巴音戈壁盆地下白垩统热水沉积岩 地球化学特征及成因探讨

许亚鑫¹⁾,戴朝成^{1,2)},刘晓东^{1,2)},卞从胜³⁾,刘平辉^{1,2)},吴兴星¹⁾,鞠鹏¹⁾

1)东华理工大学地球科学学院,南昌,330013;
 2)核资源与环境国家重点实验室,东华理工大学,南昌,330013
 3)中国石油勘探开发研究院,北京,100083

内容提要:巴音戈壁盆地因格井坳陷下白垩统巴音戈壁组热水沉积岩具有独特的沉积构造和矿物组成,本文通 过岩石学、矿物学和地球化学的综合研究,详细描述巴音戈壁组湖相热水沉积泥岩特征。研究区泥岩可划分为以下 5 种类型:网脉状泥岩、斑点状泥岩、块状泥岩、纹层状泥岩和同生变形泥岩。矿物成分主要为白云石、铁白云石、方 沸石、钠长石、伊利石和石英,并且在纵向上表现出明显的规律性,随着深度的增加白云石含量逐渐增加,对应的方 沸石含量逐渐降低。泥岩中富集 Ca、Mg、Mn 等元素,具有 LREE 富集,HREE 亏损,Eu 负异常(δCe=0.96~1.06)的 特征。碳、氧同位素呈现出δ¹³C_{V-PDB}(2.35‰~5.51‰)偏正,δ¹⁸O_{V-PDB}(-1.26‰~-10.16‰)偏负的特点,分析结果 表明热水沉积岩形成于封闭的咸水湖泊环境,形成温度为 36.23~79.9℃,平均值为 51.21℃,属于低温"白烟囱"型 热水沉积;硫同位素变化范围较大(-34.98‰~24.93‰),分析结果表明位于喷口附近的黄铁矿受热液影响较大, δ³⁴S 值较高,但随着深度的减小,热液的作用降低,微生物作用加强,δ³⁴S 值逐渐减小,呈现出热液与微生物共同影响 的特征;锶同位素表明热液流体为壳源与幔源混合流体。

关键词:巴音戈壁盆地;下白垩统;热水沉积岩;矿物学;同位素地球化学特征

热水沉积岩,也叫喷流岩,它既不是单纯的岩浆 热液成因,也不是单一的海水或湖水化学沉积成因, 而是地下热水或岩浆热液与海水或湖水混合后发生 沉淀所形成的沉积岩(Hekinian, 1982; Edmond and Damm, 1983: 陈先沛等, 1992:李红等, 2013: 郑荣 才等,2003;钟大康等,2015b)。它既有热液成因 的一面,也有冷水化学沉积成因的一面,属于岩浆岩 与沉积岩之间的过渡类型(钟大康等, 2015a, 2018;向龙等, 2019a, 2019b)。对热水沉积作用的 研究已有80余年了,人们按照其形成温度和矿物组 合特征将其分为两种类型:"白烟囱"型和"黑烟囱" 型。其中"白烟囱"型的形成温度相对较低(32~ 330℃),以硅酸盐、铝硅酸盐、碳酸盐岩及硫酸盐矿 物为主:而"黑烟囱"的温度较高(>350℃),以黑色 硫化物为主(郑荣才等, 2018)。近年来,关于湖相 热水沉积的研究发展迅速,如美国黄石公园(Xu et al., 1998)、东非裂谷湖泊(Barrat et al., 2000)、酒 西盆地(郑荣才等,2003、文华国等,2010,2014)、 三塘湖盆地(柳益群等,2010)、二连盆地(钟大康 等,2015b)、中国云南腾冲热海(郭清海等,2017)、 和准噶尔盆地(李红等,2017)、银额盆地哈日凹陷 (陈志鹏等,2018)等陆相湖盆中均有热液活动的报 道。此外,章雨旭等(2005,2012)认为微晶丘(泥晶 丘)是由热水沉积作用所形成,而我国著名的白云 鄂博矿床的赋矿白云岩是一个大型微晶丘,也是热 水沉积形成。

本文基于岩石学、矿物学、主微量元素、稀土元 素以及碳、氧、硫、锶4种同位素的分析,探讨巴音 戈壁盆地下白垩统巴音戈壁组热水沉积岩的地球化 学特征及成因机制,为我国"白烟囱"型热水沉积岩 增加新的研究依据和实例。

1 地质背景

巴音戈壁盆地位于中蒙两国的边境处,内蒙古

注:本文为国防科技工业局项目(编号:科工二司[2014]1587号)的成果。

收稿日期:2021-06-11;改回日期:2021-12-15;网络首发:2021-12-20;责任编辑:章雨旭。Doi: 10.16509/j.georeview.2021.12.155 作者简介:许亚鑫,女,1997年生,硕士研究生,地质学专业;通讯地址:330013,江西省南昌市青山湖区广兰大道 418号; Email: 1499577838@qq.com。通讯作者:戴朝成,男,1980年生,副教授,主要从事岩石学与矿物学研究; Email:daichaocheng@qq.com。

高原巴丹吉林沙漠的东北部。属于塔里木板块、哈萨克斯坦板块、西伯利亚板块和华北四大板块构造陆—陆碰撞的结合部位,横跨4个性质不同的大地构造单元(吴仁贵等,2008),盆地整体近东西向。因格井坳陷位于巴音戈壁盆地南端,大致呈 NE 向展布,占地面积约9000 km²(图1)。其北缘与宗乃山—沙拉扎山隆起相接,南缘与巴彦诺尔公隆起相邻,东部呈齿状插入银根坳陷之中(向龙等,2019a,2019b)。盆地整体受阿尔金断裂控制,盆地内断裂构造复杂,主要发育以北东向为主的8条断裂。

盆地基底为太古宙、元古宙时期形成,主要为变 质岩。盖层由中生代后沉积所形成,发育有侏罗系、 白垩系和第四系地层,其中侏罗系沉积地层主要为 含煤粗碎屑岩,岩性以杂色砾岩、砂岩为主,底部发 育有细砂岩,偶夹砾岩及泥页岩;顶部为深灰色及黑 色凝灰岩夹火山角砾岩。白垩系地层是盖层的沉积 主体,沉积厚度超过 2200m。下白垩统发育巴音戈 壁组下段和上段,巴音戈壁组下段的岩性主要为紫 红色砾岩、砂岩,偶夹粉砂岩或泥岩;巴音戈壁组上 段岩性以灰白色、灰绿色、深灰色泥岩为主。

通过野外露头、钻井岩性、测井曲线及地震资料 等方法,对研究区巴音戈壁组沉积相进行了分析,研 究表明研究区沉积相类型为辫状河三角洲和湖泊相 (图 2),在靠近山前和蚀区沉积相类型主要为辫状 河三角洲平原亚相,三角洲平原呈面状沿山前分布, 物源来自北面宗乃山岩浆岩和南面石炭系变质岩, K₁b²⁻³和K₁b²⁻²沉积相图总体趋势一致,显示出盆 地沉积的继承性特征,但湖盆中心由K₁b²⁻³段到 K₁b²⁻² 段具有向南西向迁移的特点,这一现象表明 湖盆在沉积过程中逐渐缩小。

图 1 巴音戈壁盆地因格井坳陷地质略图及采样钻孔分布图(据核工业二〇八队资料修改)

Fig. 1 Regional geology map and sampling boreholes of the Yingejing Depression, Bayingebi Basin

(Based on the data of the No. 208 nuclear industry team)

Q—第四系;K₂w—上白垩统乌兰苏海组;K₁b²—下白垩统巴音戈壁组上段;K₁b¹—下白垩统巴音戈壁组下段;J₁₋₂—中—下侏罗统;P₂— 上二叠统;P₁—下二叠统;C₃—上石炭统;Pt₁—古元古界; γ_5^1 印支期花岗岩; γ_4^3 —华力西晚期花岗岩; $\gamma_{\delta_4}^3$ —华力西晚期花岗闪长岩; γ_4^2 —华力西中期辉长岩; γ_3^3 —加里东晚期花岗岩

Q —Quaternary; K₂w—Ulansuhai Formation of Upper Cretaceous; K₁b²—Upper segment of Bayingebi Formation in Lower Cretaceous; K₁b¹— Lower segment of Bayingebi Formation in Lower Cretaceous; J₁₋₂—Middle—Lower Jurassic; P₂—Upper Permian series; P₁—Lower Permian series; C₃—Carboniferous System; Pt₁—Archean; γ_5^{1} — Indosinian granite; γ_4^{3} —Late Variscan granite; $\gamma_{\delta_4}^{3}$ —Late Variscan diorite; γ_4^{2} —Middle Variscan gabbro; γ_3^{3} —Late Caledonian granite

图 2 巴音戈壁盆地因格井坳陷白垩系巴音戈壁组上段(K,b²)沉积相图

Fig. 2 Sedimentary facies diagram of the Upper Member of Cretaceous Bayingebi Formation(K_1b^2) in the Yingejing Depression, Bayingebi Basin

