川西义敦岛弧中生代典型花岗岩体矿物学、 地球化学特征及岩浆来源探讨

王楠^{1,2)}, 吴才来²⁾, 秦海鹏²⁾

1)国土资源部成矿作用与资源评价重点实验室,中国地质科学院矿产资源研究所,北京,100037;
 2)中国地质科学院地质研究所,北京,100037

内容提要:义敦岛弧是位于松潘一甘孜褶皱带和羌塘地体之间的三叠纪火山岛弧。稻城岩体和海子山岩体分别为义敦岛弧上出露的晚三叠世和白垩纪花岗质岩体。结合岩石地球化学,以及偏光显微镜和电子探针(EPMA)、 扫描电镜(SEM)对上述岩体进行了系统的矿物学研究,结果表明:两个岩体的主要造岩矿物为斜长石(中长石一更 长石),钾长石(正长石)、石英和黑云母(铁叶云母一铁质黑云母),副矿物为锆石、榍石、磁铁矿和磷灰石等;黑云母 的成分表明两个岩体的源区均为壳幔混源。稻城岩体属高钾钙碱性系列,具过铝质特征的花岗岩,海子山岩体为高 钾钙碱性一钾玄岩系列,同样具过铝质特征。根据锆元素饱和浓度温度计和稀土元素饱和浓度温度计对两个岩体 进行了温度限定,稻城岩体岩浆形成的平均上限温度为783℃,海子山岩体岩浆形成时的平均上限温度为844℃。结 合前人研究结果,笔者等认为稻城岩体为高分异I型花岗岩,可能为与扬子克拉通有关的晚古元古代至早中元古代 的下地壳物质,在甘孜一理塘洋向西俯冲和闭合之后的弧一陆同碰撞背景下,因幔源岩浆的底侵作用而发生部分熔 融,同时伴有少量的亏损地幔成分加入,因密度上升至中上一上地壳深度侵位,并且侵位后经历了快速的冷却过程, 在侏罗纪之初冷却至300℃以下;海子山岩体为与俯冲有关的造山后伸展环境下形成的白垩纪 A₂型花岗岩,岩浆来 源同样为地壳物质伴有少量地幔物质混合而成,且在地壳中侵位深度较浅,之后经历快速的冷却过程。

关键词:义敦岛弧;花岗岩体;矿物学;地球化学;温度条件;地质意义

特提斯构造带是位于欧亚大陆南部的一条全球 性纬向展布的构造带(潘桂棠,1994),它经历了 古一新特提斯洋的扩张、沉积和闭合隆起,以及两次 大规模板块俯冲碰撞,形成以中、新生代地质演化为 主的造山褶皱带(施俊法等,2006;Dong Guochen et al., 2013; Wang Yuejun et al., 2013)。"三江"地区 位于我国西南地区,是中国特提斯构造带的重要组 成部分,分布有三条古生代蛇绿岩带:昌宁一孟连、 金沙江一哀牢山及甘孜一理塘缝合带,是我国古特 提斯地质记录保存最为完整的地区(莫宣学等, 2006; He Defeng et al., 2013; Wang Xinsong et al., 2014a,b),义敦岛弧是三江特提斯巨型构造中的一 个复合造山带,经历了俯冲、碰撞造山、造山后伸 展、汇聚走滑-剪切等复杂演化过程(侯增谦等, 2001,2003,2004;李艳军等,2014)。其东西两侧为 两条古生代缝合带,西侧为金沙江缝合带,东侧为甘 改一理塘缝合带。根据已有研究结果,金沙江洋于 古生代打开并于晚三叠世前闭合(张能德等,1998; Reid et al.,2007; Zhu Jingjing et al.,2011)。甘 改一理塘洋于晚二叠世打开(侯增谦等,1995),并 在晚三叠世发生向西的俯冲作用,形成了义敦岛弧。 义敦岛弧上出露大量中一晚三叠世碎屑岩、弧火山 岩和中酸性侵入体,并且发育有古近纪和第四纪陆 内盆地,可能和区内大量的新生代走滑断层有关 (Wang and Burchfiel,2000; Wang Yuejun et al., 2013)。

稻城岩体位于义敦岛弧的东部,出露面积可达 2800 km²,整体沿甘孜一理塘缝合带方向展布。近 年来涌现一些该岩体的研究成果,集中于岩石成因 方面,但得出的结论不尽一致(侯增谦等,1995, 2001; Liu Shuwen et al., 2006; Reid et al., 2007; 王全伟等,2008)。Liu Shuwen 等(2006)和王全伟

注:本文为中国地质调查局项目(项目编号:121201103000150004,12120114061701和12120115027001)的成果。

收稿日期:2015-11-03;改回日期:2017-04-06;责任编辑:章雨旭。Doi: 10.16509/j.georeview.2017.04.010

作者简介:王楠,男,1988年生。博士,助理研究员。专业为矿物学、岩石学、矿床学。Email: wangnan_0912@ sina.com。通讯作者:吴才 来,男,1960年生。研究员,博士生导师。主要从事造山带花岗岩演化。Email: wucailai@126.com。

等(2008)认为该岩体形成224 Ma,是同碰撞到后碰 撞背景下由前寒武纪上地壳部分熔融形成的;侯增 谦等(1995,2001)和 Reid 等(2007)则认为该岩体 是215 Ma时,在岩浆弧背景下由中元古代源岩部分 熔融而成;He Defeng 等(2013)则认为该岩体形成 于216 Ma时,是在同碰撞构造背景下,起源于下地 壳和少量亏损地幔混合而成的物质;而 Peng Touping 等(2014)则通过锆石 U-Pb 定年认为稻城 岩体主要侵位于约225 Ma 和约216 Ma;王楠等 (2016)则根据锆石 U-Pb 定年和 Hf 同位素的研究, 认为稻城岩体侵位于217Ma,是中元古代古老地壳 重熔的产物。

海子山岩体位于义敦岛弧中部,与北侧的连龙 岩体、若洛隆岩体和绒依措岩体岩性相同。对于此 类岩体的岩石成因主要有两种观点,部分研究成果 认为形成于伸展环境下的 A 型花岗岩(管士平, 1999;侯增谦等,2001;Qu Xiaoming et al.,2002;曲 晓明等,2002; Reid et al.,2007; 邹光富等,2008; 李 艳军等,2014);另一种观点认为是S型花岗岩(刘 权,2003;应汉龙等,2006;马比阿伟等,2015)。Reid 等(2005a,2007)对海子山岩体进行了锆石 U-Pb 和 黑云母的40 Ar/39 Ar 定年,结果分别为 94.4 Ma 和 93.7 Ma; 王楠等(2016) 根据锆石 U-Pb 定年结果, 认为海子山岩体侵位于98.3 Ma,为白垩纪时期形 成的产物。此外前人的研究结果显示,海子山岩体 北侧的绒依措岩体全岩 Rb-Sr、黑云母 Ar-Ar 年龄分 别为93 Ma和63.9 Ma(应汉龙等, 2006), 但钾长 石 Ar-Ar 年龄有所出入,分别为 75.2 Ma (Qu Xiaoming et al., 2002)和 60.6 Ma (应汉龙等, 2006),夏塞岩体的锆石 U-Pb 年龄为 103 Ma(李艳 军等,2014),南侧的格聂(南)花岗岩体的锆石 U-Pb 年龄为89.9 Ma(马比阿伟等,2015),休瓦促岩体的 锆石 U-Pb 为 85.5~84.4 Ma(Wang Xinsong et al., 2014b)

