羌塘中部陆相红层时代的 U-Pb 年龄约束

赵珍¹⁾,吴珍汉¹⁾,杨易卓^{1,2)},季长军³⁾

1) 中国地质科学院,北京,100037;2) 长江大学,武汉,430100;

3) 中国地质科学院地质力学研究所,北京,100081

内容提要:由于缺少精确的定年结果与可靠的生物标志化石,青藏高原广泛发育的上白垩统一中新统的多套陆 相红层时代与分布混乱不清,影响了对一系列重大问题的认识。本文利用锆石 U-Pb 测试手段,对双湖—伦坡拉地 区红层时代开展研究。根据新发现的斑脱岩与火山岩夹层精确厘定了牛堡组中上部时代(45.41~43.82 Ma)和阿布 山组地层时代(101.9~73.09 Ma);根据上覆角度不整合的纳丁错组(35.5~32.59 Ma)与鱼鳞山组(46~28 Ma)火山 岩年龄约束了康托组与唢呐湖组的时代上限;结合前人年代学研究,初步建立了 K₂—N₁ 红层时代格架,主要包括晚 白垩世阿布山组与竟柱山组、古新世—始新世牛堡组与康托组、始新世—渐新世唢呐湖组和渐新世—中新世丁青湖 组,均可与北部可可西里盆地对比。其中,双湖—多玛主要出露阿布山组,非早期划分的康托组;而康托组多数分布 于中央隆起或山顶高处;唢呐湖组则沿双湖周边平缓低地发育;竟柱山组、牛堡组与丁青湖组普遍沿班公湖—怒江 缝合带展布,其中牛堡组向北延伸到多玛。精确厘定红层时代与分布,直接推动了对盆地沉积地层系统与逆冲推覆 构造活动时代的认识,有利于进一步综合评价逆冲推覆构造对羌塘盆地油气资源的影响,探讨逆冲推覆构造与盆— 山演化过程及动力学机制;同时,为以红层为研究对象的高原抬升过程、古环境与古气候演化等提供了良好的基础。

关键词:锆石 U-Pb 年龄;晚白垩世—中新世;陆相红层;双湖—伦坡拉地区;青藏高原

青藏高原双湖—伦坡拉地区广泛发育厚达数千 米的上白垩统—中新统陆相沉积地层,是研究高原 中部"双向还是北向"生长过程及动力学机制、古海 拔与古环境、盆地演化与区域构造背景、油气资源综 合研究的良好对象(Rowley and Currie, 2006; DeCelles et al., 2007a, b; Kapp et al., 2007; Wang Chengshan et al., 2008, 2014; Rohrmann et al., 2012; Deng Tao et al., 2015; Ma Pengfei et al., 2015, 2017; Su Tao et al., 2019; Han Zhongpeng et al., 2019)。

这些陆相沉积以紫红色—褐红色—红色的河流 相碎屑岩为主,在伦坡拉一带则发育青灰色—灰白 色为主的杂色湖相沉积,虽然习惯上将前者称为 "红层"(李才等,2006;吴珍汉等,2014),但是考 虑到区域地层对比与地层沉积的连续性,且年轻的 湖相沉积也发育红色碎屑岩夹层,本文将两者统称 为"红层"。受陆相沉积性质所限,地层缺少精确和 广泛的同位素数据,红层时代与分布混乱不清。 双湖一伦坡拉地区发育多套红层,虽然通过生物化石组合、碎屑锆石年龄、天文年代标尺、古地磁等技术手段,约束了部分红层时代,但基本是针对较小范围内的单套红层,并没有建立系统的时代格架。此外,仍有部分红层缺少精确的年代学结果。因此本文以红层为研究对象,利用新发现的火山岩与斑脱岩夹层,结合碎屑锆石 U-Pb 测年结果(附表 1,印刷版略,请见 www.geojournals.cn.georev 或 www.cnki.net 或 www.geojournals.cn.georev 式 www.cnki.net 式 www.geojournals.cn.georev 式 www.cnki.net 或 www.geojournals.cn.georev 式 www.cnki.net 式 www.geojournals.cn.georev 式 www.geojournals.cn.georev 式 www.cnki.net 式 www.geojournals.cn.georev 式 www.geojournals.cn.georev 式 www.geojournals.cn.georev 式 www.cnki.net 式 www.geojournals.cn.georev 式 www.ge

1 区域地质背景

青藏高原属于特提斯构造域东段,经历了多期 俯冲—碰撞造山作用,最终造就了现今多条构造带

注:本文为中国地质科学院基本科研业务费专项经费资助项目(编号:JKY201903-06)和地质调查项目(编号:DD20190367)的成果。

收稿日期:2020-07-13;改回日期:2020-08-17;责任编辑:黄道袤。Doi:10.16509/j.georeview.2020.05.006

作者简介:赵珍,女,1987年生,博士,构造地质专业,主要从事青藏高原逆冲推覆构造与油气综合评价研究;通讯地址:100037,北京市西 城区百万庄大街 26号;Email: zhaozhen03@126.com。

图1 青藏高原构造特征与陆相沉积盆地

Fig. 1 Schematic tectonic map and continental sedimentary basins of the Xizang(Tibetan) Plateau

HX—可可西里盆地;YH—羊湖盆地;LB—伦北盆地;LP—伦坡拉盆地;NM—尼玛盆地;JSSZ—金沙江缝合带;LSSZ—龙木错—双湖缝合带;BNSZ—班公湖—怒江缝合带;IYSZ—印度河—雅鲁藏布江缝合带(据 Ma Pengfei et al., 2017 修改)

HX—Hoh Xil Basin; YH—Yanghu Basin; LB—Lunbei Basin; LP—Lunpola Basin; NM—Nyima Basin; JSSZ—Jinsha River suture zone; LSSZ— Longmu Lake—Shuanghu suture zone; BNSZ—Bangong Lake—Nujiang River suture zone; IYSZ—Indus River—Yarlung River suture zone (modified after Ma Pengfei et al., 2017)

与稳定地块相间、条块分隔的构造格局。受到早白 垩世—新生代新特提斯洋板块北向俯冲、拉萨—羌 塘地块碰撞以及印度--欧亚板块碰撞造山的影响, 青藏高原发生了强烈的隆升和地壳缩短(Dewey, 1988; Harrison et al., 1992; Kapp et al., 2003, 2005, 2007),在高原内部及外缘形成了大量的晚白 垩世—新生代陆相沉积盆地(图1),记录了高原隆 升、古环境与古气候演化以及造山带发展的信息 (Dupont-Nivet et al., 2007; Wang Chengshan et al., 2008, 2014; Quade et al., 2011; Li Yalin et al., 2015a; Ding Lin et al., 2017; Li Lin et al., 2018; Lai Wen et al., 2019; Su Tao et al., 2019)。位于青 藏高原中部的羌塘地块夹持于班公湖——怒江缝合带 与可可西里缝合带之间,沿龙木错——双湖缝合带发 育由古生界变质基底与构造混杂岩组成的中央隆 起,从地貌上将羌塘地块进一步分为南、北羌塘盆 地,发育厚数千米的以海相沉积为主的上三叠统--侏罗系地层(图1)。作为班公湖—怒江洋闭合、羌 塘地块抬升以及喜山运动的沉积响应,在羌塘地块 和班公湖—怒江缝合带的前陆盆地、小型断陷盆地 和山间洼地中广泛发育晚白垩世至新近纪的陆相沉 积地层,主要包括沿班公湖—怒江缝合带近东西向 产出的竟柱山组、牛堡组与丁青湖组,在羌塘地块分 布的阿布山组、康托组与唢呐湖组。

虽然红层时代争议较大,但基本认可竟柱山组 是一套与早白垩世晚期班公湖—怒江洋闭合以及拉 萨—羌塘地块碰撞抬升有关的巨厚的磨拉石建造, 指示了羌塘地块由海相过渡为陆相沉积环境(Kapp et al., 2007);牛堡组和丁青湖组主要沿班公湖— 怒江带两侧的新生代盆地产出,其中牛堡组分布较 为广泛,丁青湖组则断续产出,在伦坡拉盆地发育最 齐全,两者主要为整合接触关系,角度不整合于竟柱 山组或其它地层之上。虽然地层时代具体到"统" "世"略有争议,但主体为古近纪的连续沉积。

早期地质调查中认为南羌塘红层的主体是康托 组,时代争议包括古近纪、中新世,甚至上新世;康托 组之上发育角度不整合的唢呐湖组,逐渐向北延伸 分布于北羌塘盆地,并被大规模火山岩角度不整合 覆盖。受下伏康托组时代混乱以及上覆火山岩多期 活动的影响,唢呐湖组地层时代也存在较大争议,主 要分为古近纪中晚期与中新世—上新世等两种观 点。早期认为阿布山组分布有限,随着工作的深入, 利用微体古生物、火山岩定年与古地磁等手段,不仅 将阿布山组地层时代从早白垩世修订为晚白垩世, 也从大规模的康托组中重新划分出阿布山组地层 (贺永忠等, 2006; 吴珍汉等, 2014; Chen Weiwei et al., 2017)。

在地层特征上,丁青湖组主要为灰色、暗色泥 岩、页岩的湖相—深湖相沉积,唢呐湖组上部发育黄 灰色、浅黄色含膏灰岩、紫红色泥岩夹石膏层,表现 出湖相沉积特征,与其它红层的红色、紫红色为主的 磨拉石建造不同。结合产出位置,基本可以区分竟 柱山组、唢呐湖组和丁青湖组;而阿布山组、康托组 以及牛堡组下部砾岩层位具有相似的地层宏观特征 与岩石组合,区域产出位置交叉,野外识别与地层划 分较为困难。

2 红层地质特征与时代

双湖—伦坡拉地区主要位于羌塘地块南部,横 跨班公湖—怒江缝合带与中央隆起,本文对区内红 层开展了详细的区域地质调查并开展了大量的同位 素测试(附表 1,印刷版略,请见 www. geojournals. cn/georev 或 www. cnki. net 或 www. wanfangdata. com. cn 等网上电子文件),结合已有成果,初步厘定 了区内红层时代,并重新划分了红层的分布范围 (图 2)。

2.1 晚白垩世红层

2.1.1 阿布山组

阿布山组命名地位于双湖县城阿布山东坡,以 紫红色—深红色—砖红色砂岩、砾岩、砂砾岩为主, 夹泥灰岩、粉砂岩与火山岩。早期地质调查中,根据 阿布山组安山岩 K-Ar 年龄(95.3 Ma),结合动植物 化石,将阿布山组地质时代定为晚白垩世^①;随后对 马登、毕洛错、多玛等地火山岩夹层开展的锆石 U-Pb 测试进一步明确了阿布山组为晚白垩世(102.6 ~75.65 Ma; Li Yalin et al., 2013, 2015b, 2017; 吴 珍汉等, 2014; He Haiyang et al., 2018)。本文新 发现大量火山岩且追索到火山岩与红层接触关系, 结合碎屑锆石 U-Pb 年龄,进一步约束了阿布山组 顶、底时代,目划分了区内阿布山组的分布。

2.1.1.1 火山岩锆石 U-Pb 年龄

沿中央隆起南部北雷错—毕洛错—扎日阿巴红 层中近东西向断续产出玄武—安山岩夹层,野外为 深绿色、暗紫色厚层,红层未见顶、底:向东延伸至渡 日村则发育较为完整的玄武岩—安山岩—流纹岩系 列,发育火山角砾岩,可见红层覆于玄武岩-安山岩 之上,而流纹岩则与红层呈穿插接触关系。其中,毕 洛错安山岩(样品 15321-1)、扎日阿巴安山岩(样品 DT0081)年龄为101.9~97.35 Ma(图 3a, b);渡日 村流纹岩(样品 18064-1)和安山岩(样品 19036-8) 年龄为99.6~95.9 Ma(图 3c, d)。除厚度较大的 火山岩夹层外,在中央隆起宁日厚度巨大的红层中 发现薄层凝灰岩夹层,距红层剖面底部约 400 m 厚 度,锆石 U-Pb 年龄为 97.39 Ma(样品 17045-2;图 3e)。沿南羌塘古油藏带南缘桑莫那—茶周玛尔包 红层中断续产出覆于红层上部的安山岩,其中桑莫 那安山岩年龄为 73.09 Ma(样品 AD17324-1: 图 3f),茶周玛尔包安山岩年龄为 74.66 Ma(样品 AD17218-2; 图 3g)。

此外,部分火山岩由于发育较多的继承锆石,未 能获得谐和年龄。其中果根错北东安山岩(样品 18172-3)最年轻锆石年龄为77 Ma(附件),与多玛 北部火山岩年龄相近(80~76 Ma; Li Yalin et al., 2013);朋彦错北岸火山岩夹层(样品 18149-2)最年 轻锆石 U-Pb 年龄范围为75~98 Ma,与区内晚白垩 世火山岩结果一致。

结合前人获得的火山岩锆石 U-Pb 结果(102.6~75.65 Ma),阿布山组火山岩主要分为 102.6~95.9 Ma 和 75.65~73.09 Ma 两期,并发育 83 Ma 的火山岩。

2.1.1.2 碎屑锆石 U-Pb 年龄

对双湖—多玛红层中的砂岩开展了碎屑锆石 U-Pb 测试,6件样品均获得了>90个有效数据,在 250~0 Ma 范围内,锆石数量急速增加且在 250 Ma、 210 Ma、150 Ma、110 Ma 和 80 Ma 等阶段表现出峰 值特征,其中晚白垩世以来的锆石年龄数量较少 (41~96 Ma, n=4),主要为早白垩世与三叠纪(表 1)。

受距物源区远近、物源区性质以及区内岩浆活动时代与分布所限,沉积岩碎屑锆石最年轻的 U-Pb 年龄不一定能有效约束沉积地层下限(马铭姝等, 2014)。双湖唢呐湖组碎屑锆石 U-Pb 测试结果最年轻的年龄组为早白垩世甚至三叠纪(吴珍汉等, 2018);隆1井岩芯中阿布山组砂岩碎屑锆石 U-Pb

最年轻的年龄为早白垩世(吴珍汉等,2019);本文 碎屑锆石 U-Pb 年龄也基本没有捕获到晚白垩世以 来的岩浆锆石年龄,可能与区内火山岩浆活动较弱,

或岩浆活动与红层时代同期且红层快速堆积有关。 由于至少三颗锆石年龄才能有效限定最大沉积 年龄(Dickinson and Gehrels, 2009),因此样品中的

图 2 双湖—伦坡拉地区构造地质简图与红层分布

Fig. 2 Structural geology and red beds distribution in Shuanghu-Lunpola area

NCT—中央隆起北缘逆冲推覆构造;XST—肖茶卡—双湖逆冲推覆构造;SCT—中央隆起南缘逆冲推覆构造;LAT—隆鄂尼—昂达尔错逆冲 推覆构造;DQT—多玛—其香错逆冲推覆构造;SZT—赛布错—扎加藏布逆冲推覆构造;NST—尼玛—色林错逆冲推覆构造(底图在1: 25 万兹格塘错幅[●]、赤布张错幅[●]、吐错幅[●]、江爱达日那幅[●]、帕度错幅[●]、昂达尔错幅[●]、班戈县幅[●]、多巴区幅[●]和尼玛幅[●]的基础上,结合 野外地质调查进行修改

NCT—Northern marginal thrust of the Central Uplift; XST—Xiaocaka—Shuanghu thrust; SCT—southern marginal thrust of the Central Uplift; LAT—Lung'erni—Angdar Lake thrust; DQT—Doma—Qixiang Lake thrust; SZT—Saibu Lake—Zagya River thrust; NST—Nyima—Silin Lake thrust (modified after the 1 : 250 000 Geologic Maps of Zigê Tang Lake^①, Chibzhang Lake^②, Tuco Lake^③, Jangngai Darina^①, Padu Lake^⑤, Angdar Lake^③, Baingoin County^④, Toiba District^③ and Nyima^④

晚白垩世与新生代的锆石年龄仅供参考。其中样品 17057-1 位于阿布山组建组剖面北部,因此 41 Ma 的 锆石结果可能不具有地层时代意义;17045-1 与 CD21-1 附近则发育晚白垩世火山岩(图 2),与最年

图 3 阿布山组火山岩锆石 U-Pb 年龄和野外照片

Fig. 3 Concordia diagram of zircons from volcanic samples and field photos of the Abushan Fm.

(a)毕洛错安山岩锆石 U-Pb 年龄;(b)扎日阿巴安山岩锆石 U-Pb 年龄;(c)渡日村流纹岩锆石 U-Pb 年龄;(d)渡日村安山岩锆石 U-Pb 年龄;(e)宁日凝灰岩锆石 U-Pb 年龄;(f)桑莫那安山岩锆石 U-Pb 年龄;(g)茶周玛尔包西安山岩锆石 U-Pb 年龄;(h)渡日村红层底部安山岩;(i)桑莫那红层上部安山岩

(a) and (b) the zircon U-Pb ages of andesite from Biluo Lake area and Zhariaba area; (c) and (d) the zircon U-Pb ages of rhyolite and andesite from Duri village; (e) the zircon U-Pb age of volcanic tuff from Ningri hill; (f) and (g) the zircon U-Pb ages of andesite from Sangmona and Chazhoumaerbao; (h) red beds lies above andesite rock in Duri village; (i) andesite rock lies above red beds in Sangmona

轻锆石 U-Pb 结果一致。结合有明确火山岩年龄 U-Pb 约束的红层分布与地质特征,将其它碎屑岩样品 所在的红层划分为晚白垩世阿布山组。

2.1.1.3 阿布山组时代

火山岩锆石 U-Pb 结果表明羌塘盆地经历了晚 白垩世早期(102.6~95.9 Ma)和晚白垩世晚期 (75.65~73.09 Ma)至少两期较强烈的火山活动,中 间可能也发育其它岩浆活动(83 Ma;吴珍汉等, 2014),主体分别位于阿布山组下部和上部,区域上 也基本可以追索(图 3h, i)。阿布山组碎屑锆石 U-Pb 结果普遍较老,基本没有记录到晚白垩世岩浆年 龄,可能与羌塘盆地此时快速抬升剥蚀且岩浆活动 规模较小有关。结合砂岩碎屑锆石年龄、火山岩锆 石年龄以及野外地质特征,阿布山组地层时代为 102.6~73.09 Ma,整体为晚白垩世。

2.1.2 竟柱山组

竟柱山组创名于班戈县竟柱山,以紫红色—灰 紫色复成份砾岩、含砾砂岩、砂岩为主,局部夹有火 山岩,整体与阿布山组相似,但是主要沿班公湖—怒 江缝合带产出,上部常发育碳酸盐岩建造。根据孢 粉组合,初步将竟柱山组置于晚白垩世(贾共祥等, 2007),尼玛、班戈等地凝灰岩、斑脱岩与英安岩夹 层锆石 U-Pb 年龄(99.98~89 Ma; Kapp et al., 2007; 韩维峰, 2013; Lai Wen et al., 2019)则进一 步精确约束了竟柱山组下部时代。

项目组在尼玛盆地朱日竟柱山组底部发现英安 质角砾熔结凝灰岩夹层,锆石 U-Pb 年龄为 105.1 Ma(样品 14149-3;赵珍,2019a),进一步扩大了竟 柱山组时代下限。结合班戈地区古地磁(96~73 Ma;李华亮等,2016),认为竟柱山组在尼玛—班戈 地层时代为 105.1~73 Ma,基本与阿布山组一致。

2.2 古新世—始新世红层

2.2.1 牛堡组

牛堡组主要沿洞错--尼玛--伦坡拉盆地分布,

下部以紫红色、棕红色砾岩、砂岩为主,局部夹灰绿、 紫红色泥岩;上部为浅湖相黄色、灰色、绿色砂岩、泥 岩、页岩等细碎屑岩夹灰岩,底部夹有中性火山熔 岩,岩石粒度整体呈粗一细一较粗韵律变化(夏位 国等,1986)。牛堡组地层时代的研究进展较为缓 慢,不仅缺少明确的同位素结果,地层底部是否进入 古新世也存在较大争议(胡济民,1995;马立祥等, 1996)。

(1)斑脱岩锆石 U-Pb 年龄。赞宗错北岸出露 紫红色—红色砾岩、含砾砂岩,夹灰黑色砾岩、土黄 色—黄绿色薄层砂岩、泥岩等,为牛堡组中上部地 层;发育多层灰白色—白色斑脱岩夹层,单层厚度 3 ~10 cm(图 4f),2 件不同层位斑脱岩锆石 U-Pb 年 龄分别为 43.82 Ma(样品 19056-1)与 45.4 Ma(样 品 19056-2)(图 4a, b),首次提供了牛堡组中上部 精确的同位素年龄。前人对伦坡拉盆地内牛堡组中 段砂岩开展了碎屑锆石 U-Pb 测试,最年轻的一组 年龄为 43.6 Ma(陶江龙, 2018),与斑脱岩结果一 致,因此牛堡组中上层位时代至少为始新世。

(2)牛堡组时代。牛堡组地层时代主要存在两 种观点:一种认为牛堡组整体为始新世(王开发等, 1975;夏位国,1982,1986;马立祥等,1996),另一 种认为牛堡组发育始新世大化石(Yang Guolin et al.,2016;廖铸敏和白培荣,2019),下部数百米化 石稀少的地层可能为古新世沉积(马孝达,2003)。 根据伦北盆地牛堡组底部火山熔岩夹层 K-Ar测试 结果(61 Ma[•])以及达卓玛地区牛堡组古地磁结果 (57~47 Ma;赵政璋等,2001),本文认为南羌塘地 块牛堡组地层时代为古新世—始新世。由于伦坡拉 盆地与伦北盆地作为班公湖—怒江断陷盆地的组成 部分,发育典型的牛堡组地层,且赞宗错红层上部发 育较多黄色—土黄色泥岩等,综合地层时代与地层 特征,将赞宗错—其香错划分的康托组修改为牛堡