2 样品及测试方法

研究样品采自巴音戈壁盆地塔木素地区全孔取 芯的 TZK-1 井和 TZK-2 井,主要研究对象为 TZK-2 井样品。岩石的主微量元素及稀土元素含量分析测 试在澳实分析检测(广州)有限公司完成,实验仪器 均产自美国,分别为电感耦合等离子体发射光谱 (ICP-AES),型号: Aglilent; 电感耦合等离子体发射 质谱仪(ICP-MS),型号: Perkin Elmer Elan 9000,测 试数据的相对偏差和相对误差均控制在<10(± 5)%。全岩 X 衍射分析和碳、氧、硫同位素的测试 均在"东华理工大学核资源与环境国家重点实验 室"完成。全岩 X 衍射分析用于定量判断泥岩的主 要矿物种属和成分,仪器为德国布鲁尔 D8 ADVANCE 多晶 X 射线衍射仪。碳氧同位素的实验 仪器为 MAT-253 气体同位素比值质谱仪,绝对误 Flash-EA 与 MAT-253 质谱仪联机测试所得,绝对误 差:δS≤0.2‰。锶同位素测试在武汉中国地质大学 地质过程与矿产资源国家重点实验室完成,实验仪

器为热电离同位素质谱仪,型号:Triton Ti。

3 分析结果

3.1 岩石学特征

根据岩芯观察,巴音戈壁组沉积岩整体以深灰 色、灰色和灰白色的泥岩为主,常见有网脉状、斑点 状、块状、纹层状和同生变形构造等典型的热水沉积 构造(郑荣才等,2006;钟大康等,2018),并在纵向 上呈现出明显的规律(图3)。下部以网脉状为主, 中一下部为斑点状,中部为块状,中一上部为纹层 状,上部发育大量石膏层,石膏层单层层厚大多在5 ~10cm(图4)。

3.2 矿物学特征

根据全岩 X 衍射分析(表 1),巴音戈壁组热水 沉积岩的矿物组合以碳酸盐矿物(以白云石和铁白 云石为主)、铝硅酸盐矿物(以方沸石和钠长石为 主)以及黏土矿物(伊利石为主)为主,另含少量的 石英、方解石、黄铁矿和石膏。其中,主要矿物组分 为白云石(含量 1.9%~52.7%,平均 26.16%)和方 沸石(含量 2%~45.3%,平均 25.57%),此外还有少

图 3 巴音戈壁盆地下白垩统巴音戈壁组热水沉积岩构造特征:(a) 网脉状构造,TZK-2 井,653 m;(b)脉状构造,TZK-2 井,787 m;(c)斑点状构造,TZK-2 井,523 m;(d)块状构造,TZK-2 井,628 m;(e)纹层状构造,TZK-1 井,677 m;(f)软沉积 变形,TZK-1 井,516 m;(g)同生变形构造,TZK-1 井,516 m;(h)石膏夹层,TZK-2 井,144 m

Fig. 3 Structural characteristics of hydrothermal sedimentary rock of the Lower Cretaceous Bayingebi Formation in Bayingebi Basin: (a) network vein structure, the Well TZK-2, 653 m; (b) vein structure, the Well TZK-2, 787 m; (c) spotted structure, the Well TZK-2, 523 m; (d) massive structure, the Well TZK-2, 628 m; (e) laminar structure, the Well TZK-1, 677 m; (f) soft sediment deformation, the Well TZK-1, 516 m; (g) syngenetic deformation structure, the Well TZK-1, 516 m; (h) gypsum interlayer, the Well TZK-2, 144 m

量石英、方解石、金属矿物(黄铁矿)、高岭石、蒙脱 石、石膏和绿泥石。矿物含量在纵向上表现出明显 的规律性,与泥岩构造之间存在着较强的相关性,从 表1中可以看出底部泥岩中方沸石含量较低,而白 云石含量较高,向上方沸石含量逐渐增加,对应的白 云石含量逐渐降低。

图 4 巴音戈壁盆地 TZK-2 井岩芯柱状图 Fig. 4 Core histogram of the Well TZK-2 in Bayingebi Basin

3.3 地球化学特征

3.3.1 主量及微量元素

巴音戈壁组热水沉积岩的主量元素氧化物含量 和微量元素含量见表 2,氧化物主要为 SiO, (17.38%~44.63%), Al₂O₃(4.87%~13.34%) 和 $CaO(5.13\% \sim 23.5\%)$, TFe₂O₃(2.24% ~ 8.08%), MgO(3.98%~14.35%),平均值分别为 29.52%、 9.42%、4.39%、14.44%和8.98%。与平均大陆上 地壳(UGG)的主量元素含量(Taylor and Mclennan, 1985)相比,研究区热水沉积岩具有 Ca、Mg、Mn 富 集,Al、K、Si 元素相对亏损的特征。通过平均上地 壳标准化元素蛛网图(图5)可以发现,热水沉积岩 的微量元素具有相容元素 Ni、V、Cr 亏损;高场强元 素 Zr、Hf、Nb、Ta 相对亏损,U 含量富集明显:大离子 亲石元素 Cs、Sr、Li 富集, Ba 相对亏损:钨钼组元素 Mo、W 富集。Li、Sr、Cs、U 等不相容元素的平均值分 别为上地壳平均值的 5.43、3.29、12.67 倍, 受离子 半径、电荷和化合键所限,这些元素难以进入到造岩 矿物的晶体结构中,在残余岩浆或热液中相对富集 (陈志鹏等, 2018)。Karakaya 等 (2012) 认为来自 深源的 Sb、Mo 和 Bi 等元素富集,可能是热液流体 中有深源物质加入所造成的。

3.3.2 稀土元素

研究区泥岩稀土元素变化范围大(表 2),总量为55.28×10⁻⁶~191.52×10⁻⁶,平均值为111.88×10⁻⁶,远低于平均上地壳 ΣREE 值146.37(Taylor and Mclennan,1985);中等强度的 Eu 负异常(δEu = 0.55~0.73)和极弱的 Ce 负异常(δCe = 0.96~1.06,平均值为1.01)的特征。稀土元素配分模式呈明显的右倾型(图 6),轻稀土明显富集,重稀土相对亏损。样品的 ΣLREE/ΣHREE 分布在5.35~14.18,同样也反映出 LREE 富集,HREE 亏损,LREE 分馏程度比 HREE 高的特征。

3.3.3 碳、氧同位素

研究区样品实验测试的碳、氧同位素结果如下 表 3 所示, $\delta^{13}C_{V-PDB}$ 介于 2.35‰~5.51‰之间(均值 3.66‰); $\delta^{18}O_{V-PDB}$ 分布范围介于 - 1.26‰ ~ -10.16‰(均值-4.59‰),研究区样品整体呈现呈 $\delta^{13}C_{V-PDB}$ 偏正, $\delta^{18}O_{V-PDB}$ 偏负的特点,与正常湖盆碳 酸盐碳、氧同位素分布特征基本一致。当 $\delta^{18}O$ 小于 -10‰时,说明岩石已经受到了较为强烈的蚀变作

表1巴音戈壁盆地下白垩统热水沉积岩全岩 X 衍射分析数据(%)

Table 1 X-ray diffraction	on analysis data of Lower	 Cretaceous hydrotherma 	l sedimentary rocks in	Bayingebi Basin	(%)
---------------------------	---------------------------	--	------------------------	-----------------	-----

序号	深度(m)	白云石	伊利石	方沸石	铁白云石	钠长石	石英	方解石	黄铁矿	高岭石	蒙脱石	石膏	绿泥石
T45	403.00	5.7	14.5	41.9	9.3	11.8		3.1	3	2.9		3	4.8
T48	412.76	11.7	12.3	45.3	9.4	6.8	1.8	2.4	2	2.4		2.6	3.3
T56	443.68	8.5	26.3	31.1	11.1	14	2.3		3.9		3.7		
T59	454.9	1.9	27.8	40.2	2.6	15.5	2.4	3.5	2.4		3.7		
T66	483.82	4.1	28.7	23.2	7.2	22.7	5.4	2.3	5.5		0.9		
T68	490.03	35.5	12	28.5	5.1	9.8	1.2	0.8			1.4	2.2	3.5
T69	493.23	25.1	12.2	29.5	6.6	10.7	2		3.4	2.1	2	2.2	4.4
T76	517.86	34.5	11.2	30.9	5.1	13.2	2.7				2.3		
T79	528.77	21.2	18.4	18.6	16.5	17.3	1.2	1.9		2.3	0.3		3.2
T87	559.16	29.6	17.1	30	7.7	7.1	3.4			1.3		1.6	2
T91	571.35	15.3	14.2	29.4	17.2	15.4	5.2		3.3				
T100	599.35	39.6	11.8	17	15.2	8.8	1.4	0.9	1.9	1.9		1.6	
T105	616.16	30.3	9	29.9	12.5	11.5	1		2.2	1.9		1.7	
T108	624.77	33.8	5.2	31.6	14	12.3	0.7		0.9	1.5			
T111	635.87	33.5	15.9	13.8	19.3	13.6	2.2			1.7			
T117	655.3	35.4	14.4	24.1	6.1	14	2.3						3.7
T121	670.42	32.8	18.4	16.2	4.5	14.2	0.7	5.7		1.8		2.8	2.9
T139	737.7	52.7	15.8	2.6	7.8	12.6	1.7		1.6	1.6			3.6
T148	770. 52	45.9	8.9	2	21.6	16.8	0.5			1.9			2.5

毛馬	
□其	
析测	
。 () 分	`
$\times 10^{-1}$	
裓(
H H	
稀	,
0_0	
(×1	
モ	
影量	
6) . Í	
素(%	
記 に 記	
彩表	
水汇	
统热	
副	
下 王 王	
御	
支撃	
声 加	
2 E	
表	

Table 2 Analysis and test results of total major amount (%), trace element (×10⁻⁶) and REE(×10⁻⁶) of Lower Cretaceous