义敦岛弧上出露的花岗质岩体的研究对古特提 斯洋的闭合、亚欧大陆的增生演化和区内的成矿具 有重要意义。近20年出现了一些关于义敦岛弧的 研究成果,但总体而言,仍有大量的研究工作需要进 行(Reid et al.,2007)。前人对甘孜一理塘金矿带 的矿物电子探针也做了初步研究,但总体研究程度 仍较低(郇伟静等,2011)。对于花岗岩体岩浆形成 的温度条件和岩石矿物组成等,前人相关的研究工 作极少,而这些方面的研究对确定岩石成因和矿床 成因有着非常重要的作用。因此,本文将结合偏光 显微镜观察和电子探针(EPMA)化学成分分析对晚 三叠世稻城岩体和白垩纪海子山岩体中典型矿物进 行分析,选取适合的矿物温度计限定上述岩体岩浆 形成时的温度,并结合全岩地球化学分析结果,以期 为义敦岛弧中生代岩浆作用及构造背景研究提供参 考与制约。

图 1 义敦岛弧地区地质简图: (a) 据 Reid et al.,2005a 修改; (b) 据 Wang Yuejun et al., 2013 修改 Fig. 1 Geological sketch map of the Yidun Arc area (a,

after Reid et al., 2005a; b, after Wang Yuejun et al., 2013)

1 地质背景

义敦岛弧整体为 NNW 向,出露于我国西南地 区的川西和滇西北,位于松潘一甘孜褶皱带和青藏 高原东部的羌塘地体之间,并沿扬子板块的西缘展 布(图1)。义敦岛弧西部为中咱地块,主要是由古 生代岩石组成,可能是晚古生代期间因甘孜一理塘 洋的打开从扬子克拉通中分离出来,之后在早三叠 世沿金沙江缝合带与羌塘地块发生碰撞,经历了变 质变形作用(侯增谦等,1995;Reid et al.,2005a,b)。 义敦岛弧主要由中一晚三叠世碎屑岩和弧火山岩组 成(Wang Baiqiu et al., 2013),其上分布的"弧— 盆"系统表明该岛弧为甘孜一理塘洋于晚三叠世向 西俯冲形成的产物(莫宣学等,1993;侯增谦等, 1995; Reid et al., 2005b)。义敦岛弧上产出大量的 花岗质侵入体,约占出露面积的10%~20%,并侵 入到变形的古生代和三叠纪火山一沉积序列中 (Reid et al., 2007)。根据放射性同位素年龄数据, 包括 K-Ar, 全岩 Rb-Sr 和锆石 U-Pb 年龄等, 可以将 花岗质侵入体分为4个阶段,237~206 Ma 的岛弧 花岗岩,206~138 Ma的同碰撞花岗岩,135~73 Ma 的后碰撞花岗岩和 65~15 Ma 的喜马拉雅花岗岩 (侯增谦等,2001)。Reid 等(2007)对7组花岗质侵 入体样品进行了锆石 U-Pb 定年研究,根据结果将 其分为3个阶段,早一中三叠世(245~229 Ma),晚 三叠世(219~216 Ma)和白垩纪(105~95 Ma)。

稻城花岗岩侵入体为义敦岛弧带内规模巨大的 晚三叠世复合花岗岩体,位于稻城和理塘之间,和与 岛弧有关的安山岩共生,并且侵入到三叠纪火山一 沉积序列中(侯增谦等,1995,2001; Leng Chengbiao et al.,2012;He Defeng et al.,2013)。根 据野外观察,该岩体中心相为中粗粒黑云母二长花 岗岩,边缘相为中细粒花岗闪长岩和石英闪长岩,另 有中性的闪长岩。局部见细晶岩脉,与围岩呈侵入 接触关系;岩体中部闪长质微粒包体较为发育,呈纺 锤状、椭球状,5~15cm。细晶岩脉与岩体成分近 似,主要为晚期熔体沿裂隙上升侵位;岩体中部花岗 岩沿节理风化、破碎严重;暗色矿物含量增大;长英 质脉体较为发育,脉体中含有少量黑云母晶体。围 岩主要为晚三叠世玄武岩,英安岩,流纹岩和火山碎 屑岩等。样品编号为1001~1007(图2a、b)。

海子山花岗岩侵入体夹于德来一定曲断裂带和 德格一乡城断裂带之间。区内发育的地层主要为上 三叠统图姆沟组、上三叠统纳拉山组和第四系沉积 物,围岩主要为晚三叠世火山岩和沉积岩等。主要 岩性为似斑状黑云母二长花岗岩,其间有大量伟晶 岩脉和细晶岩脉,岩体中另发育有大量暗色微粒包 体,长约3~4cm,分布较为集中。发育两组平行节 理,夹角70°。细晶岩脉与岩体成分基本一致,为花 岗闪长质。样品编号为1008~1009(图2c,d)。

2 分析方法

2.1 矿物学分析

电子探针 X 射线纤维分析仪(EPMA),是一种 现代成分分析仪器,可以获得矿物微米量级微区内 的化学成分,因此为研究样品的成分分析提供了有 效的分析方法。本文对研究区内不同系列侵入岩中 的造岩矿物进行电子探针分析,以了解造岩矿物的 成分、种类及变化特征,并根据矿物化学成分,选取 合适的温度计,力求获取准确的结晶条件(雷敏等, 2010;陆丽娜等,2011;刘春花等,2013)。

电子探针矿物化学成分在中国地质科学院地质 研究所大陆构造与动力学国家重点实验室完成,仪 器型号为 JEOL JXA-8100,加速电压 15 kV,电流为 20 nA,束斑直径 5 μm,标样为天然或合成的矿物和 氧化物,主要氧化物的分析误差约为 1%。

扫描电镜分析在中国地质科学院地质研究所大陆构造与动力学国家重点实验室扫描电镜—能谱— 岩石组构分析实验室完成,仪器型号日本电子公司 JEOL JSM-5610 LV,加速电压 20 kV,焦距 20~21 µm,束斑 29~30 µm。

2.2 岩石化学全分析

本项研究选择了13个较新鲜的岩石样品进行 了化学全分析。岩石粉末碎样、化学全分析分别在 河北廊坊区调院和河北廊坊物化探研究所(实验 室)完成,氧化物用 X 荧光光谱仪 3080E 测试,执行 标准分别为: Na2 O、MgO、Al2 O3、SiO2、P2 O5、K2 O、 CaO、TiO₂、MnO、Fe₂O,按GB/T14506.28—1993 标 准; H, O⁺ 按 GB/T14506.2—1993 标准; CO, 按 GB9835—1988标准;LOI按LY/T1253—1999标准。 相对标准样品的偏差小于2%~8%。稀土元素 La、 Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y 和微量元素 Cu、Pb、Th、U、Hf、Ta、Sc、Cs、V、Co、Ni 用 等离子质谱(ICP-MS) Excell 测试,执行标准为 DZ/ T0223—2001;微量元素 Sr、Ba、Zn、Rb、Nb、Zr、Ga 用 X 荧光光谱仪 2100 测试,执行 JY/T016-1996 标 准。大多数含量大于10×10⁻⁸的元素,少量元素含 量大于 10×10⁻⁶(Zr、Ba) 和 10×10⁻⁷(Hf、Nb)的元

图 2 川西义敦岛弧花岗岩类正交偏光显微镜照片: (a)、(b)、(e)、(f) 稻城岩体; (c)、(d)、(g)、(h) 海子山岩体

Fig. 2 Photomicrographs of granitoids from research area (crossed nicols) $% {f_{\mathrm{eff}}}$:

(a) (b) (e) (f) Daocheng Pluton; (c) (d) (g) (h) Haizishan Pluton

Q—石英;Pl—斜长石;Kf—钾长石;Bi—黑云母

Q-quartz; Pl-plagioclase; Kf-K-feldspar; Bi-biotite

素,分析的相对标准偏差小于10%。

3 矿物学特征

稻城花岗质岩体岩性为黑云母二长花岗岩、 (花岗)闪长岩(图 2a、b、e、f)。灰白色、块状构造, 典型花岗结构,他形石英充填于自形一半自形的斜 长石和钾长石的缝隙中。主要矿物为斜长石、钾长 石、石英、黑云母;副矿物有磷灰石、独居石、榍石、锆 石、钛铁矿等。斜长石和钾长石粒度为中一粗粒,石 英和黑云母为中一细粒。另可见黑云母聚集现象。

