鲁东招远地热田地热通量及地热成因研究

钟振楠^{1,4)},康凤新²⁾,宋明忠¹⁾,郎旭娟^{3,5,6,7)},柳禄湧¹⁾,傅朋远²⁾,李志杰³⁾

1) 山东省地质矿产勘查开发局第六地质大队,山东威海,264209;

3) 河北地质大学水资源与环境学院,石家庄,050031;

4) 山东省深部金矿探测大数据应用开发工程实验室,山东威海,264209;

5) 河北省水资源可持续利用与产业结构优化协同创新中心,石家庄,050031;

6) 河北省水资源可持续利用与开发重点实验室,石家庄,050031;

7) 河北省水文学及水资源重点学科,石家庄,050031

内容提要:鲁东地热区在地质构造单元上位于沂沭断裂带昌邑—大店断裂以东,地热资源丰富。本文采集了鲁东地热区招远地热田内一眼 2000 m 深地热井(DRZK01)中的 40 块岩芯样品进行岩石热导率、岩石生热率测试及分析,结合测温资料及收集资料对该区地热通量构成及分层热流进行了分析研究;采集区内典型地热流体样品进行水化学分析并采用合适的地热温标估算了该区热储温度;综合研究成果建立了该区地热成因概念模型。研究结果显示,该区岩石热导率数值较高,测量值在 2.8~5.7 W/(m・K)之间,普遍高于上地壳平均热导率,地温梯度较高,为 31.8℃/km;利用热导率和地温梯度计算的地热通量 102 mW/m² 中热传导分量为(73.2±6.18) mW/m²,对流分量为(28.76±6.18) mW/m²,其中热传导分量中地壳热流为 22.5 mW/m²,地幔热流为(50.74±6.18) mW/m²,二者比值为 1 : 1.98~1 : 2.52,为"热幔冷壳"型热结构。石英温标计算热储平均温度为 128.6 ℃,热循环深度约 3634 m。研究 结果丰富了该区地热系统理论并为该区地热资源开发利用提供一定的理论支撑。

关键词:岩石热导率;热储温度;地温梯度;概念模型;地热通量

在全球气候变化的大背景下,地热资源由于具备清洁、方便、蕴藏量大且可再生等优点而日益受到 世界各国重视(王贵玲等,2000;庞忠和等,2012, 2014;袁利娟等,2020;李泓泉等,2020;原若溪等, 2021)。招远地热田位于鲁东地热区,鲁东地热区 是山地陆块地壳演化最为复杂的地区,尤其是中生 代以来,地壳活动尤为频繁剧烈,地热资源丰富(徐 希强等,2015)。为了科学高效利用该区地热资源, 查明该区"源、通、盖、储"因素,开展地热资源赋存 成因机理研究是不可缺少的关键环节(金秉福等, 2000;邱楠生,2001;张涛,2011;史猛等,2019;赵辉 等,2019)。大地热流、地温梯度、岩石热导率、岩石 生热率作为基本的地热学热参数,为地球动力学演 化以及油气生成研究提供地热背景和基础参数(邱 楠生,1998;叶正仁等,2001;蔺文静等,2016;孙旭 东,2020);李学伦等(1997)利用地下水中SiO₂含量 计算山东半岛硅热流值,认为胶北隆起在大地构造 上属于较高热异常区。Jiang Guangzheng等(2016) 依托一口位于胶东半岛莱州湾附近的金矿勘探井的 相关资料,计算得到一高质量大地热流数据。赵辉 等(2019)对胶东地热田地热流体的补径排特征及 地热田的地热资源进行了评价研究。前人研究为本 文研究提供了丰富的资料支撑但是同时仍然存在很 多问题,如该区岩石圈热结构方面的研究基础比较 薄弱,地热热量构成及地热成因等方面尚存在很多 需要深入研究的问题。因此本文在前人研究的基础 上,以招远地热田内一眼 2000 m 深地热井为研究对 象.采集岩芯样品、典型地热流体样品、收集相关数

²⁾ 山东省地质矿产勘查开发局,济南,250013;

注:本文为山东省重点研发计划项目(编号:2019GSF109053)、山东省自然资源厅地质勘查项目(编号:鲁堪字(2018)42号)和国家自然 科学基金资助项目(编号 U1906209、42072331、41877192)的成果。

收稿日期:2020-10-29;改回日期:2021-02-18;网络首发:2021-03-20;责任编辑:赵雪、章雨旭。Doi: 10.16509/j.georeview.2021.03.013 作者简介:钟振楠,女,1985年生,硕士,高级工程师,主要从事地热地质及水文地质方向工作;Email:409864746@qq.com。通讯作者:郎旭 娟,女,1985年生,博士,主要从事地热地质及水文地质方向的科研工作;Email:langlan77@163.com。

据,分析岩层热导率、生热率及地温分布特征,计算 该区地热通量;估算热储温度及热循环深度,并建立 了招远地热田地热成因概念模型,丰富了该区地热 系统的相关理论,为该区地热资源可持续、高效开发 利用提供理论支撑。

1 研究区地质背景

鲁东地热区以牟平—即墨断裂为界分为东西两 大构造单元,招远地热田位于鲁东地热区西部华北 板块胶辽隆起区的胶北隆起北部。鲁东地热区主要 出露太古代、元古代、中生代、新生代的地层(图1) (崔煜烽等,2018)。该区中生代印支期由于地壳发 生强烈的脆性张裂变形作用,形成了一系列近 SN 向张性断裂以及 NE 向、NW 向和近 EW 向扭性断 裂,并导致下部地壳部分岩石熔融,从而产生大规模 的花岗质岩浆,沿断裂入侵形成花岗岩体,有的沿 NE 向断裂入侵形成一些浅成脉岩,由于上述地质演 变,区域上具有良好的地热形成条件(田禹,2015)。

2 样品采集与测试

本次研究中,岩芯样品采集工作在招远地热田 一眼深 2000 m, 地理坐标为 120°24′41″, 37°21′38″的 地热钻孔(DRZK01)中进行(地热井具体位置见图 1),50 m 取芯一次,共采集了 40 块岩芯样品,所取 岩芯样品岩性为中生代玲珑序列大庄子单元的二长 花岗岩(岩性柱状图见图 2)。岩芯热导率数据是由 中国科学院地质与地球物理研究所岩石热物性与地 热测量实验室检测,使用德国生产的 TCS(Thermal Conductivity Scanning)热导率自动扫描仪,其测量范 围为 0.2~25 W/(m·K),测量精度为±3%。样品 规格依照实验室要求进行样品预处理,样品长度大 于3 cm,至少保留了一个平整面,平整面上没有裂 隙、空洞,并且未遭受蚀变。岩芯放射性元素(铀、 钍、钾含量)数据是由澳实分析检测(广州)有限公 司检测,其中铀、钍元素含量采用 ICP-MS(电感耦合 等离子体质谱仪)分析,分析仪器是由美国生产的 Agilent(型号 7700X),测试范围 0.05×10⁻⁶~1000× 10⁻⁶,精度控制相对偏差<10%,准确度控制相对误 差<10%。钾含量采用 X 射线荧光光谱仪分析,分 析仪器是荷兰生产的 PANalytical (型号 PW2424), 测试范围 0.01~20%, 精度控制相对偏差<5%, 准确 度控制相对误差<2%。放射性含量样品制样方式相 同,样品烘干后,破碎过筛,保留直径1~2 mm 样品 300 g 做正样,其余样品为副样,副样留存备用。将

