mazama 层火山猛烈喷发和坍塌形成的,这次大规模 喷发产生的火山灰大约是 1980 年圣海伦斯火山喷 发产生的 VEI(参见丁毅,2022)的 50 倍。在 Plinian 式火山喷发阶段,约 30 km³ 的火山碎屑物质喷出, 从而消耗岩浆房中的岩浆,使其顶部无支撑。当熔 结凝灰岩在 Plinian 末期喷发时,火山大厦开始沿着 环形裂缝坍塌。崩塌产生额外的火山碎屑流和 10 km 宽的破火山口。自那以后,火山口一直是几次小 规模喷发,喷发的安山~流纹熔岩覆盖了火山口底 部的部分区域。主要活动期时形成 10 km 宽的

图 4 世界著名破火山口实地照片和卫星照片: (a) 美国俄勒冈州的 Crater Lake 破火山口; (b) 俄国远东千岛群岛 Yankicha 破火山口; (c) 美国 Valles 破火山口卫星照片; (d) 埃塞俄比亚国 Erta Ale 破火山口; (e) 菲律宾的 Laguna 破火山口; (f) 美国黄石破火山口卫星照片; (g) 夏威夷 Mokuaweoweo 火山口; (h) 印度尼西亚 Toba 火山

Fig. 4 Site photos and satellite photos of some famous calderas: (a) Crater Lake Caldera in Oregon, USA. (b) Yankicha Caldera in the Kuril Islands in the Far East of Russia. (c) The satellite photo on the Valles Caldera in the USA. (d) Erta Ale Caldera in Ethiopia. (e) Laguna Caldera in the Philippines. (f) Satellite analysis photos of Yellowstone caldera in the USA. (g) Mokuaweoweoo Caldera in Hawaii. (h) Toba volcano in Indonesia (photos credited to National Geographic)

Mount Mazama 山顶的破火山口和喷涌出席状火山 碎屑流(著名的 Mazama 熔结凝灰岩)。而后,它们 会逐渐下沉,形成一个由凹坑和阶地组成的嵌套结 构(Bacon et al., 2006; Nelson et al., 1994)。 Crater lake 喷发形成的矿床保存完好,交通便利,是 研究火山和岩浆过程的天然实验室。与火山口形成 喷发相关的研究对火山学家来说至关重要,有助于 他们了解大型爆炸性喷发、岩浆室中的成分分带和 崩塌火山口机制。

3.2 Yankicha 破火山口

Yankicha 破火山口(图 4b)位于俄罗斯远东千岛群岛中(47.52°N,152.8°E),是火山口湖型,是安山岩浆喷发形成,除了破火山口内有两个熔岩穹隆外,历史时期还有水汽喷发(Gorshkov, 1970; Sazonov et al., 1995)。Yankicha 岩浆房崩塌后,海水与火山水下喷口的过热水混合。这种混合创造了一个充满独特鱼类和植物的生态系统。大约9.40ka 前形成的一个1.6 km 宽的小火山口在南部被狭窄地冲破,使得海水能够填满火山口。

3.3 Erta Ale 玄武质破火山口

Erta Ale 破火山口(图 4d),位于埃塞俄比亚国 境内(13.6°N,40.67°E),是玄武质破火山口,山顶 是 0.7 × 1.6 km 的椭圆形火山口,另一个较大的 1.8 × 3.1 km 宽的凹陷,平行于 Erta Ale 山脉的走 向延伸,以东南侧的曲线断层陡坎为界。从这些裂 隙中流出的玄武岩熔岩流涌入破火山口,局部溢出 其边缘山顶火山口通常还至少有一个长期熔岩湖, 该熔岩湖自 1967 年或 1906 年以来一直活跃。最近 的裂缝爆发发生在北侧。(Harris et al. 2005; Pagli et al. 2012; Wiart et al. 2015)。

3.4 菲律宾 Laguna 破火山口

位于马尼拉东南(14.42°N, 121.27°E), 一个 12 × 24 km 的椭圆形破火山口(图 4e),构成了吕宋 岛最大湖泊。由更新世玄武岩—玄武安山岩火山形 成。根据 Laguna 火山碎屑流沉积物中木炭的放射 性碳年代测定表明其年龄约为 47 ka、27~29 ka 前 至少两次大的爆炸性喷发期间形成,有玄武安山岩、 安山岩、粗面岩、流纹岩 (Catane et al. 2005; Catane et al. 2004)。