海子山花岗质岩体主要岩性为似斑状黑云母二 长花岗岩(图2c、d、g、h)。灰白色、块状构造,花岗 结构。斑晶为柱状斜长石和钾长石,可达3~4cm, 基质为中一细粒斜长石、钾长石、石英和黑云母等; 副矿物有磷灰石、独居石、榍石、锆石、钛铁矿等。同 样可见黑云母的聚集现象。

3.1 斜长石

稻城岩体和海子山岩体中斜长石的含量较高。 显微镜下,斜长石多呈自形一半自形柱状,负低突起,干涉色为 I 级灰,发育简单双晶、聚片双晶,少量 具有环带结构(图 2e—h)。根据长石电子探针数据 (表1)和扫描电镜照片(图 3)进行长石投图分类, 结果如图 4 所示,稻城岩体中斜长石主要为中长石 和更长石,An 牌号为 10.26~41.41 之间,基本为中 性和酸性斜长石。海子山岩体斜长石成分变化较 大,但除极个别斜长石落入拉长石(An_{63.09}Ab_{36.40})和 钠长石(An_{0.93}Ab_{98.32})范围外,其余斜长石均落入中 长石和更长石范围内,同样为中酸性斜长石,整体上 An 牌号介于 17.23~44.44 之间,Ab 介于 54.39~ 81.24 之间。与稻城岩体相比,牌号基本一致,轻微 程度的富 CaO 而贫 NaO,但二者变化范围较大,反 映了斜长石形成时,岩浆的成分变化较大。

图 3 川西义敦岛弧花岗岩类扫描电镜照片: (a)—(c) 稻城岩体; (d)—(f)海子山岩体 Fig. 3 Scanning electron photomicrograph of of granites in Yidun Arc, western Sichuan Province (a)—(c) Daocheng Pluton; (d)—(f) Haizishan Pluton Q—石英;Pl—斜长石;Kf—钾长石;Bi—黑云母;Grt—石榴子石;IIm—钛铁矿 Q—quartz; Pl—plagioclase; Kf—K-feldspar; Bi—biotite;Grt—garnet; IIm— ilmenite

表 1 川西义敦岛弧花岗岩类长石化学成分(%)

Table 1 Chemical composition of feldspar of granites in Yidun Arc, western Sichuan Province

样品号	1001	1001	1001	1001	1001	1001	1001	1001	1001	1001	1001	1005
编号	3	4	5	6	7	8	9	10	16	17	18	26
SiO ₂	63.02	65.81	63.92	63.17	64.62	63.91	60.75	59.36	60.40	60.18	65.79	67.61
Al_2O_3	22.95	21.05	22.24	22.73	21.55	22.63	24.41	25.30	24.72	24.50	21.41	18.14
CaO	4.50	2.17	3.42	4.22	3.05	3.77	6.27	7.01	6.38	6.48	2.66	0.04
Na ₂ O	8.40	10.40	9.43	8.76	9.43	8.92	7.32	7.32	7.59	7.56	9.81	6.37
K20	0.43	0.15	0.25	0.50	0.35	0.31	0.25	0.27	0.40	0.34	0.24	7.45
n(Si)	2.80	2.90	2.84	2.81	2.87	2.83	2.72	2.66	2.70	2.70	2.89	3.03
n(Al)	1.20	1.09	1.16	1.19	1.13	1.18	1.29	1.34	1.30	1.30	1.11	0.96
n(Ca)	0.21	0.10	0.16	0.20	0.15	0.18	0.30	0.34	0.31	0.31	0.13	0.00
n(Na)	0.72	0.89	0.81	0.76	0.81	0.77	0.64	0.64	0.66	0.66	0.84	0.55
<i>n</i> (K)	0.02	0.01	0.01	0.03	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.43
An	22.23	10.26	16.47	20.43	14.84	18.58	31.62	34.06	30.97	31.50	12.84	0.20
Ab	75.22	88.92	82.12	76.70	83.16	79.62	66.86	64.39	66.72	66.52	85.79	56.39
Or	2.55	0.82	1.41	2.87	2.00	1.80	1.52	1.55	2.31	1.97	1.37	43.41
样品号	1005	1005	1005	1005	1005	1005	1005	1008	1008	1008	1009	1009
编号	27	28	29	30	31	32	33	63	64	66	94	95
SiO ₂	59.33	61.26	61.32	60.87	60.51	59.88	58.34	59.61	61.10	68.67	57.63	62.44
Al_2O_3	25.76	24.42	24.05	24.61	25.11	25.26	26.50	25.62	24.43	19.39	26.26	23.04
CaO	7.46	6.10	5.41	7.52	7.98	8.23	8.42	7.03	5.81	0.20	9.09	5.38
Na ₂ O	6.97	7.74	8.04	7.09	6.29	6.61	6.45	7.34	8.14	11.48	6.15	8.14
K ₂ 0	0.13	0.13	0.12	0.19	0.19	0.25	0.20	0.20	0.18	0.13	0.20	0.34
n(Si)	2.65	2.73	2.74	2.70	2.69	2.66	2.61	2.66	2.72	3.00	2.60	2.78
n(Al)	1.36	1.28	1.27	1.29	1.31	1.32	1.40	1.35	1.28	1.00	1.39	1.21
n(Ca)	0.36	0.29	0.26	0.36	0.38	0.39	0.40	0.34	0.28	0.01	0.44	0.26
n(Na)	0.60	0.67	0.70	0.61	0.54	0.57	0.56	0.63	0.70	0.97	0.54	0.70
<i>n</i> (K)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
An	36.89	30.11	26.90	36.55	40.74	40.18	41.41	34.24	28.00	0.93	44.44	26.23
Ab	62.35	69.15	72.40	62.36	58.11	58.36	57.45	64.63	70.99	98.32	54.39	71.79
Or	0.76	0.75	0.70	1.09	1.14	1.45	1.14	1.13	1.01	0.74	1.17	1.98
样品号	1009	1009	1009	1009	1009	1009	1009	1009	1009	1009	1009	
编号	96	97	98	99	100	101	102	103	105	106	107	
SiO ₂	62.97	62.81	61.70	59.84	61.25	59.52	61.25	62.43	63.33	63.96	65.39	
Al_2O_3	23.02	23.38	23.97	24.71	23.90	25.03	24.49	23.29	22.82	22.24	21.74	
CaO	5.13	6.23	6.01	6.75	5.72	6.91	6.82	4.80	4.10	3.63	3.85	
Na_2O	8.07	7.65	7.27	7.19	7.85	7.15	7.19	8.49	8.70	9.21	8.83	
K_2O	0.26	0.38	0.36	0.43	0.47	0.33	0.35	0.40	0.45	0.40	0.57	
n(Si)	2.80	2.77	2.75	2.69	2.74	2.68	2.72	2.78	2.81	2.84	2.87	
n(Al)	1.20	1.22	1.26	1.31	1.26	1.33	1.28	1.22	1.19	1.16	1.12	
n(Ca)	0.24	0.29	0.29	0.33	0.27	0.33	0.32	0.23	0.20	0.17	0.18	
n(Na)	0.69	0.65	0.63	0.63	0.68	0.62	0.62	0.73	0.75	0.79	0.75	
n(K)	0.01	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.03	0.02	0.03	
An	25.61	30.35	30.69	33.27	27.93	34.17	33.66	23.26	20.13	17.47	18.79	
Ab	72.87	67.42	67.15	64.19	69.36	63.90	64.27	74.46	77.25	80.27	77.92	
Or	1.52	2.23	2.16	2.54	2.70	1.93	2.07	2.28	2.62	2.27	3.30	
样品号	1009	1009	1009	1009	1009	1009	1009	1009	1009	1009	1009	
编号	108	109	113	114	115	116	117	118	119	120	121	
SiO_2	64.85	63.77	59.31	59.21	59.37	52.38	61.19	63.12	61.68	60.13	59.84	
$\mathrm{Al}_2\mathrm{O}_3$	22.26	22.41	25.71	25.47	25.40	29.94	24.37	22.68	24.12	24.61	24.88	
CaO	4.56	3.57	7.56	7.21	6.88	12.70	7.22	4.29	6.86	6.67	6.66	
Na_2O	8.38	9.29	6.92	6.98	7.23	4.05	7.16	8.69	7.22	7.53	7.38	
K_2O	0.37	0.27	0.26	0.23	0.20	0.09	0.23	0.46	0.33	0.29	0.40	