正样用无污染钵振动碾磨至 200 目;取 30 g 正样加 入偏硼酸锂—四硼酸锂熔剂,混合均匀,于熔炉中在 1025 ℃熔化。熔液冷却后,用包含了硝酸、盐酸和 氢氟酸的混酸消解定容,再用等离子体质谱仪定量 分析。另取 30 g 正样,均分为两份:一份试样中加 入含硝酸锂的硼酸锂—硝酸锂熔融助熔剂,充分混 合后,高温熔融。熔融物倒入铂金模子形成扁平玻 璃片后,再用 X 射线荧光光谱仪分析。同时另一份 试样放入马弗炉中,于 1000 ℃灼烧。冷却后称重。 样品加热前后的重量差即是烧失量。本方法所测的 钾元素含量为烧失量的结果和 XRF 测得的元素氧 化物结果相加。检测数据真实可靠。

水质全分析样品用 500 mL 塑料瓶采集并由中 国地质科学院水文地质环境地质研究所国土资源部 地下水矿泉水及环境监测中心进行检测,水质全分 析是按照中华人民共和国国家标准引用天然矿泉水 检验方法(GB/T8538-2008)检测。

3 钻井温度测量

本次研究中井温测量工作使用 Server6000 便携 式数控测井系统完成,测量范围 0~230℃,终孔后静 井 18 d 测温,可保证井温恢复至稳态或似稳态。并 且所测温度及对应深度都经过 Matrix Logging System 处理后获取,温度测量精确度为±0.1℃。野 外测温时,探头下降速率约为 6 m/min,探头每隔 0.1 m 记录一个温度数据,抽析间隔 2 m。

钻孔测温曲线及地温梯度曲线见图 2,由图 2 可以看出,测温曲线整体为"上凸"型,说明该钻孔 温度受到区域上升流的影响,地下水作为载体将热 流携带至地表浅部(王一波等,2019),因此直接利 用钻孔中岩石热导率数据和地温梯度数据通过公式

 $q = -K(\,\mathrm{d}T/\mathrm{d}H)$

的计算值不能称为大地热流,可称为地热通量。由 图 2 看出,该区地温增长分为 5 个层段:① 0~500 m 层段地温增长迅速,平均地温梯度为 159.3 ℃/km, 地温梯度过大,这可能是由地表温度影响强烈原因 造成的,因此进行温度场分析时,为了减小误差地层 表层的温度数据一般会被舍弃(胡圣标等,1994; Huang Shaopeng et al.,2000;Pollack et al.,2003); ② 500~946 m 层段温度随深度平稳增加,表明热量 传递主要以热传导方式进行,地温梯度在该层段较 为稳定,平均值为 54.7 ℃/km;③ 1300~1800 m 层 段由于受到上升流影响,地温梯度基本不变;④ 946 ~1171 m 层段和 1300~1809 m 层段地温梯度出现

孔 深 (m)	层厚 (m)	钻孔柱状图	岩层名称 及地层年代		40 60 I I	80 100 120 140 -50 0 50100150200250300 温度(°C
- 100	7.6	<u>+ </u>	第四系			۰۲/100m
- 200		\\+ \\+ \\+ \\+ \\		-200		
- 300		<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u>_</u> <u></u>				
- 400		<pre>(+ \\ + \\ + \\ + \\ +</pre>		-400		
- 500		<u></u>	二长花岗岩			500
- 600	543.59 14.35	x + x + x + x + x + x + x + x + x + x +	黑色脉岩	-600		
- 700		<u>+ + + + + + + </u>				R -
- 800		<u></u>		-800		
- 900		<u>++++</u>				
-1000		<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u>_</u> <u></u>		-1000		了)— 946 5 / _破
-1100	544.02	<u></u>	二长花岗岩			
-1200	42.75	$\begin{array}{c} c + c + c + c + c + c + c \\ \blacktriangle c \ \blacktriangle c \ \bigtriangleup c \ \bigtriangleup c \ \bigtriangleup c \ \bigtriangleup c \ \bigstar c \ \ \cr c \ \ \cr c \ \ \cr c \ \ \leftarrow c \ \ \ \cr c \ \ \leftarrow c \ \ \ \ \leftarrow \ \ \ \ \ \ \ \ \ \$	绢英岩化花 岗质碎裂岩	-1200		
-1300		\(\+\\\+\\\+\\\+\\\+\\\+\\\				1300
-1400		\\+ \\+ \\+ \\+ \\ \\		-1400		
-1500		<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u>_</u> <u></u>				
-1600		<u>+ </u>		-1600		
-1700		<u>0</u> +				
-1800		<u>// + // + // + // + // </u>		-1800		{
-1900		<pre>(1 + \lambda + \lambd</pre>				
-2000		\\+ \\+ \\+ \\+ \\+	二长花岗岩	-2000		
2000	856.34			/不/灵(III)		

图 2 招远地热田钻孔柱状图及测温曲线图

Fig. 2 Drilling column diagram and temperature measurement curve of geothermal well in the Zhaoyuan geothermal field

负增长,可能是由于局部破碎导致冷水混入造成的; ⑤ 1171~1300 m 层段温度比较稳定,当温度曲线出现分段现象时,地温梯度可采用上下两段的温度曲 线来进行校正(徐明等,2011)。综合上文对于地温 梯度的分段分析,该区地温梯度由 500~1300 m 层 段的测温数据计算获取为 31.8 ℃/km。

4 岩石热导率特征

4.1 岩石热导率测试数据分布特征

岩石热导率是表征岩石传热特性的物理量,它 是研究岩石圈热结构和地球深部热状态的重要参数 之一(倪守斌等,1999;栾锡武等,2003;章邦桐等, 2010)。本次研究所取岩芯热导率测量值在2.8~ 5.7 W/(m・K)之间,平均值为4.0 W/(m・K)(图 3)。

4.2 岩石热导率测试数据的校正

岩石本身特性(岩石矿物成分、颗粒粒度、孔隙 度、渗透率等)、温度、压力等因素会影响岩石热导 率数值,对于花岗岩等致密岩石,影响其热导率的因 素主要是温度(Brigaud et al., 1989)。由于本次研究中取到的岩石样品均为致密的二长花岗岩, 岩石本身特性较一致, 因此仅对岩石热导率测试数据进行了温度校正, 校正过程是根据 Sass 等通过实验得出的经验公式进行的(Sass et al., 1992);

$$\lambda(0) = \lambda(25) \left\{ 1.007 + 25 \left[0.0037 - \frac{0.0074}{\lambda(25)} \right] \right\}$$
(1)

$$\lambda(T) = \frac{\lambda(0)}{1.007 + T \left[0.0036 - \frac{0.0072}{\lambda(0)} \right]}$$
(2)