表1 阿布山组碎屑锆石 U-Pb	年龄
------------------	----

Table 1 Detrital zircon U-Pb age of the samples from the Abushan Formation

投口	- 나나, bet-		锆石颗粒	数/锆石年龄刻	芭围(Ma)		晒水合米行
作与	石注	0~65 Ma	65~100 Ma	100~145 Ma	145~201 Ma	201~250 Ma	术贝个工安人
17057-1	长石石英砂岩	1/41				76/201~244	96
17045-1	长石石英砂岩		1/96	10/104~118	8/150~187	14/208~248	97
17052-1	长石石英砂岩			3/110~119	1/194	9/213~248	94
AD17325-1	长石杂砂岩			6/100~111	7/147~200	14/202~250	95
SM24-1	长石砂岩			57/113~125	2/168~197	4/207~236	94
CD21-1	长石杂砂岩		2/80~84	16/107~128	6/155~174	7/224~238	95

组。

2.2.2 康托组

康托组正层型剖面在改则县康托西山,以紫红 色砾岩、砂砾岩等粗碎屑岩为主,杂色泥岩、粉砂岩 沉积次之,底部夹基性火山岩和碳酸盐岩,局部湖相 层位可能发育薄层石膏,区域上常与古近纪美苏组、 纳丁错组火山岩伴生,互为角度不整合关系(李才 等,2006),对于约束康托组地层时代意义重大。

(1) 双湖地区纳丁错组火山岩 U-Pb 年龄。双 湖地区纳丁错组出露规模较小,仅在昂达尔错北西 出露,玄武安山岩锆石 U-Pb 年龄为 32.59 Ma(样品 16159-3;图 4c,h),未见与红层直接接触关系;在 尼玛地区俄久乡可见纳丁错组角度不整合在康托组 之上(图 4g),玄武安山岩锆石 U-Pb 年龄为 35.5 Ma(样品 14137-1;图 4d)。区域上在南羌塘改则地 区普遍可见玄武岩—安山岩系列的纳丁错组角度不 整合于康托组之上,锆石 U-Pb 年龄为 36.9~35.4 Ma(于俊秋, 2016),K-Ar/Ar-Ar 年龄相对较为年 轻,集中在 33.3~28.4 Ma(李才等, 2006),与本文 纳丁错组结果一致。根据区域地层关系,认为双湖 地区康托组上限不早于渐新世。

(2)康托组时代。在羌塘西部改则—尼玛地 区,发育裂隙—中心式喷发—沉积的美苏组,地层时 代跨越较大,从 69.1~37.4 Ma(谢国刚等, 2003; 魏永峰等, 2018;张耀玲等, 2018),与康托组构成 晚新生代陆相沉积岩系。美苏组顶部火山岩(39~ 37 Ma;张耀玲等, 2018)呈树枝状交叉侵入康托组 地层中,结合荣玛地区康托组凝灰岩夹层 Ar-Ar 年 龄(35 Ma; Kapp et al., 2005)以及纳丁错组年龄, 康托组上部时代至少为始新世晚期,这也与改则地 区康托晚始新世介形类动物群化石组合一致(姜高 磊等, 2014)。

在羌塘西部丁固—加措地区,获得康托组底部 安山岩 K-Ar 年龄为 65.1~66.5 Ma(岳龙等, 2006);在尼玛地区,康托组角度不整合于美苏组下 部火山岩之上(K-Ar, 69.1~59.1 Ma;谢国刚等, 2003)。在羌塘北部黑虎岭地区,花岗岩侵入康托 组地层中,花岗岩黑云母 Ar-Ar 年龄为 51 Ma(Xu Qiang et al., 2013)。因此将康托组地层时代置于 古新世—始新世。

2.3 始新世—中新世红层

2.3.1 唢呐湖组

唢呐湖组命名地点位于双湖地区唢呐湖东,主 要分布于北羌塘、可可西里地块,下部为紫红色—砖 红色含砂岩、粉砂岩,夹含砾砂岩、砾岩,上部为黄灰 色、浅黄色灰岩、紫红色泥岩,夹石膏层及少量沉凝 灰岩,区域上普遍被鱼鳞山组火山岩喷发不整合覆 盖[●]。

(1)鱼鳞山组火山岩锆石 U-Pb 年龄。鱼鳞山 组主要在北羌塘出露,下部主要为安山岩、英安岩等 中酸性火山岩系,上部为碱性、过碱性为主的中基性 火山岩组成[●]。在研究区内,鱼鳞山组南部位于半 岛湖—跃进拉一带,北部到达火车头—巴毛穷宗 山—乱青山—多格错仁。鱼鳞山组发育多级喷发旋 回,表现出多期活动性(李才等,2002)。

在半岛湖北部蚌壳坡可见鱼鳞山组暗紫色、灰绿色安山岩角度不整合于唢呐湖组灰白色、白色薄层含膏灰岩之上,安山岩锆石 U-Pb 年龄为 41.33 Ma(样品 16146-1;图 4e),与东月湖、黑虎岭等鱼鳞山组锆石 U-Pb 年龄(44.3~40.18 Ma;董彦辉等, 2008; Wang Qiang et al., 2008)一致。

前人对鱼鳞山组也开展了大量的 K-Ar/Ar-Ar 测试,结果主要集中于46~24 Ma,少量为20~18 Ma (丁林等, 1999; 迟效国等, 1999; 谭富文等, 2000; 刘红英等, 2004; 李佑国等, 2005; Wang Qiang et al., 2008; 吴珍汉等, 2018),结合建组剖面鱼鳞山 火山岩主活动期的 K-Ar/Ar-Ar 年龄(30~23 Ma; 李 才等, 2002),将鱼鳞山组置于始新世—渐新世。

(2)唢呐湖组时代。由于高原北部包括鱼鳞山 组在内的古近纪—新近纪火山岩与高原增厚生长密 切相关,岩浆活动整体表现为由南向北变年轻的趋 势(迟效国等,2017)。鱼鳞山组从南部跃进拉—半 岛湖向北部巴毛穷宗,火山岩年龄由46~41 Ma(董 彦辉等,2008; Wang Qiang et al.,2008; 图 4e)过 渡为32~28 Ma(刘红英等,2004;夏斌等,2006; Wang Qiang et al.,2008;吴珍汉等,2018)。

在巴毛穷宗可见鱼鳞山组火山岩角度不整合于 唢呐湖组之上,火山岩黑云母 Ar-Ar 年龄为 28 Ma (Xu Qiang et al., 2013),基本限定了唢呐湖组沉积 上限为 46~28 Ma。最近,在北羌塘万安湖地区唢呐 湖组中部紫红色细碎屑岩中获得斑脱岩夹层,其锆 石 U-Pb 年龄表明唢呐湖中部时代为始新世早期 (46.57 Ma; 王剑等, 2019);区域上,唢呐湖组整体 角度不整合于康托组之上,在黑虎岭地区可见花岗 岩体(51 Ma)侵入康托组地层,随后被唢呐湖组角 度不整合覆盖(Xu Qiang et al., 2013)。

综合以上研究结果,唢呐湖组地层时代为始新世一渐新世(<51~28 Ma)。研究区内唢呐湖组整

图 4 古近纪火山岩锆石 U-Pb 年龄和野外照片

Fig. 4 Concordia diagram of zircons from volcanic samples and field photos from the Eocene

(a)和(b)牛堡组斑脱岩锆石 U-Pb 年龄;(c)双湖昂达尔错北西纳丁错组玄武安山岩锆石 U-Pb 年龄;(d)尼玛俄久乡纳丁错组玄武安山 岩锆石 U-Pb 年龄;(e)鱼鳞山组安山岩锆石 U-Pb 年龄;(f)牛堡组斑脱岩野外特征;(g)俄久乡纳丁错组位于康托组之上;(h)昂达尔错 北西纳丁错组野外特征

(a) and (b) the zircon U-Pb ages of bentonite in the Niubao Fm.; (c) and (d) the zircon U-Pb ages of basaltic andesite in the Nadingco Fm. in northwest Angdar Lake and E' jiu County; (e) the zircon U-Pb age of andesite in the Yulinshan Fm.; (f) photo of bentonite beds of the Niubao Fm.; (g) the Nadingco Fm. lies above the Kangtuo Fm. in E' jiu County; (h) photo of the Nadingco Fm. in northwest Angdar Lake

体覆盖较为严重,地层出露不全,主要沿双湖县城— 东中央隆起一带平缓低洼处发育,在阿木错西岸出 露较为广泛,向北扩展到北羌塘盆地。双湖一带可 见下部的红色砂岩、砾岩,在北羌塘地区可见上部土 黄色、浅黄色湖相沉积出露。

2.3.2 丁青湖组

丁青湖组在尼玛—伦坡拉盆地发育最为典型, 以紫红色、灰绿色等杂色页岩、泥岩为主,夹粉砂岩、 砂岩、油页岩与泥灰岩,并发育凝灰岩夹层。

丁青湖组地层时代的研究较为成熟,早期根据 介形虫、孢粉、轮藻类等化石组合,认为丁青湖组主 体为渐新世(夏位国,1982,1986;马立祥等, 1996),顶部可能进入上新世(夏金宝,1983);部分 学者则认为丁青湖组整体较为年轻,为中新世—上 新世(王开发等,1975;徐正余,1980)。

直到对丁青湖组斑脱岩夹层开展锆石 U-Pb 测试,才首次得到了伦坡拉盆地丁青湖组中下段的较为准确年龄约束(23.5 Ma; He Huaiyu et al., 2012),是高原中部新生代地层年代学的重大突破。随后,更多的斑脱岩(火山灰)夹层被识别出来,明确了丁青湖组已进入中新世早期(23.9~16.7 Ma; Mao Ziqiang et al., 2019; Han Zhongpeng et al., 2019),很可能延伸到 9.22 Ma(Han Zhongpeng et al., 2019),远远小于早期认为的年龄。

结合尼玛盆地凝灰岩 Ar-Ar 年龄(26.0~23.5 Ma; Kapp et al., 2007; DeCelles et al., 2007a)、尼 玛—伦坡拉古地磁年龄(25~15 Ma; 孟俊, 2013; Meng Jun et al., 2017; 谭梦琪, 2019)、扎加藏布北 岸丁青湖组砂岩碎屑锆石最新年龄峰 25.2~22.7 Ma(陶江龙, 2018)以及丁青湖组上部哺乳类犀科 化石(18~16 Ma)和中新世鱼类化石(王波明等, 2009; Deng Tao et al., 2012),综合认为丁青湖组时 代为渐新世—中新世。

研究区内丁青湖组与早期填图范围出入不大, 主要沿伦坡拉盆地产出。

2.4 红层区域对比

根据火山岩、斑脱岩锆石 U-Pb 结果,结合前人 研究成果,重新建立了羌塘中部上白垩统—中新统 红层时代格架(图5),区内主要发育晚白垩世、古新 世—始新世、始新世—渐新世以及渐新世—中新世 等四期红层。阿布山组主要沿中央隆起、南羌塘双 湖--多玛出露,向南至班公湖--怒江缝合带过渡为 竟柱山组。虽然地表上北羌塘阿布山组出露规模较 小,但是考虑到南、北羌塘晚白垩世—新生代整体区 域构造背景相似,不排除北羌塘湖相沉积之下仍发 育较厚阿布山组。近年来,利用斑脱岩与碎屑锆石 U-Pb 年龄以及古地磁结果,将可可西里盆地风火山 群地层时代由始新世—渐新世修订为晚白垩世至始 新世早期(Liu Zhifei et al., 2003; Staisch et al., 2014, 2016; Jin Chunsheng et al., 2018; Li Lin et al., 2018),因此阿布山组向北部到可可西里盆地 过渡为风火山群。

随着大规模红层由康托组修订为阿布山组,实际的康托组地层出露较为局限,在双湖南部山顶、中央隆起等可见紫红色康托组出露;在双湖以东平缓高处可见小规模康托组角度不整合在三叠系地层之上;此外,双湖南部隆1井也钻遇康托组(吴珍汉等,2019)。康托组向南在伦北盆地——伦坡拉盆地过渡为牛堡组;两套地层上部沉积时代与可可西里风火山群上部时代(古地磁 85~51 Ma, Staich et al.,2014;侵入岩体44~38 Ma,安勇胜等,2004) 及唢呐湖组下部时代(始新世早期)相近。

唢呐湖组整体位于康托组上部,可能受古老连 通水系影响,沿羌塘北部分布广泛分布(吴珍汉等, 2018),向北、向东过渡为可可西里盆地雅西错群湖 相沉积(51~23.8 Ma;刘志飞等,2001,2005;吴珍 汉等,2007a; Staich et al., 2014; Li Lin et al., 2018);向南延伸为班公湖—怒江缝合带丁青湖组。

受到高原抬升、古环境转换以及中新世古大湖 影响,基本沿现今河流、湖泊一带沉积大量中新世湖

图 5 青藏高原腹地上白垩统一中新统陆相地层系统

Fig. 5 Upper Cretaceous to Miocene stratigraphic systems in the hinterland of Xizang(Tibetan) Plateau 除本文火山岩年齡外,竟柱山组火山岩年齡引自赵珍等, 2019a; 韩维峰, 2013; 斑脱岩年齡引自 Lai Wen et al., 2019; 阿布山组下部火山岩年齡引自 Li Yalin et al., 2015b, 2017; 上部火山岩引自 Li Yalin et al., 2013; 吴珍汉等, 2014; 风火山群斑脱岩年齡引自 Staisch et al., 2014; Jin Chunsheng et al., 2018; 唢呐湖组斑脱岩年齡引自王剑等, 2019; 丁青湖组斑脱岩年齡引自 He Huaiyu et al., 2012; Han Zhongpeng et al., 2019; Mao Ziqiang et al., 2019; 风火山群侵入岩体年齡引自安勇胜等, 2004; 雅西错群侵入岩体年齡引自吴珍汉等, 2007a

In addition to the age of the volcanic rocks in this paper, the data of the volcanic and bentonite rocks in the Jingzhushan Fm. from Zhao Zhen et al., 2019a&; Han Weifeng, 2013& and Lai Wen et al., 2019; the data of the volcanic rocks in the bottom of the Abushan Fm. from Li Yalin et al., 2015b, 2017, and at the top of the Abushan Fm. from Wu Zhenhan, 2014& and Li Yalin et al., 2013; the data of the bentonite of the Fenghuoshan Group from Staisch et al., 2014 and Jin Chunsheng et al., 2018; the data of the bentonite of the Suonahu Fm. from Wang Jian et al., 2019&; and data of the bentonite of the Dingqinghu Fm. from He Huaiyu et al., 2012; Han Zhongpeng et al., 2019; and Mao Ziqiang et al., 2019; and the intrusive rocks in the Fenghuoshan Group and the Yaxico Group from An Yongsheng et al., 2004& and Wu Zhenhan et al., 2007a&

相地层(Wu zhenhan et al., 2008; Han Zhongpeng et al., 2019),在伦坡拉盆地为丁青湖组上部,区域上与可可西里中新世五道梁群开展良好的对比(23.8~21.8 Ma; 刘志飞等, 2005; 吴珍汉等, 2006)。

3 精确厘定红层时代与分布的意义

建立双湖地区红层时代格架并重新划分不同时 代红层的分布,为进一步探讨逆冲推覆构造活动、高 原抬升与盆—山构造演化等提供了良好的研究基 础。

3.1 约束了逆冲推覆构造活动时代

羌塘地块发育大规模的逆冲推覆构造体系,深

部地震资料和野外地质调查均表明逆冲前锋断层以 及多重逆冲推覆构造强烈破坏和改造了红层分布范 围和地貌特征,逆冲推覆构造的活动时代主要为早 白垩世—中新世(吴珍汉等, 2019; 赵珍等, 2019a, b)。

根据最新的红层时代与分布范围,阿木错逆冲 (ACT)、赛布错—扎加藏布逆冲(SZT)和尼玛—色 林错逆冲(NMT)等直接逆冲于古近纪红层之上,断 层活动下限为古近纪。但是对于地表上主要控制了 晚白垩世盆地的肖茶卡—双湖逆冲(XST)、中央隆 起南缘逆冲(SCT)、隆鄂尼—昂达尔错逆冲(LAT) 与多玛—其香错逆冲(DQT)断裂体系,不排除受到 晚期断层的改造和破坏:LAT 南缘可见古油藏呈大型逆冲岩席逆冲于桑莫那—茶周玛尔包阿布山组之上,但隆1井在侏罗系地层之下依次钻获康托组与阿布山组(吴珍汉等,2019);DQT 在多玛—瀑赛尔错、马登一带逆冲于阿布山组之上,但是在巴岭乡东部、南部则直接逆冲于牛堡组之上。因此,LAT 与DOT 活动时代为古近纪。

双湖一带发育的唢呐湖组沉积,地层产状相对 平缓,变形较弱,仅在靠近断层附近变形较强(吴珍 汉等,2018),在中央隆起及北羌塘一带可见角度不 整合于 ACT、XST 之上,地层时代整体晚于断层活动 时代,断层活动可能在渐新世开始减弱。

3.2 高原腹地可能存在规模巨大的晚白垩世红层 盆地

自龙木错—双湖缝合带中晚三叠世闭合以来 (赵珍等,2018; Zhao Zhen et al.,2018),南、北羌 塘地块成为统一整体,开始接受侏罗纪海相沉积地 层,地层时代与地层特征均具有良好的对比性。虽 然距造山带的距离会影响构造抬升与变形,但是与 南羌塘盆地类似,可可西里盆地也发育较大规模晚 白垩世红层,同样经历了晚白垩世拉萨—羌塘地块 碰撞以及新特提斯洋板片的北向俯冲(Wang Chengshan et al.,2008,2014; Li Yalin et al., 2012; Staisch et al.,2014; Jin Chunsheng et al., 2018; Li Lin et al.,2018)。因此,夹持于可可西里 与南羌塘之间的北羌塘盆地,很大可能也经历了相 似的构造运动和盆地演化。

本文最新划分的红层时代与分布范围表明阿布 山组出露规模远超预期,从南羌塘一直延伸到中央 隆起。虽然北羌塘暂时未发现可靠的晚白垩世阿布 山组记录,但是断续出露"雪山组"上部河流—湖泊 相紫红色碎屑岩组合,地层时代不排除为晚白垩 世^①(方德庆等,2002);虽然万安湖地区钻孔在唢 呐湖组之下直接钻遇侏罗系地层,但是深部地震资 料解译也不能排除晚白垩世红层的存在(王剑等, 2019)。考虑到相近的区域构造背景,本文认为北 羌塘也可能发育大规模晚白垩世红层,共同组成规 模巨大的晚白垩世红层盆地。

3.3 高原抬升过程与盆—山构造演化

区内多套红层之间、红层与老地层之间的接触 关系,尤其是角度不整合接触关系与高原抬升过程 及盆—山构造演化密切相关。

晚白垩世红层底部砾岩角度不整合于侏罗系、 三叠系或更古老的地层之上,指示羌塘地块从海相 沉积变为陆相沉积环境,南、北羌塘抬升剥蚀,在山间盆地堆积磨拉石建造,发育规模较大的晚白垩世 红层盆地;同时,南羌塘发育较为强烈的火山活动, 特别是晚白垩世早期火山活动,与中特提斯构造演 化密切相关(Li Yalin et al., 2013, 2015b; He Haiyang et al., 2018),龙木错—双湖缝合带与班公 湖—怒江缝合带的深部构造重新活化并部分逆冲于 地表(赵珍等, 2019a, b),因此晚白垩世红层角度 不整合界面是高原腹地燕山活动的重要界面,指示 了高原中部的初次构造抬升,古海拔高度可能为 2 km(赵珍等, 2019b)。

古近纪红层也同样角度不整合于晚白垩世红层 及早期地层之上,在其香错玛查、隆1井均可见古近 纪红层与阿布山组接触关系[●](吴珍汉等,2019); 区域发育与新特提斯洋板片北向俯冲有关的大规模 古近纪火山活动(谢国刚等,2003;魏永峰等, 2018)与强烈的逆冲推覆构造活动(吴珍汉等, 2019;赵珍等,2019a,b)。由于晚白垩世红层在古 近纪沉积之前已经发生褶皱变形[●],因此古近纪与 晚白垩世红层之间的角度不整合关系不仅代表了喜 马拉雅运动的开始,也是高原腹地地壳缩短与再次 抬升的结果,古近纪红层组成区内第二套磨拉石沉 积建造。

在羌塘北部,古近纪红层与渐新世一中新世火 山岩之间为角度不整合接触关系,而该套火山岩与 地壳增厚和高原抬升密切相关(Guo Zhengfu et al., 2006; Wang Qiang et al., 2008);在中央隆起与南羌 塘,古近纪红层则被中新世湖相沉积角度不整合覆 盖。区内重新划分的唢呐湖组的碳氧同位素结果表 明双湖地区在~35 Ma 时古海拔高度约 3.5 km(吴 珍汉等, 2018),而高原腹地可能在中新世古大湖时 期已经抬升至现今海拔高度(吴珍汉等, 2007b; Wu Zhenhan et al., 2008)。因此,红层与火山岩、中 新世湖相沉积之间的角度不整合,指示了渐新世晚 期一中新世早期的构造抬升事件。