n(Si)	2.85	2.83	2.65	2.66	2.67	2.39	2.72	2.81	2.73	2.70	2.69	
n(Al)	1.15	1.17	1.35	1.35	1.34	1.61	1.27	1.19	1.26	1.30	1.32	
n(Ca)	0.21	0.17	0.36	0.35	0.33	0.62	0.34	0.20	0.33	0.32	0.32	
n(Na)	0.71	0.80	0.60	0.61	0.63	0.36	0.62	0.75	0.62	0.65	0.64	
n(K)	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.03	0.02	0.02	0.02	
An	22.59	17.23	37.10	35.84	34.06	63.09	35.31	20.87	33.75	32.31	32.51	
Ab	75.21	81.24	61.40	62.81	64.77	36.40	63.35	76.47	64.29	66.02	65.17	
Or	2.20	1.52	1.50	1.35	1.17	0.51	1.33	2.66	1.96	1.67	2.32	

注:据路远发(2004)GeoKit软件计算。

3.2 钾长石

钾长石镜下为负低突起, I级灰一灰白干涉色, 可见简单双晶,局部发生轻微的绢云母化(图 2e h)。根据长石分类图(图 4),稻城岩体中的钾长石 除测点 26 落入 Na 正长石区域内(Ab_{56.39}Or_{43.41}),其 余落入正长石范围内,Or 牌号变化于 94.59~96.83 之间。而海子山岩体中钾长石粒度较大,且全部为 正长石,Ab 牌号为 2.26~24.98,Or 牌号为 74.49~ 97.58,整体而言,变化范围大于稻城岩体。

图解(据 Smith,1974) End-member discrimination diagram fo

Fig. 4 End-member discrimination diagram for feldspar of granites in Yidun Arc, western Sichuan Province (after Smith, 1974)

3.3 石英

石英是花岗质岩石中最为常见的矿物之一。石 英镜下呈他形粒状,正低突起,I级灰干涉色,波状 消光(图2e—h)。主要充填于斜长石和钾长石等矿 物缝隙中,暗示结晶时间较晚,结晶温度较低。

3.4 黑云母

黑云母呈叶片状,团簇状分布,多色性较强,呈

黄、褐、绿色等,Ⅱ红到Ⅲ级红干涉色,干涉色的变化 可能反映着黑云母内 Fe 含量的变化,平行消光(图 2e—h)。可见黑云母蚀变为绿泥石等次生矿物。 用阴离子法以氧原子数为11 计算出的黑云母阳离 子数见表2。

稻城岩体的黑云母的组分(表 2),SiO₂ = 34.52% ~ 37.25%,Al₂O₃ = 13.04% ~ 14.22%,K₂ O = 8.60% ~ 9.56%,FeO = 22.71% ~ 28.88%,并 且中心相的1005 与边缘相的1001 相比,更加富Si、K,贫Fe。海子山岩体的SiO₂ = 36.04% ~ 37.45%,Al₂O₃ = 12.54% ~ 14.81%,K₂O = 8.88% ~ 9.56%,FeO = 24.19% ~ 25.74%。根据黑云母分 类图(图5),除稻城岩体中样品1001 极少黑云母落入铁叶云母外,样品1005 和海子山岩体中的黑云母 均为铁质黑云母。

4 地球化学分析结果

稻城岩体和海子山岩体的代表样品全岩化学分析结果列于表3,其中样品1001~1007为稻城岩

分类图(底图据 Foster, 1960)

Fig. 5 The classification diagram of biotite of granites in Yidun Arc, western Sichuan Province (after Foster, 1960)