3.5 夏威夷的"Mokuaweoweo"破火山口

该破火山口位于 Mauna Loa 火山山顶(图 4g)。 美国夏威夷州夏威夷大岛 (the Big Island of Hawaii) 面积为 16636 km², 位于太平洋中, 是世界 上最大的岛链,由137个火山岛组成,被认为是板块 运动的热点地区(hot spots),大约1 Ma 至 700 ka 前,构造运动导致了 6000 km 长的火山岛链的形成, 这里存在的都是玄武质型破火山口。位于大岛的中 南部的 Mauna Loa 火山是夏威夷大岛的五座活盾火 山之一,研究表明 Mauna Loa 约 400 ka 才上升到海 平面以上,它是夏威夷火山国家公园的主要景点, 被认为是世界上最大的陆上活火山,海拔4169 m, 估计体积为 75000 km³。Mokuaweoweo 破火山口面 积为 6.2 × 2.5 km, 深度达 180 m, 由三个重叠的不 同洼地组成,从北向南,第一个圆形区域的直径约为 1 km, 中间部分为长方形,约为4.2 × 2.5 km。最 南端的地区直径不到1km。Lua Hou 和Lua Hohonu 是两个小火山口位于 Mokuaweoweo 的西南部。 Mauna Loa 东部有 Kilauea 火山、西北部的 Hualalai 火山和东北部的 Mauna Kea 火山包围。从 1843 年 至今, Mauna Loa火山喷发了大约33次, 平均每6年 喷发一次。研究还表明, Mauna Loa 玄武质火山由 易流动的熔岩流组成,由于熔岩的黏度极低,火山的 喷发速度很快,熔岩能够长距离移动。大多数喷发 发生在山顶火山口,然后迁移到在山谷带中喷发。 除了山顶和两个山谷带之外, Mauna Loa 火山西北 侧也是一些喷发的源头 (Amelung et al., 2007; Riker et al. , 2009; Zimbelman et al. , 2008) $_{\circ}$

3.6 法属 Reunion 岛的 Piton del la Fournaise 玄武质破火山口

Reunion 岛位于西印度洋, Piton del la Fournaise 是地球上最活跃的火山口之一, 喷溢出玄武质熔岩 流, 巴黎环球物理研究所运营的皮顿火山观测站 (Piton de la Fournaise Volcano Observatory)持续对 Dolomieu 这座非常活跃的火山进行了监测, Dolomieu 是一个400 m 高的玄武质破火山,在其侧 面 530 ka 中共形成 Piton del la Fournaise 三个破火 山口,属于玄武质型破火山口,分别形成在250 ka、 65 ka 和不到5 ka 前,是由火山向东逐渐坍塌形成 的。许多火山碎屑锥点缀着火山口的底部及其外 侧。自17世纪以来,发生了150多次喷发,其中大 部分喷发产生了玄武岩熔岩流。1708年、1774年、 1776年、1800年、1977年和1986年,只有六次喷发 源自火山口外侧的裂缝 (Michon et al., 2009, Oehler et al. 2008)。

3.7 印度尼西亚的 Tambora 火山口湖型破火山口

Tambora 位于印尼桑巴瓦岛北岸, 是近 200 多 年最大的火山喷发。它现在高 2851 m,在 1815 年 的喷发中失去了大部分顶部。目前火山仍然活跃; 1880年和1967年发生了较小的喷发,2011年、2012 年和 2013 年发生了地震。Tambora 火山灾难性的 喷发始于1815年4月5日,伴随着轻微的震动和火 山碎屑流,之后发生了猛烈的爆炸将火山崩炸,火山 碎屑流和海啸造成至少1万名岛民死亡,3.5万多 人的家园被毁。火山喷发前, Tambora 火山大约有 4300 m 高。喷发结束后为 2851 m 高,火山口成为 一个直径约6 km 的破火山口。Tambora 火山向大气 中和附近喷发了多达150 km3 的火山灰、浮石和其 他岩石碎块,以及包括估计60亿吨硫等有害气体的 气溶胶。由于这种物质与大气中的气体混合,它阻 止了大量阳光到达地球表面,最终使全球平均温度 降低了3℃。对印度尼西亚桑巴瓦岛及其周围岛屿 的直接影响最为深远,农作物无法生长,约有80000 人死于疾病和饥荒。1816年,远在西欧和北美东部 的世界部分地区在6月、7月和8月经历了的大雪 和霜冻。这种寒冷的天气事件导致这些地区农作物 歉收和饥荒,1816 年被称为"无夏之年"。Tambora 火山地区最老的熔岩的年龄约为 50 ka,最年轻的是 1815年沉积在印度尼西亚的火山灰和岩石层。在 这些岩层之下是些更老的岩石,通过这些信息,地质 学家或许能预测下次喷发的时间 (Cole-Dai et al., $2009)_{\circ}$

3.8 Galápagos Islands 玄武质型破火山口

Galápagos Islands 是东太平洋上的群岛,该群岛 由 13 个大岛屿和 6 个小岛屿,以及数 10 个小岛组 成,面积超过 17000 km²。它们是南美洲厄瓜多尔 的一部分,距离厄瓜多尔海岸约 966 km。与夏威夷 群岛相似,Galápagos Islands 是东太平洋一个热点地 区,由一系列盾状火山和一些山顶火山口组成。费 尔南迪纳岛(Fernandina Island)是火山链中火山活 动最活跃的岛屿,有一个深椭圆形火山口,4×6.5 km。1968年,一次大规模火山喷发导致了近代史上 最大的火山口崩塌。像大多数盾状火山喷口一样, 费尔南迪纳火山喷口不对称的方式坍塌,在某些地 方下沉 350 m (Munro et al., 1996)。