式中,λ(0),λ(25) 分别为0°C 和 25°C 时岩石的热 导率,T为岩石原位形成温度, $\lambda(T)$ 为其原位温度 对应下的岩石热导率,即为校正后岩石热导率。按 照上述方法对研究区测量的 40 个岩石热导率数据 进行了校正,校正后的岩石热导率数据见图4。由 图 4b 可以看出,本次研究获得的岩芯热导率值可以 分为三部分(图 4b 中分别由三个椭圆圈出),每一 部分热导率值基本都呈现出随着深度增加而增大趋 势;而且相同岩性的岩芯热导率数值存在一定变化 范围,这可能是由相同岩性之间物质成分存在差异 造成的,也可能是受物质成分分布样式等因素影响 (崔景伟等,2019)。校正后热导率数值分布在 2.5 ~5.3 W/(m·K)之间,均值为3.5 W/(m·K),所 取岩石样品热导率测量值都高于上地壳平均热导率 2.5 W/(m·K),反映出该区具有良好的地热地质 背景。

图 4 招远地热田校正后钻孔岩芯热导率统计直方图(a)及热导率与深度关系图(b)

Fig. 4 Statistical histogram of thermal conductivity after correctionand relationship between thermal conductivity and depth of the Zhaoyuan geothermal field

5 岩石放射性生热率特征

岩石的放射性生热率(A)是单位体积岩石中所 含放射性元素在单位时间由衰变所释放的能量,单 位为μW/m³,它表征着岩石自身生热能力的高低。 岩石放射性生热率是描述地球内部热状态的一个非 常重要的热物性参数,可以为研究地球深部热分布 状态、热流的构成、探讨地球动力学过程提供重要的 数据支撑(胡圣标等,1994,2001;何丽娟等,2006; Tang Boning et al.,2019)。

5.1 研究区地层浅部岩石放射性生热率特征

岩石中所含的放射性元素很多,但是对生热产 生贡献的元素主要是U、Th、K 三种元素,岩石放射 性生热率(A)就是通过测量计算岩石中U、Th、K 这 3种元素的含量获取(李文庆,2015;郎旭娟,2016)。 本文岩石放射性生热率数据是按照 Rybach 于 1976 年提出的计算公式获取(Rybach,1976;邱楠生, 2002);

 $A = 0.01\rho(9.52 C_{\rm U} + 2.56 C_{\rm Th} + 3.48 C_{\rm K})$ (3)

其中,A 为岩石放射性生热率(μ W/m³), ρ 为岩石密 度(g/cm^3), C_U 、 C_Th 、 C_K 分别为岩石中铀($\mu g/g$)、钍 ($\mu g/g$)、钾的含量(%)。

本次研究中岩石放射性生热率计算结果见图 5。岩石生热率数值统计直方图(图 5a)表明,该区 岩石生热率值分布在 0.4~2.2µW/m³之间,计算数 据多数集中在 1.2~1.6µW/m³之间,平均值为 1.3µW/m³。图 5b显示,生热率数值和深度之间存 在弱线性关系,生热率计算结果总体上随着深度增 加而减小。

5.2 研究区地层深部岩石放射性生热率特征

地层深部的放射性生热率的分布是解决该区地 壳上地幔热流配分及壳内热结构、热状态等问题的 关键(赵平,1995)。由于实际情况限制,本次研究 中只取到了该区 0~2000m 层段的岩石样品,对于 2000m 以下地层深部岩石放射性生热率数据利用 Rybach 通过实验得出的 V_p —A 关系公式获取 (Rybach et al.,1984;赵平,1995;刘峰等,2020):

50 MPa 压力条件下:

$$\ln\left(\frac{A}{\mu W/m^{3}}\right) = 16.5 - 2.74 \frac{V_{\rm P}}{\rm km/s}$$
(4)

100 MPa 压力条件下:

$$\ln\left(\frac{A}{\mu W/m^{3}}\right) = 13.7 - 2.17 \frac{V_{\rm P}}{\rm km/s}$$
(5)

200 MPa 压力条件下:

$$\ln\left(\frac{A}{\mu W/m^{3}}\right) = 12.4 - 1.93 \frac{V_{\rm P}}{\rm km/s}$$
(6)

其中,A为岩石放射性生热率,V,为地震波速。

利用上述公式,代入收集的研究区地震波速数据(图 6),得出区内 5000~36000 m(36000 m 深度 约为该区莫霍面深度(方宝明,2006))层段的岩石 生热率数据,详细数据见表 1。

由表1可以看出,利用 V_P—A 关系公式计算的 岩石生热率值随着深度的增加而递减,对比0~2 km 层段实测生热率曲线(表1),可以看出公式5 和公 式6计算的结果偏大,利用公式4 计算的生热率结 果最接近实际测量值。因此将公式4(50 MPa 压力 条件下)的计算结果作为该区深部岩层生热率结 果。

Fig. 5 Statistical histogram of heat production and relationship between heat production and depth of the Zhaoyuan geothermal field

图 6 华北克拉通超长观测距探测剖面不同块体二维速度结构图(据王帅军等修改,2014)

Fig. 6 Two-dimensional velocity structure diagram of different blocks in the North China Craton ultra-long observation range detection profile(after Wang Shuaijun et al, 2014&)

表 1 招远地热田 5.0~36.0 km(莫霍面)生热率计算结果 及 0~2 km 实测值

Table 1 Results of heat production of $5.0 \sim 36.0$ km (Moho) depth in the Zhaoyuan geothermal field and $0 \sim 2$ km measured value

深度 (km)	地震 波速	不同压力下生热率 计算结果(μW/m ³)			0~2000 m 层段 实测生热率	
()	(km/s)	100 MPa	200 MPa	50 MPa		
5	6.00	1.974	2.270	1.062	0	
10	6.10	1.589	1.872	0.807	- 2	
15	6.18	1.336	1.604	0.648	500 - <	
20	6.28	1.075	1.323	0.493		
23	6.40	0. 829	1.049	0.355	j ₂ 1000 −	
25	6.32	0. 986	1.224	0.442	- 2	
30	6.40	0. 829	1.049	0.355	1500 - <	
32	6.50	0.667	0.865	0.270		
35	6.70	0.432	0.588	0.156	2000	
36	8.00	0.026	0.048	0.06	实测生热率 A(μW/m ³)	

6 地热田热储温度及热循环深度估算

6.1 地热田热储温度估算

地热流体中,某些决定热水中溶解组分比例的 水岩反应依赖于温度,因此可用这些组分的比值来 估算热储温度,这种热储温度估算方法称为地热温 标法,常用的地热温标有二氧化硅地热温标计、 Na—K 地热温标计、Na—K—Ca 地热温标计等 (Fournier, 1977; Arnorsson, 1985; 刘昭等, 2014)。根 据研究区地热流体的水化学特征及地热地质情况, 结合各地热温标适用条件,选取了合适的地热温标 对该区 6 口地热井进行热储温度估算,估算结果见 表 2。

由计算结果可以看出,在多种地热温标中,玉髓 地热温标计算结果偏低,因为钻孔 DRZK01 井深 1000 m 以上时,实测温度达 120 ℃左右,故玉髓温 标计算结果不是热储温度的真实反映; Na—K 及