伦坡拉盆地一带发育的古近系—中新世沉积厚 达3~5 km,不同于羌塘腹地的角度不整合关系,牛 堡组与丁青湖组之间主要为连续沉积,其深部地质 构造特征与盆地演化一直存在争议。基于马登火山 岩年龄(Li Yalin et al., 2015b),吴珍汉等(2016)将 伦北盆地北部红层划分为晚白垩世,而斑脱岩年龄 表明该套地层至少为始新世。因此,不仅需要重新 考虑聂荣杂岩体构造抬升—剥蚀过程(吴珍汉等, 2016),也需要重新考虑羌塘盆地南缘逆冲推覆构 造体系及其对伦北—伦坡拉盆地的控盆作用。

此外, 厘定红层时代与分布可以为地震资料解 译提供红层时代与地层厚度的参考, 对于重新认识 盆地深部构造特征、分析羌塘盆地油气圈闭和井位 深度具有重要意义。

4 结论

高原中部晚白垩世—新生代陆相红层的时代及 地层格架一直存在争议。通过对双湖—伦坡拉地区 红层开展的野外地质调查,在大量高精度锆石 U-Pb 年龄数据的基础上,重新厘定了区内红层时代格架, 建立了羌塘盆地与班公湖—怒江缝合带及可可西里 盆地陆相红层对比格架。

差塘盆地陆相红层自下而上分为三套地层系统:上白垩统阿布山组紫红色砾岩、砂岩,上部与下部发育火山岩,时代为102.6~73.09 Ma;古新世— 始新世康托组,为紫红色砾岩、砂岩夹火山岩、石膏等,上覆角度不整合的纳丁错组(35.5~32 Ma)精确 约束了康托组上限;始新世—渐新世唢呐湖组,是一 套下部为浅红色浅砂岩、砾岩,上部为灰白色砂岩、 泥岩、泥灰岩为主的湖相沉积,角度不整合于康托组 之上,并被鱼鳞山组喷发不整合覆盖(46~38 Ma)。

班公湖—怒江缝合带陆相红层同样自下而上分为三套地层系统:上白垩统竟柱山组为紫红色砾岩为主的磨拉石建造,沉积下限为105~99 Ma;古新世一始新世牛堡组红色砾岩、砂岩夹灰白色砂岩、泥岩,其中斑脱岩年龄精确限定了牛堡组中上部时代45.4~43.82 Ma;渐新世—中新世丁青湖组青灰色、深色泥岩、页岩为主的深湖相沉积,大量斑脱岩夹层年龄精确约束了地层时代至少为23~9 Ma。

建立羌塘地块陆相红层时代格架,不仅将南羌 塘盆地的主体红层修订为晚白垩世,也首次提供了 牛堡组地层的精确年龄约束,为后续探讨高原抬升、 盆山演化等提供了可靠的的年代学依据。虽然初步 厘定了红层的"统"或"世",但仍有部分红层顶、底 时代存在争议,比如根据前人火山岩年龄约束牛堡 组与康托组时代下限为古新世,但是火山岩时代多 为 K-Ar/Ar-Ar 测试结果,不一定能代表真实的火山 岩年龄;另外,火山岩与红层的野外接触关系缺少准 确、可靠的描述。因此,不仅需要对底部火山岩补充 开展锆石 U-Pb 测试,更需要明确不同陆相红层的 沉积地层特征、识别标志甚至不同红层之间的接触 关系,这也是下一步研究的问题。

致谢:衷心感谢审稿专家提出的宝贵意见!

注释 / Notes

- ① 兹格塘错幅 1:25 万区域地质调查报告. 2015. 拉萨:西藏自治区地质调查院.
- ◆赤布张错幅1:25万区域地质调查报告.2011.宜昌:宜昌地质 矿产研究所.
- 3 吐错幅1:25万区域地质调查报告.2010.成都:成都地质矿产研究所.
- ① 江爱达日那幅1:25万区域地质调查报告.2010.成都:成都地 质矿产研究所.
- 帕度错幅 1:25 万区域地质调查报告. 2012. 长春:吉林省地质调查院.
- ⑤ 昂达尔错幅 1:25 万区域地质调查报告. 2012. 长春:吉林省地质调查院.
- ⑦ 班戈县幅1:25万区域地质调查报告.2015.拉萨:西藏自治区 地质调查院.
- 多巴区幅1:25万区域地质调查报告.2011.长春:吉林地质调 查院.
- ⑦尼玛区幅1:25万区域地质调查报告.2010.郑州:河南地质调 查院.
- ① 黑虎岭幅1:25万区域地质调查报告.2012. 成都:成都地质矿 产研究所.

参考文献 / References

(The literature whose publishing year followed by a "&" is in Chinese with English abstract; The literature whose publishing year followed by a "#" is in Chinese without English abstract)

- 安勇胜,邓中林,庄永成. 2004. 风火山群的物质特征及时代讨论. 西北地质, 37(1):63~68.
- 迟效国,李才,金巍,刘森,杨日红. 1999. 藏北新生代火山作用的 时空演化与高原隆升. 地质论评,45(增刊):978~986.
- 迟效国,张蕊,范乐夫,王利民. 2017. 藏北新生代玄武质火山岩起源的深部机制——大陆俯冲和板片断离驱动的地幔对流上涌模式. 岩石学报,33(10):3011~3026.
- 丁林,张进江,周勇,邓万明,许荣华,钟大赉. 1999. 青藏高原岩 石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化 学特征. 岩石学报,15(3):408~421.
- 董彦辉, 王强, 许继峰, 资锋. 2008. 羌塘地块北部东月湖始新世高 Mg[#]埃达克质火山岩的成因以及构造意义. 岩石学报, 24(2): 291~302.
- 方德庆,云金表,李椿. 2002. 北羌塘盆地中部雪山组时代讨论. 地 层学杂志,26(1):68~72.
- 韩维峰. 2013. 措勤盆地晚白垩世沉积特征及其构造意义. 导师: 李亚林. 北京: 中国地质大学(北京)硕士学位论文: 1~82.
- 胡济民. 1995. 西藏伦坡拉盆地伦坡拉群研究的新认识. 西藏地质, 1:15~23.
- 贾共祥, 杜凤军, 刘伟. 2007. 西藏尼玛一带上白垩统竞柱山组的 厘定及其意义. 地质调查与研究, 30(3): 172~177.
- 贺永忠,易成兴,熊兴国,岳龙,朱勋. 2006. 藏北加措地区晚白垩 世孢粉化石的发现及意义.贵州地质,23(1):36~39.
- 姜高磊,袁爱华,张克信.2014.西藏改则盆地晚始新世康托组介 形类动物群及地质意义.微体古生物学报,31(4):405~419.
- 李才,朱志勇,迟效国. 2002. 藏北改则地区鱼鳞山组火山岩同位 素年代学. 地质通报,21(11):732~734.
- 李才,黄小鹏,牟世勇,迟效国. 2006. 藏北羌塘南部走构由茶错地 区火山岩定年与康托组时代的厘定. 地质通报, 25(1):226~ 228.

- 李华亮,高成,李正汉,张璋,彭智敏,关俊雷. 2016. 西藏班公湖 地区竞柱山组时代及其构造意义. 大地构造与成矿学,40(4): 663~673.
- 李佑国,莫宣学,伊海生,马润则,刘登忠,陶晓风. 2005. 羌塘错 尼地区新生代火山岩研究. 矿物岩石, 25(2):27~34.
- 廖铸敏, 白培荣. 2019. 班公错—怒江缝合带牛堡组中植物大化石 的发现及其意义. 云南地质, 38(1): 10~14.
- 刘红英,夏斌,邓万明,张玉泉. 2004. 藏北巴毛穷宗—羌巴欠火山 岩 K-Ar 和⁴⁰ Ar-³⁹ Ar 年代学研究. 矿物岩石, 24(1):71~75.
- 刘志飞, 王成善, 伊海生, 刘顺. 2001. 可可西里盆地新生代沉积演 化历史重建. 地质学报, 75(2): 250~258.
- 刘志飞, 王成善, 金玮, 伊海生, 郑洪波, 赵西西, 李亚林. 2005. 青藏高原沱沱河盆地渐新—中新世沉积环境分析. 沉积学报, 23(2): 210~217.
- 马立祥,张二华,鞠俊成,雷清亮,周家健. 1996. 西藏伦坡拉盆地 下第三系沉积体系域基本特征. 中国地质大学学报,21(2): 174~178.
- 马铭株,章雨旭,颉颃强,万渝生.华北克拉通北缘白云鄂博群和 腮林忽洞群底部碎屑锆石 U-Pb 定年、Hf 同位素分析及其地质 意义.岩石学报,30(10):2973~2988.
- 马孝达. 2003. 西藏中部若干地层问题讨论. 地质通报, 22(9):695~698.
- 孟俊. 2013. 西藏高原晚中生代以来重要构造事件的古地磁学约束.导师:王成善和赵西西.北京:中国地质大学(北京)博士 学位论文:1~161.
- 谭富文,潘桂棠,徐强. 2000. 羌塘腹地新生代火山岩的地球化学 特征与青藏高原隆升. 岩石矿物学杂志, 19(2): 121~130.
- 谭梦琪. 2019. 伦坡拉盆地古地磁数据. 国家青藏高原科学数据中 心, doi: 10.11888/Geo.tpdc.270282.
- 陶江龙. 2018. 西藏双湖县多玛地区牛堡组—丁青湖组沉积环境分 析.导师:高金汉.北京:中国地质大学(北京)硕士学位论文: 1~53.
- 王波明,周家声,闻涛,何志文. 2009. 西藏尼玛盆地陆相地层归属 及其油气意义. 天然气技术, 3(4): 21~24.
- 王剑,曾胜强,付修根,陈文彬,戴捷,任静. 2019. 羌塘盆地唢呐 湖组时代归属新证据. 地质通报, 38(7): 1256~1258.
- 王开发,杨蕉文,李哲,李增瑞. 1975. 根据孢粉组合推论西藏伦坡 拉盆地第三纪地层时代及其古地理. 地质科学,10(4):366~ 374.
- 魏永峰,肖倩茹,罗巍,邱婵媛,邓泽锦,赵志强,林美英. 2018. 冈底斯带别若则错地区美苏组高 Nb—Ta 酸性火山岩锆石 U-Pb 年龄、地球化学特征及地质意义.地质通报,37(6):1015~ 1025.
- 吴珍汉,吴中海,叶培盛,胡道功,彭华. 2006. 青藏高原晚新生代 孢粉组合与古环境演化. 中国地质, 33(5):966~979.
- 吴珍汉,叶培盛,胡道功,张维,周春景. 2007a. 青藏高原北部风 火山花岗斑岩锆石 U-Pb 同位素测年及其地质意义.现代地质, 21(3):435~442.
- 吴珍汉,赵逊,叶培盛,吴中海,胡道功,周春景. 2007b. 根据湖相 沉积碳氧同位素估算青藏高原古海拔高度. 地质学报,81(9): 1277~1288.
- 吴珍汉,吴学文,赵珍,陆露,叶培盛,张耀玲.2014. 羌塘地块南 部晚白垩世火山岩离子探针测年及其对红层时代的约束.地球 学报,35(5):567~572.
- 吴珍汉,陆露,赵珍,胡道功,张耀玲.2016.西藏聂荣变质杂岩及 邻区逆冲推覆与构造隆升时代.地质通报,35(7):056~1068.
- 吴珍汉,赵珍,吴中海,季长军,于俊秋.2018. 西藏双湖古近纪唢 呐湖组碎屑锆石 U-Pb 年龄与古海拔高度. 地质学报,92(7):

 $1352 \sim 1368.$

吴珍汉,赵珍,季长军,刘志伟,杨艳. 2019. 西藏羌塘逆冲推覆构 造及油气资源效应图集. 武汉:中国地质大学出版社,1~125.

- 夏斌,林清茶,张玉泉,邓万明. 2006. 西藏北部巴毛穷宗—涌波 错—羌巴欠火山岩类型⁴⁰Ar-³⁹Ar 年龄及其地质意义. 地质学 报,80(11):1676~1682.
- 夏金宝. 1983. 藏北班戈县及其邻近地区的新生界//青藏高原地质 文集(6).北京:地质出版社:243~254.
- 夏位国.1982.西藏班戈县伦坡拉盆地伦坡拉群时代及其介形类组 合//青藏高原地质文集(10).北京:地质出版社:149~159
- 夏位国. 1986. 西藏班戈县伦坡拉盆地伦坡拉群的轮藻化石//中国 地质科学院成都地质矿产研究所文集(7).北京:地质出版社: 61~67.
- 谢国刚,廖思平,罗小川,邹爱建,胡肇荣. 2003. 西藏尼玛地区古 近纪美苏组的建立. 地质通报, 22(05): 341~345.
- 徐正余. 1980. 西藏伦坡拉盆地第三系及其含油性. 石油与天然气 地质, 1(2): 153~158.
- 岳龙,牟世勇,曾昌兴,易成兴. 2006. 藏北羌塘丁固—加措地区康 托组的时代. 地质通报,25(1~2):229~232.
- 于俊秋. 2016. 藏北改则康托盆地形成时代与构造演化研究. 导师: 吴珍汉. 北京:中国地质大学(北京)硕士学位论文:1~79.
- 张耀玲, 沈燕绪, 吴珍汉, 赵珍. 2018. 西藏改则地区美苏组岩浆岩 皓石 U-Pb 年龄及地质意义. 地质力学学报, 24(1): 128~136.
- 赵珍,陆露,吴珍汉,于俊秋,吴艳君. 2018. 羌塘中部晚三叠世江 爱岩体特征与板片断离作用. 地球科学,43(S1):225~242.
- 赵珍, 吴珍汉, 于俊秋. 2019a. 西藏中部尼玛—荣玛地区逆冲推覆 构造特征. 地质学报, 93(8): 1849~1866.
- 赵珍,陆露,吴珍汉. 2019b. 羌塘盆地中央隆起带的抬升演化:构造一热年代学约束. 地学前缘,26(2):249~263.
- 赵政璋, 李永铁, 叶和飞. 2001. 青藏高原地层. 北京: 科学出版 社: 1~542.
- An Yongsheng, Deng Zhonglin, Zhuang Yongcheng. 2004&. Characteristics of Fenghuoshan Group's material and its era discussion. Northwestern Geology, 37(1): 63~68.
- Chen Weiwei, Zhang Shihong, Ding Jikai, Zhang Junhong, Zhao Xixi, Zhu Lidong, Yang Wenguang, Yang Tianshui, Li Haiyang, Wu Huaichun. 2017. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane, central Tibet. Gondwana Research, 41: 373~389.
- Chi Xiaoguo, Li Cai, Jin Wei, Liu Sen, Yang Rihong. 1999&. Spatial—temporal evolution of Cenozoic volcanism and uplifting in North Tibet. Geological Review, 45(S1): 978~986.
- Chi Xiaoguo, Zhang Rui, Fan Lefu, Wang Limin. 2017&. The formatting mechanism of Cenozoic basaltic volcanic rocks in the northern Tibet: continental subduction and slab break off driven by mantle convection and upwelling. Acta Petrologica Sinica, 33(10): 3011~3026.
- Decelles P G, Kapp P, Ding Lin, Gehrels G E. 2007a. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geological Society of America Bulletin, 119(5~6): 654~680.
- DeCelles P G, Quade J, Kapp P, Fan Majie, Dettman D L, Ding Lin. 2007b. High and dry in central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 253(3~4): 389~401.
- Deng Tao, Ding Lin. 2015. Paleoaltimetry reconstructions of the Tibetan Plateau: Progress and contradictions. National Science Review, 2: 417~437.
- Deng Tao, Wang Shiqi, Xie Guangpu, Li Qiang, Hou Sukuan, Sun

Boyang. 2012. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Chinese Science Bulletin, 57: 261~269.

- Dewey J F, Shackleton R M, Chang Chengfa, Sun Yiyin. 1988. The tectonic evolution of the tibetan plateau. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, doi: 10.1098/rsta.1988.0135.
- Dickinson W R, Gehrels G E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1~2): 115~125.
- Ding Lin, Spicer R A, Yang Jian, Xu Qiang, Cai Fulong, Li Shun, Lai Qingzhou, Wang Houqi, Spicer T E C, Yue Yahui, Shukla A, Srivastava G, Khan M A, Bera S, Mehrotra R. 2017. Quantifying the rise of the Himalaya orogen and implications for the south Asian monsoon. Geology, 45(3): 215~218.
- Ding Lin, Zhang Jinjiang, Zhou Yong, Deng Wanming, Xu Ronghua and Zhong Dalai. 1999&. Tectonic implication on the lithosphere evolution of the Tibet Plateau: Petrology and geochemistry of sodic and ultrapotassic volcanism in Northern Tibet. Acta Petrologica Sinica, 15(3): 408~421.
- Dong Yanhui, Wang Qiang, Xu Jifeng, Zi Feng. 2008&. Dongyue Lake adakitic volcanic rocks with high Mg[#] in north Qiangtang block: petrogenesis and its tectonic implication. Acta Petrologica sinica, 24 (2): 291~302.
- Dupont-Nivet G, Krijgsman W, Langereis C G, Abels H A, Dai Shuang, Fang Xiaomin. 2007. Tibetan plateau aridification linked to global cooling at the Eocene—Oligocene transition. Nature, 445(7128): 635~638.
- Fang Deqing, Yun Jinbiao, Li Chun. 2002&. Discussion of the Xueshan formation in the North of Qiangtang basin, Qinghai—Tibet Plateau. Journal of Stratigraphy, 26(1): 68~72.
- Guo Zhengfu, Wilson M, Liu Jiaqi, Mao Qian. 2006. Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. Journal of Petrology, 47 (6): 1177~1220.
- Han Zhongpeng, Sinclair H D, Li Yalin, Wang Chengshan, Tao Zui, Qian Xinyu, Ning Zijie, Zhang Jiawei, Wen Yixiong, Lin Jie, Zhang Baosen, Xu Ming, Dai Jingen, Zhou A, Liang Huimin, Cao Shuo. 2019. Internal drainage has sustained low-relief Tibetan landscapes since the early Miocene. Geophysical Research Letters, 46: 8741~8752.
- Harrison T M, Copeland P, Kidd W S F, Yin An. 1992. Raising Tibet. Science (New York, N.Y.), 255: 1663~1670.
- He Haiyang, Li Yalin, Wang Chengshan, Zhou A, Qian Xinyu, Zhang Jiawei, Du Lintao, Bi Wenjun. 2018. Late Cretaceous (ca. 95 Ma) magnesian andesites in the Biluoco area, southern Qiangtang subterrane, central Tibet: petrogenetic and tectonic implications. Lithos, 302~303: 389~404.
- He Huaiyu, Sun Jimin, Li Qiuli, Zhu Rixiang. 2012. New age determination of the Cenozoic Lunpola basin, central Tibet. Geological Magazine, 149(1): 141~145.
- He Yongzhong, Yi Chengxing, Xiong Xingguo, Yue Long, Zhu Xun. 2006&. Discovery of Sporo-pollen fossil of Upper Cretaceous Epoch on the Jiacuo District in North Tibet and its implication. Guizhou Geology, 23(1): 36~39.
- Hu Jimin. 1995. New understanding of the research of Lunpola Group in Lunpola Basin, Tibet. Xizang Geology, 1: 15~23.
- Jia Gongxiang, Du Fengjun, Liu Wei. 2007&. Determination and

significance of Upper Cretaceous Jingzhushan Group of Nima region, Tibet. Geological Survey and Research, 30(3): 172~177.

- Jiang Gaolei, Yuan Aihua, Zhang Kexin. 2014&. The ostracod fauna and its geological significance from the Late Eocene Kangtuo formation, Gaize Basin, Southern Tibet Plateau, China. Acta Micropalaeontologica Sinica, 31(4): 405~419.
- Jin Chunsheng, Liu Qingsong, Liang Wentian, Roberts A P, Sun Jimin, Hu Pengxiang, Zhao Xiangyu, Su Youliang, Jiang Zhaoxia, Liu Zhifei, Duan Zongqi, Yang Huihui, Yuan Sihua. 2018. Magnetostratigraphy of the Fenghuoshan group in the Hoh Xil basin and its tectonic implications for India - Eurasia collision and Tibetan plateau deformation. Earth and Planetary Science Letters, 486: 41~53.
- Kapp P, DeCelles P G, Gehrels E G, Heizler M, Ding Lin. 2007. Geological records of the Lhasa - Qiangtang and Indo - Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7~8): 917~932.
- Kapp P, Murphy M A, Yin An, Harrison T M. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 1029, doi:10.1029/2001TC001332.
- Kapp P, Yin An, Harrison T M, Ding Lin. 2005. Cretaceous—Tertiary shortening, basin development, and volcanism in central Tibet. GSA Bulletin, 117(7~8): 865~878.
- Lai Wen, Hu Xiumian, Garzanti E, Sun Gaoyuan, Garzione C N, Fadel M B, Ma Anlin. 2019. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma). GSA Bulletin, doi:10.1130/B35124.1.
- Li Cai, Zhu Zhiyong, Chi Xiaoguo. 2002&. Isotope choronology of volcanic rocks in the Yulinshan Formation in the Gerze area, northern Tibet. Geological Bulletin of China, 21(11): 732~734.
- Li Cai, Huang Xiaopeng, Mou Shiyong, Chi Xiaoguo. 2006&. Age dating of the Zougouyouchacuo volcanic rocks and age determination of the Kangtuo Formation in southern Qiangtang, northern Tibet, China. Geological Bulletin of China, 25(1): 226~228.
- Li Hualiang, Gao Cheng, Li Zhenghan, Zhang Zhang, Peng Zhimin, Guan Junlei. 2016&. Age and tectonic significance of Jingzhushan Formation in Bangong Lake area, Tibet. Geotectonica et Metallogenia, 40(4): 663~673.
- Li Lin, Garzione C N, Pullen A, Zhang Peng, Li Yun. 2018. Late Cretaceous - Cenozoic basin evolution and topographic growth of the Hoh Xil basin, central Tibetan Plateau. Geological Society of America Bulletin, 130 (3~4): 499~521.
- Li Yalin, He Haiyang, Wang Chengshan, Wei Yushuai, Chen Xi, He Juan, Ning Zijie, Zhou A. 2017. Early Cretaceous (ca. 100 Ma) magmatism in the southern Qiangtang subterrane, central Tibet: Product of slab break-off? International Journal of Earth Sciences, 106: 1289~1310.
- Li Yalin, He Juan, Wang Chengshan, Han Zhongpeng, Ma Pengfei, Xu Ming, Du Kaiyuan. 2015b. Cretaceous volcanic rocks in south Qiangtang Terrane: Products of northward subduction of the Bangong
 Nujiang Ocean? Journal of Asian Earth Sciences, 104: 69~83.
- Li Yalin, He Juan, Wang Chengshan, Santosh M, Dai Jingen, Zhang Yuxiu, Wei Yushuai, Wang Jiangang. 2013. Late Cretaceous Krich magmatism in central Tibet: Evidence for early elevation of the Tibetan plateau? Lithos, 160~161: 1~13.
- Li Yalin, Wang Chengshan, Zhao Xixi, Yin An, Ma Chao. 2012. Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. Gondwana Research, 22(2): 482~492.
- Li Yalin, Wang Chengshen, Dai Jingen, Xu Ganqing, Hou Yunling, Li

Xiaohan. 2015a. Propagation of the deformation and growth of the Tibetan - Himalayan orogen: A review. Earth Science Reviews, 143: 36~61.