	T148	18.60	0.37	5.78	18.00	2.98	1.82	12.85	0.09	1.89	0.25	106.5	6.9	95	31	15.3	55	8.7	56.8	1490	9.3	33	4.7	38.3	0.29	2.55	131.5	1.1	0.37	1.8	13.30	43.6	11.9	26.9	3.24
	T139	17.38	0.24	4.87	19.95	2.24	1.10	14.35	0.08	1.74	0.02	120.0	7.8	101	29	10.5	40	7.5	60.6	1880	6.8	32	3.5	46.8	0.23	3.07	109.0	1.0	0.28	3.6	2.11	17.35	11.9	25	2.68
	T121	20.51	0.26	6.04	23.5	2.60	1.74	9.43	0.08	2.38	0.14	18.8	7.0	117	31	15.9	52	10.8	55.0	2480	18.3	40	4.4	65.0	0.35	8.27	267	1.1	0.34	2.0	16.50	69.1	20.7	42.5	4.84
	T117	18.80	0.22	5.72	19.55	2.57	1.22	13.60	0.08	2.60	0.02	14.6	10.2	109	34	12.4	51	7.7	35.6	1890	7.8	24	3.7	17.85	0.20	16.83	83.4	0.7	0.29	2.2	3.22	13.9	13	27.3	2.67
	T111	24.30	0.29	6.33	17.90	3.27	2.06	11.30	0.09	2.35	0.11	19.5	7.6	142	40	20.4	61	10.5	65.6	1580	12.2	42	4.8	71.5	0.46	10.53	193.0	1.2	0.36	2.0	13.35	33.4	16.9	34.9	3.99
	T108	31.25	0.46	10.64	13.40	4.73	2.10	7.35	0.12	4.42	0.02	31.4	11.1	135	70	20.9	96	18.2	77.5	1100	13.0	45	8.0	51.1	0.32	37.3	190.5	1.5	0.63	2.8	3.47	5.91	29.4	56.9	6.06
in	T105	31.86	0.46	10.28	12.55	5.22	1.73	7.73	0.10	4.72	0.08	12.8	10.0	122	41	21.7	71	15.0	55.2	993	11.7	42	7.2	16.35	0.73	34.6	135.5	1.2	0.59	2.3	8.54	15.2	18.7	38.7	4.2
ngebi Bas	T100	27.44	0.45	8.50	15.50	4.03	2.28	9.43	0.09	3.29	0.40	23.4	10.2	124	32	21.4	87	12.0	67.0	1430	33.8	37	6.5	27.4	0.41	19.73	128.5	1.0	0.52	2.0	77.6	94.1	25.7	57.2	6.54
s in Bayi	191	30.34	0.35	8.80	14.85	3.59	1.97	9.25	0.10	3.41	0.09	28.3	9.3	104	48	8.9	91	13.6	61.7	1130	12.4	42	5.9	8.49	0.36	13.95	526	1.3	0.49	2.6	15.60	11.1	16.6	35.4	4.01
tary rock	T87	29.56	0.32	8.11	14.90	3.73	1.96	9.43	0.08	3.08	0.11	27.7	7.3	66	40	17.4	65	13.6	58.9	1000	10.5	35	5.2	14.80	0.39	13.68	100.0	1.0	0.43	1.9	10.25	15.2	20.6	40.8	4.27
l sedimen	T79	31.10	0.47	11.26	11.45	8.08	1.78	6.38	0.12	4.87	0.07	63.0	14.1	125	09	27.3	59	16.65	71.9	698	20.3	55	7.2	9.48	0.95	16.75	159.5	1.7	0.64	2.2	10.60	10.5	31.9	69	7.28
rotherma	176	28.75	0.40	8.93	14.90	4.08	2.15	9.97	0.11	3.26	0.10	380	10.4	124	40	18.1	81	13.35	99.5	1310	12.3	52	6.1	9.42	0.39	13.40	232	1.5	0.52	1.5	9.88	13.2	23.8	47.4	5.23
hyd	T69	36.00	0.50	11.82	9.55	7.06	2.12	6.31	0.10	4.79	0.07	98.4	10.2	111	60	32.1	95	18.35	95.3	789	15.1	63	8.0	6.03	0.97	14.10	241	1.9	0.73	3.1	10.80	12.1	28.1	54.9	5.73
	T68	34.26	0.48	10.22	13.75	3.15	2.86	7.64	0.09	3.48	0.10	333	9.5	111	50	12.1	80	15.85	111.0	1340	14.4	61	7.3	15.15	0.34	16.00	229	1.8	0.65	2.3	13.35	12.9	28.4	53.2	5.56
	T66	44.63	0.71	15.83	5.13	6.22	2.97	3.98	0.11	5.92	0.09	195.5	12.2	141	80	27.0	104	25.9	145.0	595	17.7	72	11.4	6.98	1.18	19.55	269	2.3	1.03	3.2	7.87	5.7	44.5	88.6	8.84
	T56	33.78	0.48	11.00	12.20	5.23	2.60	9.04	0.12	3.48	0.33	368	11.9	135	60	22.8	89	17.25	120.5	1185	19.9	58	7.4	0.59	0.48	13.10	246	1.8	0.63	1.7	16.40	32.6	27	53.6	5.3
	T48	35.82	0.52	12.02	12.20	4.59	2.57	7.43	0.11	3.76	0.11	274	13.1	259	60	35.7	103	19.10	112.0	971	15.4	63	8.1	506	4.95	13.55	224	1.8	0.70	2.4	11.15	28.5	30.2	61.9	6.37
	T45	37.02	0.56	13.34	10.70	5.59	2.45	6.22	0.12	4.48	0.13	135.0	13.3	127	70	24.7	102	21.3	114.0	790	18.4	63	8.6	10.45	0.58	13.60	224	1.9	0.70	2.3	13.40	14.2	34.5	70.2	7.37
	样品	SiO_2	TiO_2	Al_2O_3	CaO	TFe_2O_3	K_2O	MgO	MnO	Na_2O	$P_{2}O_{5}$	Li	\mathbf{Sc}	Λ	Cr	Ni	Zn	Ga	Rb	Sr	Υ	Zr	Nb	Mo	Sb	C_{s}	Ba	Ηf	Ta	M	Th	n	La	Ce	\mathbf{Pr}

54	1	ΗH
粐	1	岃

	1											1					1	
T148	12.2	2.39	0.51	1.77	0.26	1.6	0.33	0.95	0.15	1.02	0.17	63.39	57.14	6.25	9.14	0.73	1.03	
T139	9.3	1.65	0.32	1.26	0.18	1.09	0.23	0.66	0.11	0.77	0.13	55.28	50.85	4.43	11.48	0.66	1.03	
T121	17.7	3.43	0.71	3.1	0.49	3.05	0.66	1.86	0.27	1.69	0.24	101.24	89.88	11.36	7.91	0.66	0.99	
T117	9.2	1.61	0.28	1.48	0.23	1.3	0.28	0.88	0.13	0.83	0.13	59.32	54.06	5.26	10.28	0.55	1.06	
T111	14.6	2.97	0.55	2.62	0.39	2.25	0.44	1.13	0.17	1.1	0.18	82.19	73.91	8.28	8.93	0.59	0.99	
T108	19.7	3.76	0.74	2.97	0.45	2.43	0.51	1.35	0.19	1.29	0.2	125.95	116.56	9.39	12.41	0.66	0.97	
T105	15.4	2.97	0.55	2.63	0.43	2.28	0.46	1.26	0.18	1.15	0.18	89.09	80.52	8.57	9.4	0.59	1.01	
T100	26.3	6.16	1.21	6.52	1.07	6.68	1.36	3.61	0.49	2.88	0.42	146.14	123.11	23.03	5.35	0.58	1.04	
191	15.5	3.08	0.61	2.87	0.39	2.28	0.46	1.25	0.19	1.18	0.18	84	75.2	8.8	8.55	0.62	1.01	
T87	15.3	2.86	0.53	2.33	0.29	1.68	0.35	0.92	0.14	0.94	0.15	91.16	84.36	6.8	12.41	0.61	1	
67T	28.6	5.21	1.06	4.72	0.68	4	0.73	1.96	0.27	1.66	0.25	157.32	143.05	14.27	10.02	0.65	1.05	
T76	19.5	3.62	0.7	2.98	0.41	2.2	0.41	1.12	0.15	1.04	0.16	108.72	100.25	8.47	11.84	0.64	0.98	
T69	19.9	3.74	0.73	3.02	0.47	2.73	0.53	1.46	0.21	1.35	0.2	123.07	113.1	9.97	11.34	0.65	0.99	
T68	19.3	3.62	0.71	2.93	0.45	2.51	0.5	1.51	0.2	1.25	0.19	120.33	110.79	9.54	11.61	0.65	0.96	
T66	30.6	5.36	1	4.46	0.61	3.3	0.63	1.75	0.24	1.42	0.21	191.52	178.9	12.62	14.18	0.61	1.02	
T56	19	3.49	0.67	3.03	0.48	2.95	0.68	2.03	0.29	1.82	0.27	120.61	109.06	11.55	9.44	0.62	1.02	2 Ce _N
T48	23.3	4.29	0.76	3.2	0.48	2.69	0.55	1.54	0.22	1.45	0.23	137.18	126.82	10.36	12.24	0.61	1.02	
T45	27.1	4.9	0.92	3.96	0.57	3.15	0.66	1.79	0.26	1.68	0.25	157.31	144.99	12.32	11.77	0.62	1.01	$2 Eu_N$
样品	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Υb	Lu	ZREE	LREE	HREE	LREE HREE	δEu	δCe	