3.9 俄罗斯堪察加半岛的 Uzon 火山口

堪察加半岛位于俄罗斯远东地区,半岛总面积为270000 km²,有3个野生动物保护许多其他保护区。堪察加半岛的主要景点是火山,共有300 多座火山,其中有30 座是活火山。Uzon 破火山口是其中热液系统最强、没有被人类改变过、自然美景仍然非常原始、以旅游为主的破火山口。Uzon 火山口形成于大约40 ka前,火山爆发形成了一个直径约10 km、总面积为150 km²。边缘陡峭,约200~900 m 深。这是一个火山湖型破火山口,像一个露天博物馆,这个独特的火山区造就的各种美丽的风景和特别的动物种群。在200~350 m 的狭窄区域分为5个热场,包括数千个有大量蒸汽流的温泉、火山、泥浆、池塘和热湖。当你直接看到这个火山口时,你会感受到非凡的自然奇观(Global Volcanism Program, 2013)。

4 超级破火山口

人类还没有看到火山爆发指数 VEI >7 的超级 火山爆发,但是通过熔结凝灰岩的体量计算出世界 上有些火山的爆发指数 VEI >7、演化时间长、规模 大(面积超过 100 km²)。这些超大型的火山爆发曾 经或者未来复活都会对全球生物演化产生影响。超 级大型破火山口还有一个重要的特点,就是在沉降 区域内有各种矿产。超级破火山口下方的岩浆房的 结构和寿命控制着火山的危险性和资源潜力。镁铁 质火山口的喷发的岩浆量约为 0.1~8 km³,长英火 山口喷发的岩浆量约为 1~5000 km³(Smith, 1979), 超级破火山口都是长英质火山~岩浆活动多次复活 演化的结果。

4.1 黄石复活型破火山口

黄石火山口是复活型破火山口,是地球上 VEI> 7 的超级火山,位于美国怀俄明州黄石国家公园(图 4f)。这座巨大的火山口经过多次喷发形成(2.1 Ma, 1.3 Ma, 0.64 Ma)。黄石火山口长达 72 km。 最近的科学分析表明,该火山口下面的岩浆房比之

6

前认为的大 2.5 倍,测量达到令人惊叹的程度,为: 90 km×30 km×10 km (深),含有大约 25%的岩浆尚 未冷凝。在 150 ka 前,其西侧有小规模的喷发。自 上次喷发以来,黄石公园一直处于不安状态,地震活 动性很高,不断发生隆起/沉降事件,热液活动强烈。 使用欧洲航天局 ERS-2 卫星的雷达干涉测量,对黄 石公园的一种新的地表变形模式进行了观测,到目 前隆起了 8 cm, 推断是地下岩浆活动的结果(Wicks et al., 2006)。

4.2 美国 Valles 破火山口

Valles 火山(图 1c)大约在 1.25 Ma 前爆发,形 成复活型破火山口,位于新墨西哥州境内(35.908° N,106.517°W),"超级喷发"在地面形成一个环形 断裂,并呈近圆形下沉,形成一个 20 × 23 km 的火 山口凹陷。火山爆发之后,岩浆沿环状断裂侵出,形 成穹隆式岩浆充填和火山口底板的隆起,形成了 Redondo Peak 复活穹隆(resurgent dome)。中央火 山口底部的穹窿复活发生在 1.25~1.22 Ma 前,以 2 次火山活动为主,火山活动一直延续到 40 ka 前。 地震波调查表明,火山口下方有一个低速带,目前存 在着一个活跃的地热系统,地表有温泉和喷气孔 (Goff et al., 1994; Reneau et al., 1996; Self et al., 2005)。

4.3 印尼苏门答腊岛的 Toba 破火山口

这是一个复活型破火山口(图 1h),是地球上较 大的第四纪破火山口,35 × 100 km,它是在 1200 ka 前,经过四次熔结凝灰岩喷发形成的。其中最新的 一次是大约 74000 年前,从今天的 Toba 湖西北端和 东南端的喷出凝灰岩,喷发出 2800 km3 的火山碎屑 物质,是过去2 Ma来世界上最大的"超级火山"(喷 发产物>1000 km3),也是世界上最年轻的仍在活动 的复活火山。火山口壁由古生代—中生代基岩组 成,使Toba火山口成为地球的窗口。然后,这个火 山口充满了大气降水,变成了 Toba 湖(体积为 240 km³),其中萨莫西尔岛位于该湖的中部。爆发了近 2 Ma 来最大的一次火山喷发。目前的火山口分多 阶段形成:发生在 840 ka、700 ka 和 74 ka。74 ka 的 火山活动形成凝灰岩,体积为2800 km³。在火山口 周围,凝灰岩的厚度超过 600 m。估算这次火山爆 发导致了全球 6~10 年陷入低温的环境中(Costa et al. 2014; Knight et al. 1986; Rampino et al. 2000) 再加上 1500 km³ 的 PDC 沉积物 (Costa et al., 2014) .