Table 2 Chemical composition (%) of biotite of granites in Yidun Arc, western Sichuan Province																
样品号	1001	1001	1001	1001	1001	1001	1001	1001	1001	1005	1005	1005	1005	1005	1005	1005
编号	1	2	11	14	15	19	20	21	22	23	24	34	35	36	38	39
SiO ₂	34.59	34.88	35.59	35.85	35.72	35.68	35.52	34.52	35.15	36.35	37.25	36.74	36.95	36.87	36.79	35.98
TiO ₂	3.51	2.84	2.53	3.31	3.30	3.52	3.28	2.50	3.65	3.86	4.14	3.95	3.90	4.03	3.74	4.29
Al_2O_3	13.68	13.73	13.96	13.90	13.67	14.03	13.76	14.22	13.64	13.04	13.37	13.72	13.83	13.50	13.89	13.50
FeO	28.19	28.17	28.88	28.10	28.03	28.04	28.21	28.45	28.80	23.75	23.21	23.19	22.71	22.89	23.08	22.75
MnO	0.95	0.88	0.97	0.83	0.98	0.82	0.85	0.82	0.93	0.31	0.31	0.35	0.33	0.30	0.36	0.37
MgO	4.92	4.77	4.93	4.94	4.96	4.44	4.73	5.15	4.55	9.04	8.44	8.31	8.22	8.52	8.15	8.43
CaO	0.07	0.03	0.05	0.04	0.05	0.06	0.15	0.11	0.06	0.13	0.12	0.00	0.00	0.05	0.01	0.03
Na_2O	0.11	0.09	0.12	0.09	0.08	0.09	0.12	0.13	0.13	0.18	0.11	0.14	0.15	0.15	0.19	0.17
K_2O	9.26	9.56	8.78	8.70	8.60	8.72	8.76	8.64	8.91	8.83	8.86	9.07	9.05	9.17	9.20	9.50
n(Si)	2.79	2.82	2.84	2.85	2.85	2.85	2.84	2.79	2.81	2.83	2.88	2.85	2.87	2.86	2.86	2.82
$n(\operatorname{Al}^{\mathbb{N}})$	1.21	1.18	1.16	1.15	1.15	1.15	1.16	1.21	1.19	1.17	1.12	1.15	1.13	1.14	1.14	1.18
$n(\operatorname{Al}^{\operatorname{M}})$	0.09	0.13	0.16	0.15	0.14	0.16	0.14	0.15	0.10	0.03	0.09	0.11	0.13	0.09	0.13	0.06
<i>n</i> (Ti)	0.21	0.17	0.15	0.20	0.20	0.21	0.20	0.15	0.22	0.23	0.24	0.23	0.23	0.23	0.22	0.25
$n({\rm Fe}^{3+})$	0.17	0.15	0.19	0.25	0.25	0.27	0.23	0.17	0.21	0.21	0.28	0.25	0.27	0.25	0.24	0.21
$n({\rm Fe}^{2+})$	1.73	1.76	1.73	1.62	1.62	1.60	1.66	1.76	1.72	1.34	1.22	1.25	1.20	1.24	1.26	1.28
n(Mn)	0.06	0.06	0.07	0.06	0.07	0.06	0.06	0.06	0.06	0.02	0.02	0.02	0.02	0.02	0.02	0.02
n(Mg)	0.59	0.58	0.59	0.59	0.59	0.53	0.56	0.62	0.54	1.05	0.97	0.96	0.95	0.99	0.94	0.98
n(Ca)	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00
n(Na)	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.03	0.03
$n(\mathbf{K})$	0.95	0.99	0.89	0.88	0.88	0.89	0.89	0.89	0.91	0.88	0.87	0.90	0.90	0.91	0.91	0.95
总量	7.83	7.85	7.81	7.75	7.75	7.73	7.77	7.83	7.79	7.79	7.72	7.75	7.73	7.75	7.76	7.79
1	0.47	0.45	0.50	0.59	0.58	0.64	0.57	0.47	0.53	0.46	0.61	0.59	0.63	0.58	0.59	0.52
2	1.80	1.82	1.80	1.67	1.69	1.66	1.71	1.81	1.78	1.36	1.24	1.28	1.23	1.26	1.28	1.31
样品号	1005	1008	1008	1009	1009	1009	1009	1009	1009	1009	1009	1009	1009	1009	1009	1009
编号	43	67	68	74	75	76	82	85	86	87	88	91	93	110	111	112
SiO_2	36.50	37.01	37.45	36.04	36.41	36.20	36.30	36.66	36.33	36.33	37.21	36.26	37.10	36.87	36.25	36.37
TiO ₂	4.23	3.43	3.13	4.39	4.26	3.87	3.56	4.15	4.33	4.46	4.28	4.58	3.56	3.59	4.42	4.48
Al_2O_3	13.57	13.33	14.81	13.12	12.92	13.41	12.87	12.79	12.73	12.87	12.63	12.88	12.84	12.63	12.84	12.54
FeO	23.15	24.63	24.19	25.22	25.12	24.61	24.73	24.99	25.74	25.28	24.40	25.40	25.60	25.53	25.38	25.29
MnO	0.34	0.32	0.28	0.45	0.30	0.35	0.38	0.45	0.38	0.42	0.32	0.44	0.35	0.16	0.42	0.38
MgO	8.08	7.61	6.93	7.08	7.18	7.30	7.61	7.14	6.67	6.79	6.97	6.78	7.26	7.40	6.84	6.97
CaO	0.05	0.01	0.00	0.00	0.21	0.02	0.00	0.01	0.00	0.05	0.03	0.00	0.00	0.01	0.01	0.00
Na ₂ O	0.12	0.10	0.08	0.10	0.12	0.07	0.05	0.07	0.06	0.14	0.12	0.14	0.04	0.10	0.11	0.09
K ₂ O	9.14	9.31	8.88	9.52	9.55	9.47	9.56	9.44	9.36	9.25	9.39	9.26	9.16	9.42	9.17	9.20
Si	2.85	2.89	2.89	2.83	2.85	2.85	2.87	2.88	2.86	2.86	2.92	2.85	2.90	2.89	2.86	2.87
Al ^w	1.15	1.11	1.11	1.17	1.15	1.15	1.13	1.12	1.14	1.14	1.08	1.15	1.10	1.11	1.14	1.13
Al	0.09	0.11	0.24	0.04	0.04	0.09	0.07	0.06	0.05	0.05	0.08	0.04	0.08	0.06	0.05	0.03
Ti - 3 i	0.25	0.20	0.18	0.26	0.25	0.23	0.21	0.25	0.26	0.26	0.25	0.27	0.21	0.21	0.26	0.27
Fe ³⁺	0.26	0.23	0.31	0.21	0.21	0.22	0.19	0.24	0.24	0.24	0.27	0.24	0.24	0.21	0.25	0.25
Fe ² ⁺	1.25	1.38	1.26	1.44	1.43	1.40	1.44	1.40	1.46	1.42	1.33	1.43	1.43	1.46	1.43	1.42
Mn	0.02	0.02	0.02	0.03	0.02	0.02	0.03	0.03	0.03	0.03	0.02	0.03	0.02	0.01	0.03	0.03
Mg	0.94	0.88	0.80	0.83	0.84	0.86	0.90	0.84	0.78	0.80	0.81	0.79	0.85	0.87	0.80	0.82
Ca N	0.00	0.00	0.00	0.00	0.02	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INA V	0.02	0.02	0.01	0.01	0.02	0.01	0.01		0.01	0.02	0.02	0.02		0.02	0.02	0.01
K 占具	0.91	0.95	7 60	0.93	0.93	0.93	7 01	0.94	0.94 7 76	0.95	0.94	0.95 7 76	0.91	7 70	0.92	0.95 7 75
心里	0.60	0.54	0.73	0.52	0.51	0.54	0.47	0.54	0.54	0.56	0.61	0.56	0.54	0.10	0.56	0.55
(1) (2)	1 28	1 40	1 27	1 47	1 45	1 42	1 47	1 43	1 48	1 45	1 35	1 46	1 45	1 48	1 45	1 45
Ű	1.20	1.10						1.15	1.10	1	1.55	1.10	1.15	1.10	1.10	1.15

表 2 川西义敦岛弧花岗岩类黑云母化学成分(%)

注:据路远发(2004)GeoKit 软件计算。①—n(Al^{VI}) + n(Fe³⁺) + n(Ti);②—n(Fe²⁺) + n(Mn)