用的影响,其碳同位素数据不能反映沉积时 的原始组成(Kaufman and Knoll,1995),因此 本文将δ¹⁸O_{V-PDB}<-10‰的1个样品剔除。其 余14件样品δ¹⁸O大于-10‰,且Mn/Sr值分 布于0.23~1.26之间,其值小于2,表明其很 少受到或未受到蚀变作用的影响,其碳、氧同 位素组成代表了沉积时期原始湖水的碳氧同 位素组成特征,能够用来反映原始的沉积环 境信息。此外,氧同位素随着深度的增加,逐 渐减小,表明下部碳酸盐岩可能受到热液影 响,发生蚀变。

3.3.4 硫、锶同位素

研究区 13 件黄铁矿原位硫同位素 $\delta^{34}S_{CDT}$ 值介于-34.98‰~24.93‰之间(表 4),均值-6.48‰,极差为 59.91‰,大于 10‰,变化范围较大,指示为相对封闭的沉积 环境并且硫同位素来源并不单一(于玉帅等, 2018)。且 Sr 同位素值表现出随着深度的增 加逐渐增大的特征。研究区 9 件样品 的⁸⁷Sr/⁸⁶Sr 值范围在 0.709398~0.710959 之 间,平均值 0.710314,有逐渐减小的趋势。

4 讨论

;Eu_N, Sm_N, Gd_N, Ce_N, La_N, Pr_N代表相应元素的球粒陨石标准化值;稀土元素球粒陨石标准化引自 Boynton, 1984

 $La_N + Pr_N$

 $\delta Ce = \frac{1}{2}$

 $\mathbb{E}:\delta Eu = \frac{1}{Sm_N + Gd_N}$

4.1 热水沉积岩成因分析

4.1.1 沉积物特征判别

当热水喷溢出海(湖)底时,在喷流口下 方的热液通道中发生充填和交代作用,在喷 流口上方的海(湖)底则通过与冷海(湖)水相 互作用,使热水中所携带的物质组分在海 (湖)底沉淀下来,在喷流过程中形成两套成 岩或成矿系统。前人研究表明,斑点状和纹 层状热液沉积物是湖相热液的重要特征,分 别反映了热液的脉动性喷发活动和分带沉 积,同时认为网脉状构造是热液流动运移通 道的典型标志(郑荣才等, 2006, 2018; 文华国 等,2014;钟大康等,2018)。巴音戈壁盆地下 白垩统巴音戈壁组上段泥岩自底部到顶部依 次发育网脉状构造→→斑点状构造→→块状 构造→---纹层状构造,上部见有大量薄层石膏 层,泥岩垂向上构造特征非常类似于热水沉 积岩。

Fig. 5 Normalized element cobweb map of average upper crust of Lower Cretaceous hydrothermal sedimentary rocks in Bayingebi Basin

前人研究发现铝硅酸盐类(如钠长石,沸石类, 电气石)、碳酸盐类(如白云石、铁白云石、菱铁矿) 以及硫酸盐矿物(如重晶石,天青石,石膏)是低温 "白烟囱"型热水沉积岩的主要矿物类型(钟大康 等,2015a;郑荣才等,2018)。巴音戈壁盆地岩样 的矿物组合与低温"白烟囱"型热水沉积岩矿物组

Fig. 6 REE distribution of Lower Cretaceous hydrothermal sedimentary rocks in Bayingebi Basin

合特征高度相似。以上证据表明,塔木素地区早白 垩世发育的岩石为热水沉积岩。

4.1.2 地球化学特征判别

前人研究认为铁锰氧化物是热水沉积作用的重要产物(Stoffers and Botz, 1994),而"高锰铁"的白云 岩则被认为是热液成因白云岩的典型特征(韦龙明 等,2004;朱东亚等,2010)。研究区泥岩样品的

图 7 Ni—Co—Zn(a)和 Fe—Mn—(Cu+Co+Ni)×10(b)热水沉积三角图解

 Fig. 7 Ni vs Co vs Zn ternary diagram (a) and Fe vs Mn vs (Cu+Co+Ni)×10 ternary diagram(b) of hydrothermal sediments HD—热水沉积物,HN—水成沉积物,RH—红海热水沉积,ED—东太平洋热水沉积金属矿物,FHC—Franciscan 热水沉积硅质岩 HD— hot water deposits, HN— water deposits, RH— red sea hydrothermal deposits, ED— eastern Pacific hydrothermal deposits of metallic minerals, FHC—Franciscan hot water deposited siliceous rocks TFe₂O₃的平均含量为 4.39%,低于上地壳平均值 4.93%,部分高于地壳平均值;MnO 的平均含量为 0.09%,高于上地壳平均值 0.07% (Taylor and Mclennan, 1985)。研究区 Sr、Mo、Th、U 等热水沉积 标识元素富集(郭字等,2018)。前人研究热水沉积 岩的主微量元素特征,总结出可使用 Ni—Co—Zn 三角图解(Choi and Hariya, 1992)和 Fe—Mn—(Cu +Co+Ni)×10 三角图解(Crerar et al., 1982)来判别 热水沉积物。通过主微量数据投点发现,研究区样 品绝大部分均位于热水沉积区(图 7)。

此外,研究区样品稀土元素中 LREE 富集, HREE 亏损,且 LREE/HREE>1,同时 δEu 呈明显的 负异常,与国内外发现的的湖相热水沉积岩,如国外 东非裂谷湖相热液(Barrat et al., 2000)、国内酒泉 盆地青西坳陷湖相喷流岩(文华国等,2014)和银额 盆地哈日坳陷湖相热水沉积岩(陈志鹏等,2018)特 征一致,表明研究区的沉积物具有与湖相热水沉积 岩相似的稀土元素特征。

4.2 沉积环境

元素地球化学目前已被广泛应用于研究沉积岩

样旦	深度	Mn	Sr Mn		$\delta^{13}C_{V\text{-PDB}}$	$\delta^{18}O_{V\text{-}PDB}$	7	t
竹十日日	(m)	(×1	0 ⁻⁶)	Sr	(‰)	(‰)	L	(°C)
T48	412.76	792	971	0.82	5.51	-1.26	137.96	36.23
T56	443.68	873	1185	0.74	5.49	-2.69	137.20	42.18
T68	490.03	717	1340	0.54	4.53	-2.04	135.56	39.42
T69	493.23	760	789	0.96	3.23	-2.64	132.60	41.96
T76	517.86	810	1310	0.62	5.24	-2.73	136.67	42.35
T79	528.77	882	698	1.26	2.35	-3.8	130. 22	47.08
T87	559.16	592	1000	0.59	3.62	-5.32	132.06	54.19
T91	571.35	717	1130	0.63	2.46	-5.82	129.44	56.63
T100	599.35	674	1430	0.47	2.58	-6.04	129.58	57.71
T105	616.16	747	993	0.75	3.12	-6.92	130.24	62.17
T111	635.87	653	1580	0.41	3.61	-4.78	132.31	51.61
T117	655.30	589	1890	0.31	2.88	-2.98	131.71	43.44
T121	670.42	561	2480	0.23	4.10	-6.57	132.42	60.38
T139	737.70	574	1880	0.31	2.53	-5.04	129.97	52.84
T148	770. 52	656	1490	0.44	3.67	-10.16	129.76	79.90
	均值			0.61	3.66	-4.59	132.51	51.21

表 3 巴音戈壁盆地下白垩统热水沉积岩碳氧同位素特征
Table 3 Carbon and oxygen isotopic characteristics of Lower Cretaceous
hydrothermal sedimentary rocks in Bayingehi Basin

注:Z=2.048($\delta^{13}C_{V-PDB}$ /‰+50)+0.498($\delta^{18}O_{V-PDB}$ /‰+50)(Keith and Weber, 1964); t/C = 16.9 - 4.38 [$\delta^{18}O_{V-PDB,C}$ /‰- $\delta^{18}O_{V-PDB,P}$ /‰]+0.10 [$\delta^{18}O_{V-PDB,C}$ /‰+ $\delta^{18}O_{V-PDB,P}$ /‰]²其中, $\delta^{18}O_{V-PDB,C}$ 为样品的 δ^{18} Ο值; $\delta^{18}O_{V-PDB,P}$ 为古水体的 δ^{18} Ο值,其确定方法见本文5.2.3节。

的古环境特征 (Zhang Kun et al., 2020)。本文将 利用碳氧同位素的特征来研究分析巴音戈壁盆地下 白垩统热水沉积岩的沉积环境。

4.2.1 开放程度

湖相原生碳酸盐矿物中碳、氧同位素的变化规 律受到湖泊水体开放程度的影响(曲长胜等, 2017),因此常用碳氧同位素来探讨湖泊的封闭性 和开放性。通常认为在开放性淡水湖泊中,湖水流 动性强,停留时间短,其碳氧同位素值均为负值,且 无显著相关性;而在封闭性的咸水湖环境中,湖水流 动性差,水体性质稳定,碳氧同位素值之间具有明显 的同步相关性,且封闭性越强,相关系数越大,一般 封闭性湖泊的相关系数大于 0.70(Talbot, 1990; 王 春连等, 2013;陈志鹏等, 2018)。

在δ¹³C和δ¹⁸O坐标系中(图8),研究区碳氧同 位素大多数位于第二象限的 Great Salt Lake 内,表 明研究区在早白垩世时期湖盆水体具有一定的封闭 性。但碳、氧同位素的相关系数较低,碳、氧同位素 的变化不是单一因素影响的结果。