4.4 阿根廷 Cerro Galán 破火山口

CerroGalán 火山口(25°57'S: 66°57'W) 是一个 直径约35 km×25 km, 形成约在6~2.2 Ma的椭圆 形破火山口(图5),位于阿根廷西北部安第斯山脉 的顶部,在阿根廷和玻利维亚的边界。在火山口内, 熔结凝灰岩累积到 2 km 的厚度。在新生代期间该 火山复活,沿着北部火山口环断裂,形成超过3500 km²的熔结凝灰岩岩层,该火山口在形态、地质演化 和构造背景上与美国新墨西哥州的 Valles 火山口极 为相似(Francis, 1982)。这些英安岩的形成是非爆 炸性的,由于其挥发性含量低,在火山口形成喷发的 岩浆快速起泡(脱气)过程中丢失。复活后形成了 目前 35 × 20 km 的火山口形成火山口,称为 Cerro Galán 湖,在不到10ka的时间里,周边还形成了一 些小型喷口。35×20 km 的 Cerro Galán 复活火山口 是迄今为止在安第斯山脉发现的最大的中新世破火 山口。Cerro Galán 杂岩发育前在寒武纪晚期至晚 古生代的片麻岩、角闪岩、云母片岩和变形千枚岩和 石英岩的基底上。早中新世,基底沿大型南北逆断 层抬升,形成地垒和地堑地形(Francis et al., 1978; Francis et al., 1983)。15 Ma 之前,该地区开始发生 火山活动,形成了几个安山岩--英安岩火山,并在7 ~4 Ma 期间导致至少九次熔结凝灰岩喷发。这些熔 结凝灰岩被称为 Toconquis 熔结凝灰岩, 它是在大约 2 Ma的休眠期之后,流纹英安质岩浆的一次大喷发 形成了 1000 km³ 的 Cerro Galán 熔结凝灰岩,火山 口向各个方向延伸 100 km,形成了 30~200 m 厚的 流纹质熔岩流层(Folkes et al., 2011)。先期的流 纹英安岩 SiO,含量高于 Toconquis 熔结凝灰岩,但 K₂O 含量低于 Toconquis 熔结凝灰岩。这次喷发被 认为是由一个坩埚块(cauldron block)进入岩浆房, 而导致的灾难性坍塌(Sparks et al., 1985)。

5 破火山口分布规律

破火山口出现在所有全球构造—火山环境中, 有一定的规律:玄武质型破火山口分布在海洋板块 内热点的位置,但也出现在大洋中脊位置的一些不 同板块边界(如:东太平洋隆起,Fornari et al., 1984;冰岛地区,Gudmundsson,1995)。安山岩—英 安岩破火山口通常与聚敛板块边界有关,它们出现 在岛弧(如:Tofua Island, Baker et al., 1971)和大陆 边缘弧(如:Crater Lake, Bacon, 1983)中的火山 上。过碱性火山口与深断裂延展地区相关,如:东非 裂谷的埃塞俄比亚的 Elliptic 破火山口 (Acocella et

图 5 阿根廷 Cerro Galan 破火山口,是一个 南北方向延展的椭圆形 Fig. 5 Cerro Galan Caldera in Argentina is an oval extending in the north—south direction

al.,2002),但也出现在汇聚板块边缘局部伸展率异 常高的区域(如:新西兰 Mayor Island, Houghton et al.,1992)或板块内海洋岛屿(如: Las Canadas caldera, Marti et al.,2000)。流纹岩火山口主要出 现在大陆边缘地区,或与聚敛板块边界有关(如:新 西兰 Taupo volcanic zone; Wilson et al.,1995),也与 大陆地壳的裂谷作用有关(如:美国新墨西哥州中 南部,Elston,1984)。还观察到流纹岩火山口与大陆 热点(如:黄石公园破火山口,Hildreth et al., 1984),最近在一些海底弧—弧后系统中发现(如: 新西兰岛 NE 方向 800 km 的 Kermadec 破火山口, Wright et al.,2003)。

6 破火山口与矿产

破火山口有关矿产大多数发现在复活型破火山 口地区:大型破火山口的岩浆演化是长期和体量大 的,后期相伴的热液活动延续时间长,因此它们所在 的区域范围大多含有各种矿产,目前已知矿化有U、 Hg、Au—Ag、Mo、Li、Be、Sn、W等。火山口通常也是 地热活跃的场所,使其成为发电的潜在场所,例如在 新西兰 Taupo火山带(Bibby et al.,1995)。

破火山旋回的最初阶段,岩浆侵入上部地壳从 而导致上伏于岩浆房的地层区域性隆起。或许在最 初就已经形成环状构造,但是由于之后的火山喷发 覆盖致使火山口附近的断裂消失而远处的得以保 存,沿着这些呈岩脉展布的断裂方向往往被后期石 英和其它物质混合的各种矿脉。

(1) 俄勒冈州的 Mahogany 破火山口形成环状

岩墙和以环形穹隆形式的流纹岩环状岩脉,热液流体上升至洼地的沉积层中,形成锑矿和铀矿床。热水沉积型 Li 矿和 U 矿也发育在放射状和环状构造在破火山活化构造穹隆内,与岩脉在边缘充填。

(2) 玻利维亚索莱达破火山口最初阶段是大约 15 Ma 前在现破火山口西南边缘拉霍亚一带,有小 型英安岩岩株群的侵入。这些岩株与强烈的热液蚀 变及含少量 As、Sb、Mn、Bi、W、Sn 的低温热液脉型 和浸染型 Au—Ag—Cu—Pb—Zn 矿化有关。在 8.8 Ma 前,破火山口边缘外环破裂而形成了一连串小型 流纹岩穹窿。破火山口塌陷发生在约 5.4 Ma 前,同 时伴随着索莱达凝灰岩的喷发。这些构成了一套由 凝灰岩组成的岩石序列,面积为 240 km²。该破火 山口被认为是岩浆最初形成有多个突起岩株但实际 上底部相连的岩基,后发生火山活动。