- Li Youguo, Mo Xuanxue, Yi Haisheng, Ma Runze, Liu Dengzhong, Tao Xiaofeng. 2005&. Research on the Cenozoic volcanic rocks in the Cuoli area of Qiangtang. J. Mineral. Petrol., 25(2): 27~34.
- Liao Zhumin, Bai Peirong. 2019&. The discovery and significance of flora macrofossil in Niubao formation of Bangongcuo—Nujiang river suture. Yunnan Geology, 38(1): 10~14.
- Liu Hongying, Xia Bin, Deng Wanbin, Zhang Yuquan. 2004&. Study of ⁴⁰Ar-³⁹Ar and K-Ar dating on the high-K volcanic rock from Bamaoqiongzong to Qiangbaqian in the Northern Tibet. J. Mineral. Petrol., 24(1): 71~75.
- Liu Zhifei, Wang Chengshan, Jin Wei, Yi Haisheng, Zheng Hongbo, Zhao Xixi, Li Yalin. 2005&. Oligo—Miocene depositional environment of the Tuotuohe basin, Central Tibetan Plateau. Acta Sedimentologica Sinica, 23(2): 210~217.
- Liu Zhifei, Wang Chengshan, Yi Haisheng, Liu Shun. 2001&. Reconstruction of depositional history of the Cenozoic Hoh Xil Basin. Acta Geologica Sinica, 75(2): 250~258.
- Liu Zhifei, Zhao Xixi, Wang Chengshan, Liu Shun, Yi Haisheng. 2003. Magneto stratigraphy of Tertiary sediments from the Hoh Xil basin: implications for the Cenozoic tectonic history of the Tibetan Plateau. Geophysical Journal International, 154: 233~252.
- Ma Lixiang, Zhang Erhua, Ju Juncheng, Lei Qingliang, Zhou Jiajian. 1996&. Basic characteristics of Paleogene deposition systems tract in Lunpola basin, Xizang (Tibet). Earth Science: Journal of China University of Geosciences, 21(2): 174~178.
- Ma Mingzhu, Zhang Yuxu, Xie Hangqiang, Wan Yushu. 2014. SHRIMP U-Pb dating and LA-ICPMS Hf isotope analysis of detrital zircons from medium- to coarse-grained sandstones of the Bayan Obo Group and Sailinhudong Group and its geological significances. Acta Petrologica Sinica, 30(10): 2973~2988.
- Ma Pengfei, Wang Chengshan, Meng Jun, Ma Chao, Zhao Xixi, Li Yalin, Wang Meng. 2017. Late Oligocene—early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records. Gondwana Research, 48: 224~236.
- Ma Pengfei, Wang Chengshan, Wang Licheng, Li Yalin, Hu Jian. 2015. Sedimentology and organic properties of lower Tertiary lacustrine source rocks, Lunpola Basin, central Tibetan Plateau: Implications for hydrocarbon potential. Marine and Petroleum Geology, 66: 1029~1041.
- Ma Xiaoda. 2003&. A discussion of some problems of stratigraphy in central Tibet. Geological Bulletin of China, 22(9): 695~698.
- Mao Ziqiang, Meng Qingquan, Fang Xiaomin, Zhang Tao, Wu Fuli, Yang Yibo, Zhang Weilin, Zan Jinbo, Tan Mengqi. 2019. Recognition of tuffs in the middle—upper Dingqinghu Fm., Lunpola Basin, central Tibetan Plateau: Constraints on stratigraphic age and implications for paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 525: 44~56.
- Meng Jun, Coe R S, Wang Chengshan, Gilder S A, Zhao Xixi, Liu Hao, Li Yalin, Ma Pengfei, Shi Kai, Li Shuai. 2017. Reduced convergence within the Tibetan Plateau by 26 Ma? Geophysical Research Letters, 44: 6624~6632.
- Meng Jun. 2013&. Paleomagnetic constraints and implications for Late Mesozoic and Cenozoic tectonic events of the Tibetan Plateau. Supervisor: Prof. Wang Chengshan and Zhao Xixi. Beijing: A dissertation submitted to China University of Geosciences (Beijing) for Doctoral Degree: 1~161.
- Quade J, Breecker D O, Daeron M, Eiler J. 2011. The paleoaltimetry of

Tibet: an isotopic perspective. American Journal of Science, 311: 77~115.

- Rohrmann A, Kapp P, Carrapa B, Reiners P W, Guynn J, Ding Lin, Heizler M. 2012. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 40(2): 187~190.
- Rowley D B, Currie B S. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439 (9): 677 ~ 681.
- Staisch L M, Niemi N A, Clark M K, Hong Chang. 2016. Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau. Tectonics, 35: 862~895.
- Staisch L M, Niemi N A, Hong Chang, Clark M K, Rowley D B, Currie B. 2014. A Cretaceous – Eocene depositional age for the Fenghuoshan group, Hoh Xil basin: implications for the tectonic evolution of the northern Tibet Plateau. Tectonics, 33: 281~301.
- Su Tao, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. 2019. No high Tibetan Plateau until the Neogene. Science Advances, doi: 10. 1126/sciadv. aav2189.
- Tan Fuwen, Pan Guitang, Xu Qiang. 2000&. The uplift of Qinghai— Xizang Plateau and geochemical characteristics of Cenozoic volcanic rocks from the center of Qiangtang, Xizang. Acta Petrologica et Mineralogica, 19(2): 121~130.
- Tan Mengqi. 2019 #. Paleomagnetic data from the lunpola basin. National Tibetan Plateau Data Center, doi: 10.11888/Geo.tpdc. 270282.
- Tao Jianglong. 2018&. Sedimentary Environment Analysis of Niubao Formation—Dingqinghu Formation in Duoma Area, Shuanghu, Northern Tibet. Supervisor: Gao Jinhan. Beijing: Master Degree Dissertation of China University of Geosciences (Beijing): 1~53.
- Wang Boming, Zhou Jiasheng, Wen Tao, He Zhiwen. 2009&. Timing of terrestrial strata in Tibetan Nyima Basin and its significance. Natural Gas Technology, 3(4): 21~24.
- Wang Chengshan, Dai Jingen, Zhao Xixi, Li Yalin, Graham S A, He Dengfa, Ran Bo, Meng Jun. 2014. Outward - growth of the Tibetan Plateau during the Cenozoic: a review. Tectonophysics, 621: 1~43.
- Wang Chengshan, Zhao Xixi, Liu Zhifei, Lippert P C, Graham S A, Coe R S, Yi Haisheng, Zhu Lidong, Liu Shun, Li Yalin. 2008. Constraints on the Early Uplift History of the Tibetan Plateau. PNAS, 105(13): 4987~4992.
- Wang Jian, Zeng Shengqiang, Fu Xiugen, Chen Wenbin, Dai Jie, Ren Jing. 2019 #. New evidence for deposition age of the Suonahu Formation in the Qiangtang Basin. Geological Bulletin of China, 38 (7):1256~1258.
- Wang Kaifa, Yang Jiaowen, Li Zhe, Li Zengrui. 1975&. On the Tertiary Sporo-Pollen assemblages from Lunpola basin of Xizang, China and their palaeogeographic significance. Scientia Geologica Sinica, 10(4): 366~374.
- Wang Qiang, Wyman D A, Xu Jifeng, Dong Yanhui, Vasconcelos P M, Pearson N, Wan Yusheng, Dong Han, Li Chaofeng, Yu Yuanshan, Zhu Tongxing, Feng Xintao, Zhang Qiyue, Zi Feng, Chu Zhuyin. 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth and Planetary Science Letters, 272: 158~171.
- Wei Yongfeng, Xiao Qianru, Luo Wei, Qiu Chanyuan, Deng Zejin, Zhao Zhiqiang, Lin Meiying. 2018&. Zircon U-Pb age,

geochemistry and geological significance of high Nb—Ta acid volcanic rocks from Meisu Formation, Bieruo—Zecuo area, Gangdise belt. Geological Bulletin of China, 37(6): 1015~1025.

- Wu Zhenhan, Wu Zhonghai, Ye Peisheng, Hu Daogong, Peng Hua. 2006&. Late Cenozoic environmental evolution of the Qinghai— Tibet Plateau as indicated by the evolution of sporopollen assemblages. Geology in China, 33(5): 966~979.
- Wu Zhenhan, Ye Peisheng, Hu Daogong, Zhang Wei, Zhou Chunjing. 2007a&. U-Pb isotopic dating of Zircons from porphyry granite of the Fenghuoshan Mts., Northern Tibetan Plateau and its geological significance. Geoscience, 21(3): 435~442.
- Wu Zhenhan, Zhao Xun, Ye Peisheng, Wu Zhonghai, Hu Daogong, Zhou Chunjing. 2007b&. Paleo-elevation of the Tibetan Plateau inferred from carbon and oxygen isotopes of lacustrine deposits. Acta Geologica Sinica, 81(9): 1277~1288.
- Wu Zhenhan, Patrick J B, Wu Zhonghai, Hu Daogong, Zhao Xun, Ye Peisheng. 2008. Vast early Miocene lakes of the central Tibetan Plateau. Geological Society of America Bulletin, 120 (9 ~ 10): 1326~1337.
- Wu Zhenhan, Wu Xuewen, Zhao Zhen, Lu Lu, Ye Peisheng, Zhang Yaoling. 2014&. SHRIMP U-Pb isotopic dating of the Late Cretaceous volcanic rocks and its chronological constraint on the redbeds in southern Qiangtang Block. Acta Geoscientica Sinica, 35 (5): 567~572.
- Wu Zhenhan, Lu Lu, Zhao Zhen, Hu Daogong, Zhang Yaoling. 2016&. Thrust structures and uplift periods of the Nyainrong metamorphic complex and its neighboring areas. Geological Bulletin of China, 35(7):1056~1068.
- Wu Zhenhan, Zhao Zhen, Wu Zhonghai, Ji Changjun, Yu Junqiu. 2018&. U-Pb ages of detrital zircons from the Suonahu Formation and paleo-elevation determination in late Paleogene in the Shuanghu area, northern Tibet. Acta Geologica Sinica, 92(7): 1352~1368.
- Wu Zhenhan, Zhao Zhen, Ji Changjun, Liu Zhiwei, Yang Yan. 2019&. Atlas of Nappe Structure and Its Effect to Petroliferous Sequence in Central Qiangtang Block, Northern Tibet. Wuhan: China University of Geosciences Press: 1~125.
- Xia Bin, Lin Qingcha, Zhang Yuquan, Deng Wanming. 2006&. The types of volcanic rocks for the Bamaoqiongzong, Yongbocuo and Qiangbaqian in the Northern Tibet, the dating of ⁴⁰ Ar-³⁹ Ar and its geological implications. Acta Geologica Sinica, 80 (11): 1676 ~ 1682.
- Xia Weiguo. 1982&. Ostracoda Fauna from Lunpola Group in Xizang (Tibet) and Its Geological Age. Beijing: Geological Publishing Press; 149~159.
- Xia Weiguo. 1986&. Some Charophytes from Lunpola Group in Lunpola Basin, Baingoin County, Xizang (Tibet). Beijing: Geological Publishing Press: 61~67.

- Xia Jinbao. 1983&. Cenozoic of Baingoin and Its Bordering, Xizang (Tibet). Beijing: Geological Publishing Press: 243~254.
- Xie Guogang, Liao Siping, Luo Xiaochuan, Zou Aijian, Hu Zhaorong. 2003&. Establishment of the Paleogene Meisu Formation in the Nyima area, Tibet. Geological Bulletin of China, 22(5): 341 ~ 345.
- Xu Qiang, Ding Lin, Zhang Liyun, Cai Fulong, Lai Qingzhou, Yang Di, Zeng Liujing. 2013. Paleogene high elevations in the Qiangtang terrane, central Tibetan Plateau. Earth and Planetary Science Letters, 362: 31~42.
- Xu Zhengyu. 1980&. The Tertiary and its petroleum potential in the Lunpola basin, Tibet. Oil & Gas Geology, 1(2): 153~158.
- Yang Guolin, Wang Zixi, Chen Jingwei, Yan Defei, Sun Bainian. 2016. Equisetum cf. oppositum (Equisetaceae) from the Paleocene—Eocene of Tibet in southwestern China and its paleoenvironmental implications. Arabian Journal of Geosciences, 9: 749. doi:10.1007/s12517-016-2777-z.
- Yue Long, Mou Shiyong, Zeng Changxing, Yi Chengxing. 2006&. Age of the Kangtog Formation in the Dinggo - Gyaco area, Qiangtang, northern Tibet, China. Geological Bulletin of China, 25(1~2): 229~232.
- Yu Junqiu. 2016&. The Formation Age and Tectonic Evolution of Kangtuo Basin, Northern Tibet. Supervisor: Wu Zhenhan. Beijing: Master Degree Dissertation of China University of Geosciences (Beijing): 1~79.
- Zhang Yaoling, Shen Yanxu, Wu Zhenhan, Zhao Zhen. 2018&. Zircon U-Pb ages of magmatic rocks from Meisu formation in Gerze area in Tibet and its geological significance. Journal of Geomechanics, 24 (1): 128~136.
- Zhao Zhen, Lu Lu, Wu Zhenhan, Yu Junqiu, Wu Yanjun. 2018&. Charactreistics of the Late Triassic Jiangai Granite mass and the slab break-off in Central Qiangtang, Tibet. Earth Science, 43(S1): 225 ~242.
- Zhao Zhen, Wu Zhenhan, Lu Lu, Yu Junqiu, Wu Yanjun. 2018. The Late Triassic I-type granites from the Longmu Co—Shuanghu Suture Zone in the interior of Tibetan Plateau, China: Petrogenesis and implication for slab break-off. Acta Geologica Sinica (English Edition), 92(3): 935~951.
- Zhao Zhen, Wu Zhenhan, Yu Junqiu. 2019a&. Thrust structures of the Nima - Rongma area in the Qiangtang Block, Tibetan Plateau. Acta Geologica Sinica, 93(8): 1849~1866.
- Zhao Zhen, Lu Lu, Wu Zhenhan. 2019b&. Uplifting evolution of the Central Uplift Belt, Qiangtang: constraints from tectono – thermochronology. Earth Science Frontiers, 26(2): 249~263.
- Zhao Zhengzhang, Li Yongtie, Ye Hefei. 2001#. Strratigraphy of the Qinghai—Tibet Plateau. Beijing: Science Press: 1~542.

Establishing the chronostratigraphic framework of the continental red beds in Central Qiangtang Basin: Constrained by zircon U-Pb ages

ZHAO Zhen¹⁾, WU Zhenhan¹⁾, YANG Yizhuo^{1,2)}, JI Changjun³⁾

1) Chinese Academy of Geological Sciences, Beijing, 100037;

2) Yangtze University, Wuhan, 430100;

3) Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, 100081

Objectives: The chronostratigraphic framework and distribution of the K_2 — N_1 Red beds in the Shuanghu— Lunpola area of the central Xizang(Tibetan) Plateau has been controversial due to lack of precise age controls and reliable guide fossils, which also affect the understanding of a series of other scientific problems about the red beds. In this study, we briefly discuss the time scale of the K_2 — N_1 red beds in the research area according to geochronological and stratigraphic study of the bentonite and volcanic rocks.

Methods: The zircon LA-ICP-MS U-Pb dating is used to make a detailed geochronology of the bentonite and volcanic rocks in the research area.

Zircon U-Pb isotope ages of selected samples were performed in the Isotopic Laboratory, Tianjin Institute of Geology and Mineral Resources of China Geological Survey and Continental Tectonics and Dynamics Laboratory of Institute of Geology, Chinese Academy of Geological Sciences.

Results: The zircon U-Pb dating of the volcanic rocks establish the Abushan Fm. age from 101.9 to 73.09 Ma, and the Bentonite combining previous ages of the Upper Niubao Fm. age of 45.41~43.82 Ma. Combined with the regional geological data, we establish the geochronologic time scale of the continental deposit from the Late Cretaceous to Miocene.

Zircons from the bentonite yield concordant 206 Pb/ 238 U ages between 45. 41 and 43. 82 Ma, which is interpreted as the formation age of the Upper Niubao Fm. Similarly, zircons from the volcanic rocks yield concordant 206 Pb/ 238 U ages from 101.9 to 73.09 Ma, which is indicative of the formation age of the Abushan Fm. The zircon U-Pb and Ar-Ar dating of the volcanic rocks ranging from 35.5 to 32.59 Ma for the Nadingcuo Fm., and 46 ~ 28 Ma for the Yulinshan Fm., which unconformably overlie the Kangtuo Fm. and the Suonahu Fm. respectively, indicating the minimum depositional age of these two red beds.

Conclusion: According to these data above, combined with previous research, we establish the chronostratigraphic framework of the K_2 — N_1 red beds in the Shuanghu—Lunpola area, consisting of the Upper Cretaceous Abushan Fm. and the Jingshan Fm., the Niubao Fm. and the Kangtuo Fm. during the Paleocene— Eocene epoch, the Eocene—Oligocene Suonahu Fm. and the Oligocene—Miocene Dingqinghu Fm., and these formations are also coeval with the red beds of the Hoh Xil basin to the north. The Abushan Fm., instead of the Kangtuo Fm. suggested by previous research, are mainly distributed within the Shuanghu—Duoma area, while the Kangtuo Fm. predominately outcrops in the Central Uplift of the Qiangtang Basin and other hills. The Suonahu Fm. and the Dingqinghu Fm. are widely located along the Bangong Lake—Nujiang River suture zone, and the Niubao Fm. extends north to Duoma area.

Establishing the chronostratigraphic framework and distribution of the K_2 — N_1 red beds in the Shuanghu— Lunpola area may give us a further understanding of the basin evolution and active time of thrusts from the Late Cretaceous to Miocene in the study area with the purpose to provide a useful basis to the study on sedimentary tectonic—paleoenvironment evolution in the central plateau.