4.2.2 古盐度

Keith 和 Weber(1964)研究表明可 以利用碳、氧同位素数据通过以下公式 (1)来判别水体的盐度:

 $Z = 2.048 (\delta^{13} C_{V-PDB} / \% + 50) +$

 $0.498(\delta^{18}O_{V-PDB}/\%+50)$ (1)

当 Z 值小于 120,指示形成环境为 淡水沉积环境,当 Z 值大于 120,指示形 成环境为海相沉积环境或陆相咸化湖泊 (彭立才和孙镇城, 1996),如青海湖。 研究区的 Z 值介于 129.44~137.96,平 均 132.51(表 3),参照区域认知,巴音 戈壁盆地塔木素地区在早白垩世发育陆 相湖盆沉积。

此外,据前人研究所得,正常的湖盆 碳酸盐岩的 $\delta^{13}C_{V-PDB}$ 、 $\delta^{18}O_{V-PDB}$ 值分布 范围为分别为 -2% - 6% - 4% - -8%(潘立银等, 2009),研究区样品整体呈 $\delta^{13}C_{V-PDB}$ 偏正, $\delta^{18}O_{V-PDB}$ 偏负的特点,与 正常湖盆碳酸盐碳、氧同位素分布特征 基本一致。

根据碳、氧同位素散点图(图 9)发 现研究区热水沉积岩与加拿大西部沉积 盆地泥盆统地层中发育的马鞍状白云岩 (热水沉积白云岩)相似(Al-Aasmet

8 L 自 人 至 益 地 峽 敢 益 峽 、 氧 问 也 系 一 砌 佰 八 体 기 放 性 反 刃 水 Fig. 8 Carbon and oxygen isotopes of carbonate and openness of lake water in Bayingebi Basin

5		j - ·	· · · · · · · · · · · · · · · · · · ·	8
样品	钻孔号	深度 (m)	测试矿物	$ \delta^{34} S_{CDT} $ (%)
1	TZK-2	403.10	黄铁矿	-34.98
2	TZK-2	454.90	黄铁矿	-28.51
3	TZK-2	483.82	黄铁矿	-27.72
4	TZK-2	493.23	黄铁矿	-24.86
5	TZK-2	528.77	黄铁矿	-14.18
6	TZK-2	552.66	黄铁矿	-12.23
7	TZK-2	599.35	黄铁矿	-11.64
8	TZK-2	624.77	黄铁矿	-10.37
9	TZK-1	703.69	黄铁矿	8.42
10	TZK-1	712.69	黄铁矿	6.93
11	TZK-1	744.37	黄铁矿	22.33
12	TZK-1	768.77	黄铁矿	17.69
13	T7K-1	790 77	昔铧矿	24 93

表 4 巴音戈壁盆地下白垩统热水沉积岩硫同位素特征 Table 4 Sulfur isotopic characteristics of Lower Cretaceous hydrothermal sedimentary rocks in Bayingebi Basin

al.,2002),同时部分处于海相沉积区,表明研究区 热水沉积岩中白云石形成于盐度较高的湖相沉积环 境,同时受热液影响。因此,综上所述,塔木素地区 为陆相咸化湖泊沉积,在早白垩为半咸水—咸水环 境。

4.2.3 古温度

湖相碳酸盐岩中的氧同位素常被用于测量沉积 环境的温度。前人对于不同沉积环境和不同的样 品,提出了不同的古温度的测算模型。根 据研究区热水沉积岩的特征,考虑到热液 对于湖水的影响,本文采用 O'Neil 等 (1969)提出的适用于 O~500℃ 无机成因 碳酸盐—水之间的氧同位素温度分馏方 程:

$$4.38 \left[\frac{\delta^{18} O_{V-PDB,C}}{\% o} - \frac{\delta^{18} O_{V-PDB,P}}{\% o} \right] + 0.10 \left[\frac{\delta^{18} O_{V-PDB,C}}{\% o} + \frac{\delta^{18} O_{V-PDB,P}}{\% o} \right]^2$$

式中, δ¹⁸O_{V-PDB,C} 为样品的 δ¹⁸O 值; δ¹⁸O_{V-PDB,P} 为古水体的 δ¹⁸O 值。由于直接 获取沉积期同时期湖水的 δ¹⁸O 值的难度 较大,常采用借鉴或类比的方法。青海湖 的盐度为 16‰,为封闭的碱性咸水湖,且 青藏高原也具有地热背景。经对比研究, 青海湖地区在早白垩世与研究区具有类 似的湖盆环境(任战利, 2000;曾方明, 2016)。因此,本次计算公式中沉积同期

湖水的氧同位素含量将借鉴青海湖实测 δ¹⁸O_{V-PDB}: 3.078‰(卢凤艳和安芷生,2010)。计算结果表明 巴音戈壁盆地早白垩世热水沉积岩形成温度为 36.23~79.90℃(平均值 51.21℃)(表 3),表现出随 着深度增加温度逐渐升高的特征。同时,使用同样 的公式和参数计算其它地区早白垩世时期的热水沉 积岩,结果显示,三塘湖盆地温度为 51.03~ 173.33℃,平均为 104.45℃(李红等,2012);酒泉 盆地温度为 57.00~104.64℃,平均为 78.79℃(文 华国等,2014);哈日凹陷湖水温度为 43.94~ 86.08℃,平均为 61.97℃(陈志鹏等,2018)。经对 比,发现研究区温度明显低于酒泉盆地和三塘湖盆 地,与哈日凹陷温度相似。因此,塔木素地区热水沉 积岩属于低温"白烟囱"型热水沉积岩。

4.3 热液的来源

随着研究的不断深入以及分析测试技术的不断 提高,碳酸盐岩锶同位素被广泛应用于成岩流体性 质及来源分析(McArthur et al., 1994; 黄思静等, 2006; 沈树忠等, 2010; 王小敏等, 2018)。

代表着成岩流体来源的碳酸盐矿物的锶有三种 来源:壳源锶、幔源锶和近同期来自海水的海源锶 (冯轲等, 2018)。由于在地壳演化过程中,壳源物 质富含 Rb,⁸⁷Rb 会发生衰变生成⁸⁷Sr,因此壳源 锶⁸⁷Sr含量较高,n(⁸⁷Sr)/n(⁸⁶Sr)值也较高,全球平

Fig. 9 Scatter diagram of carbon and oxygen isotopes of Lower Cretaceous hydrothermal sedimentary rocks in Bayingebi Basin

均值为 0.7119(Palmer and Edmond, 1989);由于大 洋中脊热液系统提供的幔源物质 Rb 含量较低,因 此全球幔源锶的 $n(^{87}Sr)/n(^{86}Sr)$ 值较低,平均值为 0.7035(Palmer and Elderfield, 1985);海源锶与近 同期海水和海相沉积物相似,早白垩世海水锶同位 素 $n(^{87}Sr)/n(^{86}Sr)$ 的平均值为 0.707401(Veizer et al.,1999)。

研究区锶同位素 n(⁸⁷Sr)/n(⁸⁶Sr)值远远高于 全球幔源锶同位素平均值 0.7035,均高于早白垩世 海水锶同位素平均值 0.707401,略低于全球壳源锶 同位素 0.7119 的平均值。在对比相关文献中发现

齐家务地区旺35 井沙三段中白云岩 Sr 同 位素n(⁸⁷Sr)/n(⁸⁶Sr)值在0.7102~0.7106 之间,平均值为0.7105(杨扬,2014);滇 西兰坪—思茅盆地白云岩n(⁸⁷Sr)/n(⁸⁶Sr) 值在0.7078~0.71232之间,平均值为 0.71202(肖荣阁等,1993);塔木素地区锶 同位素比值与之相似,说明研究区物质来 源与上述地区有一定的相似性,热水沉积 岩中的锶主要来源于基底沉积的壳源硅铝 质岩,少量来自岩浆喷发活动混入的幔源 锶,Mo元素富集也能证明这一特征,显示 出混合热流体来源性质。

4.4 黄铁矿的成因

硫的来源主要有 4 种: ① 地幔硫,也称岩浆硫, $\delta^{34}S$ 值接近 0,变化范围在 0 ± 0.3‰内;② 海水硫,通常以 大正值为特征;③ 沉积硫, $\delta^{34}S$ 的变化范围为-40‰ ~ 50‰;④ 混合硫,涉及两种或 多种不同来源硫的混合,因此 硫同位素的水平通常由混合 物中末端成员的 $\delta^{34}S$ 值和比 例 决定(Ohmoto and Rye, 1979)。

研究表明,在半封闭的湖 泊环境中,热液喷发会产生大 量的 H_2S ,造成喷口附近的 H_2S 浓度升高,饱和度高,易 于结晶形成黄铁矿,黄铁矿也 将继承喷口热液中 $\delta^{34}S$ 较高 的特性;但随着深度的减小,

距离喷口越远,受热液的影响越小,温度逐渐降低, 微生物的作用加强。在<50℃的条件下,细菌将硫 酸盐(SO₄²⁻)摄入体内,经过一系列复杂的有机化学 作用过程,将还原生成的硫化氢(H₂S)排出体外,并 与铁离子结合形成黄铁矿, δ^{34} S 会表现出更低的特 性。研究区深度在 703.69~790.77m 时,黄铁矿的 硫同位素值呈现出明显的正偏,且深度越深,其值越 大,这表示随着深度的增加受热液作用影响越大。 微生物的硫同位素范围是-36%~~6% (Canfield, 2001; Canfield et al., 2004),研究区深度为403.1~ 624.77m 时 δ^{34} S 值正好符合这一范围,显示出生物