(3) 在美国内华达州 McDermitt 破火山杂岩 中,过碱性热液矿脉延伸达 3 km,整个岩脉为一热 液型铀矿床。破火山口实际上起着一个封闭盆地作 用,将热液循环限制在盆地中。在 McDermitt 破火 山杂岩中,也发现有热液汞、铀矿钼矿床、贵金属矿。

(4) 西班牙的 Rodalquilar 破火山口在复活期形 成放射状和环状构造的金—明矾石矿床。年龄为 11.0 Ma。破火山口活化期中,环状穹隆被沿着其南 面和北面的环状裂隙断裂所侵入并在其中心部位形 成构造穹隆。中心构造穹隆的进一步活化导致在穹 隆中放射状断裂的发育。再生的岩浆伴随着 Lazaras 火山灰流凝灰岩的爆发,在 Rodalquilar 破火 山口活化穹隆内形成 Lomilla 破火山口,它具有放射 状断裂,在东部有闪长岩株的形成并造成局部隆起 和断裂带,随着 SO₂ 从岩浆中逸出,酸性硫酸盐蚀变 导致了沿东部环状断裂和裂隙中形成明矾石和发育 大型水晶晶洞。

(5)美国内华达州是世界上著名的黄金产地, 这一地区所分布的许多矿山都与大型复活型 Valles 破火山口有关,是世界上大型贵金属矿床聚集地。 其中:Lake Owyhee 东部火山岩田的矿床也是由于 区域断裂复活型破火山口。在 DeLamar—Duck 谷 断裂带中,16 Ma 前喷发出流纹岩流层,DeLamar 和 Stone Cabin 金一银矿床产在其上部。矿脉的形成年 代与流纹岩形成的年代一致,表明这些贵金属矿化 就是流纹岩的形成所产生的,且矿脉充填了穹隆和 熔岩流中的构造断裂(Mills et al., 1988)。

(6) 美国亚利桑那州 Jerome 地区的破火山口的研究认为:Cu、Au、Ag 矿床均与远古宙火山爆发

形成的流纹岩有关、破火山口断裂被硫化物矿脉充 填和形成硫化物穹窿,还发现了罕见的黑烟柱。20 世纪初开采了3300万吨高品位铜矿,其中以Cu为 主,Cu含量为4.79%,Au为1.22 g/t,Ag为45.6 g/t。

7 中国的破火山口研究

我国学者已经在本土发现了许多破火山口,如: 直径大约6km的河北的香炉山破火山口位于围场 县南四道沟乡一带。地质构造位置处于康保—赤峰 深断裂边部的清泉断陷盆地的南缘。面积约100 km²。区内主要堆积一套K₂的中酸性火山岩、是一 保存较完整的破火山口构造,边部还有潜火山相形 成。山东邹平破火山口地层有碱性玄武质—粗面质 岩石,时代为K₁,火山碎屑厚度达4000m,发现有 熔结凝灰岩。额尔古纳破火山口是大面积火山岩分 布区,面积约45000 km²,已发现数处大型火山岩型 多金属矿床,并在遥感解析清晰地显出多处破火山 口。此外还发现有山东的七宝山、安徽的浮山、江西 的密坑山、安徽的娘娘山、浙江的芙蓉山等破火山口 等。

8 结论

(1)破火山口分为火山口湖型、玄武质型、复活型破火山口。这个分类简单、通俗、又具有成因意义。而以某岩石为主的成分分类只是具有描述意义上的分类。破火山口研究已经建立了一套人们习惯的标准的术语。

(2)初始火山的形成和后来破火山口的形成都 与地下岩浆房不断演化有关,随着岩浆的演化,矿化 液或沿着初始火山形成之前的区域断裂、或沿着破 火山口的塌陷所形成的环形断裂和放射性断裂形成 多点和多期的充填,甚至形成矿化穹隆,破火山口区 域范围内和附近可能存在各种矿产。世界上许多复 活型破火山口地区都是大型矿产的聚集地,而矿产 的种类又受区域地层、火山形成前的区域构造、岩浆 种类等多种因素控制。

(3)破火山口的研究不可缺失地对破火山口类 型判别、地貌的描述(范围和深度)、火山活动分期、 断裂与矿化、矿化脉与岩浆演化阶段的关系等方面 进行深入的研究,包括任何破火山口之前的构造特 征、区域老地层的、初始火山的形状和成分;我们现 在看到的破火山口是分几期形成的、形成年代、崩塌 事件的数量(单一事件还是多事件?)、崩塌几何形 状(多块,对称还是不对称?圆形还是椭圆形?);是 否有矿化脉、它们的矿物组合特征、沿着火山前还是 破火山形成之后的断裂充填?矿化脉与岩浆演化的 关系?