Keywords: zircon U-Pb dating; Upper Cretaceous to Miocene; red beds; Shuanghu—Lunpola area; Xizang (Tibetan) Plateau

Acknowledgements: This study was supported by the Chinese Academy of Geological Sciences Research Fund (No. JKY201903-06) and China Geological Survey (No. DD20190367)

First author: ZHAO Zhen, female, born in 1987, Ph. D., mainly engaged in structure geology of the Xizang(Tibetan) Plateau; Email: zhaozhen03@126.com

Manuscript received on: 2020-07-13; Acceptedon: 2020-08-17; Edited by: HUANG Daomao **Doi**: 10.16509/j.georeview. 2020.05.006

附表 1 羌塘盆地中部晚白垩世—古近纪陆相红层锆石 U-Pb 年龄测试结果

Annexed table 1 Analysis results of U-Pb ages of the zircons from the Upper Cretaceous to Paleogene red beds in the Central Qiangtang Basin

	元素	【含量(×1	0 ⁻⁶)				同位詞	素比值					同位素年	龄(Ma)			
测点号	DI	T	T	Th/U	n(²⁰⁷ Pb)	∕n(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/2	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	(n(²³⁵ U)	n(²⁰⁶ Pb)/	(²³⁸ U)	谐和度
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)
						阿布山组火	、山岩, 1532	21-3: E88°47	7′15.9″, N3	2°55′30. 1″	5066m	·					-
1	60	661	575	1.15	0.0500	0.0007	0.1126	0.0036	0.0163	0.0004	194.5	33	108.3	3.3	104.4	2.5	104
2	68	771	749	1.03	0.0480	0.0006	0. 1072	0.0029	0.0162	0.0004	101.9	14	103.4	2.7	103.5	2.4	100
3	64	711	529	1.34	0.0508	0.0022	0. 1151	0.0064	0.0164	0.0004	231.6	100	110.6	5.8	104.7	2.5	106
4	107	1247	809	1.54	0.0488	0.0008	0. 1074	0.0028	0.0160	0.0003	139.0	33	103.6	2.6	102.1	1.9	102
5	89	985	881	1.12	0.0521	0.0062	0.1146	0.0169	0.0158	0.0003	300.1	286	110.2	15.4	101.1	2.1	109
7	55	601	537	1.12	0.0513	0.0012	0.1123	0.0021	0.0159	0.0003	253.8	56	108.1	1.9	101.8	1.8	106
8	60	693	692	1.00	0.0482	0.0007	0. 1047	0.0025	0.0158	0.0003	109.4	33	101.1	2.3	100.8	2.2	100
9	57	674	516	1.31	0.0488	0.0008	0. 1043	0.0024	0.0155	0.0003	200.1	39	100.8	2.2	99.3	1.7	102
10	75	891	731	1.22	0.0483	0.0008	0. 1035	0.0023	0.0155	0.0003	122.3	39	100.0	2.2	99.4	1.7	101
11	67	771	648	1.19	0.0505	0.0008	0. 1081	0.0023	0.0155	0.0003	216.7	33	104.2	2.1	99.3	1.7	105
13	55	605	613	0.99	0.0487	0.0007	0.1107	0.0035	0.0165	0.0005	200.1	33	106.6	3.2	105.4	3.2	101
14	74	838	603	1.39	0.0479	0.0007	0. 1098	0.0031	0.0166	0.0004	94.5	39	105.8	2.9	106.2	2.7	100
15	58	664	455	1.46	0.0482	0.0008	0. 1085	0.0029	0.0163	0.0004	109.4	39	104.6	2.6	104.4	2.3	100
16	48	534	505	1.06	0.0492	0.0007	0.1122	0.0045	0.0165	0.0006	166.8	39	107.9	4.1	105.6	3.8	102
17	84	992	774	1.28	0.0485	0.0006	0. 1061	0.0022	0.0159	0.0003	124.2	14	102.4	2.1	101.5	1.8	101
18	80	943	674	1.40	0.0483	0.0006	0. 1051	0.0025	0.0158	0.0003	122.3	28	101.5	2.3	100. 9	2.0	101
19	51	605	531	1.14	0.0481	0.0007	0. 1041	0.0024	0.0157	0.0003	105.6	33	100.5	2.2	100.4	2.2	100
20	39	450	437	1.03	0.0484	0.0007	0. 1052	0.0019	0.0158	0.0002	120.5	33	101.6	1.8	100.8	1.4	101
						阿布山组火	山岩,DT00	81: E89°00′	37.46″, N32	2°54′50. 27′	′, 5031m						
2	9	567	513	1.11	0.0486	0.0012	0.1024	0.0025	0.0153	0.0002	129.1	57	99.0	2.5	97.7	1.0	101
3	32	1097	2136	0.51	0.0488	0.0010	0.1008	0.0021	0.0150	0.0001	137.9	47	97.5	2.1	95.9	0.9	102
5	7	321	440	0.73	0.0483	0.0011	0. 1010	0.0025	0.0152	0.0002	114.0	55	97.7	2.4	97.0	1.0	101
6	7	352	395	0.89	0.0479	0.0014	0.1004	0.0030	0.0152	0.0002	93.6	68	97.1	2.9	97.2	1.0	100
7	12	409	780	0.52	0.0480	0.0009	0.1005	0.0019	0.0152	0.0002	99.3	43	97.3	1.9	97.2	1.0	100
8	11	435	692	0.63	0.0480	0.0010	0. 1018	0.0023	0.0154	0.0002	97.7	51	98.5	2.2	98.5	1.0	100
9	5	190	321	0.59	0.0484	0.0017	0. 1013	0.0037	0.0152	0.0002	119.3	84	98.0	3.6	97.1	1.0	101
10	20	659	1248	0.53	0.0482	0.0007	0. 1017	0.0016	0.0153	0.0001	108.2	34	98.4	1.5	98.0	1.0	100
11	19	591	1213	0.49	0.0479	0.0007	0. 0997	0.0015	0.0151	0.0002	92.0	33	96.5	1.5	96.7	1.0	100
12	20	868	1288	0.67	0.0482	0.0013	0. 1017	0.0027	0.0153	0.0002	111.1	63	98.4	2.6	97.8	1.0	101
13	5	188	312	0.60	0.0483	0.0016	0. 1018	0.0035	0.0153	0.0002	114.6	78	98.5	3.4	97.8	1.1	101

	元素	〔含量(×1	0 ⁻⁶)				同位式	素比值					同位素年	龄(Ma)			
测点号	DI			Th/U	n(²⁰⁷ Pb)	/n(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	(²³⁵ U)	n(²⁰⁶ Pb)/	(n(²³⁸ U)	谐和度
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)
14	4	220	258	0.85	0.0480	0.0020	0. 1017	0.0043	0.0154	0.0002	98.3	97	98.4	4.2	98.4	1.0	100
15	11	509	656	0.78	0.0486	0.0012	0. 1019	0.0026	0.0152	0.0002	126.8	58	98.5	2.6	97.3	1.0	101
16	6	340	291	1.17	0.0468	0.0033	0. 1021	0.0073	0.0155	0.0002	41.6	168	98.7	7.0	99.2	1.3	100
17	50	4065	2659	1.53	0.0477	0.0006	0. 1009	0.0014	0.0153	0.0001	86.1	29	97.6	1.3	98.1	0.9	100
18	25	1389	1437	0.97	0.0480	0.0007	0. 1015	0.0016	0.0153	0.0002	100.2	32	98.2	1.5	98.1	1.0	100
19	18	507	1211	0.42	0.0481	0.0007	0. 1011	0.0018	0.0152	0.0002	105.1	36	97.8	1.7	97.5	1.1	100
20	24	929	1482	0.63	0.0472	0.0010	0.1008	0.0021	0.0155	0.0002	59.1	50	97.5	2.1	99.1	1.0	98
					I	阿布山组火	山岩, 18064	-1: E89°55′	07.53", N32	2°50′12.65′	, 4937m						
1	36	349	816	0.43	0.0476	0.0015	0.1040	0.0033	0.0160	0.0003	83.4		100.4	3.0	102.1	1.9	98
2	48	595	652	0.91	0.0466	0.0016	0. 0992	0.0032	0.0155	0.0002	27.9	78	96.0	3.0	99.2	1.4	97
3	32	319	608	0.53	0.0475	0.0018	0. 1014	0.0039	0.0155	0.0002	72.3	89	98.1	3.6	99.3	1.1	99
4	43	467	719	0.65	0.0466	0.0013	0. 0992	0.0031	0.0154	0.0002	31.6	67	96.1	2.9	98.6	1.3	97
6	36	415	538	0.77	0.0483	0.0018	0. 1013	0.0037	0.0152	0.0002	122.3	82	97.9	3.4	97.3	1.2	101
7	45	463	854	0.54	0.0465	0.0015	0. 0993	0.0031	0.0155	0.0002	33.4	65	96.1	2.9	99.4	1.4	97
8	51	516	972	0.53	0.0475	0.0013	0. 1064	0.0034	0.0162	0.0002	76.0	65	102.7	3.1	103.5	1.3	99
9	27	281	480	0.59	0.0480	0.0019	0. 1035	0.0039	0.0157	0.0002	98.2	91	100.0	3.6	100.3	1.4	100
10	40	438	670	0.65	0.0474	0.0014	0. 0991	0.0030	0.0152	0.0003	72.3		96.0	2.8	97.3	1.6	99
14	40	458	638	0.72	0.0472	0.0016	0. 0992	0.0032	0.0153	0.0002	61.2	78	96.0	2.9	97.7	1.3	98
15	74	890	864	1.03	0.0461	0.0013	0. 1007	0.0032	0.0158	0.0002	400.1		97.4	3.0	100.9	1.4	96
16	36	430	369	1.17	0.0525	0.0025	0.1129	0.0055	0.0157	0.0003	309.3	109	108.6	5.1	100.5	2.1	108
17	45	535	666	0.80	0.0473	0.0016	0. 1001	0.0036	0.0154	0.0003	64.9	78	96.9	3.3	98.3	1.6	99
18	38	436	422	1.03	0.0511	0.0022	0. 1061	0.0049	0.0151	0.0002	255.6	100	102.4	4.5	96.5	1.4	106
19	41	496	590	0.84	0.0481	0.0018	0.1005	0.0037	0.0152	0.0002	105.6	91	97.2	3.4	97.2	1.3	100
21	47	507	660	0.77	0.0506	0.0018	0.1137	0.0045	0.0162	0.0002	233.4	53	109.4	4.1	103.8	1.5	105
23	46	542	656	0.83	0.0470	0.0016	0. 1024	0.0036	0.0158	0.0002	55.7	72	99.0	3.3	100.8	1.4	98
24	62	645	1116	0.58	0.0479	0.0013	0.1060	0.0031	0.0160	0.0002	100.1	69	102.3	2.9	102.4	1.4	100
25	51	617	613	1.01	0.0468	0.0020	0. 1038	0.0047	0.0161	0.0003	39.0	100	100.3	4.3	102.8	1.7	98
27	67	795	867	0.92	0.0497	0.0016	0. 1067	0.0035	0.0156	0.0002	189.0	76	102.9	3.3	99.6	1.3	103
30	33	365	591	0.62	0.0469	0.0018	0. 1018	0.0040	0.0157	0.0002	55.7	76	98.5	3.7	100.5	1.4	98
					I	阿布山组火	山岩, 19036	-8: E89°58′	45.05", N32	2°45′59. 55′	, 5032m						
16	11	161	656	0.24	0.0482	0.0016	0.0964	0.0031	0.0146	0.0002	109.4	78	93.5	2.8	93.3	1.2	100
18	17	91	1005	0.09	0.0473	0.0013	0. 0994	0.0028	0.0152	0.0001	64.9	63	96.2	2.6	97.5	0.9	99
19	6	141	337	0.42	0.0466	0.0027	0.0930	0.0053	0.0146	0.0003	27.9	139	90.3	4.9	93.5	1.7	97

	元素	【含量(×1	0 ⁻⁶)				同位到	素比值					同位素年	龄(Ma)			
测点号				Th/U	n(²⁰⁷ Pb)/	⟨ <i>n</i> (²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	(²³⁵ U)	n(²⁰⁶ Pb)/	(²³⁸ U)	谐和度
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)
23	6	77	326	0.24	0.0525	0.0027	0. 1087	0.0052	0.0152	0.0002	309.3	117	104.7	4.8	97.0	1.3	108
24	6	97	361	0.27	0.0528	0.0034	0.1113	0.0073	0.0153	0.0002	320.4	144	107.2	6.7	97.6	1.3	110
26	24	57	1557	0.04	0.0477	0.0013	0.0967	0.0028	0.0147	0.0002	87.1	67	93.8	2.6	94.2	1.3	100
28	7	104	427	0.24	0.0493	0.0024	0. 1034	0.0048	0.0154	0.0003	161.2	115	99.9	4.5	98.2	1.8	102
29	11	174	643	0.27	0.0506	0.0020	0.1051	0.0042	0.0151	0.0001	233.4	97	101.5	3.9	96.5	0.9	105
30	15	141	945	0.15	0.0478	0.0018	0.0953	0.0036	0.0145	0.0002	87.1	89	92.4	3.3	93.0	1.1	99
34	7	148	404	0.37	0.0484	0.0021	0.1009	0.0045	0.0152	0.0002	116.8	106	97.6	4.1	97.2	1.2	100
39	7	107	418	0.26	0. 0489	0.0024	0.0985	0.0045	0.0148	0.0002	142.7	110	95.4	4.1	94.5	1.3	101
						阿布山组火	山岩, 17045	-2: E88°25	'44.35", N3	3°02′25.97′	", 5755m						
1	5	120	347	0.35	0.0491	0.0016	0.1042	0.0034	0.0154	0.0002	151.1	75	100.6	3.3	98.5	1.0	102
2	7	302	458	0.66	0. 0491	0.0018	0.1004	0.0039	0.0148	0.0002	153.3	88	97.2	3.7	94.9	1.0	102
3	6	118	401	0.29	0.0468	0.0018	0. 0993	0.0039	0.0154	0.0002	40.6	91	96.2	3.8	98.4	1.2	98
4	3	103	217	0.48	0.0483	0.0022	0. 1028	0.0046	0.0155	0.0002	111.6	106	99.4	4.5	98.9	1.1	101
5	13	445	790	0.56	0.0479	0.0010	0.1003	0.0022	0.0152	0.0002	96.0	49	97.0	2.1	97.1	1.1	100
6	4	91	233	0.39	0.0480	0.0022	0. 1018	0.0047	0.0154	0.0002	98.8	109	98.4	4.6	98.4	1.1	100
7	3	68	193	0.35	0.0472	0.0031	0. 0981	0.0065	0.0151	0.0002	60.4	157	95.0	6.3	96.4	1.0	99
9	14	276	879	0.31	0.0495	0.0008	0.1066	0.0019	0.0156	0.0002	169.6	37	102.8	1.8	100.0	1.1	103
11	5	210	325	0.65	0.0502	0.0016	0.1054	0.0035	0.0152	0.0002	203.1	75	101.8	3.4	97.5	1.0	104
12	11	562	653	0.86	0.0485	0.0011	0.0986	0.0023	0.0148	0.0002	121.6	52	95.5	2.2	94.5	1.0	101
13	9	322	571	0.56	0.0496	0.0011	0. 1045	0.0025	0.0153	0.0002	177.0	50	100.9	2.4	97.7	1.1	103
14	5	157	284	0.55	0.0497	0.0018	0. 1033	0.0039	0.0151	0.0002	179.7	86	99.8	3.8	96.5	1.1	103
15	8	173	537	0.32	0.0485	0.0016	0.1036	0.0034	0.0155	0.0002	125.3	77	100.1	3.3	99.1	1.0	101
16	4	107	245	0.44	0.0493	0.0020	0. 1049	0.0044	0.0154	0.0002	163.1	95	101.3	4.3	98.7	1.1	103
17	6	185	404	0.46	0.0493	0.0013	0. 1043	0.0029	0.0153	0.0002	160.6	60	100.7	2.8	98.2	1.1	103
18	8	314	468	0.67	0.0471	0.0013	0.0977	0.0029	0.0151	0.0002	52.0	68	94.7	2.8	96.4	1.0	98
19	27	1017	1683	0.60	0.0494	0.0007	0. 1015	0.0016	0.0149	0.0002	166.3	32	98.1	1.6	95.3	1.0	103
20	18	420	1151	0.37	0.0485	0.0008	0. 1045	0.0019	0.0156	0.0002	125.3	39	100.9	1.8	99.9	1.1	101
21	10	355	645	0.55	0.0499	0.0012	0. 1021	0.0026	0.0148	0.0002	190.6	58	98.7	2.5	94.9	1.0	104
23	12	329	716	0.46	0.0488	0.0017	0.1054	0.0038	0.0157	0.0002	136.8	83	101.8	3.7	100.3	1.1	101
24	13	682	758	0.90	0.0474	0.0013	0.0983	0.0029	0.0150	0.0002	70.4	68	95.2	2.8	96.2	1.1	99
					ße	「布山组火山	」岩, AD173	24-1: E89°0)7′56.42″, N	132°38′27. 9	9", 4851m						
1	7	372	535	0.70	0.0475	0.0016	0.0759	0.0027	0.0116	0.0001	76.5	81	74.3	2.7	74.3	0.8	100
2	3	174	278	0.63	0.0491	0.0049	0.0754	0.0076	0.0111	0.0001	153.9	235	73.8	7.5	71.3	0.8	103
							-		-	-		-					-

	元素	【含量(×1	0 ⁻⁶)				同位到	素比值					同位素年	龄(Ma)			
测点号	DI			Th/U	n(²⁰⁷ Pb).	/n(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	(²³⁵ U)	n(²⁰⁶ Pb)/	(²³⁸ U)	谐和度
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)
6	17	1518	1121	1.35	0.0487	0.0008	0.0776	0.0014	0.0116	0.0001	132.7	39	75.9	1.4	74.1	0.8	102
7	6	413	476	0.87	0. 0497	0.0016	0.0785	0.0025	0.0114	0.0001	182.9	73	76.7	2.5	73.3	0.7	105
8	2	80	175	0.45	0. 0499	0.0037	0.0777	0.0058	0.0113	0.0001	188.8	172	75.9	5.6	72.4	0.8	105
9	2	86	129	0.67	0. 0495	0.0128	0.0765	0.0198	0.0112	0.0002	170.0	606	74.9	19.3	71.9	1.5	104
10	4	337	252	1.34	0.0480	0.0025	0.0780	0.0042	0.0118	0.0001	100.4	125	76.2	4.1	75.5	0.8	101
12	1	66	83	0.80	0.0492	0.0078	0.0796	0.0120	0.0117	0.0002	158.3	373	77.8	11.7	75.2	1.0	103
13	4	226	293	0.77	0.0486	0.0021	0.0768	0.0034	0.0115	0.0001	130.7	101	75.1	3.3	73.4	0.8	102
14	8	501	632	0.79	0. 0495	0.0051	0.0760	0.0078	0.0111	0.0001	172.8	238	74.4	7.6	71.4	0.8	104
15	2	75	131	0.57	0.0476	0.0052	0.0740	0.0078	0.0113	0.0001	80.6	260	72.4	7.7	72.2	0.8	100
16	2	93	126	0.74	0. 0499	0.0053	0.0769	0.0079	0.0112	0.0001	189.2	245	75.2	7.7	71.7	0.9	105
17	2	65	205	0.32	0.0484	0.0032	0.0757	0.0050	0.0114	0.0001	118.8	156	74.1	4.9	72.8	0.8	102
18	1	41	80	0.51	0. 0497	0.0086	0.0787	0.0132	0.0115	0.0002	180.2	405	76.9	12.9	73.6	1.0	104
19	3	86	224	0.38	0.0484	0.0030	0.0790	0.0050	0.0118	0.0001	117.8	148	77.2	4.9	75.9	0.8	102
20	8	46	728	0.06	0.0470	0.0010	0.0735	0.0016	0.0113	0.0001	50.0	50	72.0	1.6	72.7	0.7	99
21	2	104	115	0.91	0.0490	0.0058	0.0768	0.0088	0.0114	0.0001	146.7	278	75.1	8.6	72.9	0.9	103
22	3	234	229	1.02	0.0489	0.0029	0.0754	0.0046	0.0112	0.0001	143.1	140	73.8	4.5	71.7	0.8	103
23	7	445	511	0.87	0.0482	0.0017	0.0750	0.0027	0.0113	0.0001	107.7	83	73.4	2.6	72.4	0.8	101
					β¤j	「布山组火山	, 岩, AD172]	18-2: E89°3	3′29.87″, N	32°35′26.7	7″, 5042m						
2	1	59	117	0.51	0.0474	0.0032	0.0767	0.0051	0.0117	0.0001	69.1	159	75.1	5.0	75.2	0.8	100
3	1	58	102	0.57	0.0484	0.0045	0.0777	0.0072	0.0116	0.0001	119.4	218	76.0	7.0	74.6	0.8	102
4	4	108	353	0.31	0.0518	0.0013	0.0834	0.0021	0.0117	0.0001	277.2	58	81.3	2.1	74.8	0.8	109
9	5	293	383	0.76	0.0498	0.0014	0.0789	0.0022	0.0115	0.0001	186.0	63	77.1	2.1	73.6	0.7	105
10	2	77	177	0.43	0.0508	0.0023	0.0820	0.0038	0.0117	0.0001	233.9	105	80.0	3.7	75.0	0.8	107
11	3	79	252	0.31	0.0488	0.0019	0.0786	0.0032	0.0117	0.0001	140.2	93	76.8	3.1	74.8	0.8	103
13	4	229	353	0.65	0.0482	0.0016	0.0784	0.0026	0.0118	0.0001	110.4	78	76.6	2.6	75.6	0.8	101
14	5	120	449	0.27	0.0493	0.0015	0.0786	0.0024	0.0116	0.0001	161.5	72	76.8	2.4	74.1	0.7	104
17	1	60	108	0.56	0.0479	0.0073	0.0770	0.0115	0.0117	0.0002	93.8	362	75.3	11.3	74.7	1.2	101
19	2	42	161	0.26	0.0500	0.0030	0.0813	0.0049	0.0118	0.0001	195.1	140	79.4	4.8	75.6	0.8	105
22	4	87	345	0.25	0.0489	0.0014	0.0780	0.0023	0.0116	0.0001	145.2	69	76.3	2.3	74.1	0.7	103
23	2	40	210	0.19	0.0493	0.0027	0.0782	0.0043	0.0115	0.0001	160.9	127	76.5	4.2	73.8	0.8	104
24	2	76	213	0.36	0.0496	0.0019	0.0786	0.0031	0.0115	0.0001	175.9	90	76.8	3.0	73.7	0.7	104