	稻城岩体									海子山岩体			
样品编号	1001-2	1001-5	1002-2	1003-2	1004-2	1005-2	1006-2	1007-2	1007-5	1008-2	1008-5	1009-2	1009-5
SiO ₂	76.74	76.51	75.59	76.79	77.14	67.63	73.14	76.38	59.40	71.67	74.64	71.09	77.31
TiO_2	0.15	0.06	0.15	0.14	0.04	0.48	0.22	0.11	1.00	0.45	0.20	0.55	0.07
Al_2O_3	12.24	13.13	12.98	12.35	12.77	15.57	13.99	12.57	16.48	13.88	13.51	14.10	12.33
FeO	1.01	0.24	1.13	1.08	0.55	2.71	1.27	0.89	5.58	1.94	0.89	2.28	0.67
$\mathrm{Fe}_2\mathrm{O}_3$	0.47	0.63	0.32	0.29	0.18	0.84	0.44	0.39	2.21	0.58	0.50	0.66	0.35
MnO	0.06	0.02	0.05	0.06	0.06	0.08	0.05	0.04	0.15	0.06	0.04	0.06	0.04
MgO	0.24	0.10	0.26	0.19	0.06	1.39	0.55	0.15	2.36	0.60	0.23	0.73	0.07
CaO	1.07	0.27	1.31	1.22	0.70	3.66	1.40	1.12	4.43	1.95	0.87	2.37	0.61
Na ₂ O	2.62	3.21	2.82	2.77	3.43	3.24	3.27	3.08	3.38	2.98	2.81	3.13	3.07
K ₂ O	4.60	4.78	4.71	4.53	4.60	3.37	4.92	4.70	3.17	4.91	5.56	4.10	4.89
P_2O_5	0.03	0.02	0.03	0.03	0.01	0.09	0.07	0.02	0.20	0.13	0.08	0.16	0.01
${\rm H}_{2}{\rm O}^{+}$	0.58	0.88	0.46	0.32	0.30	0.60	0.44	0.33	1.01	0.31	0.49	0.41	0.35
H ₂ O ⁻	0.30	0.31	0.20	0.10	0.11	0.14	0.13	0.10	0.22	0.11	0.14	0.11	0.17
烧失量	0.72	1.01	0.59	0.49	0.41	0.81	0.55	0.43	1.37	0.70	0.59	0.63	0.55
总量	99.95	99.98	99.94	99.93	99.95	99.86	99.87	99.88	99.72	99.85	99.92	99.86	99.97
$Na_2O + K_2O$	7.22	7.99	7.53	7.30	8.03	6.61	8.19	7.78	6.55	7.89	8.37	7.23	7.96
$K_2 O/Na_2 O$	1.76	1.49	1.67	1.64	1.34	1.04	1.50	1.53	0.94	1.65	1.98	1.31	1.59
A/CNK	1.09	1.20	1.07	1.06	1.07	1.00	1.06	1.03	0.97	1.01	1.11	1.01	1.08
A/NK	1.32	1.26	1.33	1.31	1.20	1.73	1.31	1.24	1.83	1.36	1.27	1.47	1.19
Ga	15.5	15.4	14.7	15.0	15.2	18.9	16.1	16.6	23.7	21.7	21.7	21.5	17.4
KD Su	280	297	209	242	12 6	149	205	209	158	393	425	245	3/5
Sr V	51.9	18.1	05.0	04.0	12.0	21.1	24.1	/0.1	210	52 3	02.2	219	22.0
1 7.	123	45.2	115	112	82	188	14.1	100	344	248	152	275	28.5
Zr	125	15 5	115	18.4	22 4	100	24.2	100	33 5	240	33.2	275	99 07 0
Ba	211	81	228	254	22.4	630	526	775	1214	622	216	/33	10
Hf	5 17	4 81	4 58	4 33	4 52	7 94	4 51	4 38	20.4	9 41	4 84	11 10	3 67
Та	1 61	2.08	1 18	1.33	2.94	1 41	2.20	1.30	1 23	3 50	3 00	2.67	2.97
Pb	36.0	23.0	31.1	38.1	54.4	23.7	24.1	29.5	16.0	29.9	47.6	24.4	40.1
Th	26.6	27.3	20.8	20.5	25.5	13.2	29.1	19.7	16.3	34.8	43.4	28.3	58.8
U	5.29	3.92	2.63	5.32	6.16	3.19	4.54	1.89	1.80	8.35	6.11	7.69	15.90
Li	42.2	19.8	43.1	41.5	31.5	33.7	49.1	30.3	37.9	85.5	107.0	83.2	72.0
La	22.6	2.6	15.6	22.5	9.2	24.5	21.8	26.7	70.2	56.1	61.0	49.4	24.0
Ce	47.5	16.8	39.1	45.4	19.6	47.6	42.4	52.6	135	106	115	91.4	62.9
Pr	5.72	0.69	3.35	5.52	3.25	5.81	3.99	5.47	13.5	12.0	12.8	10.5	6.37
Nd	21.4	2.9	12.9	21.6	15	22.9	14	19.8	49.6	45.0	45.1	38.0	22.3
Sm	5.71	1.52	3.29	5.14	6.20	4.89	2.97	3.66	7.1	9.41	8.57	7.22	4.85
Eu	0.37	0.11	0.49	0.46	0.09	1.04	0.49	0.42	1.45	0.94	0.45	1.09	0.13
Gd	5.27	2.60	3.55	4.81	6.59	4.56	3.05	3.40	6.99	8.44	7.15	6.60	4.25
Tb	1.09	0.80	0.80	1.00	1.73	0.87	0.60	0.58	0.90	1.55	1.12	1.15	0.85
Dy	6.93	6.44	5.04	6.18	11.90	5.36	3.84	3.61	4.62	9.49	6.21	6.78	5.35
Но	1.43	1.53	1.16	1.32	2.65	1.13	0.83	0.76	0.85	1.94	1.12	1.39	1.08
Er	3.99	4.75	3.32	3.76	7.81	3.33	2.62	2.33	2.34	5.57	3.08	3.85	3.37
Tm	0.67	0.82	0.53	0.59	1.27	0.53	0.44	0.39	0.33	0.89	0.47	0.59	0.57
Yb	4.60	5.14	3.60	3.98	8.64	3.50	3.17	2.41	2.27	5.99	2.83	3.81	4.07
Lu	0.71	0.83	0.56	0.61	1.23	0.53	0.50	0.36	0.30	0.79	0.49	0.50	0.60
10000Ga/Al	2.39	2.22	2.14	2.29	2.25	2.29	2.17	2.49	2.72	2.95	3.03	2.88	2.67
REE	127.99	92.66	125.69	160.17	176.59	157.65	124.80	144.69	317.15	316.41	297.39	259.78	168.99
LKEE	103.30	24.55	14.73	100.62	55.57	106.74	85.65	108.65	2/0.85	229.45	242.92	197.61	120.55
LREE/ HREE	4.18	0.30	1.4/	1.09	0.43	2.10	2.19	0.26	0.8/	2.04	4.40	5.18	2.49
Eu/Eu (La/Vh)	3.52	0.1/	0.44	0.28	0.04	5.02	1 02	7 05	22 10	6 72	0.18	0.48	1 22
$(1a/1b)_{\rm N}$	763	757	755	754	730	700	760	7/1	825	811	775	9.50	706
$t_{\rm PFF}(^{\circ}C)$	792	, <i>5</i> , 696	769	793	751	803	779	795	868	854	870	852	801

表 3 稻城岩体和海子山岩体主量元素(%)和微量元素(×10⁻⁶)数据 Table 3 Major element (%) and trace element(×10⁻⁶) data for the granites of the Daocheng pluton and Haizishan pluton

989

图 6 全岩 SiO₂—(Na₂O + K₂O)分类(a)和 SiO₂—K₂O(b)图解 (a,据 Middlemost,1994 修改;b,据 Martin et al., 2005 修改) Fig. 6 Diagram of whole-rock SiO₂ vs. (Na₂O + K₂O) (a) and SiO₂ vs. K₂O (b) classification of the research granite pluton (a, after Middlemost, 1994;b, after Martin et al., 2005)

体,1008~1009为海子山岩体。两个岩体的主、微量特征分别叙述如下。

4.1 稻城岩体

稻城岩体的岩性成分较为复杂,地球化学成分 变化范围较宽。其中,除样品 1007-5 外,其余样品 的 SiO,含量变化范围为 67. 63% ~ 77. 14%, Al₂O₃的 含量为 12.24%~15.57%, CaO 除样品 1005-2 较高 为3.66外,其余样品为0.27%~1.4%,全碱Na,O + K₂O和 K₂O/Na₂O 分别变化于 6.61% ~ 8.19% 和 1.04~1.76,总体特点为高 Si、Al, 富碱、贫 Ca 的特 征。样品 1007-5 为中性的闪长岩,其 SiO₂含量为 59.40%, Al, O, 的含量为 16.48%, FeO * 含量为 7.57%, MgO 含量为 2.36%, CaO 含量为 4.43%, 全 碱 Na20+K20 的含量为 6.65%, 且 K20/Na20 为 0.94,与其它样品相比,明显具有富 Al、Na、Ca、镁铁 质而同时贫 Si、K 的特征。在 SiO,-(Na,O + K,O) 图中(图 6a),样品 1007-5 落入闪长岩区内,1005-2 落入花岗闪长岩区内,其余样品悉数落入花岗岩区 内。同时,根据SiO₂— K₂O 图(图 6b),稻城岩体样 品中,闪长岩、花岗闪长岩以及花岗岩全部为高钾钙 碱性系列。A/NK 值位于 1.21~1.86, 而 A/CNK 值 位于 0.98~1.21 范围内,只有闪长岩为准铝质,花 岗闪长岩和花岗岩均为过铝质特征(图7)。

稻城岩体的稀土配分模式整体为轻稀土富集的 右倾型(图 8a),但部分样品 1001-5 和 1004-2 表现

图 7 A/CNK—A/NK 图解(据 Maniar and Piccoli,1989) Fig. 7 Diagram of A/CNK vs. A/NK (after Maniar and Piccoli, 1989)

为丰度曲线近水平的平坦型或轻稀土亏损型。闪长 岩 1007-5 的 REE 和 LREE 总量较高,分别为 317.15×10⁻⁶和276.85×10⁻⁶, LREE/HREE 为 6.87,明显的轻稀土富集型,具有中度的 Eu 负异常 (Eu/Eu*=0.63)。其余样品的 REE 总量为92.66 ×10⁻⁶~176.59×10⁻⁶之间,1001-5和1004-2的的 LREE/HREE 比值分别为0.36和0.43,表明 HREE 含量更高。但稻城岩体大部分样品的 LREE/HREE