(4)本文列举四个大型复活破火山口,都是最 初火山的爆发指数 VEI >7 的超级火山,复活喷发— 塌陷后成为破火山口。这些大型火山的初始爆发形 成期和复活期,都影响过地球气候和地球生物演化, 研究大型古火山口的时代有助于理解地质时代中生 物灭绝的因素:复活型破火山口底下的岩浆房是否 还有剩余岩浆尚未冷凝?是否还将爆发?对人类的 有无威胁? 中国在未来还有可能发现威胁全球生命 演化的复活型破火山口,作者认为:地质发现是一 个对新的现象论证的过程:一种地质现象早就存在, 需要有充分的国内外文献引述和逻辑分析去充分论 证。如对一个疑似破火山口从地貌、火山岩形成的 期、破火山口形成的过程等方面得到全面的论证,这 就是发现! 笔者可以肯定地说, 在中国发现大型破 火山口才刚刚开始,期待发现大型复活型破火山口, 为世界在这方面的研究做出中国贡献同时也为国家 矿产资源安全保障做出贡献。

致谢:审稿专家对本文提出了很好的修改意见, 特此致谢。本文第一作者 20 世纪 80 年代在中国地 质科学院地质研究所火山岩室工作,在此表示对导 师李兆鼐先生的怀念,及对其他同事的思念。

参考文献 / References

(The literature whose publishing year followed by a "&" is in Chinese with English abstract; The literature whose publishing year followed by a "#" is in Chinese without English abstract)

- 丁毅. 2022. 火山学述评[J]/[OL]. 地质论评, http://www. geojournals. cn/georev/ch/reader/view_abstract. aspx? file_no = 20226803032&flag=1
- 魏海泉,白志达,刘永顺.2022.火山碎屑岩的百年研究[J]/[OL].地 质论评, http://www.geojournals.cn/georev/ch/reader/view_ abstract.aspx? file_no=20226803040&flag=1
- Acocella V. 2021. Volcano----technic process. Switzerland: Springer: 29~30,163~203.
- Acocella V. 2007. Understanding caldera structure and development: an overview of analogue models compared to natural calderas. Earth Sci. Rev., 85(3): 125~160.
- Acocella V, Korme T, Salvini F, Funiciello R. 2002. Elliptic calderas in the Ethiopian Rift: The control of pre-existing structures. J. Volcanol. Geotherm. Res., 119: 189 ~ 203.
- Amelung F, Yun S H, Walter T R, Segall P, Kim S W. 2007. Stress Control of Deep Rift Intrusion at Mauna Loa Volcano, Hawaii. Science, 316 (5827): 1026 ~ 1030; DOI: 10. 1126/science. 1140035.
- Bacon C R, 1983. Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, USA. J. Volcanol. Geotherm. Res.,

18:57 ~ 115.

- Bacon C R, Lanphere M A, 2006. Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon. Geol. Soc. Amer. Bull., 118: 1331~1359.
- Baker P E, Harris P G, Reay A. 1971. The geology of Tofua Island, Tonga. Bulletin des Sociétés Chimiques Belges, 8: 67 ~ 79.
- Bibby H M, Caldwell T G, Davey F J, Webb T H. 1995. Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J. Volcanol. Geotherm. Res., 68: 29 ~ 58.
- Branney M, Acocella V. 2015. Calderas. In: Sigurdsson H, Houghton B, McNutt S, Rymer H J. eds. The Encyclopedia of Volcanoes, 2nd ed. Landon: Elsevier Academic Press: 299~319.
- Brown R J, Andrews G D M. 2015. Deposits of pyroclastic density currents. In: Sigurdsson H, Houghton B, McNutt S, Rymer H J. eds. The Encyclopedia of Volcanoes, 2nd ed. Landon: Elsevier Academic Press: 631~647.
- Catane S G, Taniguchi H, Goto A, Givero A P, Mandanas A A. 2005. Explosive volcanism in the Philippines. CNEAS Monograph Ser., Tohoku Univ., 18: 1~146.
- Catane S, Ui T, Arpa M B, Cabria H B and Taniguchi H. 2004. Potential hazards from the youngest explosive eruptions of Laguna Caldera to metropolitan Manila, Philippines. Western Pacific Geophysics Supplement, 85(33): A-89.
- Camp V. 2022. How volcanoes work——ignimbrite and ignimbrite textures [OL]. http://www.sci.sdsu.edu/how_volcanoes_work/ ignimbrite_textures.html.
- Cole J W, Milner D M, Spinks K D. 2005. Calderas and caldera structures: A review. Earth-Science Reviews, 69: 1~26.
- Cole-Dai J, Ferris D, Lanciki A, Savarino J, Baroni M, Thiemens M H.
 2009. Cold decade (AD 1810~1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption [J]/[OL].
 Geophysical Research Letters, 36: L22703; https://doi.org/10.
 1029/2009GL040882
- Costa A, Smith V C, Macedonio G, Matthews N E. 2014. The magnitude and impact of the Youngest Toba Tuff super-eruption. Frontiers in Earth Science, 2(16):1~8.
- Ding Yi. 2022&. A review on volcanology. Geological Review, http:// www.geojournals.cn/georev/ch/reader/view_abstract.aspx? file_ no=20226803032&flag=1
- Elston W E. 1984. Mid-Tertiary ash-flow cauldrons, southwestern New Mexico. J. Geophys. Res., 89B: 8733 ~8750.
- Folkes C B, Wright H M, Cas R A F, et al. 2011. A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina. Bull. Volcanol., 73: 1427 ~ 1454; https://doi. org/10.1007/s00445-011-0459-y
- Fornari D J, Ryan W B F, Fox P J, 1984. The evolution of craters and calderas on young seamounts: insights from sea MARC 1 and SEABEAM sonar surveys of a small seamount group near the axis of the East Pacific Rise at 108N. J. Geophys. Res., 89: 11069 ~ 11083.
- Francis P W. 1982. The Cerro Galan caldera, Argentina. Earthq. Inf. Bull., 14: 124~133.
- Francis P W, Ocallaghan L, Kretzschmar G A, Thorpe R S, Sparks R S J, Page R N, de Barrio R E, Gillou G, Gonzalez O E. 1983. The Cerro Galan ignimbrite. Nature, 301: 51 ~ 53. https://doi.org/ 10.1038/301051a0
- Francis P W, Hammill M, Kretzschmar G, Thorpe R S, 1978. The Cerro Galan caldera, north-west Argentina and its tectonic setting. Nature, 274: 749~751.