表 5 巴音戈壁盆地下白垩统热水沉积岩锶同位素特征 Table 5 Strontium isotopic characteristics of Lower Cretaceous hydrothermal sedimentary rocks in Bayingebi Basin

样品	钻孔号	深度(m)	岩性	$n({}^{87}{ m Sr})/n({}^{86}{ m Sr})$
1	TZK-2	412.76	含白云石方沸石质泥岩	0.710959±0.000009
2	TZK-2	517.86	含方沸石含泥白云岩	0.710529 ± 0.000009
3	TZK-1	554.99	含方沸石白云-泥岩	0.710553 ± 0.000007
4	TZK-2	571.35	含泥白云质沸石岩	0.710524 ± 0.000007
5	TZK-1	609.49	含方沸石含白云石泥岩	0.710165 ± 0.000008
6	TZK-2	616.16	含方沸石的白云-泥岩	0.709922 ± 0.000008
7	TZK-1	639.35	含白云石泥岩	0.710769 ± 0.000009
8	TZK-2	670.42	含方沸石的白云-泥岩	0.709398 ± 0.000007
9	TZK-2	737.70	泥质白云岩	0.710007 ± 0.000007

成因的特征。因此,硫的形成与微生物作用及热液 作用密切相关。

5 结论

(1)巴音戈壁盆地下白垩统泥岩富含白云石、 方沸石、黄铁矿等热液矿物,发育有网脉状、斑点状、 纹层状和同生变形构造等典型的热水沉积构造,同 时泥岩中富集 Ca、Mg、Mn 等元素,具有 LREE 富集, HREE 亏损,Eu 负异常的特征;结合 Ni—Co—Zn 三 角图和 Fe—Mn—(Cu+Co+Ni)×10 元素地球化学判 别图分析,证实其为热水成因沉积岩。

(2)碳、氧同位素研究结果表明巴音戈壁盆地 塔木素地区下白垩统热水沉积岩形成于封闭的咸水 湖泊环境,形成温度为 36.23~79.9℃,平均为 51.21℃,属于低温"白烟囱"型热水沉积。

(3)位于喷口附近的黄铁矿受热液的影响,δ³⁴S 值较高,随着深度的减小,距离喷口越远,受热液的 影响越小,温度逐渐降低,微生物的作用加强,δ³⁴S 值逐渐减小,呈现出热液与微生物共同影响的特征。

(4) 热水沉积岩中的锶主要来源于基底沉积的 壳源硅铝质岩, 少量来自岩浆喷发活动混入幔源锶, 显示出混合热流体来源性质。

致谢:感谢成都理工大学的李松倬博士给予的 帮助与指导,感谢项目组人员及相关实验测试人员 给予的帮助,在此表示衷心的感谢。

参考文献 / References

(The literature whose publishing year followed by a "&" is in Chinese with English abstract; The literature whose publishing year followed by a "#" is in Chinese without English abstract)

- 陈先沛,高计元,陈多福,董维全. 1992. 热水沉积作用的概念和几 个岩石学标志. 沉积学报,10(3):124~132.
- 陈志鹏,任战利,于春勇,祁凯,任文波,杨燕,马骞. 2018. 银额盆地 哈日凹陷下白垩统热水沉积岩特征及成因. 地球科学,43(6): 1941~1956.
- 冯轲,徐胜林,陈洪德,董翼昕. 2018. 四川盆地西南部中二叠统白 云岩成因分析——来自锶同位素、稀土元素证据.中国岩溶,37 (5):659~670.
- 郭清海,刘明亮,李洁祥. 2017. 腾冲热海地热田高温热泉中的硫代 砷化物及其地球化学成因. 地球科学,42(2):286~297.
- 郭宇,李余生,凌云,张怀国,侯元军.2018. 渝东南地区含锰岩系沉积 地球化学特征及成因机制. 地质学报,92(11):2331~2348.
- 黄思静,孙治雷,吴素娟,张萌,裴昌蓉,胡作维. 2006. 三叠纪全 球海水的锶同位素组成及主要控制因素. 矿物岩石,26(1):43 ~48.
- 卢凤艳,安芷生. 2010. 青海湖表层沉积物介形虫丰度及其壳体氧 同位素的气候环境意义. 海洋地质与第四纪地质,30(5):119~ 128.
- 李红,柳益群,梁浩,周小虎,焦鑫,刘洪福,杨锐,雷川. 2012. 新疆

三塘湖盆地中二叠统芦草沟组湖相白云岩成因. 古地理学报, 14(1):45~58.

- 李红,柳益群,李文厚,杨锐,雷川,刘林玉,刘洪福,李海平. 2013. 新疆乌鲁木齐二叠系湖相微生物白云岩成因. 地质通报,32 (4):661~670.
- 李红,柳益群,张丽霞,周鑫,牛元哲,李旭,刘永杰. 2017. 准噶尔盆 地东部中二叠统平地泉组具"斑状"结构热水喷流沉积岩的成 因及地质意义. 古地理学报,19(2):211~226.
- 柳益群,李红,朱玉双,胡亭,傅国斌,刘洪福,周小虎,郑朝阳,樊婷 婷. 2010. 白云岩成因探讨:新疆三塘湖盆地发现二叠系湖相 喷流型热水白云岩. 沉积学报, 28(5): 861~867.
- 彭立才,孙镇城. 1996. 青藏高原咸化湖泊沉积碳酸盐岩碳、氧稳定 同位素组成及其地质意义. 岩石矿物学杂志, 15(3):44~49.
- 潘立银,黄革萍,寿建峰,刘占国. 2009. 柴达木盆地南翼山地区新 近系湖相碳酸盐岩成岩环境初探——碳、氧同位素和流体包裹 体证据.矿物岩石地球化学通报,28(1):71~74.
- 曲长胜,邱隆伟,杨勇强,陈程,汤丽莉,余宽宏,万敏. 2017. 吉木萨 尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义. 地质学报,91(3):605~616.
- 任战利. 2000. 中国北方沉积盆地热演化史的对比. 石油与天然气 地质, 21(1):33~37.
- 沈树忠,朱茂炎,王向东,李国祥,曹长群,张华. 2010. 新元古代— 寒武纪与二叠—三叠纪转折时期生物和地质事件及其环境背景 之比较.中国科学:地球科学,40(9):1228~1240.
- 王春连,刘成林,徐海明,王立成,张林兵. 2013. 江陵凹陷古新世盐 湖沉积碳酸盐碳氧同位素组成及其环境意义. 地球学报, 34 (5):567~576.
- 韦龙明,林锦富,吴烈善. 2004. 凤县八卦庙特大型金矿热水沉积岩 的地质地球化学特征. 地质学报, 78(6):829~835.
- 文华国,郑荣才,Qing Hairuo,范铭涛,李雅楠,宫博识. 2014. 青藏高 原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩. 中 国科学:地球科学,44(4):591~604.
- 文华国,郑荣才,Qing Hairuo,范铭涛,汪满福. 2010. 酒泉盆地青西 凹陷下沟组湖相热水沉积岩流体包裹体特征. 地质学报,84 (1):106~115.
- 王小敏, 胡忠亚, 李伟强. 2018. 东地中海黎凡特盆地白垩纪阿尔 布期白云岩成因研究. 高校地质学报, 24(5):681~691.
- 吴仁贵,周万蓬,刘平华,侯树仁,王永君,马福森,潘家永. 2008. 巴 音戈壁盆地塔木素地段砂岩型铀矿成矿条件及找矿前景分析. 铀矿地质,24(1):24~31.
- 向龙,刘晓东,刘平辉,戴朝成,江文剑. 2019a. 内蒙古巴音戈壁盆地 因格井坳陷下白垩统湖相热水沉积岩特征及成因. 古地理学 报, 21(5):709~726.
- 向龙,刘晓东,刘平辉,戴朝成. 2019b. 内蒙古因格井坳陷湖相白云 质泥岩地球化学特征及地质意义. 高校地质学报, 25(2): 221 ~231.
- 肖荣阁,李朝阳. 1993. 云南兰坪啦井温泉喷流沉积矿化体的发现 及其地质意义. 地质论评,39(1):73~78.
- 杨扬. 2014. 白云岩地球化学特征与古气候和海侵事件的关系. 导师:高福红. 长春:吉林大学博士学位论文.
- 于玉帅,杨竹森,田世洪,周云,高原. 2018. 西藏措勤县德能铜多金 属矿床成矿物质来源的矿物学和 S—Pb 同位素证据. 矿床地 质,37(1):37~49.
- 章雨旭,吕洪波,王俊,柳建勇,孟庆伟,黄敏. 2012. 白云鄂博矿床 成矿构造环境分析. 地质学报, 86(5):767~774.
- 章雨旭,吕洪波,张绮玲,乔秀夫. 2005. 微晶丘成因新认识. 地球科 学进展, 20(6):693~700.
- 郑荣才,王成善,朱利东,刘红军,方国玉,杜文博,王崇孝,汪满福.

2003. 酒西盆地首例湖相"白烟型"喷流岩热水沉积白云岩的发现及其意义. 成都理工大学学报(自然科学版),30(1):1~8.