阿布山组碎屑岩,17057-1: E88°44′30.47″, N33°10′45.87″, 5054m

	元素	含量(×1	0 ⁻⁶)				同位刻	素比值					同位素年	龄(Ma)			
测点号				Th/U	n(²⁰⁷ Pb)/	∕n(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	n(²³⁵ U)	n(²⁰⁶ Pb)/	(²³⁸ U)	谐和度
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)
47	11	1745	300	5.81	0.0472	0.0008	0.0418	0.0007	0.0064	0.0001	60.7	38	41.6	0.7	41.3	0.4	101
79	21	574	557	1.03	0.0535	0.0007	0. 2332	0.0033	0.0316	0.0003	351.3	31	212.8	3.0	200.5	1.9	106
29	22	651	360	1.81	0.0529	0.0007	0. 2322	0.0032	0.0319	0.0003	323.1	31	212.1	3.0	202.2	1.9	105
69	19	554	306	1.81	0.0520	0.0007	0.2306	0.0034	0.0322	0.0003	284.6	32	210.7	3.2	204.2	2.1	103
70	18	506	412	1.23	0.0519	0.0007	0. 2305	0.0034	0.0322	0.0003	282.4	33	210.6	3.1	204.2	2.0	103
18	13	376	256	1.47	0.0515	0.0008	0. 2291	0.0036	0.0323	0.0003	261.4	35	209.5	3.3	204.9	2.0	102
32	17	490	285	1.72	0.0522	0.0008	0. 2331	0.0037	0.0324	0.0003	292.7	35	212.7	3.4	205.6	2.0	103
30	9	253	145	1.75	0.0533	0.0009	0. 2385	0.0041	0.0324	0.0003	342.7	38	217.2	3.8	205.8	2.1	106
98	9	253	209	1.21	0.0514	0.0010	0.2300	0.0048	0.0325	0.0003	258.8	45	210.2	4.4	205.9	2.0	102
16	11	325	151	2.15	0.0506	0.0020	0. 2265	0.0089	0.0325	0.0003	222.5	90	207.3	8.1	206.0	2.1	101
44	18	500	300	1.66	0.0505	0.0007	0. 2266	0.0033	0.0325	0.0003	220.0	32	207.4	3.0	206.3	2.0	101
34	21	613	262	2.34	0.0529	0.0007	0. 2373	0.0033	0.0325	0.0003	325.0	31	216.2	3.0	206.3	2.0	105
35	21	589	352	1.67	0.0531	0.0007	0. 2382	0.0033	0.0325	0.0003	333.1	30	217.0	3.0	206.4	2.0	105
10	22	600	434	1.38	0.0511	0.0007	0. 2301	0.0032	0.0326	0.0003	246.4	31	210.3	2.9	207.1	2.0	102
96	17	505	267	1.89	0.0530	0.0008	0. 2386	0.0038	0.0327	0.0003	326.7	33	217.2	3.5	207.3	2.1	105
85	13	392	190	2.07	0.0501	0.0007	0. 2259	0.0034	0.0327	0.0003	201.2	33	206.8	3.1	207.3	2.0	100
22	9	284	100	2.84	0.0520	0.0009	0. 2344	0.0040	0.0327	0.0003	285.7	38	213.8	3.6	207.3	2.0	103
50	11	335	147	2.28	0.0519	0.0008	0. 2339	0.0038	0.0327	0.0003	280.4	35	213.4	3.4	207.4	2.0	103
33	24	628	561	1.12	0.0518	0.0007	0. 2337	0.0034	0.0327	0.0003	277.6	32	213.2	3.1	207.5	2.0	103
54	22	618	470	1.31	0.0507	0.0007	0. 2287	0.0033	0.0327	0.0003	226.9	31	209.1	3.0	207.5	2.1	101
68	18	517	271	1.91	0.0504	0.0007	0. 2276	0.0031	0.0327	0.0003	215.4	31	208.2	2.9	207.5	2.0	100
80	11	303	204	1.48	0.0555	0.0009	0. 2507	0.0041	0.0327	0.0003	434.3	34	227.1	3.7	207.6	2.1	109
46	9	248	195	1.27	0.0533	0.0011	0. 2413	0.0053	0.0329	0.0003	340.2	48	219.5	4.8	208.4	2.0	105
24	18	511	243	2.10	0.0528	0.0007	0. 2394	0.0034	0.0329	0.0003	319.4	32	217.9	3.1	208.6	2.0	104
51	12	355	169	2.10	0.0519	0.0009	0. 2352	0.0043	0.0329	0.0003	278.8	39	214.5	3.9	208.6	2.1	103
5	26	726	519	1.40	0.0525	0.0007	0. 2382	0.0036	0.0329	0.0004	306.2	31	216.9	3.2	208.8	2.4	104
23	18	535	251	2.13	0.0511	0.0007	0. 2321	0.0036	0.0329	0.0003	245.1	33	211.9	3.3	209.0	2.1	101
15	25	715	339	2.11	0.0510	0.0007	0.2318	0.0031	0.0330	0.0003	240.6	30	211.7	2.9	209.1	2.0	101
77	16	465	264	1.76	0.0532	0.0007	0. 2425	0.0034	0.0330	0.0003	339.3	31	220.5	3.1	209.5	2.0	105
12	15	430	197	2.18	0.0518	0.0007	0. 2362	0.0034	0.0331	0.0003	276.1	31	215.3	3.1	209.8	2.1	103
66	6	157	129	1.21	0.0522	0.0014	0.2386	0.0062	0.0331	0.0003	296.1	59	217.3	5.6	210.1	2.2	103
56	14	397	232	1.71	0.0520	0.0007	0. 2376	0.0035	0.0332	0.0003	284.4	33	216.5	3.2	210.3	2.1	103
97	17	464	335	1.38	0.0513	0.0007	0. 2346	0.0033	0.0332	0.0003	253.2	31	214.0	3.0	210.4	2.0	102
99	10	276	200	1.38	0.0524	0.0009	0. 2398	0.0043	0.0332	0.0003	301.6	37	218.2	3.9	210.6	2.2	104

	元素	含量(×1	0 ⁻⁶)				同位素	素比值					同位素年	龄(Ma)			
测点号	DI	771	T	Th/U	n(²⁰⁷ Pb)/	⟨ <i>n</i> (²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	n(²³⁵ U)	n(²⁰⁶ Pb)/	n(²³⁸ U)	谐和度
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)
7	18	541	179	3.02	0.0513	0.0008	0.2350	0.0058	0.0332	0.0005	254.5	38	214.3	5.3	210.6	3.4	102
95	17	494	256	1.93	0.0528	0.0007	0. 2418	0.0034	0.0332	0.0003	320.2	31	219.9	3.1	210.7	2.1	104
67	7	205	90	2.27	0.0517	0.0011	0. 2367	0.0053	0.0332	0.0003	271.0	49	215.7	4.8	210.7	2.1	102
6	13	361	189	1.91	0.0501	0.0007	0. 2295	0.0033	0.0333	0.0003	197.6	33	209.8	3.0	210.9	2.0	99
28	24	705	338	2.08	0.0530	0.0007	0. 2430	0.0034	0.0333	0.0003	328.3	30	220.9	3.1	211.0	2.1	105
20	25	691	405	1.71	0.0523	0.0007	0.2400	0.0032	0.0333	0.0003	300.1	29	218.5	2.9	211.0	2.1	104
17	18	498	327	1.52	0.0507	0.0007	0. 2331	0.0033	0.0333	0.0003	228.0	32	212.7	3.0	211.3	2.1	101
8	12	342	163	2.10	0.0489	0.0008	0. 2249	0.0036	0.0333	0.0003	143.8	36	206.0	3.3	211.5	2.1	97
3	22	633	268	2.36	0.0512	0.0007	0. 2354	0.0032	0.0334	0.0003	247.7	30	214.7	2.9	211.7	2.1	101
81	16	443	253	1.76	0.0502	0.0007	0.2312	0.0034	0.0334	0.0003	203.2	33	211.2	3.1	211.9	2.1	100
39	20	553	308	1.80	0.0532	0.0007	0. 2452	0.0034	0.0334	0.0003	336.9	31	222.6	3.1	212.0	2.1	105
62	23	638	414	1.54	0.0538	0.0007	0. 2480	0.0034	0.0334	0.0003	363.1	30	225.0	3.1	212.0	2.0	106
61	16	449	250	1.80	0.0539	0.0007	0. 2485	0.0036	0.0334	0.0003	366.6	31	225.4	3.3	212.1	2.1	106
72	18	495	296	1.67	0.0538	0.0008	0. 2482	0.0038	0.0335	0.0003	362.9	33	225.1	3.5	212.1	2.1	106
53	17	472	254	1.86	0.0507	0.0007	0.2342	0.0034	0.0335	0.0003	227.1	31	213.6	3.1	212.4	2.1	101
9	17	449	299	1.50	0.0503	0.0007	0. 2324	0.0033	0.0335	0.0003	209.6	32	212.2	3.0	212.4	2.1	100
11	13	357	183	1.95	0.0510	0.0008	0. 2355	0.0036	0.0335	0.0003	239.8	34	214.7	3.3	212.5	2.2	101
78	9	252	130	1.93	0.0510	0.0009	0. 2355	0.0040	0.0335	0.0003	239.2	38	214.7	3.6	212.5	2.1	101
49	24	650	438	1.48	0.0517	0.0007	0. 2391	0.0033	0.0336	0.0003	270.6	30	217.6	3.0	212.8	2.2	102
58	13	385	166	2.32	0.0525	0.0008	0. 2437	0.0039	0.0337	0.0003	307.2	35	221.4	3.6	213.5	2.2	104
1	10	247	226	1.09	0.0516	0.0008	0. 2399	0.0040	0.0337	0.0003	269.8	36	218.4	3.6	213.6	2.2	102
89	18	507	287	1.77	0.0533	0.0007	0. 2482	0.0034	0.0337	0.0003	343.3	30	225.1	3.1	214.0	2.1	105
93	5	149	87	1.71	0.0539	0.0013	0.2510	0.0061	0.0338	0.0003	365.4	53	227.4	5.6	214.2	2.1	106
45	16	443	242	1.83	0.0504	0.0007	0.2348	0.0035	0.0338	0.0003	211.3	34	214.1	3.2	214.4	2.1	100
42	20	522	421	1.24	0.0509	0.0007	0.2376	0.0033	0.0338	0.0003	238.2	30	216.5	3.0	214.5	2.1	101
48	23	645	316	2.04	0.0510	0.0007	0. 2379	0.0033	0.0338	0.0003	239.7	30	216.7	3.0	214.5	2.2	101
2	16	434	254	1.71	0.0508	0.0007	0. 2372	0.0034	0.0339	0.0003	232.3	32	216.2	3.1	214.7	2.1	101
65	12	326	221	1.48	0.0520	0.0008	0. 2429	0.0039	0.0339	0.0003	286.1	35	220.8	3.5	214.7	2.1	103
63	16	453	239	1.90	0.0520	0.0008	0. 2431	0.0041	0.0339	0.0004	285.7	35	221.0	3.7	214.9	2.3	103
41	23	614	364	1.69	0.0517	0.0007	0. 2420	0.0034	0.0339	0.0003	272.0	31	220.0	3.1	215.2	2.1	102
55	20	535	353	1.51	0.0510	0.0008	0. 2389	0.0036	0.0340	0.0003	241.2	34	217.5	3.3	215.3	2.1	101
92	13	333	285	1.17	0.0528	0.0008	0. 2472	0.0038	0.0340	0.0003	318.8	34	224.3	3.5	215.4	2.1	104
84	11	320	125	2.55	0.0514	0.0008	0. 2406	0.0039	0.0340	0.0003	257.0	37	218.9	3.5	215.4	2.1	102
94	18	497	216	2.30	0.0525	0.0009	0. 2461	0.0045	0.0340	0.0004	308.3	38	223.4	4.1	215.5	2.3	104

	元素	含量(×1	0 ⁻⁶)				同位素	素比值					同位素年	龄(Ma)			
测点号	DI			Th/U	n(²⁰⁷ Pb)/	(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/m	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	(²³⁵ U)	n(²⁰⁶ Pb)/	(²³⁸ U)	谐和度
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)
74	4	112	71	1.57	0.0522	0.0013	0. 2449	0.0067	0.0341	0.0004	292.8	58	222.5	6.1	215.9	2.3	103
43	13	382	141	2.71	0.0512	0.0007	0.2404	0.0037	0.0341	0.0003	249.8	33	218.7	3.3	215.9	2.2	101
59	15	407	253	1.61	0.0501	0.0007	0. 2355	0.0034	0.0341	0.0003	201.9	32	214.7	3.1	215.9	2.1	99
73	19	554	239	2.32	0.0534	0.0007	0.2510	0.0036	0.0341	0.0004	345.3	30	227.4	3.3	216.2	2.3	105
31	33	909	480	1.89	0.0512	0.0007	0.2410	0.0033	0.0341	0.0003	251.7	30	219.3	3.0	216.2	2.1	101
90	16	419	268	1.57	0.0510	0.0007	0. 2439	0.0036	0.0347	0.0004	242.1	32	221.6	3.3	219.7	2.2	101
38	22	564	362	1.56	0.0526	0.0007	0. 2658	0.0036	0.0366	0.0004	312.2	30	239.3	3.2	232.0	2.2	103
36	19	456	464	0.98	0.0524	0.0007	0.2704	0.0038	0.0375	0.0004	301.5	31	243.0	3.4	237.0	2.3	103
21	19	445	324	1.37	0.0540	0.0007	0. 2874	0.0040	0.0386	0.0004	369.3	29	256.5	3.6	244.3	2.4	105
						阿布山组碎	屑岩,17045-	-1: E88°25'	44.35″, N33	°02′25.97″	, 5755m						
77	34	1089	2201	0.49	0.0478	0.0006	0.0988	0.0014	0.0150	0.0002	90.9	30	95.7	1.3	95.9	1.0	100
4	6	213	333	0.64	0. 0491	0.0015	0.1103	0.0035	0.0163	0.0002	152.6	72	106.3	3.4	104.2	1.1	102
38	4	106	237	0.45	0.0471	0.0030	0.1062	0.0069	0.0163	0.0002	54.6	154	102.4	6.7	104.5	1.2	98
69	10	747	400	1.87	0.0501	0.0016	0.1148	0.0037	0.0166	0.0002	197.4	74	110.3	3.6	106.3	1.1	104
13	5	174	299	0.58	0.0471	0.0017	0.1116	0.0042	0.0172	0.0002	55.6	87	107.4	4.0	109.8	1.2	98
71	25	339	1487	0.23	0.0474	0.0007	0.1149	0.0018	0.0176	0.0002	68.1	34	110.4	1.7	112.4	1.1	98
85	12	339	642	0.53	0.0476	0.0012	0.1170	0.0031	0.0178	0.0002	79.6	58	112.3	3.0	113.9	1.3	99
60	8	292	433	0.68	0.0500	0.0011	0. 1238	0.0030	0.0179	0.0002	196.7	53	118.5	2.8	114.6	1.2	103
9	9	155	483	0.32	0.0488	0.0025	0. 1213	0.0064	0.0180	0.0002	140.6	121	116.2	6.1	115.0	1.2	101
30	8	287	379	0.76	0.0502	0.0013	0. 1256	0.0035	0.0181	0.0002	203.7	62	120.1	3.3	115.9	1.2	104
83	6	212	293	0.72	0.0505	0.0022	0. 1288	0.0058	0.0185	0.0002	216.6	101	123.0	5.6	118.2	1.3	104
6	8	121	313	0.39	0.0500	0.0018	0. 1624	0.0058	0.0236	0.0003	193.5	82	152.8	5.5	150.2	1.7	102
26	15	539	510	1.06	0.0506	0.0009	0. 1655	0.0032	0.0237	0.0002	224.1	42	155.5	3.0	151.0	1.6	103
44	37	1050	1374	0.76	0.0501	0.0006	0. 1639	0.0023	0.0237	0.0003	201.2	29	154.1	2.2	151.0	1.6	102
53	6	155	223	0.69	0.0488	0.0017	0. 1621	0.0058	0.0241	0.0003	140.5	84	152.5	5.5	153.3	1.6	99
27	15	329	585	0.56	0.0505	0.0009	0. 1681	0.0033	0.0241	0.0003	219.3	42	157.7	3.1	153.7	1.6	103
72	28	688	1027	0.67	0.0504	0.0007	0. 1679	0.0025	0.0242	0.0002	213.3	31	157.6	2.3	153.9	1.6	102
98	19	231	656	0.35	0.0512	0.0026	0. 1895	0.0095	0.0268	0.0003	249.9	115	176.2	8.9	170.7	1.8	103
91	26	243	902	0.27	0. 0487	0.0006	0. 1975	0.0029	0.0294	0.0003	135.8	31	183.0	2.7	186.7	1.9	98
37	13	130	391	0.33	0.0505	0.0011	0. 2281	0.0053	0.0328	0.0004	217.2	51	208.6	4.9	207.9	2.3	100
22	28	338	831	0.41	0.0512	0.0007	0. 2321	0.0033	0.0329	0.0003	250.3	30	211.9	3.0	208.5	2.2	102
92	21	337	600	0.56	0.0513	0.0008	0. 2341	0.0040	0.0331	0.0003	254.1	37	213.6	3.7	210.0	2.2	102
89	21	255	588	0.43	0.0510	0.0009	0. 2338	0.0046	0.0332	0.0003	241.0	43	213.3	4.2	210.8	2.2	101
76	39	473	1149	0.41	0.0515	0.0006	0.2374	0.0033	0.0334	0.0003	263.4	28	216.3	3.0	212.0	2.2	102

	元素	含量(×1	0 ⁻⁶)				同位詞	素比值					同位素年	龄(Ma)			
测点号				Th/U	n(²⁰⁷ Pb)/	√n(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	(²³⁵ U)	n(²⁰⁶ Pb)/	(²³⁸ U)	谐和度
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)
79	20	240	591	0.41	0.0498	0.0007	0. 2299	0.0037	0.0335	0.0004	185.5	35	210.1	3.4	212.3	2.3	99
32	6	76	177	0.43	0.0520	0.0019	0. 2401	0.0089	0.0335	0.0004	283.4	83	218.5	8.1	212.5	2.3	103
86	20	362	561	0.65	0.0505	0.0007	0. 2335	0.0035	0.0336	0.0004	216.5	32	213.1	3.2	212.8	2.2	100
47	24	133	693	0.19	0.0500	0.0008	0.2368	0.0038	0.0344	0.0004	193.1	35	215.8	3.5	217.9	2.3	99
67	29	308	782	0.39	0.0520	0.0012	0.2502	0.0059	0.0349	0.0004	284.3	51	226.8	5.4	221.2	2.3	102
74	18	258	448	0.58	0.0520	0.0012	0.2574	0.0063	0.0359	0.0004	283.6	54	232.5	5.7	227.5	2.4	102
54	11	122	269	0.45	0.0515	0.0015	0.2715	0.0082	0. 0383	0.0004	261.3	69	243.9	7.4	242.1	2.6	101
78	35	512	820	0.62	0.0509	0.0007	0. 2723	0.0043	0. 0388	0.0004	238.2	33	244.6	3.8	245.2	2.6	100
100	30	172	749	0.23	0.0531	0.0008	0. 2874	0.0047	0. 0393	0.0004	330.9	35	256.5	4.2	248.5	2.6	103
						阿布山组碎	屑岩,17052	-1: E88°03′	11.16″, N32	°36′24. 74″	, 5112m						
1	9	497	479	1.04	0.0498	0.0011	0.1182	0.0030	0.0172	0.0002	186.3	53	113.5	2.9	110.0	1.3	103
57	6	164	289	0.57	0.0510	0.0007	0. 1263	0.0019	0.0180	0.0002	242.3	31	120.8	1.8	114.7	1.2	105
95	4	135	200	0.68	0.0513	0.0012	0. 1312	0.0031	0.0186	0.0002	252.8	52	125.1	3.0	118.5	1.3	106
29	10	248	320	0.77	0.0508	0.0010	0.2140	0.0045	0.0306	0.0003	229.9	44	196.9	4.1	194.2	2.0	101
49	11	257	331	0.78	0.0512	0.0006	0.2374	0.0034	0.0336	0.0003	249.2	28	216.3	3.1	213.3	2.2	101
61	16	10	399	0.02	0.0514	0.0010	0.2438	0.0046	0.0344	0.0004	257.7	43	221.5	4.2	218.1	2.3	102
62	22	355	604	0.59	0.0519	0.0008	0. 2482	0.0041	0.0347	0.0004	280.5	35	225.1	3.8	219.8	2.3	102
7	19	278	534	0.52	0.0517	0.0007	0. 2637	0.0040	0.0370	0.0004	272.9	32	237.6	3.6	234.1	2.6	102
67	27	483	674	0.72	0.0534	0.0006	0.2768	0.0037	0.0376	0.0004	346.2	27	248.1	3.3	237.9	2.4	104
68	11	243	256	0.95	0.0522	0.0006	0. 2720	0.0037	0.0378	0.0004	295.1	28	244.3	3.3	239.0	2.4	102
63	21	83	500	0.17	0.0529	0.0007	0. 2817	0.0040	0. 0387	0.0004	322.6	30	252.0	3.6	244.5	2.6	103
31	35	431	841	0.51	0.0506	0.0008	0. 2697	0.0045	0. 0387	0.0004	221.6	35	242.5	4.0	244.6	2.5	99
42	5	99	129	0.77	0.0513	0.0012	0. 2768	0.0073	0. 0392	0.0004	253.0	54	248.1	6.5	247.6	2.7	100
					βī	可布山组碎屑	写岩,AD1732	25-1: E89°0	7′58.34″,N3	32°38′42.44	", 4862m						
27	23	1771	1220	1.45	0.0502	0.0007	0.1086	0.0016	0.0157	0.0001	205.9	32	104.7	1.6	100.3	1.0	104
33	17	769	918	0.84	0.0504	0.0010	0.1142	0.0023	0.0164	0.0002	212.6	44	109.8	2.3	105.1	1.0	104
41	10	397	586	0.68	0.0499	0.0009	0.1132	0.0023	0.0164	0.0002	191.8	43	108.9	2.2	105.2	1.1	104
10	11	895	498	1.80	0.0492	0.0009	0.1142	0.0023	0.0168	0.0002	159.3	44	109.8	2.2	107.6	1.0	102
94	32	1120	1798	0.62	0.0493	0.0006	0.1178	0.0017	0.0173	0.0002	161.4	29	113.0	1.6	110.8	1.1	102
30	6	229	315	0.73	0.0501	0.0017	0.1200	0.0043	0.0174	0.0002	199.1	81	115.1	4.2	111.1	1.1	104
25	7	442	216	2.04	0.0497	0.0016	0.1580	0.0053	0.0230	0.0002	182.7	75	148.9	5.0	146.8	1.5	101
53	14	610	519	1.18	0.0509	0.0008	0. 1735	0.0029	0.0247	0.0002	238.4	35	162.5	2.7	157.3	1.5	103
69	54	2383	1643	1.45	0.0510	0.0007	0. 2033	0.0029	0.0289	0.0003	239.4	30	187.9	2.6	183.8	1.9	102