标准化值据 Sun and McDonough,1989; 稻城岩体数据引自 He Defeng 等(2013) The chondrite-normalizing values and primitive mantle-normalizing values are from Sun and McDonough, 1989; Daocheng Pluton after He Defeng et al., 2013&

比值介于 1.47 ~ 3.01 之间,表现 LREE 富集而 HREE 相对亏损的特点,同时表现出中一强烈的 Eu 负异常(Eu/Eu * =0.04 ~ 0.67)。在微量元素蛛网 图中(图 8b),稻城岩体强烈富集 Rb、Th、U、K 等强 不相容元素,表现出轻度的 Zr、Hf 正异常, Ba、Ta、 Nb、Sr 负异常和中度的 P、Ti 负异常,同时部分样品 甚至在 Sr、P、Ti 等元素上表现出明显的亏损。

4.2 海子山岩体

海子山岩体的的 SiO₂含量变化范围为 71.09%

~77.31%, Al₂O₃的含量为12.33%~14.10%, 全碱 Na₂O + K₂O 和 K₂O/Na₂O 分别变化于7.23%~ 8.37%和1.31~1.98, 总体特点为高 Si, 全碱含量 高且更具钾质, 与夏塞和绒依措等A型花岗岩体具 有极其相似的地球化学组成(侯增谦等, 2001; Qu Xiaoming et al., 2002; 李艳军等, 2014)。在 SiO₂— (Na₂O + K₂O)图(图 6a) 全部落入花岗岩区内。并 且根据 SiO₂—K₂O(图 6b),海子山岩体为钾玄岩和 高钾钙碱性系列。A/NK 值位于1.20~1.48, 而 A/

图 9 海子山岩体球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

Fig. 9 Chondrite-normalized REE patterns (a) and primitive-mantle normalized spiderdiagrams (b)

for the granites from the Haizishan Granite

标准化值据 Sun and McDonough, 1989; 夏塞岩体数据引自李艳军等(2014),

绒依措等岩体数据引自侯增谦等(2001)和 Qu Xiaoming 等(2002)

The chondrite-normalizing values and primitive mantle-normalizing values are from Sun and McDonough(1989); Xiasai Pluton

after Li Yanjun et al. (2014), Rongyicuo Pluton etc. after Hou Zengqian et al. (2001&) and Qu Xiaoming et al. (2002)

CNK 值位于 1.02~1.11 范围内,为过铝质特征(图7)。

海子山岩体的稀土配分模式表现为轻稀土富 集,重稀土平坦的右倾"海鸥型",与前人划分的 A 型花岗岩 REE 配分特点一致(图 9a)。REE 和 LREE 含量分别为 168.99×10⁻⁶~316.41×10⁻⁶和 120.55×10⁻⁶~242.92×10⁻⁶, LREE/HREE 为 2.49~4.46,相对亏损重稀土元素。具有明显的 Eu 负异常(Eu/Eu*=0.09~0.48),(La/Yb)_N为4.23 ~15.46,具有一定程度的轻重稀土分馏。在微量元 素蛛网图中(图 9b),稻城岩体富集 Rb、Th、U、K 等 强不相容元素,在 Ba、Sr、P、Ti 元素上有轻度的负异 常,而样品 1009-5 在上述元素上则表现出更加明显 的负异常。

5 讨论

5.1 岩浆形成温度

目前一般认为 A 型花岗岩形成温度较高,多在 800~900℃(胡建等,2006;汪洋,2008,2009;贾小辉 等,2009;王涛等,2009),而高分异 I 型花岗岩形成 温度较低(均值 764℃)(王强等,2000;贾小辉等, 2009)。实验岩石学同样证明了这一点(Holtz et al.,2001;Klimm et al.,2003)。

5.1.1 锆元素饱和浓度温度计

锆石具有较高的封闭温度,也是花岗质岩浆体 系中较早结晶的副矿物,锆石饱和温度可近似代表 花岗质岩石近液相线的温度,可用于估算初始岩浆 温度来限定岩体形成温度的上限(刘春花等, 2013)。Watson和Harrison(1983)通过高温研究了 锆石的饱和行为,在此基础上提出了锆石溶解度模 型:

$$\ln D_{Zr}^{Zircon-melt} = -3.8 - 0.85(M-1) + \frac{12900}{T}$$
(1)

D^{Zircon-melt}是化学计量锆石中 Zr 与熔体中的 Zr 的浓度比,T 为温度(K)。公式(2)定义了在地壳深熔过程中,锆石的饱和行为是岩浆化学成分和温度的函数,实验的温度范围是 750~1020℃。令:

n(Si) + n(Al) + n(Fe) + n(Mg) + n(Ca) +n(Na) + n(K) + n(P) = 1 (2) 则全岩岩石化学参数

$$M = \frac{n(Na) + n(K) + 2 n(Ca)}{n(Al) \times n(Si)}$$

若假设不作锆石矿物的 Zr 和 Hf 校正,纯锆石中含

Zr = 497657 × 10⁻⁶,可用岩石中的 Zr 含量近似代表 熔体 Zr 含量。因此 Miller 等(2003)将计算出锆石 饱和温度的公式修正为:

$$t_{Zr} = \frac{129000}{2.95 + 0.85 M + \ln \frac{496000}{Zr_{min}}}$$
(3)

根据计算结果(表3),稻城岩体的锆石饱和平均温度为765℃,海子山岩体的锆石饱和平均温度为802℃。

5.1.2 稀土元素饱和浓度温度计

独居石是长英质岩石中较为稳定的矿物,并且 对一些微量元素和稀土元素具有一定的控制作用。 Rapp等(1986)和 Montel(1993)通过微量元素和稀 土元素行为的实验,提出 LREE 丰度、独居石的溶解 度和岩浆温度之间存在着强烈的正相关关系,适用 于贫 Ca、Fe、Mg 的花岗岩。公式为:

 $\ln n_{t}$ (REE) = 9.50 + 2.34*D* +

$$0.3897 \sqrt{w(H_2O)/\%} - \frac{13318}{T_{REE}}$$
(4)

其中, n_{t} (REE)包括元素 La、Ce、Pr、Nd、Pm、Sm 和 Gd, T_{REE} 为稀土元素在岩浆中的饱和浓度温度 (K), w(H₂O)为质量分数, $D = \frac{n(Na) + n(K) + n(Li) + 2n(Ca)}{n(Al)} \cdot \frac{1}{n(Al) + n(Si)}$,

计算结果见表 3。稻城岩体的稀土元素饱和浓度温 度为 696~868℃,平均为 783℃,海子山岩体为 801 ~870℃,平均为 844℃。

综上所述,稻城岩体的锆石饱和平均温度为 765℃,海子山岩体的锆石饱和平均温度为802℃; 稻城岩体的稀土元素饱和浓度平均温度为783℃, 海子山岩体平均为844℃。锆石和独居石都是岩浆 中稳定的矿物,封闭温度较高,因此可以将锆元素饱 和浓度温度和稀土元素饱和浓度温度作为岩浆形成 时的温度。因此,本文计算的稻城花岗质岩体岩浆 形成时的大致平均上限温度为783℃。海子山花岗 质岩体岩浆形成时的大致平均上限温度为844℃。 与前人提出的I型和A型花岗岩的温度一致(王强 等,2009;贯涛等,2009)。