- 郑荣才,文华国,范铭涛,王满福,吴国瑄,夏佩芬. 2006. 酒西盆地 下沟组湖相白烟型喷流岩岩石学特征. 岩石学报,22(12):3027 ~3038.
- 郑荣才,文华国,李云,常海亮. 2018. 甘肃酒西盆地青西凹陷下白 垩统下沟组湖相喷流岩物质组分与结构构造. 古地理学报,20 (1):1~18.
- 钟大康,姜振昌,郭强,孙海涛. 2015a. 热水沉积作用的研究历史、现 状及展望. 古地理学报,17(3):285~296.
- 钟大康,姜振昌,郭强,孙海涛,杨喆. 2015b. 内蒙古二连盆地白音 查干凹陷热水沉积白云岩的发现及其地质与矿产意义. 石油与 天然气地质,36(4):587~595.
- 钟大康,杨喆,孙海涛,张硕. 2018. 热水沉积岩岩石学特征:以内 蒙古二连盆地白音查干凹陷下白垩统腾格尔组为例. 古地理学 报,20(1):19~32.
- 朱东亚,金之钧,胡文瑄,2010. 塔北地区下奥陶统白云岩热液重结 晶作用及其油气储集意义. 中国科学:地球科学,40(2):156~ 170.
- 曾方明. 2016. 青海湖地区晚第四纪黄土的物质来源. 地球科学, 41(1): 131~138.
- Al-Aasm I S, Lonnee J S, Clarke J. 2002. Multiple fluid flow events and the formation of saddle dolomite: case studies from the Middle Devonian of the Western Canada Sedimentary Basin. Marine and Petroleum Geology, 19(3): 209~217.
- Barrat J A, Boulègue J, Tiercelin J J, Lesourd M. 2000. Strontium isotopes and rare – earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa. Geochimica et Cosmochimica Acta, 64(2):287~298.
- Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P. ed. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 2:63~114.
- Chen Xianpei, Gao Jiyuan, Chen Duofu, Dong Weiquan. 1992&. The concept of hydrothermal sedimentation and its petrological criteria. Acta Sedimentologica Sinica, 10(3): 124~132.
- Chen Zhipeng, RenZhanli, Yu Chunyong, Qi Kai, Ren Wenbo, Yang Yan, Ma Qian. 2018&. Characteristics and genetic analysis of hydrothermal sediment of Lower Cretaceous in Hari depression, Yin'E Basin. Earth Science, 43(6) :1941~1956.
- Choi J H, Hariya Y. 1992. Geochemistry and depositional environment of Mn oxide deposits in the Tokoro belt, northeastern Hokkaido. Economic Geology, 87(5): 1265~1274.
- Crerar D A, Namson J, Chyi M S, Williams L, Feigenson M D. 1982. Manganiferous cherts of the franciscan assemblage; I, general geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centers. Economic Geology, 77(3): 519~540.
- Canfield D E. 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta, 65 (7):1117~1124.
- Canfield D E, Srensen K B, Oren A. 2004. Biogeochemistry of a gypsum - encrusted microbial ecosystem. Geobiology ,2(3);133~150.
- Edmond J M, Damm K V. 1983. Hot springs on the ocean floor. Poultry Science, 248(4): 70~85.
- Feng Ke, Xu Shenglin, Chen Hongde, Dong Yixin. 2018&. Genesis of the Middle Permian dolomite in the southwestern Sichuan Basin: Evidence from strontium isotope and rare earth elements. Carsologica Sinica, 37(5):659~670.
- Guo Qinghai, Liu Mingliang, Li Ji
exiang. 2017 &. Thio
arsenic species in

the high-temperature hot springs from the Rehai Geothermal Field (Tengchong) and their geochemical geneses. Earth Science, 42 (2):286~297.

- Guo Yu, Li Yusheng, Ling Yun, Zhang Huaiguo, Hou Yuanjun. 2018&. The sedimentary geochemical characteristics and metallogenic mechanism of manganese – bearing rock series in southeastern Chongqing, China. Acta Geologica Sinica, 92 (11): 2331~2348
- Hekinian R. 1982. Petrology of Ocean Floors. Amsterdam: Elsevier, 1 ~382.
- Huang Sijing, Sun Zilei, Wu Sujuan, Zhang Meng, Pei Changrong, Hu Zuowei. 2006&. Strontium isotope composition and control factors of global seawater in Triassic. Mineralogy and Petrology, 26(1):43 ~48.
- Karakaya M C, Karakaya N, Küpeli S, Yavuz F. 2012. Mineralogy and geochemical behavior of trace elements of hydrothermal alteration types in the volcanogenic massive sulfide deposits, NE Turkey. Ore Geology Reviews, 48: 197 ~224.
- Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the Cisotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research, 73(1~4):27~49.
- Keith M L, Weber J N. 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28(10~11): 1787~1816.
- Lu Fengyan, An Zhisheng. 2010&. Climatic and environmental significance of Ostracod abundance and their shell oxygen isotope from Lake Qinghai surface sediments. Marine Geology & Quaternary Geology, 30(5):119~128.
- Li Hong, Liu Yiqun, Liang Hao, Zhou Xiaohu, Jiao Xin, Liu Hongfu, Yang Rui, Lei Chuan. 2012&. Origin of lacustrine dolostones of the Middle Permian Lucaogou Formation in Santanghu Basin of Xinjiang. Journal of Palaeogeography, 14(1):45~58.
- Li Hong, Liu Yiqun, Li Wenhou, Yang Rui, Lei Chuan, Liu Linyu, Liu Hongfu, Li Haiping. 2013&. The microbial precipitation of lacustrine dolomite from Permian Formation, Urumchi, Xinjiang, China. Geological Bulletin of China, 32(4):661~670.
- Li Hong, Liu Yiqun, Zhang Lixia, Zhou Xing, Niu Yuanzhe, Li Xu, Liu Yongjie. 2017&. Origin and geological significance of sedimentary exhalative rocks with "porphyritic" structures in the Middle Permian Pingdiquan Formation, eastern Junggar Basin. Journal of Palaeogeography, 19(2): 211~226.
- Liu Yiqun, Li Hong, Zhu Yushuang, Hu Ting, Fu Guobin, Lui Hongfu, Zhou Xiaohu, Zheng Chaoyang, Fan Tingting. 2010&. Permian lacustrine eruptive hydrothermal dolomites Santanghu, Basin Xinjiang, Province. Acta Sedimentologica Sinica, 28(5): 861 ~ 867.
- McArthur J M, Kennedy W J, Chen M, Thirlwall M F, Gale A S. 1994. Strontium isotope stratigraphy for Late Cretaceous time: Direct numerical calibration of the Sr isotope curve based on the US Western Interior. Elsevier, 108(1~2):95~119.
- Ohmoto H, Rye R O. 1979. Isotopes of sulfur and carbon. In: Barnes H L. ed. Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley and Sons: 509~567
- O' Neil J R, Clayton R N, Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12): 5547~5558.
- Palmer M R, Edmond J M. 1989. The strontium budget of the modern ocean. Earth & Planetary Science Letters, 92(1): 11~26.
- Palmer M R, Elderfield H. 1985. Sr isotope composition of sea water over the past 75 Ma. Nature, 314(6011): 526~528.

- Pan Liyin, Huang Geping, Shou Jianfeng, Liu Zhanguo. 2009&. A preliminary study of formation environment of the Neogene lacustrine carbonates in Nanyishan Area of Qaidam Basin: Constrains from carbon—oxygen isotope and fluid inclusion analysis. Bulletin of Mineralogy, Petrology and Geochemistry, 28(1):71~74.
- Peng Licai, Sun Zhencheng. 1996&. Carbon and oxygen stable isotopic composition of carbonate rocks from Saline Lakes on Qinghai— Xizang Plateau and its geological significance. Acta Petrologica et Mineralogica, 15(3): 44~49.
- Qu Changsheng, Qiu Longwei, Yang Yongqiang, Chen Cheng, Tang Lili, Yu Kuanhong, Wan Min. 2017&. Carbon and oxygen isotopic compositions of carbonatic rock from Permian Lucaogou Formation in the Jimsar Sag, NW China and their paleolimnological significance. Acta Geologica Sinica,91(3) :605~616.
- Ren Zhanli. 2000&. Comparison of thermal evolution history in sedimentary basins, north Chian. Oil & Gas Geology, 21(1):33~ 37.
- Shen Shuzhong, Zhu Maoyan, Wang Xiangdong, Li Guoxiang, Cao Changqun, Zhang Hua. 2010&. A comparison of the biological, geological events and environmental backgrounds between the Neoproterozoic—Cambrian and Permian—Triassic transitions. Sci. China Earth Sci., 40(9):1228~1240.
- Stoffers P, Botz R. 1994. Formation of hydrothermal carbonate in Lake Tanganyika, East—Central Africa. Chemical Geology, 115 (1 -2):117~122.
- Taylor S R andMclennan S M. 1985. The Continental Crust: Its composition and evolution. Oxford: Blackwell Scientific Publication, 1~301.
- Talbot M R. 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology Isotope Geoscience, 80(4): 261~279.
- Veizer J, Ala D, Azmy K, Bruckschen P, Bruhn F, Giles A F, Carden D A F, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O G, Strauss H. 1999. ⁸⁷Sr/⁸⁶Sr, δ¹³C and δ¹⁸O evolution of Phanerozoic seawater. Chemical Geology, 161(1~ 3):59~88.
- Wang Chunlian, Liu Chenglin, Xu Haiming, Wang Licheng, Zhang Linbing. 2013&. Carbon and oxygen isotopes characteristics of Palaeocene Saline Lake facies carbonates in Jiangling Depression and their environmental significance. Acta Geoscientica Sinica, 34 (5):567~576.
- Wei Longming, Lin jinfu, Wu Lieshan. 2004&. Geological and geochemical characteristics of the hydrothermal sediments in the Baguamiao gold deposit. Acta Geologica Sinica, 78(6):829~835.
- Wang Xiaomin, Hu Zhongya, Li Weiqiang. 2018&. Genesis of the Albian Dolomite in Levant Basin, East Mediterranean: A case study of the Givat Ye' arim Formation and Soreq Formation near Jerusalem, Israel. Geological Journal of China Universities, 24(5): 681~691.
- Wen Huaguo, Zheng Rongcai, Qing Hairuo, Fan Mintao, Li Yanan, Gong Boshi. 2014&. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag, Jiuquan Basin on the northern Tibetan Plateau. Science China: Earth Sciences, 44 (4): 591~604.
- Wen Huaguo, Zheng Rongcai, Qing Hairuo, Fan Mingtao, Wang Manfu. 2010&. Characteristics of fluid inclusions in the lacustrine hydrothermal sedimentary rock from the Xiagou Formation, Lower Cretaceous in Qingxi Sag, Jiuquan Basin. Acta Geologica Sinica, 84 (1): 106~115.
- Wu Rengui, Zhou Wanpeng, Liu Pinghua, Hou Shuren, Wang Yongjun,