表 2 招远地热田深部热储温度估算结果 Table 2 Estimated results of reservoir temperature

in the Zhaoyuan thermal field

序号	野外编号	水温 (℃)	t _{玉髄} (℃)	t _{石英} (℃)	$T_{\text{Na-K-Ca}} \left(\beta = \frac{1}{3}\right)$ (°C)	t _{Na−K} (℃)	t _{K-Mg} (℃)
1	R5	80	106.96	134	178.51	156.05	126.5
2	R6	78	104.03	131.35	174.15	147.18	132.8
3	R9	79.0	95.81	123.88	171.79	143.47	124.5
4	R12	79.5	103.46	130.83	172.90	141.97	135.9
5	R13	81.3	123.47	148.84	178.74	149.82	146.5
6	R14	52.3	73.03	102.88	166.39	151.14	100.5

Na—K—Ca 地热温标计算出的结果偏高,石英温标和 Na—K—Ca 温标计算结果相差较大,且 Na—K—Ca 温标计算结果偏高,远高于石英温标计算结果, 而石英温标计算结果高于 K—Mg 温标计算结果, 故最终结果选用石英温标计算的热储温度(102.88℃~148.84℃)为该区热储温度的真实反映, 均值为128.63℃。

6.2 地热田热循环深度

地热田内地热流体补给来源主要为大气降水 (Sanliyuksel et al., 2011; Dotsika, 2012),大气降水 入渗后经过深循环上升至地表形成地热水,循环深 度越大,地热水温度越高。地下热水循环深度可由 下列公式推算出来:

$$H = \frac{t_1 - t_2}{I} + h$$
(7)

其中,H为地下热水循环深度,m; t_1 为地下热水深 部最高温度, \mathcal{C} ,取上文计算的热储温度均值 128.63 \mathcal{C} , t_2 为该区恒温带温度,取当地常年平均 气温 14 \mathcal{C} ;h为恒温度厚度,m,取值为 30 m;I为地 温梯度,取上文分析的 0.0318 \mathcal{C}/m 。将以上数值 代入公式(7)中得出该区地下热水循环深度约为 3634.7m。

7 招远地热田地热通量构成及 地热成因分析

- 7.1 地热田地热通量及构成分析
- 7.1.1 地热田地热通量中对流分量

该区地热通量利用公式

$$q = -k \cdot \frac{\mathrm{d}T}{\mathrm{d}H}$$

来计算, q 为地表热流(mW/m²), k 为岩石热 导率[W/(m・K)], dT/dH 为地温梯度(℃/ km), 负号表示热流传导方向。式中地温梯度 取值为上文利用钻井(DRZK01)500~1300 m 层段测温曲线分析的 31.8 ℃/km, 岩石热导率 数据采用钻井(DRZK01)500~1300 m 层段岩 芯热导率检测平均值 3.2 W/(m・K), 最终利 用公式 q = -k(dT/dH) 计算该区地热通量约为 102 mW/m², 具有较高的地热背景。由于该区 内未开展过系统的大地热流测量工作, 该区大 地热流值可取利用距离该地热田约 40 km 的莱 州三山岛黄金科钻的数据计算的热流值 73.24 ±6.18 mW/m²(Jiang Guangzheng et al., 2016), 由此可推算出本次研究中计算的地热通量 102 mW/m²中对流分量为(28.76±8.76) mW/m²。

7.1.2 地热田地热通量中传导分量

7.1.1 节中采用的大地热流值 73.24±6.18 mW/m² 即为该区地热通量中的传导分量,即在地表观测到的大地热流,主要由地壳中放射性元素衰变产生热能(地壳热流 q_e)和地幔深部热能(地幔热流 q_m)两部分组成(Jaupart et al.,2007;Czechowski et al.,2012;姜光政等,2016;刘绍文等,2017)。地壳中放射性元素衰变产生的热能

 $q_{\rm c} = \Sigma q_{\rm a}$

式中:q_a = AD, 为地壳中各结构层由放射性元素衰 变产生的热流,A 为生热率,D 为相应层段厚度。地 幔热流由公式

 $q_{\rm m} = q - q_{\rm c}$

获取(Birch et al., 1968; Roy et al., 1968;徐青等, 1992; Seipold et al., 1998; Ranalli, 2005; Duchkov et al., 2009)。进而可获得一个地区地壳热流与地幔 热流配分比,分析其岩石圈热结构类型(Huang Shaopeng et al., 1992)。

本次研究中,0~2 km 层段岩石生热率数值采 取本文实际测算的岩石生热率均值 1.3 μW/m³;2 km 以下每个层段的生热率数值用表 1 中利用公式 4(50 MPa 压力条件下)计算的结果,取值为各层段 上下层面生热率的均值。利用公式分别计算每一层 段的地壳热流值、地幔热流值和热流值,具体计算结 果见表 3。

表 3 招远地壳热结构计算结果表

 Table 3 The results of thermal structure of the

 lithosphere in Zhaoyuan

深度 (km)	地震 波速 (km/s)	计算 层段 (km)	厚度 (D) (km)	生热率 (A) (µW/m ³)	地売热流 (q_c) (mW/m^2)	热流值 (q) (mW/m ²)
0	_	_	—		_	73.24
2	_	0~2	2	1.3	2.6	70.61
5	6	2~5	3	1.12	3.36	67.25
10	6.1	5~10	5	0.93	4.65	62.6
15	6.18	10~15	5	0.73	3.65	58.95
20	6.28	15~20	5	0.57	2.85	56.1
23	6.4	20~23	3	0.42	1.26	54.84
25	6.32	23~25	2	0.4	0.8	54.04
30	6.4	25~30	5	0.4	2.0	52.04
32	6.5	30~32	2	0.3	0.6	51.44
35	6.7	32~35	3	0.2	0.6	50.84
36	8	35~36	1	0.1	0.1	50.74
总和	—		41		22.5	—

由计算结果可以看出,招远地区放射性元素衰 变产生的热能和为 22.5 mW/m²,即地壳热流为 22.5 mW/m²,区内大地热流采用 73.24±6.18 mW/ m²,就可估算出区内地幔热流为(50.74±6.18) mW/m²,进一步估算出区内壳、幔热流比为1:1.98 ~1:2.52,岩石圈热结构属于"热幔冷壳"型,与汪 集旸等分析的中国东部地区热结构都为为"热幔冷 壳"型研究结果一致(汪集旸等,1986;唐显春等, 2020)。

由上述分析可知,该区计算的地热通量 102 mW/m²由三部分热量构成,对流分量为 28.76± 8.76 mW/m²;传导分量中地壳放射性元素衰变产 生热量为 22.5 mW/m²;深部地幔热量为 50.74± 6.18 mW/m²,三者比例约为 1:0.8:1.76,地热田 内热量约有二分之一是来自深部地幔。

7.2 地热田地热成因概念模型

综合上文研究,研究区地热成因概念模型如图 7 所示:在较高的区域热背景下(73.24 mW/m²),地 热田周围山区的降水入渗后通过断层或构造有利地 段进入热田地下水流动系统,然后沿着热田东西两 侧 2 km 处出露的深大断裂—招平断裂和玲珑断裂 向深部运移,在运移过程中,不断接受来自地幔深部 的热量(50.74±6.18 mW/m²)、岩石放射性元素衰 变产生热量(22.5 mW/m²)和对流热量(28.76±