- Global Volcanism Program. 2013. Volcanoes of the World, v. 4. 10. 6 (24 Mar. 2022). In: Venzke E. ed. Smithsonian Institution [OL]. Downloaded 28 May 2022. https://doi.org/10.5479/si. GVP. VOTW4-2013.
- Goff F, Gardner J N. 1994. Evolution of a mineralized geo-thermal system, Valles Caldera, New Mexico. Econ. Geol., 89: 1803 ~ 1832.
- Gorshkov G S, 1970. Volcanism and the Upper Mantle; Investigations in the Kurile Island Arc. New York: Plenum Publishing Corp.: 1 ~ 385.
- Gudmundsson A. 1995. Infrastructure and mechanics of volcanic systems in Iceland. J. Volcanol. Geotherm. Res., 64: 1~22.
- Harris A J L, Carniel R, Jones J. 2005. Identification of variable convective regimes at Erta Ale Lava Lake. J. Volcanol. Geotherm. Res., 142: 207~223.
- Hildreth W, Christiansen R L, O'Neil J R. 1984. Catastrophic isotopic modification of rhyolite magma at times of caldera subsidence, Yellowstone plateau volcanic field. J., Geophys. Res., 89B: 8339 ~ 8369.
- Holohan E P, Schopfer M P J, Walsh J J. 2015. Stress evolution during caldera collapse. Earth Planet. Sci. Lett., 421: 139~151.
- Houghton B F, Weaver S D, Wilson C J N, Lanphere M A. 1992. Evolution of a Quaternary peralkaline volcano: Mayor Island, New Zealand. J. Volcanol. Geotherm. Res., 51: 217~236.
- Knight M D, Walker G P L, Ellwood B B, Diehl J F. 1986. Stratigraphy, paleo magnetism, and magnetic fabric of the Toba Tuffs: Constraints on the sources and eruptive styles. J. Geophys. Res., 91(10): 10355~10382.
- Lipman P W. 1997. Subsidence of ash-flow calderas: relation to caldera size and magma chamber geometry. Bull. Volcanol., 59: 198 ~ 218.
- Marti J, Gudmundsson A. 2000. The Las Canadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. J. Volcanol. Geo-therm. Res., 103: 161~173.
- Mills B A, Boden D R, Sander M V. 1988. Alteration and precious metal mineralization associated with the Toquima caldera complex, Nye County, Nevada. In: Schafer R W, Cooper J J, Vikre P G. eds. Bulk-Mineable Precious Metals Deposits of the Western United States. Symposium Proceedings. Geol. Soc., Nevada: 303 ~ 332.
- Michon L, Cayol V, Letourneur L, Peltier A, Villeneuve N, Staudache T, 2009. Edifice growth, deformation and rift zone development in basaltic setting: Insights from Piton de la Fournaise shield volcano (Reunion Island). J. Volcanol. Geotherm. Res., 184: 14~30.
- Michon L, Massin F, Famin V, Ferrazzini V, Roult G. 2011. Basaltic calderas: collapse dynamics, edifice deformation and variations of magma withdrawal. Journal of Geophysical Research, 116 (B03209): 1~18, doi:10.1029/2010JB007636
- Munro D C, Rowland S K. 1996. Caldera morphology in the western Galapagos and implications for volcano eruptive behavior and mechanisms of caldera formation. Journal of Volcanology and Geothermal Research, 72: 85~100.
- Nelson C H, Bacon C R, Robinson S W, Adam D P, Bradbury J P, Barber J H Jr, Schwartz D, Vagenas G, 1994. The volcanic, sedimentologic, and paleolimnologic history of the Crater Lake caldera floor, Oregon: evidence for small caldera evolution. Geol. Soc. Amer. Bull., 106: 684~704.
- Oehler J F, Lenat J F, Labazuy P. 2008. Growth and collapse of the Reunion Island volcanoes. Bull. Volcanol. , 70: 717~742.
- Pagli C, Wright T J, Ebinger C J, Yun S-H, Cann J R, Barnie T, Ayele