Ma Fusen, Pan Jiayong. 2008. Analysis of metallogenic condition and prospecting potential of sandstone type uranium deposit in Tamusu district of Bayinggebi Basin. Uranium Geology, $24(1):24 \sim 31$.

- Xiang Long, Liu Xiaodong, Liu Pinghui, Dai Chaocheng, Jiang Wenjian. 2019a&. Genesis and characteristics of lacustrine hydrothermal—sedimentary rock of the Lower Cretaceous in Yingejing sag of Bayan Gebi Basin, Inner Mongolia. Journal of Palaeogeraphy, 21(5):709~726.
- Xiang Long, Liu Xiaodong, Liu Pinghui, Dai Chaocheng. 2019b&. Geochemical characteristics and its geological significance of lacustrine dolomitic mudstones in Yingejing Depression, Inner Mongolia. Geological Journal of China Universities, 25(2):221 ~ 231.
- Xiao Rongge, Li Chaoyang. 1993&. The discovery of a mineralized body in spurting fluid deposits of the Lajing hot spring, Lanping, Yunnan, and its geological implications. Geological Review, 39 (1):73~78.
- Xu Y, Schoonen M A A, Nordstrom D K, Cunningham K M, Ball J W.
 1998. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park. 1: The origin of thiosulfate in hot spring waters. Geochimica et Cosmochimica Acta, 62(23~24): 3729~3743.
- Yang Yang. 2014&. The relationship between geochemistry of dolostone and paleoclimate, transgression: Taking Shahejie Formation in the Qikou Depression for example. Supervisor: Gao Fuhong. PH. D thesis of Jilin University.
- Yu Yushuai, Yang Zhusen, Tian Shihong, Zhou Yun, Gao Yuan. 2018&. Ore – forming materials of Deneng copper polymetallic deposit, Coqen County, Tibet: Evidence from mineralogy, and S and Pb isotopes. Mineral Deposits, 37(1):37~49.
- Zeng Fangming. 2016&. Provenance of the Late Quaternary loess deposit in the Qinghai Lake region. Earth Science, 41(1): 131~138.
- Zhang Kun, Liu Rong, LiuZhaojun, Li Li, Wu Xinpu, Zhao Kangan. 2020. Influence of palaeoclimate and hydrothermal activity on organic matter accumulation in lacustrine black shales from the Lower Cretaceous Bayingebi Formation of the Yin'e Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 110007.
- Zhang Yuxu, Lü Hongbo, Wang Jun, Liu Jianyong, Meng Qingwei, Huang Min. 2012&. Analysis of Ore-forming tectonic setting of the Bayan Obo REE deposit. Acta Geologica Sinica, 86(5):767~774.
- Zhang Yuxu, Lü Hongbo, Zhang Qiling, Qiao Xiufu. 2005&. A new consideration on the genesis of mud mound. Advances in Earth Science, 20(6):693~700
- Zheng Rongcai, Wang Chengshan, Zhu Lidong, Liu Hongjun, Fang Guoyu, Du Wenbo, Wang Chongxiao, Wang Manfu. 2003&. Discovery of the first example of "White Smoke Type" of Exhalative Rock (Hydrothermal Sedimentary Dolostone) in Jiuxi Basin and its significance. Journal of Chengdu University of Technology (Science& Technology Edition), 30(1): 1~8.
- Zheng Rongcai, Wen Huaguo, Fan Mingtao, Wang Manfu, Wu Guoxuan, Xia Peifen. 2006&. Lithological characteristics of sublacustrine white smoke type exhalative rock of the Xiagou Formation in Jiuxi Basin. Acta Prtrologica Sinica, 22(12): 3027 - 3038.
- Zheng RongCai, Wen HuaGuo, Li Yun, Chang Hailiang. 2018&. Compositions and texture of lacustrine exhalative rocks from the Lower Cretaceous Xiagou Formation in Qingxi sag of Jiuxi Basin, Gansu. Journal of Palaeogeography, 20(1): 1~18.
- Zhong Dakang, Jiang Zhenchang, Guo Qiang, Sun Haitao. 2015a&. A review about research history, situation and prospects of hydrothermal sedimentation. Journal of Palaeogeography, 17(3):

285~296.

- Zhong Dakang, Jiang Zhenchang, Guo Qiang, Sun Haitao, Yang Zhe. 2015b&. Discovery of hydrothermal dolostones in Baiyinchagan sag of Erlian Basin, Inner Mongolia, and its geologic and mineral significance. Oil & Gas Geology, 36(4): 587~595.
- Zhong Dakang, Yang Zhe, Sun Haitao, Zhang Shuo. 2018&. Petrological characteristics of hydrothermal—sedimentary rocks: A

case study of the Lower Cretaceous Tengger Formation in the Baiyinchagan Sag of Erlian Basin, Inner Mongolia. Journal of Palaeogeography, 20(1): 19~32.

Zhu Dongya, Jin Zhijun, Hu Wenxuan. 2010&. Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin. Science China: Earth Sciences, (2):156~170.

Geochemical characteristics and genesis of Lower Cretaceous hydrothermal sedimentary rocks in Bayingebi Basin

XU Yaxin¹⁾, DAI Chaocheng^{1,2)}, LIU Xiaodong^{1,2)}, BIAN Congsheng³⁾,

LIU Pinghui^{1,2)}, WU Xingxing¹⁾, JU Peng¹⁾

1) School of Earth Sciences, East China University of Technology, Nanchang, 330013;

2) State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013;

3) Petro China Research Institute of Petroleum Exploration and Development, Beijing, 100083

Objectives: The hydrothermal sedimentary rocks of Lower Cretaceous Bayingebi Formation in Yingejing Depression of Bayingebi Basin has unique sedimentary structure and mineral composition.

Methods: Based on the comprehensive study of petrology, mineralogy and geochemistry, this paper describes in detail the characteristics of lacustrine hydrothermal sedimentary mudstone of Bayingebi Formation.

Results: The mudstones in the study area can be divided into five types: veined—network mudstones, spotted mudstones, massive mudstones, laminar mudstones and syngenetic deformed mudstones. The main mineral components are dolomite, ankerite, analcite, albite, illite and quartz, and show obvious regularity in the vertical direction. With the increase of depth, the content of dolomite gradually increases, while the content of analcite gradually decreases. The mudstone is rich in Ca, Mg, Mn and other elements, with LREE enrichment, HREE depletion and EU negative anomaly ($\delta Ce = 0.96 \sim 1.06$). Carbon and oxygen isotopes are characterized by positive $\delta^{13}C_{v-PDB}(2.35\% \sim 5.51\%)$ and negative $\delta^{18}O_{v-PDB}(-1.26\% \sim -10.16\%)$.

Conclusion: The results show that the hydrothermal sedimentary rocks were formed in a closed saline lake environment with a temperature of 36. 23 ~ 79. 9 °C and an average value of 51. 21 °C. The hydrothermal sedimentary rocks belong to the low temperature "white chimney" type. The sulfur isotope has a large variation range (-34.98%~24.93‰), which show that the pyrite near the vent has a great influence on the hydrothermal solution, and the content of δ^{34} S is relatively high. However, with the decrease of depth, the effect of hydrothermal solution decreased and the effect of microorganism strengthened. The value of δ^{34} S decreased gradually, showing the characteristics of the joint influence of hydrothermal solution and microorganism; Strontium isotopes indicate that the hydrothermal fluid is a mixture of crust source and mantle source.

Keywords: Bayingebi Basin; the Lower Cretaceous; Hydrothermal sedimentary rock; Mineralogy; Isotopic geochemical characteristics

Acknowledgements: This study was supported by the project of National Defense science, Technology and Industry Bureau project (No. [2014]1587).

First Author: XU Yaxin, female, born in 1997, master student; Email: 1499577838@ qq. com

Corresponding author: DAI Chaocheng, male, born in 1980, associate professor, mainly engaged in petrology and mineralogy research; Email: daichaocheng@qq.com

 Manuscript received on: 2021-06-11; Accepted on: 2021-12-15; Network published on: 2021-12-20

 Doi: 10.16509/j.georeview. 2021.12.155
 Edited by: ZHANG Yuxu