Fig. 7 The conceptual model of geothermal genesis in Zhaoyuan thermal field

8.76 mW/m²),温度不断升高(被加热至约120~ 148 ℃),在约 3.6~3.8 km 深的部位两条断裂相 交,从而使得地热水沿着两组深大断裂交汇处形成 的良好通道向上运移近地表处形成地热异常区(地 热田)。两条深大断裂——招平断裂和玲珑断裂对 该区地下热水的形成起到了重要作用:① 两条断裂 是大气降水(冷水)径流到深部从而进行加温的主 要通道:② 两条断裂在约 3.8km 深处交汇,从而形 成深部热流上涌的有利通道。两处断裂多期活动, 尤其是玲珑断裂在第四系以来仍有活动的痕迹,致 使处于两条断裂中间位置的地热田内构造发育,形 成以 NNE 向为主的构造群,对其深入调查发现, NNE 向 F1 断裂(图7)为主要构造,破碎带宽 15~20 m.发育深度大于2 km,断裂北部有砾石充填,南段 张性较好。从构造行迹及附近节理互切关系分析, F1 断裂为玲珑断裂的伴生断裂,至少经历了先压后 张两次地壳运动,是一条长期活动至第四系目仍有 活动的断裂构造。依据水文地质资料显示,地热田 内 F1 断裂处富水性最强,大于 10 m³/h,远离 F1 断 裂,富水性逐渐减弱,进一步推断 F1 断裂为地热流 体上涌的主要通道。

8 结论

(1)通过测试分析显示,该区岩石热导率数值 呈现出随着深度加深而增大的规律,数值分布在 2.5~5.3 W/(m・K)之间,平均值为4.0 W/(m・ K),高于上地壳平均热导率2.5 W/(m・K);依据 钻孔测温资料计算,该区地温梯度值为31.8 ℃/ km,结合热导率测试数据,估算该钻孔地热通量为 102 mW/m²,反映出该区良好的地热地质背景。

(2)在多种地温温标中,石英温标最适合用来 计算该区热储温度,估算热储温度约为128.6℃;地 下热水循环深度约3634 m。

(3)利用地震波推算出的该区深部岩石生热率 分布规律与实测情况基本一致,并以此为依据推算 出该区各层段的热流分布规律。通过分析,该区地 热通量中既有来自传导热量(73.24 mW/m²)的贡 献也有对流热量(28.76±8.76 mW/m²)的贡献,其 中传导热量中地壳热流与地幔热流配分比约为1: 1.98~1:2.52,岩石圈热结构属于"热幔冷壳"型。

(4)该区地热系统属"断控型"热储,地下热水 补给通道及上涌通道主要是招平断裂和玲珑断裂两 条深大断裂,并且玲珑断裂至今仍在活动;物探资料 显示两条深大断裂在地下约3.8 km 处交汇,这也正 是本文计算的该区地下热水的热循环深度范围,验 证了本文研究的正确度及可信度。

参考文献 / References

- (The literature whose publishing year followed by a "&" is in Chinese with English abstract; The literature whose publishing year followed by a "#" is in Chinese without English abstract)
- 崔景伟,侯连华,朱如凯,李士祥,吴松涛. 2019. 鄂尔多斯盆地延 长组长7页岩层段岩石热导率特征及启示.石油实验地质,41 (2):280~288.
- 崔煜烽,张杰,殷焘,史猛,毕建新. 2018. 鲁东地区地热资源分布 规律及勘查定井方法探讨.中国地质调查,5(2):86~92.
- 方宝明. 2006. 山东省地热资源综合信息远景预测. 导师:范继璋. 吉林:吉林大学博士学位论文:1~197.
- 何丽娟,胡圣标,杨文采,汪集旸,杨树春,袁玉松,程振炎.2006. 中国大陆科学钻探主孔揭示的大陆地壳生热模型.岩石学报, 22(11):2808~2814.
- 胡圣标,何丽娟,汪集旸. 2001. 中国大陆地区大地热流数据汇编 (第三版). 地球物理学报,44(5):611~626.
- 胡圣标,汪集旸,汪屹华. 1994. 黑水—泉州地学断面东段深部温 度与岩石层厚度. 地球物理学报,37(3):330~337.
- 胡圣标,熊亮萍. 1994. 热流测量中垂向地下水运动干扰的校正方法. 地质科学, 29(1):85~92.
- 姜光政,高堋,饶松,张林友,唐晓音,黄方,赵平,庞忠和,何丽 娟,胡圣标,汪集旸. 2016. 中国大陆地区大地热流数据汇编 (第四版). 地球物理学报,59(8):2892~2910.
- 金秉福,张云吉,栾光忠. 2000. 胶东半岛温泉的地热特征. 水文地 质工程地质, 27(5): 31~33, 37.
- 郎旭娟. 2016. 贵德盆地热结构及地热成因机制. 导师:张发旺,王 贵玲. 北京:中国地质科学院博士学位论文: 1~132.
- 李泓泉,张树胜,谢明忠,周江,周建飞,贾立新,郝星波,任建帅,刘永 平,于丹丹.2020. 冀西北蔚县盆地地热资源赋存特征及勘查开 发方向.地质论评,66(4):919~931.
- 李文庆. 2015. 辽宁东部地区地热特征及岩石放射性生热对地热资 源潜力的影响.导师:薛林福.吉林:吉林大学博士学位论文: 1~126.
- 李学伦,刘保华,孙效功,王永红. 1997. 山东半岛硅热流值与区域 地质条件的关系.青岛海洋大学学报,(1):77~85.
- 蔺文静,甘浩男,王贵玲,马峰. 2016. 我国东南沿海干热岩赋存前 景及与靶区选址研究. 地质学报,90(8): 2043~2058.
- 刘峰,王贵玲,张薇,岳晨,陆川,黄起伟,欧小科. 2020. 燕山中部大 地热流及岩石圈热结构特征——以承德市七家—茅荆坝地热田 为例. 地质学报,94(7):1950~1959.
- 刘绍文,李香兰,郝春艳,李旭东. 2017. 塔里木盆地的热流、深部 温度和热结构. 地学前缘, 24(3):41~55.
- 刘昭, 蔺文静, 张萌, 谢鄂军, 刘志明, 王贵玲. 2014. 西藏尼木— 那曲地热流体成因及幔源流体贡献. 地学前缘, 21(6):356~ 371.
- 栾锡武,赵一阳,秦蕴珊,高德章,赵金海. 2003. 我国东海陆架区 新生代地层岩石生热率研究. 沉积学报,21(4):634.
- 倪守斌,满发胜,王兆荣,黎彤. 1999. 新疆北部地区岩石生热率分 布特征. 中国科学技术大学学报, 29(4):408.
- 庞忠和, 胡圣标, 汪集旸. 2012. 中国地热能发展路线图. 科技导报, 30(32): 18~22.
- 庞忠和,黄少鹏,胡圣标,赵平,何丽娟. 2014. 中国地热研究的进展与展望(1995~2014). 地质科学,49(3):719~727.