A, 2012. Shallow axial magma chamber at the slow-spreading Erta Ale Ridge. Nature Geoscience, 5: 284~288; https://doi.org/10. 1038/ngeo1414

- Rampino M R, Ambrose S H. 2000. Volcanic winter in the Garden of Eden: the Toba super-eruption and the late Pleistocene human population crash. In: McCoy R W, Heiken G. eds. Volcanic Hazards and Disasters in Human Antiquity, Geol. Soc. Amer. Spec. Pap., 345: 71~82.
- Reneau S L, Gardner J N, Forman S L. 1996. New evidence for the age of the youngest eruptions in the Valles caldera, New Mexico. Geology, 24: 7~10.
- Riker J M, Cashman K V, Kauahikaua J P, Montierth C M, 2009. The length of channelized lava flows: Insight from the 1859 eruption of Mauna Loa volcano, Hawaii. J. Volcanol. Geotherm. Res., 183: 139~156.
- Sazonov A P, Gavrilenko G M. 1995. Lithology and geochemistry of bottom sediments in the crater bay, Ushishir volcanic island, Kuril Islands. Volc. Seism., 16: 387~400.
- Self S, Wolff J A. 2005. Outstanding issues about relationships between large-scale calderas, ignimbrite volumes, and magma body shape and longevity. Workshop Caldera Volcanism: Analysis, Modelling and Response, Parador de las Canadas, Abs. : 15.
- Smith R L. 1979. Ash-flow magmatism. Geol. Soc. Am. Special Pap., 180; 5~28.
- Sparks R S J, Francis P W, Hamer R D, Pankhurst R J, O'Callaghan L O, Thorpe R S, Page R. 1985. Ignimbrites of the Cerro Galan

caldera, NW Argentina. Journal of Volcanology and Geothermal Research, 24(3~4): 205~248.

- Walker G P L. 1984. Downsag calderas, ring faults, caldera sizes, and incremental caldera growth. J. Geophys. Res., 89B: 8407~8416.
- Wei Haiquan, Bai Zhida, Liu Yongshun. 2022&. Centurial study on pyroclastic rocks [J]/[OL]. Geological Review, http://www. geojournals.cn/georev/ch/reader/view_abstract.aspx? file_no = 20226803040&flag=1
- Wiart P, Oppenheimer C. 2005. Large magnitude silicic volcanism in north Afar: The Nabro volcanic range and Ma'alalta volcano. Bull. Volcanol., 67: 99~115.
- Wicks C, Thatcher W, Dzurisin D, et al. 2006. Uplift, thermal unrest and magma intrusion at Yellowstone caldera. Nature 440: 72~75; https://doi.org/10.1038/nature04507
- Wilson C J N, Houghton B F, McWilliams M O, Lanphere M A, Weaver S D, Briggs R M. 1995. Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J. Volcanol. Geotherm. Res., 68: 1~28.
- Wright I C, Gamble J A, Shane P A R. 2003. Submarine silicic volcanism of the Healy caldera, southern Kermadec arc (SW Pacific): Volcanology and eruption mechanisms. Bull. Volcanol., 65: 15 ~ 29.
- Zimbelman J R, Garry W B, Johnston A K, Williams S H, 2008. Emplacement of the 1907 Mauna Loa basalt flow as derived from precision topography and satellite imaging. J. Volcanol. Geotherm. Res., 177: 837~84.

A review on the study of caldera

DING Yi^{1, 2), 3)}, SUN Jiming³⁾, WU Yunxia⁴⁾

1) College of Interdisciplinary, Hebei GEO University, Shijiazhuang, 050022;

2) Institute of Geological Surveys, Hebei GEO University, Shijiazhuang, 050031;

3) AfricanResources and Environment Research Center, Hebei GEO University, Shijiazhuang, 050031;

4) College of Earth Sciences, Hebei GEO University, Shijiazhuang, 050022

Abstract: The research on volcanic caldera is a hot spot that scholars in China and abroad continue to pay attention to. This is because the magma that formed the Caldera has a long evolution time, and it is mostly the gathering place of large polymetallic, precious metal, uranium, and other deposits. The formation of large calderas has had a great impact on the evolution history of global lives. This paper summarizes the concept of the caldera, the classification and terms confusing scholars, the world-famous caldera and its formation theory, the relationship between the research understanding of large caldera and the formation of ore deposits, the research on Caldera in China, and the direction of future efforts. In fact, it has built a continuing upward step on the ladder of scientific research. Chinese scholars should conduct high-level research in this field and make Chinese contributions to the protection of national strategic resources and to the study of the world's caldera.

Keywords: caldera; concept; classification; large caldera; mineral resources

Acknowledgements: Thanks go to the fund by 2021 Talent Attraction Project of Hebei Education Bureau

First author: DING Yi, male, born in 1957, professor, expert at volcano, maar-kimberlitic diatreme and meteorite crater; Email: chinakimberlite@ 126. com; vwsource@ hotmail. com

 Manuscript received on: 2022-06-04; Accepted on: 2022-07-07; Network published on: 2022-07-20

 Doi: 10.16509/j.georeview. 2022.07.095
 Edited by: ZHANG Yuxu