	元素	【含量(×1	0 ⁻⁶)				同位詞	素比值					同位素年	龄(Ma)			
测点号				Th/U	n(²⁰⁷ Pb).	∕n(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	(²³⁵ U)	n(²⁰⁶ Pb)/	(²³⁸ U)	谐和度
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)
74	23	652	722	0.90	0.0505	0.0007	0.2050	0.0032	0.0294	0.0003	219.6	33	189.3	3.0	186.9	1.9	101
57	17	484	529	0.92	0.0502	0.0008	0. 2047	0.0038	0.0296	0.0003	203.9	39	189.1	3.5	187.9	2.0	101
61	25	722	715	1.01	0.0512	0.0007	0.2171	0.0033	0.0308	0.0003	249.0	30	199.5	3.0	195.3	2.1	102
39	14	144	451	0.32	0.0508	0.0007	0. 2203	0.0038	0.0315	0.0003	229.8	33	202.2	3.5	199.8	2.2	101
65	13	254	381	0.67	0.0511	0.0008	0. 2240	0.0043	0.0318	0.0004	243.1	37	205.2	3.9	201.9	2.4	102
72	34	385	1019	0.38	0.0504	0.0006	0. 2301	0.0031	0.0331	0.0003	213.6	28	210.3	2.8	210.0	2.1	100
32	20	323	569	0.57	0.0504	0.0007	0. 2320	0.0033	0.0334	0.0003	211.9	30	211.8	3.0	211.8	2.0	100
49	46	586	1349	0.43	0.0514	0.0006	0. 2378	0.0032	0.0336	0.0003	258.6	28	216.6	2.9	212.8	2.1	102
56	30	1480	575	2.57	0.0512	0.0007	0. 2480	0.0037	0.0351	0.0003	251.5	31	224.9	3.3	222.4	2.2	101
62	17	137	479	0.29	0.0506	0.0009	0. 2452	0.0047	0.0351	0.0003	224.1	41	222.6	4.3	222.5	2.2	100
18	22	379	554	0.68	0.0512	0.0010	0. 2502	0.0053	0.0354	0.0003	251.1	46	226.7	4.8	224.4	2.1	101
58	18	683	394	1.73	0.0517	0.0009	0. 2526	0.0048	0.0355	0.0004	271.2	40	228.7	4.4	224.6	2.3	102
82	27	706	654	1.08	0.0522	0.0007	0. 2607	0.0037	0.0363	0.0003	292.5	29	235.3	3.3	229.6	2.2	102
50	32	625	824	0.76	0.0513	0.0006	0.2580	0.0036	0.0365	0.0004	255.9	28	233.1	3.2	230.8	2.3	101
90	21	413	552	0.75	0.0517	0.0007	0. 2614	0.0038	0.0367	0.0004	271.2	30	235.8	3.4	232.3	2.3	102
19	16	437	353	1.24	0.0522	0.0008	0. 2773	0.0048	0.0385	0.0004	295.8	36	248.5	4.3	243.5	2.4	102
16	20	292	485	0.60	0.0515	0.0006	0. 2778	0.0039	0.0391	0.0004	263.0	28	248.9	3.5	247.4	2.4	101
88	35	1072	765	1.40	0.0515	0.0006	0. 2801	0.0038	0. 0395	0.0004	261.9	28	250.7	3.4	249.6	2.4	100
	•					阿布山组碎	「屑岩,SM24	-1: E89°34′	13.09",N32	°25′28.02″,	4668m						-
91	15	746	701	1.06	0.0473	0.0009	0.1156	0.0024	0.0177	0.0002	63.7	47	111.1	2.3	113.3	1.1	98
56	5	186	236	0.79	0.0499	0.0011	0. 1236	0.0029	0.0179	0.0002	192.6	51	118.3	2.8	114.6	1.1	103
67	5	222	206	1.08	0.0489	0.0030	0. 1214	0.0077	0.0180	0.0002	144.9	146	116.3	7.4	114.9	1.2	101
89	8	374	377	0.99	0.0471	0.0017	0.1169	0.0044	0.0180	0.0002	56.1	88	112.3	4.2	115.0	1.1	98
83	12	320	625	0.51	0.0502	0.0014	0. 1247	0.0035	0.0180	0.0002	205.2	62	119.3	3.4	115.1	1.1	104
80	19	546	1004	0.54	0. 0499	0.0008	0. 1241	0.0020	0.0180	0.0002	191.4	35	118.7	2.0	115.2	1.1	103
86	11	354	570	0.62	0.0477	0.0011	0.1188	0.0028	0.0181	0.0002	85.6	54	114.0	2.7	115.3	1.1	99
14	16	296	912	0.32	0.0491	0.0007	0. 1232	0.0021	0.0182	0.0002	152.9	36	117.9	2.0	116.2	1.1	101
85	9	339	430	0.79	0.0496	0.0012	0. 1246	0.0032	0.0182	0.0002	176.6	57	119.2	3.0	116.4	1.1	102
88	5	150	270	0.55	0.0501	0.0017	0. 1258	0.0044	0.0182	0.0002	198.2	79	120.3	4.2	116.4	1.1	103
87	5	214	264	0.81	0.0476	0.0018	0. 1198	0.0045	0.0182	0.0002	81.1	88	114.9	4.3	116.5	1.2	99
1	17	752	824	0.91	0.0492	0.0007	0. 1237	0.0020	0.0182	0.0002	156.3	35	118.5	1.9	116.6	1.1	102
54	14	386	734	0.53	0.0486	0.0012	0. 1225	0.0030	0.0183	0.0002	129.2	56	117.3	2.9	116.7	1.1	100
70	13	368	619	0.59	0.0500	0.0022	0. 1261	0.0062	0.0183	0.0002	196.5	102	120.5	5.9	116.7	1.2	103
76	8	406	371	1.10	0.0481	0.0015	0.1212	0.0042	0.0183	0.0002	102.6	73	116.2	4.0	116.8	1.2	99

	元素	含量(×1	0 ⁻⁶)				同位素	素比值					同位素年	龄(Ma)			
测点号				Th/U	n(²⁰⁷ Pb)/	√n(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/n	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	n(²³⁵ U)	n(²⁰⁶ Pb)/	n(²³⁸ U)	谐和度
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)
55	16	627	803	0.78	0.0500	0.0008	0.1264	0.0021	0.0183	0.0002	197.2	36	120.8	2.0	117.0	1.1	103
81	5	92	290	0.32	0.0484	0.0018	0. 1223	0.0047	0.0183	0.0002	118.4	88	117.2	4.5	117.1	1.2	100
77	12	587	520	1.13	0.0491	0.0010	0.1242	0.0027	0.0184	0.0002	150.3	48	118.9	2.6	117.3	1.1	101
11	3	90	155	0.58	0.0476	0.0032	0.1206	0.0081	0.0184	0.0002	81.6	158	115.6	7.8	117.3	1.2	99
35	16	435	825	0.53	0.0475	0.0008	0.1204	0.0021	0.0184	0.0002	75.9	39	115.5	2.1	117.4	1.1	98
6	7	288	350	0.82	0. 0479	0.0014	0. 1213	0.0036	0.0184	0.0002	93.4	69	116.3	3.5	117.4	1.2	99
72	12	537	548	0.98	0. 0489	0.0010	0.1240	0.0028	0.0184	0.0002	141.8	50	118.7	2.7	117.5	1.2	101
75	10	323	514	0.63	0.0503	0.0010	0. 1278	0.0027	0.0184	0.0002	209.1	47	122. 1	2.6	117.7	1.1	104
66	7	287	338	0.85	0. 0483	0.0014	0. 1227	0.0038	0.0184	0.0002	113.6	70	117.6	3.6	117.8	1.1	100
48	10	489	440	1.11	0. 0497	0.0011	0. 1265	0.0031	0.0185	0.0002	180.9	53	120.9	3.0	117.9	1.2	103
84	9	32	505	0.06	0.0500	0.0010	0. 1274	0.0026	0.0185	0.0002	196.6	44	121.7	2.4	117.9	1.1	103
37	7	307	349	0.88	0. 0485	0.0013	0. 1235	0.0034	0.0185	0.0002	123.6	63	118.2	3.2	117.9	1.1	100
5	9	247	434	0.57	0.0495	0.0014	0. 1263	0.0036	0.0185	0.0002	169.8	66	120.8	3.5	118.3	1.2	102
12	5	135	263	0.51	0.0483	0.0021	0. 1235	0.0055	0.0185	0.0002	115.3	103	118.2	5.2	118.4	1.2	100
39	4	145	221	0.66	0.0498	0.0018	0. 1275	0.0048	0.0186	0.0002	186.3	86	121.8	4.6	118.5	1.2	103
16	5	95	249	0.38	0.0478	0.0017	0.1224	0.0045	0.0186	0.0002	88.3	86	117.2	4.3	118.6	1.2	99
32	8	424	426	1.00	0.0492	0.0011	0.1260	0.0030	0.0186	0.0002	156.6	53	120.5	2.8	118.7	1.1	102
2	8	239	386	0.62	0.0493	0.0012	0. 1263	0.0031	0.0186	0.0002	159.9	55	120.7	3.0	118.7	1.2	102
31	15	687	737	0.93	0.0500	0.0012	0. 1282	0.0033	0.0186	0.0002	194.0	54	122.5	3.2	118.8	1.2	103
24	15	694	659	1.05	0.0495	0.0008	0.1270	0.0023	0.0186	0.0002	171.1	39	121.4	2.2	118.9	1.2	102
65	16	614	738	0.83	0.0491	0.0008	0. 1261	0.0022	0.0186	0.0002	153.7	38	120.6	2.1	118.9	1.1	101
8	4	158	200	0.79	0.0497	0.0021	0.1278	0.0055	0.0186	0.0002	181.6	97	122.1	5.2	119.1	1.2	103
74	11	339	543	0.63	0.0496	0.0009	0.1276	0.0024	0.0186	0.0002	177.8	41	121.9	2.3	119.1	1.2	102
28	8	449	351	1.28	0.0486	0.0014	0.1249	0.0036	0.0187	0.0002	127.2	66	119.5	3.5	119.2	1.2	100
43	8	393	335	1.17	0.0480	0.0013	0. 1235	0.0034	0.0187	0.0002	97.5	64	118.2	3.3	119.2	1.2	99
34	16	731	794	0.92	0.0480	0.0010	0. 1235	0.0027	0.0187	0.0002	98.0	47	118.3	2.6	119.3	1.2	99
52	17	304	877	0.35	0.0478	0.0007	0. 1235	0.0020	0.0187	0.0002	91.5	35	118.2	1.9	119.5	1.2	99
26	3	112	133	0.84	0.0469	0.0032	0. 1212	0.0082	0.0187	0.0002	44.5	161	116.1	7.9	119.6	1.2	97
71	6	192	268	0.72	0.0491	0.0016	0.1268	0.0043	0.0187	0.0002	150.9	77	121.2	4.2	119.7	1.2	101
99	6	298	287	1.04	0.0483	0.0016	0.1249	0.0043	0.0187	0.0002	114.8	77	119.5	4.2	119.7	1.2	100
22	7	238	322	0.74	0.0482	0.0014	0.1248	0.0037	0.0188	0.0002	110.6	67	119.4	3.5	119.9	1.2	100
23	8	291	380	0.77	0.0507	0.0013	0. 1313	0.0036	0.0188	0.0002	227.0	61	125.3	3.5	120.0	1.2	104
33	15	223	813	0.27	0.0492	0.0009	0. 1276	0.0023	0.0188	0.0002	158.7	42	122.0	2.2	120.1	1.2	102
47	14	333	697	0.48	0.0492	0.0007	0. 1282	0.0021	0.0189	0.0002	158.7	35	122.4	2.0	120.6	1.2	102

	元素	【含量(×1	0 ⁻⁶)				同位到	素比值		同位素年龄(Ma)							
测点号				Th/U	n(²⁰⁷ Pb)	∕n(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	$/n(^{238}U)$	n(²⁰⁷ Pb)/	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	n(²³⁵ U)	n(²⁰⁶ Pb)/	(²³⁸ U)	谐和度
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)
42	9	311	439	0.71	0.0487	0.0010	0. 1272	0.0029	0.0189	0.0002	135.4	51	121.6	2.7	120.9	1.2	101
68	9	380	407	0.93	0.0481	0.0015	0. 1268	0.0040	0.0191	0.0002	102.7	73	121.2	3.8	122.1	1.2	99
73	5	244	245	1.00	0.0478	0.0015	0. 1265	0.0040	0.0192	0.0002	89.2	73	121.0	3.8	122.6	1.2	99
21	1	36	67	0.54	0.0505	0.0121	0.1340	0.0320	0.0192	0.0004	218.1	556	127.7	30.5	122.9	2.7	104
69	5	183	222	0.82	0.0473	0.0028	0.1260	0.0077	0.0193	0.0002	64.9	142	120.5	7.3	123.3	1.3	98
51	16	365	788	0.46	0.0479	0.0008	0.1278	0.0023	0.0193	0.0002	94.6	39	122.1	2.2	123.5	1.2	99
46	11	341	534	0.64	0. 0497	0.0016	0. 1335	0.0045	0.0195	0.0002	181.3	75	127.2	4.3	124.3	1.2	102
61	7	283	333	0.85	0.0468	0.0034	0.1266	0.0088	0.0196	0.0003	41.1	171	121.0	8.4	125.2	1.7	97
64	12	307	418	0.73	0.0498	0.0013	0. 1811	0.0051	0.0263	0.0003	187.8	62	169.0	4.8	167.7	1.7	101
9	5	81	165	0.49	0.0521	0.0029	0.2230	0.0129	0.0310	0.0003	291.0	125	204.4	11.8	196.9	2.1	104
38	21	154	667	0.23	0.0500	0.0008	0. 2245	0.0037	0.0326	0.0003	194.8	35	205.7	3.3	206.6	2.0	100
13	15	109	467	0.23	0.0501	0.0015	0. 2285	0.0072	0.0330	0.0003	201.8	69	208.9	6.5	209.6	2.2	100
41	25	316	714	0.44	0.0496	0.0007	0. 2267	0.0036	0.0331	0.0003	176.0	34	207.4	3.3	210.2	2.0	99
93	7	119	156	0.76	0.0515	0.0016	0.2648	0.0086	0.0373	0.0004	262.0	73	238.5	7.7	236.2	2.3	101
阿布山组碎屑岩,CD21-1: E89°33′28.04″,N32°23′42.02″, 4628m																	
86	12	193	1007	0.19	0.0524	0.0013	0.0902	0.0025	0.0125	0.0001	302.4	58	87.7	2.4	80.0	0.8	110
5	6	72	451	0.16	0.0465	0.0029	0.0842	0.0054	0.0131	0.0001	21.4	151	82.1	5.3	84.2	0.8	98
51	6	148	344	0.43	0.0484	0.0029	0. 1115	0.0068	0.0167	0.0002	120.8	142	107.3	6.5	106.7	1.1	101
81	9	172	542	0.32	0.0482	0.0009	0.1123	0.0022	0.0169	0.0002	108.7	44	108.1	2.1	108.0	1.1	100
38	6	242	313	0.77	0.0518	0.0050	0. 1212	0.0119	0.0170	0.0002	276.7	223	116.2	11.4	108.5	1.1	107
67	12	567	645	0.88	0.0505	0.0010	0. 1187	0.0025	0.0170	0.0002	218.3	45	113.9	2.4	108.9	1.1	105
31	11	337	618	0.54	0.0467	0.0034	0.1106	0.0078	0.0172	0.0002	35.0	172	106.5	7.5	109.8	1.1	97
45	4	128	218	0.59	0.0476	0.0019	0. 1159	0.0048	0.0177	0.0002	78.9	95	111.4	4.6	112.9	1.2	99
85	14	339	741	0.46	0.0498	0.0008	0. 1238	0.0022	0.0180	0.0002	186.6	39	118.5	2.1	115.1	1.1	103
99	18	747	884	0.85	0.0476	0.0009	0.1188	0.0025	0.0181	0.0002	81.3	42	113.9	2.4	115.5	1.2	99
52	6	145	319	0.46	0.0487	0.0016	0.1230	0.0042	0.0183	0.0002	132.9	80	117.8	4.0	117.0	1.1	101
37	6	192	281	0.68	0.0498	0.0027	0. 1271	0.0071	0.0185	0.0002	187.6	124	121.5	6.8	118.1	1.4	103
90	12	345	596	0.58	0.0479	0.0008	0. 1224	0.0023	0.0185	0.0002	95.2	41	117.2	2.2	118.3	1.1	99
11	11	267	564	0.47	0.0481	0.0008	0. 1229	0.0023	0.0185	0.0002	105.1	41	117.7	2.2	118.3	1.2	99
12	9	294	438	0.67	0.0501	0.0011	0. 1292	0.0029	0.0187	0.0002	200.6	49	123.4	2.7	119.5	1.2	103
79	7	281	305	0.92	0.0517	0.0016	0. 1393	0.0044	0.0195	0.0002	271.7	71	132.4	4.2	124.7	1.2	106
66	6	385	247	1.56	0.0487	0.0027	0. 1314	0.0073	0.0196	0.0002	132.7	129	125.4	6.9	125.0	1.3	100
71	10	319	463	0.69	0.0504	0.0010	0. 1398	0.0030	0.0201	0.0002	211.5	48	132.8	2.9	128.5	1.3	103
91	14	543	498	1.09	0.0484	0.0013	0.1624	0.0045	0.0243	0.0002	119.1	63	152.8	4.2	155.0	1.6	99

	元素	含量(×1	0 ⁻⁶)				同位到	素比值	同位素年龄(Ma)									
测点号	D)			Th/U	n(²⁰⁷ Pb)	∕n(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/n	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	n(²³⁵ U)	n(²⁰⁶ Pb)/	n(²³⁸ U)	谐和度	
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)	
56	14	565	474	1.19	0.0485	0.0019	0.1680	0.0069	0.0251	0.0003	124.8	92	157.7	6.5	159.9	1.6	99	
1	21	305	832	0.37	0.0509	0.0007	0. 1781	0.0027	0.0254	0.0003	238.3	30	166.4	2.5	161.4	1.6	103	
75	9	348	298	1.17	0.0505	0.0011	0. 1775	0.0039	0.0255	0.0003	220.1	49	165.9	3.7	162.1	1.6	102	
83	8	168	275	0.61	0.0484	0.0020	0. 1769	0.0076	0.0265	0.0003	117.3	96	165.4	7.1	168.8	1.7	98	
4	26	164	946	0.17	0.0507	0.0011	0. 1912	0.0043	0.0273	0.0003	226.9	51	177.6	4.0	173.9	1.7	102	
98	9	303	189	1.60	0.0502	0.0021	0. 2446	0.0102	0.0353	0.0004	204.7	96	222.1	9.3	223.8	2.2	99	
80	33	230	965	0.24	0.0516	0.0006	0. 2534	0.0034	0.0356	0.0003	266.4	27	229.3	3.1	225.7	2.2	102	
6	15	584	310	1.89	0.0512	0.0009	0. 2567	0.0050	0.0364	0.0004	250.1	42	232.0	4.5	230. 2	2.2	101	
24	8	108	218	0.50	0.0520	0.0011	0.2666	0.0058	0.0372	0.0004	283.9	47	239.9	5.2	235.5	2.3	102	
14	21	284	544	0.52	0.0516	0.0009	0.2656	0.0043	0.0373	0.0005	268.4	40	239.1	3.9	236.2	2.9	101	
39	32	261	854	0.31	0.0509	0.0007	0.2630	0.0039	0.0374	0.0004	238.2	30	237.1	3.5	237.0	2.3	100	
16	6	123	141	0.88	0.0517	0.0024	0. 2676	0.0124	0.0375	0.0004	272.2	105	240.8	11.2	237.6	2.4	101	
阿布山组火山岩(未获得谐和年龄),18172-3: E89°22'10",N32°27'20.82",4808m																		
1	69	122	192	0.63	0.0463	0.0019	0.0769	0.0029	0.0121	0.0001	13.1	96	75.3	2.8	77.7	0.8	97	
2	117	121	397	0.31	0.0500	0.0017	0.1519	0.0051	0.0222	0.0003	194.5	75	143.6	4.5	141.5	1.6	102	
3	13	112	276	0.41	0.0501	0.0009	0. 2206	0.0042	0.0320	0.0003	198.2	44	202.4	3.5	202.9	2.1	100	
4	28	331	745	0.44	0.0516	0.0011	0. 2287	0.0051	0.0322	0.0005	264.9	53	209.1	4.2	204.6	2.9	102	
					阿布山组	1火山岩(未	获得谐和年	龄),18149	-3: E88°12'	13", N32°5	7'30.78",48	25m			1			
10	24	1018	553	1.84	0.0444	0.0015	0.0717	0.0025	0.0117	0.0002	error	error	70.3	2.4	75.2	1.1	93	
18	16	635	820	0.77	0.0506	0.0014	0.1069	0.0031	0.0153	0.0003	233.4	60	103.1	2.9	98.1	1.7	105	
11	12	310	574	0.54	0.0491	0.0012	0. 1242	0.0031	0.0184	0.0002	150.1	56	118.9	2.8	117.4	1.3	101	
20	18	306	905	0.34	0.0503	0.0009	0. 1319	0.0030	0.0190	0.0003	209.3	43	125.8	2.7	121.6	1.8	104	
5	12	295	438	0.67	0.0482	0.0010	0. 1595	0.0037	0.0240	0.0002	105.6	56	150.3	3.2	153.1	1.4	98	
21	6	121	205	0.59	0.0514	0.0025	0. 1877	0.0087	0.0266	0.0003	257.5	111	174.6	7.5	169.3	1.8	103	
19	25	121	699	0.17	0.0523	0.0008	0. 2467	0.0045	0.0342	0.0004	298.2	33	223.9	3.7	216.8	2.2	103	
			1	1	1	牛堡组斑肪	纪岩,19056-	1: E89°35′4	9.38", N32°	°17′51.06″,	, 4624m			1	1	1		
4	5	818	444	1.84	0.0493	0.0026	0.0462	0.0027	0.0067	0.0001	161.2	122	45.9	2.6	43.3	0.6	106	
6	2	319	223	1.43	0.0482	0.0067	0.0424	0.0054	0.0067	0.0002	109.4	296	42.2	5.2	42.8	1.5	99	
8	2	162	161	1.01	0.0501	0.0055	0.0473	0.0051	0.0069	0.0002	211.2	228	46.9	5.0	44.3	1.1	106	
9	3	385	291	1.33	0.0485	0.0041	0.0450	0.0038	0.0068	0.0002	120.5	189	44.7	3.7	43.7	1.0	102	
13	2	334	236	1.42	0.0457	0.0087	0.0412	0.0083	0.0064	0.0002	error		41.0	8.1	41.1	1.4	100	
17	2	207	199	1.04	0.0490	0.0060	0.0482	0.0061	0.0070	0.0001	150.1	263	47.8	5.9	44.9	0.9	106	
18	3	422	302	1.40	0.0450	0.0035	0.0421	0.0033	0.0068	0.0001	error		41.9	3.2	43.6	0.9	96	