- 邱楠生. 1998. 中国大陆地区沉积盆地地热状况剖面. 地球科学进展, 13(5):447~448.
- 邱楠生. 2001. 柴达木盆地现代大地热流和深部地温特征. 中国矿 业大学学报, (4): 92~95.
- 邱楠生. 2002. 中国西北部盆地岩石热导率和生热率特征. 地质科 学, 37(2): 196.
- 史猛,康凤新,张杰,殷焘,韩明智.2019. 胶东半岛中低温对流型 地热资源赋存机理及找热模型. 地质论评,65(5):1276~ 1287.
- 孙旭东. 2020. 南黄海大地热流、地层生热率与热结构分析.导师: 郑求根,温珍河,郭兴伟.北京:中国地质大学(北京)硕士论 文:1~58.
- 唐显春,王贵玲,马岩,张代磊,刘忠,赵旭,程天君. 2020. 青海共和 盆地地热资源热源机制与聚热模式. 地质学报,94(7):2052~ 2065.
- 田禹. 2015. 鲁东地热区氢氧同位素特征及地热水补给来源. 地质 科技情报, 34(6): 182~185.
- 王贵玲, 张发旺, 刘志明. 2000. 国内外地热能开发利用现状及前 景分析. 地球学报, 21(2): 134~137.
- 汪集旸,汪缉安. 1986. 辽河裂谷盆地地壳上地幔热结构. 中国科学(B辑),(8):859~860.
- 王帅军,王夫运,张建狮,嘉世旭,张成科,赵金仁,刘宝峰. 2014. 华北克拉通岩石圈二维 P 波速度结构特征:文登—阿拉善左旗 深地震测深剖面结果.中国科学(地球科学),44(12):2697~ 2708.
- 王一波,胡圣标,聂栋刚,张克松,姜光政,王朱亭. 2019. 郑庐断 裂带是热异常带吗:来自断裂带南段热流的约束. 地球物理学 报,62(8):3078~3094.
- 徐明,朱传庆,田云涛,饶松,胡圣标. 2011. 四川盆地钻孔温度测 量及现今地热特征. 地球物理学报,54(4):1052~1060.
- 徐青,汪缉安,汪集旸. 1992. 大陆碰撞造山带复合叠加型岩石圈 热结构——以云南三江地区为例. 地质论评, 38(6):540~ 545.
- 徐希强,刘善军,王伟德,夏立献. 2015. 山东省地热资源及勘查开 发对策. 山东国土资源,31(5):31~35.
- 叶正仁, Hager B H. 2001. 全球地表热流的产生与分布. 地球物理学 报, 44(2): 171~179.
- 袁利娟, 孔祥军, 高剑, 沈鹏飞, 何云成, 冯浩, 李文, 郝伟俊. 2020. 北京市延庆地热田成因模式. 地质论评, 66(4): 933~ 941.
- 原若溪,王贵玲,刘峰,张薇,曹胜伟.2021. 冀东北地区中低温对流型 地热系统的氟指示意义研究. 地质论评,67(1):218~229.
- 章邦桐, 玲洪飞, 陈培荣, 吴俊奇. 2010. 岩石古放射性生热率的校 正及其地球化学意义. 矿物岩石地球化学通报, (2): 181.
- 张涛. 2011. 胶东温泉地热水水化学及同位素特征研究. 山东国土 资源, 27(12): 11~16.
- 赵辉,殷涛,史猛,江海洋.2019.胶东地热田地热流体的补径排特 征——以招远东汤地热田为例.山东国土资源,35(1):62~ 70.
- 赵平. 1995. 地震波速与地壳岩石生热率关系的研究评述. 地球物 理学报进展, 10(1): 115~118.
- 赵平, 汪集, 汪缉安, 罗定贵. 1995. 中国东南地区岩石生热率分布 特征. 岩石学报, 11(3): 292~305.
- Arnorsson S. 1985. The use of mixing models and chemical geothermometers for estimating underground temperatures in geothermal systems. Journal of Volcanology and Geothermal Research, 23(3):299~335.
- Birch F, Roy R F, Decker E R. 1968. Heat flow and thermal history in

New York and New England. In: Zen E, Wtite W S, Hadley J B, Thompson J B Jr. eds. Studies of Applachian geology: Northern and Maritime Interscience. New York, 437~451.

- Brigaud F, Vasseur G. 1989. Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophysical Journal International, 98(3): 525~542.
- Cui Jingwei, Hou Lianhua, Zhu Rukai, Li Shixiang, Wu Songtao. 2019&. Thermal conductivity properties of rocks in the Chang 7 shale strata in the Ordos Basin and its implications for shale oil in situ development. Petroleum Geology & Experiment, 41(2): 280~ 288.
- Cui Yufeng, ZhangJie, Yin Tao, Shi Meng, Bi Jianxin. 2018&. Discussion on distribution of geothermal resources and locating wells methods of geothermal exploration in Eastern Shandong Province. Geological Survey of China, 5(2) : 86 ~92.
- Czechowski L, Kossacki K J. 2012. Thermal convection in the porous methane-soaked regolith in Titan: Finite amplitude convection. Icarus, 217 (1) : 130~143.
- Duchkov A D, Rychkova K M, Lebedev V I, Kamenskii I L, Sokolova L S. 2009. Estimation of heat flow in Tuva from data on helium isotopesin thermal mineral springs. Russian Geology and Geophysics, 51(2): 209~219.
- Dotsika E. 2012 Isotope and hydrochemical assessment of the Samothraki Island geothermal area, Greece. Journal of Volcanology and Geothermal Research, 233~234: 18~26.
- Fang Baoming. 2006&. Perspective Prognosis on Geothermal Resource in Synthetic Information in Shandong Province. Mentor: Fan Jizhang. Jilin: Doctoral dissertation of Jilin University: 1~197.
- Fournier R O. 1977. Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5(1):41~50.
- He Lijuan, Hu Shengbiao, Yang Wencai, Wang Jiyang, Yang Shuchun, Yuan Yusong, Cheng Zhenyan. 2006&. Heating generation model for the continental crust based on the main hole of thechinese continental scientific drilling project. Acta Petrologica Sinica, 22 (11): 2808~2814.
- Hu Shengbiao, He Lijuan, Wang Jiyang. 2001&. Compilation of heat flow data in the China continental area (3rd edition). Chinese Journal of Geophysics, 44 (5) : 611~626.
- Hu Shengbiao, Wang Jiyang, Wang Yihua. 1994&. Deep temperature and lithospheric thickness along the eastern segment of the Heishui— Quanzhou Geotraverse. Acta Geophysica Sinica, 37(3):330~337.
- Hu Shengbiao, Xiong Liangping. 1994&. Correction for disturbance of vertical groundwater movement to heat flow measurement. Chinese Journal of Geology, 29(1): 85~92.
- Huang Shaopeng, Wang Jiyang. 1992. Heat flow distribution and thermal structure of the continental area of China. Advancesin Geoscience, (2): 361~372.
- Huang Shaopeng, Pollack Henry N, Shen Poyu. 2000. Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature, 403(6771):756~758.
- Hu Shengbiao, He Lijuan, Wang Jiyang. 2000. Heat flow in the continental area of China; a new data set. Earth & Planetary Science Letters, 179(2):407~418.
- Jaupart C, Mareschal J C. 2007. Heat flow and thermal structure of the lithosphere. In: Schubert G. ed. Treatise on Geophysics. New York; Elsevier, 6: 217~252.
- Jiang Guangzheng, Gao Peng, Rao Song, Zhang Linyou, Tang Xiaoyin, Huang Fang, Zhao Ping, Pang Zhonghe, He Lijuan, Hu

Shengbiao, Wang Jiyang. 2016&. Compilation of heat flow data in the continental area of China (4th edition). Chinese Journal of Geophysics, 59(8): 2892~2910.

- Jiang Guangzheng, Tang Xiaoyin, Rao Song, Zhang Linyou, Zhao Ping, Hu Shengbiao. 2016. High-quality heat flow determination from the crystalline basement of the south-east margin of North China Craton. Journal of Asian Earth Sciences, 118:1~10.
- Jin Bingfu, Zhang Yunji, Luan Guangzhong. 2000&. Geothermal characteristics of warm spring in Jiaodong Peninsula. Hydrogeology & Engineering Geology, 27(5): 31~33, 37.
- Lang Xujuan. 2016&. The thermal structure and geothermal genesis mechanism in Guide basin. Mentor: Zhang Fawang, Wang Guiling. Beijing: Doctoral dissertation of Chinese Academy of Geological Sciences: 1~132.
- Li Hongquan, Zhang Shusheng, Xie Mingzhong, Zhou Jiang, Zhou Jianfei, Jia Lixin, Hao Xingbo, Ren Jianshuai, Liu Yongping, Yu Dandan. 2020&. The occurrence characteristics and exploration and development direction of geothermal resources in Yuxian Basin, northwest Hebei Province. Geological Review, 66(4):919~931.
- Li Wenqing. 2015&. The influence of geothermal features and radioactive heat production of rocks to potential of geothermal resources in Eastern area of Liaoning Province. Mentor: Xue Linfu. Jilin: Doctoral dissertation of Jilin University: 1~126.
- Li Xuelun, Liu Baohua, Sun Xiaogong, Wang Yonghong. 1997&. Relationship between the Silica Heat Flow and Regional Geological Conditions in Shandong Peninsula. Periodical of Ocean University of Qingdao, (1): 77~85.
- Lin Wenjing, Gan Haonan, Wang Guiling, Ma Feng. 2016&. Occurrence prospect of HDR and target site selection study in southeastern of China. Acta Geologica Sinica, 90(8):2043~2058.
- Liu Feng, Wang Guiling, Zhang Wei, Yue Chen, Lu Chuan, Huang Qiwei, Ou Xiaoke. 2020&. Terrestrial heat flow and lithospheric thermal structure in the middle Yanshan region —— a case study from the Qijia — Maojingba geothermal field in chengde. Acta Geologica Sinica, 94(7): 1950~1959.
- Liu Shaowen, Li Xianglan, Hao Chunyan, Li Xudong. 2017 #. Heat flow, deep temperature and thermal structure in the Tarim Basin. Earth Science Frontiers, 24(3): 41~55.
- Liu Zhao, Lin Wenjing, Zhang Meng, Xie Ejun, Liu Zhiming, Wang Guiling. 2014& Geothermal fluid genesis and mantle fluids contributions in Nimu—Naqu, Tibet. Earth Science Fronters, 21 (6):356~371.
- Luan Xiwu, Zhao Yiyang, Qin Yunshan, Gao Dezhang, Zhao Jinhai. 2003&. Heat generation of the cenozoic layer of East China Sea Shelf. Acta Sedimentologica Sinica, 21(4):634.
- Ni Shoubin, Man Fasheng, Wang Zhaorong, Li Tong. 1999&. Characteristics of heat production distribution in northern Xinjiang. Journal of China University of Science and Technology, 29(4): 408.
- Pollack H N, Demezhko D Y, Duchkov A D, Golovanova I V, Huang Shaopeng, Shchapov V A, Smerdon J E. 2003. Surface temperature trends in Russia over the past five centuries reconstructed from borehole temperatures. Journal of Geophysical Research: Solid Earth, 108(B4):2180.
- Pang Zhonghe, Hu Shengbiao, Wang Jiyang. 2012&. A Roadmap to geothermal energy development in China. Science & Technology Review, 30(32): 18~22.
- Pang Zhonghe, Huang Shaopeng, Hu Shengbiao, Zhao Ping, He Lijuan.

2014 &. Geothermal studies in China: Progress and prospects (1995 ~2014). Chinese Journal of Geology, 49(3): 719~727.

- Qiu Nansheng. 1998&. thermal status profile in terrestrial sedimentary basins in China. Advance in Earth Sciences, 13(5): 447~448.
- Qiu Nansheng. 2001&. Research on heat flow and temperature distribution of the Qaidam Basin. Journal of China University of Mining & Technology, (4): 92~95.
- Qiu Nansheng. 2002&. Haracters of thermal conductivity and radiogenic heat production rate in basins of northwest china. Chinese Journal of Geology, 37(2): 196.
- Ranalli G, Rybach L. 2005. Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples. Journal of Volcanology & Geothermal Research, 148 (1~2): 3~19.
- Roy R F, Blackwell D D, Birch F. 1968. Heat generation of plutonic rocks and continental heat flow provinces. Earth Plancl., Set. Lett., 5: 1~12.
- Rybach L, Buntebarth G. 1984. The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere. Tectonophysics, 103(1): 335~344.
- Rybach L. 1976 Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure Appl. Geophys., 114(2): 309~317.
- Sanliyuksel D, Baba A. 2011. Hydrogeochemical and isotopic composition of a low-temperature geothermal source in northwest Turkey: Case study of Kirkgecit geothermalarea. Environmental Earth Sciences, 62(3): 529~540.
- Sass J H, Lachenbruch A H, Moses T H, Morgan P. 1992. Heat flow from a scientific research well at Cajon Pass, California. J. Geophys. Res. Atmos., 97(B4): 5017~5030.
- Seipold U, Huenges E. 1998. Thermal properties of gneisses and amphibolites——high pressure and high temperature investigations of KTB-rock samples. Tectonophysics, 291:174~177.
- Shi Meng, Kang Fengxin, Zhang Jie, Yin Tao, Han Mingzhi. 2019&. Occurrence mechanism and geothermal exploration model of low medium temperature geothermal systems of convective type in Jiaodong Peninsula. Geological Review, 65(5): 1276~1287.
- Sun Xudong. 2020&. Analysis of heat flow, heat generation rate and thermal structure in the south Yellow Sea. Mentor: Zheng Qiugen, Wen Zhenhe, Guo Xingwei. Beijing: Master dissertation of China University of Geosciences (Beijing).
- Tang Xiandong, Wang Guiling, Ma Yan, Zhang Dailei, Liu Zhong, Zhao Xu, Cheng Tianjun. 2020&. Geological model of heat source and accumulation for geothermal anomalies in the Gonghe Basin, northeastern Tibetan Plateau. Acta Geologica Sinica, 94(7):2052 ~2065.
- Tang Boning, Zhu Chuanqing, Xu Ming, Chen Tiange, Hu Shengbiao. 2019. Thermal conductivity of sedimentary rocks in the Sichuan Basin, Southwest China. Energy Exploration & Exploitation, 37 (2): 691~720.
- Tian Yu. 2015&. Features of hydrogen and oxygen isotopes and the make-up source for genthermal water in east Shandong geothermal area. Geological Science and Technology Information, 34(6): 182 ~185.
- Wang Guiling, Zhang Fawang, Liu Zhiming. 2000&. An analysis of

present situation and prospects of geothermal energy development and utilization in the world. Acta Geosciences, 21(2): $134 \sim 137$.