	元素	【含量(×1	0 ⁻⁶)		同位素比值							同位素年龄(Ma)								
测点号	P	TT1	TT	Th/U	n(²⁰⁷ Pb)/	∕n(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/n	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	(²³⁵ U)	n(²⁰⁶ Pb)/	(²³⁸ U)	谐和度			
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)			
19	6	807	559	1.44	0.0513	0.0037	0.0480	0.0034	0.0069	0.0001	253.8	163	47.6	3.3	44.2	0.7	108			
20	1	103	145	0.71	0.0492	0.0062	0.0466	0.0058	0.0071	0.0003	166.8	261	46.2	5.6	45.6	1.6	101			
22	2	265	205	1.29	0.0508	0.0050	0.0468	0.0043	0.0070	0.0002	231.6	211	46.4	4.2	45.0	1.0	103			
23	5	1039	487	2.13	0.0503	0.0029	0.0453	0.0026	0.0066	0.0001	209.3	137	44.9	2.6	42.1	0.6	107			
32	2	176	201	0.88	0.0451	0.0108	0.0426	0.0088	0.0071	0.0004	error		42.3	8.6	45.8	2.7	93			
33	1	50	76	0.66	0.0514	0.0118	0.0441	0.0095	0.0065	0.0004	261.2	456	43.9	9.2	41.5	2.3	106			
34	4	610	356	1.71	0.0464	0.0032	0.0444	0.0030	0.0070	0.0001	16.8	159	44.1	2.9	45.1	0.8	98			
35	1	140	174	0.80	0.0494	0.0053	0.0462	0.0052	0.0068	0.0002	168.6	298	45.9	5.0	43.9	1.4	105			
36	3	400	244	1.64	0.0498	0.0043	0.0482	0.0039	0.0071	0.0001	183.4	189	47.8	3.8	45.6	0.9	105			
37	3	404	278	1.45	0.0491	0.0037	0.0462	0.0033	0.0069	0.0001	150.1	167	45.9	3.2	44.3	0.9	103			
39	2	156	186	0.84	0.0504	0.0059	0.0478	0.0052	0.0070	0.0002	213.0	248	47.4	5.0	45.2	1.1	105			
						牛堡组斑脱岩, 19056-2: E89°35′49. 38″, N32°17′51. 06″, 4624m														
1	3	400	280	1.43	0.0492	0.0042	0.0463	0.0040	0.0068	0.0001	166.8	180	46.0	3.9	44.0	0.8	104			
4	2	194	196	0.99	0.0436	0.0057	0.0418	0.0055	0.0071	0.0002			41.5	5.3	45.3	1.1	92			
6	2	191	187	1.02	0.0518	0.0056	0.0484	0.0051	0.0071	0.0002	276.0	248	48.0	4.9	45.3	1.2	106			
7	7	482	755	0.64	0.0511	0.0025	0.0510	0.0023	0.0073	0.0001	255.6	119	50.5	2.2	47.1	0.7	107			
8	2	170	178	0.95	0.0450	0.0069	0.0405	0.0063	0.0067	0.0001			40.3	6.1	42.9	0.9	94			
9	2	180	213	0.85	0.0517	0.0067	0.0482	0.0061	0.0069	0.0002	272.3	274	47.8	5.9	44.4	1.0	108			
10	3	361	264	1.36	0.0506	0.0043	0.0484	0.0043	0.0070	0.0002	233.4	198	48.0	4.1	44.8	1.2	107			
11	5	866	503	1.72	0.0501	0.0026	0.0500	0.0028	0.0072	0.0001	211.2	120	49.5	2.7	46.4	0.8	107			
12	3	329	324	1.02	0.0502	0.0047	0.0490	0.0047	0.0071	0.0001	205.6	204	48.5	4.6	45.5	0.9	107			
13	2	193	221	0.87	0.0531	0.0055	0.0486	0.0045	0.0069	0.0002	344.5	237	48.2	4.3	44.4	1.0	108			
14	2	184	223	0.83	0.0490	0.0069	0.0456	0.0066	0.0068	0.0003	150.1	300	45.3	6.4	43.9	1.7	103			
15	4	715	387	1.85	0.0444	0.0050	0.0414	0.0046	0.0067	0.0002			41.2	4.5	43.2	1.2	95			
17	3	263	256	1.03	0.0488	0.0044	0.0478	0.0040	0.0073	0.0002	139.0	200	47.5	3.9	46.8	1.3	101			
18	1	61	102	0.60	0.0503	0.0073	0.0491	0.0070	0.0072	0.0003	209.3	313	48.7	6.8	46.5	2.0	105			
19	2	190	219	0.87	0.0470	0.0072	0.0432	0.0062	0.0069	0.0001	55.7	320	42.9	6.1	44.3	0.9	97			
20	3	332	319	1.04	0.0492	0.0068	0.0453	0.0065	0.0067	0.0002	166.8	287	45.0	6.3	42.8	1.1	105			
21	3	330	247	1.33	0.0512	0.0060	0.0527	0.0065	0.0076	0.0002	250.1	252	52.1	6.3	48.9	1.3	107			
22	2	187	171	1.10	0.0458	0.0054	0.0443	0.0048	0.0072	0.0002			44.0	4.7	46.1	1.3	95			
23	2	266	218	1.22	0.0498	0.0096	0.0459	0.0078	0.0071	0.0002	183.4	406	45.6	7.6	45.9	1.4	99			
24	3	347	264	1.32	0.0504	0.0039	0.0480	0.0040	0.0069	0.0002	216.7	177	47.6	3.9	44.1	1.0	108			
25	2	211	229	0.92	0.0518	0.0050	0.0499	0.0046	0.0073	0.0002	279.7	224	49.4	4.4	46.7	1.5	106			
26	4	397	404	0.98	0.0489	0.0034	0.0504	0.0035	0.0075	0.0001	142.7	156	50.0	3.4	48.0	0.8	104			

	元素	含量(×1	0 ⁻⁶)				同位到	素比值			同位素年龄(Ma)							
测点号	DL	TL	T	Th/U	n(²⁰⁷ Pb)	/n(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	(²³⁵ U)	n(²⁰⁶ Pb)/	n(²³⁸ U)	谐和度	
	PD	In	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)	
27	2	210	195	1.08	0.0523	0.0051	0.0505	0.0050	0.0071	0.0002	298.2	222	50.0	4.8	45.9	1.3	109	
28	2	226	226	1.00	0.0528	0.0049	0. 0491	0.0042	0.0070	0.0002	316.7	208	48.7	4.1	44.7	1.0	109	
29	4	670	337	1.99	0.0456	0.0060	0.0424	0.0050	0.0068	0.0002			42.1	4.8	43.9	1.3	96	
30	1	121	136	0.89	0.0499	0.0063	0.0499	0.0065	0.0074	0.0002	190.8	270	49.4	6.3	47.3	1.2	104	
31	2	139	191	0.73	0.0501	0.0053	0. 0485	0.0049	0.0073	0.0002	211.2	217	48.1	4.7	46.8	1.0	103	
32	2	174	163	1.06	0.0516	0.0068	0.0477	0.0061	0.0069	0.0002	333.4	209	47.3	5.9	44.3	1.4	107	
33	2	316	222	1.42	0.0459	0.0064	0.0436	0.0061	0.0070	0.0002			43.3	5.9	44.8	1.2	97	
34	3	301	260	1.16	0.0454	0.0050	0.0440	0.0052	0.0070	0.0002			43.7	5.1	44.8	1.3	98	
35	2	311	226	1.38	0.0465	0.0058	0.0425	0.0049	0.0070	0.0001	33.4	261	42.2	4.8	45.0	0.9	94	
36	2	203	206	0.99	0.0542	0.0123	0.0510	0.0098	0.0072	0.0003	388.9	431	50.5	9.4	46.1	1.6	110	
37	1	128	145	0.88	0.0490	0.0062	0.0462	0.0056	0.0071	0.0002	146.4	274	45.9	5.5	45.6	1.3	101	
38	1	141	110	1.28	0.0447	0.0126	0.0501	0.0139	0.0078	0.0002			49.6	13.5	50.3	1.6	99	
40	1	104	112	0.93	0.0552	0.0084	0.0485	0.0055	0.0069	0.0002	420.4	346	48.1	5.3	44.4	1.6	108	
纳丁错组火山岩, 16159-3: E89°25′23. 50″, N32°46′38. 7″, 4963m																		
1	1	158	88	1.80	0.0465	0.0029	0.0330	0.0024	0.0051	0.0001	26.0	152	32.9	2.4	33.0	0.7	100	
4	3	1368	372	3.68	0.0475	0.0084	0. 0339	0.0058	0.0052	0.0001	76.1	421	33.8	5.8	33.3	0.5	102	
5	2	751	231	3.25	0.0477	0.0062	0.0319	0.0044	0.0049	0.0001	82.7	307	31.9	4.4	31.2	0.9	102	
8	1	391	121	3.21	0.0464	0.0122	0.0319	0.0077	0.0050	0.0001	17.4	633	31.9	7.7	32.1	0.7	99	
11	1	485	186	2.61	0.0464	0.0079	0.0327	0.0053	0.0051	0.0001	20.9	410	32.7	5.3	32.8	0.5	100	
13	1	577	189	3.05	0.0466	0.0062	0.0312	0.0035	0.0049	0.0001	29.2	318	31.2	3.5	31.2	0.5	100	
15	1	578	199	2.90	0.0486	0.0079	0.0329	0.0050	0.0049	0.0001	129.0	383	32.9	5.0	31.6	0.4	104	
16	1	471	184	2.56	0.0445	0.0079	0.0316	0.0050	0.0051	0.0001		435	31.6	5.0	33.1	0.5	95	
19	4	1557	415	3.75	0.0470	0.0053	0.0330	0.0039	0.0051	0.0001	49.7	271	33.0	3.9	32.8	0.5	101	
20	1	347	127	2.73	0.0461	0.0045	0.0334	0.0031	0.0052	0.0001	5.1	235	33.4	3.1	33.8	0.6	99	
22	3	921	279	3.30	0.0460	0.0033	0.0332	0.0024	0.0052	0.0001		172	33.1	2.4	33.6	0.5	99	
23	3	1122	305	3.68	0.0451	0.0056	0.0319	0.0037	0.0051	0.0001		300	31.9	3.7	33.0	0.5	97	
24	2	428	176	2.43	0.0467	0.0023	0.0320	0.0016	0.0050	0.0001	34.4	119	32.0	1.6	31.9	0.4	100	
					4	纳丁错组火	山岩, 14137	-1: E86°47′	27.19″, N3	2°09′37.14″	, 4652m							
1	28	509	1051	0.48	0.0475	0.0009	0.0364	0.0008	0.0056	0.0001	72.3	46	36.3	0.8	35.7	0.6	102	
2	13	254	356	0.71	0.0496	0.0018	0.0371	0.0015	0.0054	0.0001	176.0	69	37.0	1.5	34.9	0.6	106	
3	17	333	387	0.86	0. 0491	0.0018	0.0374	0.0022	0.0055	0.0001	150.1		37.3	2.1	35.5	1.0	105	
4	10	207	205	1.01	0.0503	0.0027	0.0376	0.0026	0.0054	0.0001	209.3	130	37.4	2.5	34.7	0.8	108	
5	12	230	361	0.64	0.0493	0.0017	0.0361	0.0014	0.0053	0.0001	166.8	83	36.0	1.4	34.2	0.5	105	

	元素	含量(×1	0 ⁻⁶)				同位到	素比值		同位素年龄(Ma)								
测点号				Th/U	n(²⁰⁷ Pb)/	√n(²⁰⁶ Pb)	n(²⁰⁷ Pb)	/n(²³⁵ U)	n(²⁰⁶ Pb)	/n(²³⁸ U)	n(²⁰⁷ Pb)/2	n(²⁰⁶ Pb)	n(²⁰⁷ Pb)/	n(²³⁵ U)	n(²⁰⁶ Pb)/	(²³⁸ U)	谐和度	
	Pb	Th	U		测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)	
6	6	123	186	0.66	0.0475	0.0019	0.0357	0.0014	0.0054	0.0001	72.3	116	35.6	1.4	35.0	0.6	102	
7	11	214	413	0.52	0.0484	0.0014	0.0366	0.0018	0.0055	0.0002	120.5	236	36.5	1.7	35.2	1.2	104	
8	24	492	599	0.82	0.0476	0.0011	0.0343	0.0010	0.0052	0.0001	79.7	56	34.3	0.9	33.7	0.6	102	
9	16	304	377	0.81	0.0501	0.0018	0.0374	0.0013	0.0054	0.0001	198.2	69	37.3	1.3	34.8	0.9	107	
10	19	372	536	0.69	0.0482	0.0013	0.0366	0.0012	0.0055	0.0001	109.4	65	36.5	1.1	35.4	0.8	103	
11	10	181	186	0.97	0.0494	0.0019	0. 0385	0.0015	0.0057	0.0001	164.9	93	38.4	1.5	36.3	0.6	106	
12	14	269	435	0.62	0.0490	0.0013	0.0373	0.0011	0.0055	0.0001	146.4		37.2	1.1	35.5	0.6	105	
14	17	326	308	1.06	0.0485	0.0019	0.0368	0.0014	0.0055	0.0001	120.5	93	36.7	1.4	35.4	0.6	104	
15	21	353	1163	0.30	0.0479	0.0009	0.0367	0.0008	0.0056	0.0001	94.5	37	36.6	0.8	35.7	0.5	102	
16	16	290	543	0.54	0.0477	0.0013	0.0366	0.0010	0.0056	0.0001	83.4	51	36.5	1.0	35.8	0.7	102	
17	7	136	215	0.63	0.0485	0.0017	0.0366	0.0014	0.0055	0.0001	124.2	83	36.5	1.3	35.2	0.5	104	
18	35	629	942	0.67	0.0481	0.0009	0.0369	0.0009	0.0056	0.0001	101.9	23	36.8	0.8	35.8	0.7	103	
19	30	581	373	1.56	0.0483	0.0016	0.0369	0.0015	0.0055	0.0001	122.3	74	36.8	1.5	35.6	0.7	103	
20	14	252	586	0.43	0.0482	0.0014	0.0367	0.0011	0.0055	0.0001	109.4	74	36.6	1.0	35.5	0.5	103	
鱼鳞山组火山岩, 16146-1: E88°26′13.68″, N34°13′29.65″, 4965m																		
1	1	167	105	1.58	0.0465	0.0126	0.0429	23.0788	0.0067	0.0001	24.9	649	42.7	3.1	43.0	0.8	99	
2	1	165	116	1.43	0.0472	0.0134	0.0426	23.2786	0.0065	0.0001	60.6	677	42.4	1.0	42.0	0.7	101	
3	3	997	380	2.62	0.0478	0.0034	0.0422	7.3309	0.0064	0.0001	87.7	169	41.9	0.6	41.1	0.6	102	
4	1	138	102	1.35	0.0483	0.0136	0.0430	23.0907	0.0064	0.0001	115.3	666	42.7	0.7	41.4	0.7	103	
5	1	146	102	1.43	0.0489	0.0122	0.0429	20. 5991	0.0064	0.0001	143.2	585	42.7	0.7	40.9	0.7	104	
6	1	172	136	1.26	0.0472	0.0081	0.0432	15.6940	0.0066	0.0001	61.0	408	43.0	0.8	42.7	0.6	101	
7	1	167	139	1.20	0.0477	0.0076	0.0408	14. 7944	0.0062	0.0001	83.6	380	40.6	1.1	39.9	0.6	102	
8	1	135	94	1.44	0.0470	0.0161	0.0424	27.3618	0.0065	0.0001	47.5	821	42.2	2.8	42.1	0.9	100	
9	1	171	126	1.36	0.0482	0.0106	0.0429	19.6378	0.0065	0.0001	107.3	522	42.6	1.1	41.5	0.6	103	
10	1	126	90	1.40	0.0468	0.0150	0.0415	24.9217	0.0064	0.0002	37.5	768	41.3	6.9	41.3	1.0	100	
11	1	204	146	1.40	0.0477	0.0089	0.0430	18.1184	0.0065	0.0001	85.5	441	42.8	0.5	42.0	0.6	102	
12	1	139	102	1.37	0.0474	0.0130	0.0415	23.7836	0.0063	0.0001	71.7	652	41.3	2.5	40.8	0.7	101	
13	1	184	121	1.52	0.0477	0.0124	0.0417	23. 4261	0.0063	0.0001	86.4	615	41.5	0.9	40.7	0.7	102	
14	1	160	109	1.47	0.0474	0.0119	0.0421	24. 7339	0.0064	0.0001	67.4	596	41.9	0.9	41.4	0.8	101	
15	1	172	118	1.46	0.0495	0.0121	0.0432	23.8226	0.0063	0.0001	169.7	570	42.9	1.2	40.7	0.7	105	
16	2	404	203	1.99	0.0482	0.0061	0.0422	12.4659	0.0064	0.0001	109.8	297	42.0	0.6	40.8	0.5	103	
17	4	811	504	1.61	0.0468	0.0024	0.0416	5.1770	0.0064	0.0001	39.6	123	41.4	0.5	41.4	0.4	100	
18	1	266	162	1.65	0.0488	0.0060	0.0434	11.5507	0.0064	0.0001	139.9	287	43.2	0.6	41.4	0.6	104	
19	1	156	97	1.61	0.0476	0.0102	0.0432	15.1663	0.0066	0.0001	77.2	511	42.9	1.0	42.3	0.7	101	

	元素含量(×10 ⁻⁶)					同位刻	素比值			同位素年龄(Ma)							
测点号	ы	ть	TI	Th/U	$n(^{207}\text{Pb})/n(^{206}\text{Pb})$		$n(^{207}\text{Pb})/n(^{235}\text{U})$		$n(^{206}\text{Pb})/n(^{238}\text{U})$		$n(^{207}\text{Pb})/n(^{206}\text{Pb})$		n(²⁰⁷ Pb)/	n(²³⁵ U)	$n(^{206}\text{Pb})/n(^{238}\text{U})$		谐和度
	PD	In			测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	测值	1σ	(%)
20	2	338	212	1.60	0.0491	0.0063	0.0426	12.9543	0.0063	0.0001	154.3	300	42.3	0.7	40.4	0.6	105
21	1	209	126	1.65	0.0478	0.0089	0.0423	18.0570	0.0064	0.0001	90.7	439	42.0	1.1	41.2	0.6	102
22	1	191	123	1.56	0.0485	0.0103	0.0430	18.6124	0.0064	0.0001	123.3	502	42.7	0.5	41.3	0.6	103
23	1	305	145	2.11	0.0483	0.0111	0.0421	22. 2067	0.0063	0.0001	115.1	541	41.9	0.6	40.6	0.8	103
24	1	242	193	1.26	0.0464	0.0079	0.0419	16. 5551	0.0065	0.0001	19.8	411	41.6	0.7	42.0	0.5	99

注:*阿布山组碎屑锆石及未获得谐和年龄的锆石仅附上 250 Ma 以来的结果.