- Wang Jiyang, Wang Ji'an. 1986#. The thermal structure of the crust and upper mantle in the Liaohe Rift Basin. Science in China (Series B), (8): 859~860.
- Wang Shuaijun, Wang Fuyun, Zhang Jianshi, Jia Shixu, Zhang Chengke, Zhao Jinren, Liu Baofeng. 2014 &. The P-wave velocity structure of the lithosphere of the North China Craton——Results from the Wendeng—Alxa Left Banner deep seismic sounding profile. Scientia Sinica(Terrae), 44(12) : 2697~2708.
- Wang Yibo, Hu Shengbiao, Nie Donggang, Zhang Kesong, Jiang Guangzheng, Wang Zhuting. 2019&. Is the Tan-Lu fault zone a thermal anomaly belt: Constraints from heat flow in its southernsection. Chinese Journal of Geophysics, 62 (8): 3078 ~ 3094.
- Xu Ming, Zhu Chuanqing, Tian Yuntao, Rao Song, Hu Shengbiao. 2011&. Borehole temperature logging and characteristics of subsurface temperature in the Sichuan Basin. Chinese Journal of Geophysics, 54(4):1052~1060.
- Xu Qing, Wang Ji'an, Wang Jiyang. 1992&. A compound and superimposed thermal structure of the lithosphere in the continental collision orogens——A case study of the sanjiang region. Geological Review, 38(6): 540~545.
- Xu Xiqiang, Liu Shanjun, Wang Weide, Xia Lixian. 2015&. Coutermeasures on exploration and development of geothermal resource inshandong province. Shandong Land Resources, 31(5): 31~35.
- Ye Zhengren, Bradford H. Hager. 2001&. Generation and distribution of global heat flow. Chinese Journal of Geophysics, (2): 171~179.
- Yuan Lijuan, Kong Xiangjun, Gao Jian, Shen Pengfei, He Yuncheng, Feng Hao, Li Wen, Hao Weijun. 2020&. Genetic model of Yanqing geothermal field, Beijing. Geological Review, 66(4): 933~941.
- Yuan Ruoxi, Wang Guiling, Liu Feng, Zhang Wei, Cao Shengwei. 2021&. Study on the indication of fluorine of the low-medium temperature convective geothermal system in Northeastern Hebei Province. Geological Review, 67(1):218~229.
- Zhang Bangtong, Ling Hongfei, Chen Peirong, Wu Junqi. 2010&. Correction to the paleoradioactive heat production rate of rocks and its geochemical significance. Bulletin of Mineralogy, Petrology and Geochemistry, (2): 181.
- Zhang Tao. 2011&. Study on hydrochemistry and isotopic characteristics of geothermal water in Jiaodong area. Shandong Land and Resources, 27(12): 11~16.
- Zhao Hui, Yin Tao, Shi Meng, Jiang Haiyang. 2019&. Recharge runoff and discharge characteristics of geothermal fluid of Jiaodong geothermal fields —— Setting Dongtang Geothermal Field in Zhaoyuan City as an example. Shandong Land and Resources, 35 (1):62~70.
- Zhao Ping. 1995&. Studies of the relationship between seismic velocity and heat production in the rocks of crust. Progress in Journal of Geophysics, 10(1): 115~118.
- Zhao Ping, Wang Ji, Wang Ji'an, Luo Dinggui. 1995&. Characteristics of heat production distribution in SE China. Acta Petrologica Sinica, (3): 292~305.

Study on geothermal flux and geothermal genesis of Zhaoyuan geothermal field in Eastern Shandong geothermal area

ZHONG Zhennan^{1,4)}, KANG Fengxin²⁾, SONG Mingzhong¹⁾, LANG Xujuan^{3, 5, 6, 7)}, LIU Luyong¹⁾, FU Pengyuan²⁾, LI Zhijie³⁾

No. 6 Institute of Geology and Mineral Resources Exploration of Shandong Province, Weihai, Shandong, 264209;
 2) Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, 250013;

3) School of Water Resources & Environment, Hebei GEO University, Shijiazhuang, 050031;

4) Shandong Provincial Engineering Laboratory of Application and Development of Big Data

for Deep Gold Exploration; Weihai, Shandong, 264209;

5) Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources

and Optimization of Industrial Structure, Shijiazhuang, 050031;

6) Hebei Province Key Laboratory of Sustained Utilization and Development of Water Resources, Shijiazhuang, 050031;
 7) Hebei Province Key Discipline of Hydrology and Water Resources, Shijiazhuang, 050031

Objectives: The study area located in Easter Shandong area, which belongs to the northern part of the north Shandong uplift.

Methods: In this paper, the thermal conductivity and heat generation rate of rock are measured by testing 40 typical core samples. Combined with temperature measurement data and collected data, the composition of geothermal flux in this area was analyzed and studied. Typical geothermal fluid samples in the area were collected to obtain hydrochemistry data.

Results: The measured rock conductivity in this area is from 2. 8 to 5. 7 W/($m \cdot K$), which is generally higher than the average thermal conductivity of the upper crust. The geothermal gradient is 31. 8alyz. The geothermal flux calculated by thermal conductivity and geothermal gradient is 102 mW/m², in which the heat conduction component is 73. 2±6. 18 mW/m² and the convection component is 28. 76±8. 76 mW/m². The ratio of crustal heat flow to mantle heat flow is 1 : 1.98~1 : 2.52. The calculated average reservoir temperature by quartz thermometer is about 128.6 °C and the thermal cycle depth is about 3634 m.

Conclusions: The geothermal flux in Zhao yuan geothermal field is contributed by both conduction heat and convection heat. The contribution of crustal heat flow is half of mantle heat flow, and the thermal structure of lithosphere belongs to the "hot mantle cold crust" type. The research results enrich the geothermal system theory in this area and provide some theoretical support for the development and utilization of geothermal resources in this area.

Keywords: rock thermal conductivity; reservoir temperature; geothermal gradient; conceptual model; geothermal flux

Acknowlegement: This study was supported by the project from Shandong Province Key R & D Program Funded Project (No. 2019GSF109053), the geological survey program from the Department of Natural Resource of Shandong Province (No. 2018-42) and the National Science Foundation of China (Nos. U1906209, 42072331, 41877192).

First author: ZHONG Zhennan, female, born in 1985, master, senior engineer, is mainly engaged in geothermal geology and hydrogeology research; Email:409864746@qq.com

Corresponding author: LANG Xujuan, female, born in 1985, Ph. D., is mainly engaged in geothermal geology and hydrogeology research; Email:langlan77@163.com

Manuscript received on: 2020-10-29; Accepted on: 2021-02-18; Network published on: 2021-03-20Doi: 10. 16509/j. georeview. 2021. 03. 013Edited by: ZHAO Xue, ZHANG Yuxu