5.2 岩石成因及岩浆来源

10⁴×Ga/Al 是区分花岗岩成因类型的一个重 要参考。稻城岩体除样品 1007-5 中 10⁴×Ga/Al 为 2.72 外,其余样品数值为 2.14 ~ 2.49。根据 Whalen 等(1987)根据岩石地球化学对花岗岩成因 类型的判别图解(图 10),在 10⁴×Ga/Al—Ce₂Zr、 Na₂O + K₂O 和 FeO/MgO 图解中, 稻城岩体绝大部 分落入了 I&S 型花岗岩区域内。本文数据及前人研 究成果显示,稻城岩体中 P,O,的含量与 SiO,存在着 负相关的关系,而这与I型花岗岩的分异趋势相同, S型花岗岩中P,O,的含量往往随着SiO,增加而同步 增长(He Defeng et al., 2013 及相关文献)。Whalen 和 Chappell(1988) 提出可以根据黑云母中 $n(Al^{VI})$ 大小划分 I 型和 S 型花岗岩,认为 I 型花岗岩中黑 云母中n(Al^{VI})较低,小于 0.224, 而 S 型花岗岩中 n(Al^{VI})较高(0.353~0.561)。稻城岩体中黑云母 的n(Al^{VI})均小于0.224(表2),表明稻城岩体可能 为I型花岗岩,这与前人研究结论一致。稻城岩体 高度富集强不相容元素暗示花岗质岩浆经历了充分 的分异过程;Eu、Ba、Sr 的负异常应该与源区大量的 斜长石分离结晶作用有关,Ba的负异常还表明了岩 浆的起源可能已经开始远离了岛弧系统:P、Ti 明显 的负异常表明磷灰石、榍石和钛铁矿已发生强烈的 分离结晶。Peppard 等(1969)最初在纯化学体系 液一液萃取时发现稀土元素"四分组效应",并将稀 土元素分为四组,即La-Ce-Pr-Nd, Pm-Sm-Eu—Gd, Gd—Tb—Dy—Ho, Er—Tm—Yb—Lu。赵 振华等(1992,1999)提出花岗质熔体与富挥发分流 体的相互作用是花岗岩稀土元素四分组效应形成的 重要控制因素,因为经历了高度的分离结晶作用的 花岗岩,会出现挥发分和碱金属及稀有、稀土元素极 端富集的现象,最终形成流体一熔体共存体系,而流 体—熔体相互作用导致了熔体相形成 M 型稀土四 分组效应。在图 8a 中稻城岩体中 REE 配分模式图 中,各个样品稀土配分曲线除第二组因 Eu 异常外, 其余三组普遍表现出 M 型稀土四分组效应(四条上 凸曲线)。综合考虑微量元素和稀土元素的地球化 学特征,稻城岩体可能为高分异 I 型花岗岩。

Fig. 10 Petrogenesis discrimination diagrams for Daocheng Pluton and Haizishan Pluton (after Whalen et al., 1987)

根据黑云母中 MgO 和 FeO 含量可以对物质来 源进行区分,在黑云母 ω(MgO)- $\frac{\omega(100)}{\omega(\text{FeO}) + \omega(\text{MgO})}$ 图中(图 11),稻城岩体中的黑 ω (FeO) 云母落入了壳源源区,似乎表明其为全部为地壳来 源,但在实地野外观察中,大量暗色微粒包体的出现 证实了源区实际上确实存在着幔源物质的加入。而 根据丁孝石(1988) 对黑云母中 MgO 含量对黑云母 的分类,典型的壳源黑云母中 MgO < 6%,典型幔源 黑云母的 MgO > 15%,样品 1001 中黑云母的 MgO <6%,表明可能为地壳源区,而样品1005中黑云母 的 MgO 为 8.15% ~ 9.04%, 应属壳幔混源, 且地壳 物质占主体,加上少量的地幔物质。样品 1001 和 1005 在这方面的差异,可能与岩浆的不均一性或者 属于不同的岩浆期次有关,这还需要进一步的研究 工作证明。He Defeng 等(2013)对稻城岩体进行了 同位素分析,其分析结果表明稻城岩体初始锶比值 $[n(^{87}Sr)/n(^{86}Sr)]_{i}$ 为 0.7059 ~ 0.7102, $\varepsilon_{Nd}(t)$ 值 为-5.7~-7.8,ε_щ(t)变化范围较大,为-9.8~ +3.4, Hf 的二阶段模式年龄为1.04~1.88Ga, 这些 同位素特征表明稻城岩体可能来源于晚古元古代到 早中元古代下地壳的部分熔融,并伴有少量(< 20%)亏损地幔的加入。侯增谦等(1995, 2001)和 Reid 等(2007)等也都有类似的论断,认为包括稻城 岩体在内的三叠纪花岗岩源岩主要为扬子克拉通上 中元古代壳源物质部分熔融,并伴有少量地幔来源 物质。

海子山岩体的 10⁴ × Ga/Al 变化于 2.67~3.03 之间,在 10⁴ × Ga/Al—Ce、Zr、Na₂O + K₂O 和 FeO/ MgO 图解中(图 10),海子山岩体悉数进入 A 型范 围内。贾小辉等(2009)认为 A 型花岗岩通常具有 富 Si、碱,贫 Ca、Mg,亏损 Ba、Sr、Eu、P、Ti,稀土元素 配分模式为典型的右倾"海鸥型"等化学成分特征; 同时常丽华等(2006)总结出"铁含量高的黑云母往 往产于碱性岩"的规律,海子山岩体所有黑云母中 n(Mg):n(Fe²⁺) < 2,表明黑云母中 Fe 含量极高。 结合海子山岩体的化学特征,和根据 Ga/Al 比值进 行的成因判别图解,本文认为海子山花岗质岩体为 A 型花岗岩。

同样根据黑云母中 MgO 和 FeO 含量可以对海 子山岩体的物质来源进行区分,在黑云母 $\omega(MgO) - \frac{\omega(FeO)}{\omega(FeO) + \omega(MgO)}$ 图中(图 11),海子 山岩体与稻城岩体一样,黑云母落入了壳源源区,似

乎表明其为全部为地壳来源,但大量暗色微粒包体的存在表明有幔源物质的加入。而根据丁孝石(1988)对黑云母中 MgO 含量对黑云母的分类,海子山岩体中黑云母的 MgO 为6.67%~7.61%,也表明岩浆属壳幔混源,且地壳物质占主体,并伴有少量的地幔物质。通过黑云母反映出的稻城岩体和海子山岩体两个花岗岩体具有壳幔混源的特征,与前人的研究结论一致。

Reid 等(2007)根据花岗岩的 Hf 同位素分析, 认为义敦岛弧中白垩纪花岗岩与三叠纪花岗岩相 比,岩浆具有更加均一的地壳来源,地幔物质的贡献 更大。这些岩浆的源区可能与来源于扬子克拉通的 中元古代物质有关。

5.3 构造背景

义敦岛弧夹持于羌塘地体、甘孜一理塘褶皱带和扬子克拉通之间。它自印支晚期开始了大规模的俯冲造山作用,形成了义敦火山岩浆弧,同时,这一期的岩浆事件也是义敦岛弧碰撞造山带最重要的一次岩浆事件,发育了如侵位年龄为225~217 Ma的 措交玛等花岗质岩体;之后经历了弧一陆碰撞,以同 碰撞花岗岩的发育和造山隆起为标志,并叠置在岩 浆弧花岗岩上,包括于205 Ma 侵位的马熊沟岩体和 197 Ma 时侵位的贡巴纳岩体等;进入燕山晚期,碰 撞造山带发生造山后伸展作用,形成 A 型花岗岩, 代表性的岩体有侵位年龄为116~87 Ma 的高贡岩 体、103 Ma 的夏塞岩体、102 Ma 的渣陇岩体、93~87 Ma 的昌多柯岩体、87 Ma 的连龙岩体、85~77 Ma 的 措莫隆岩体和 83Ma 绒依措岩体等;最后在喜马拉 雅期了遭受了陆内汇聚和大规模平移作用的叠加改 造,并在此岩浆事件中形成了具有多期次的格聂岩 体、侵位年龄为65 Ma 的茨林措岩体、60 Ma 的日拥 岩体和50 Ma 的亚杂岩体(吕伯西等,1993;侯增谦 等,2001;李艳军等,2014)。

关于稻城岩体的构造背景问题,前人持不同观 点。侯增谦等(1995, 2001)和 Reid 等(2007)认为 该岩体产于岩浆弧背景下,与义敦岛弧南段时代相 近的 adakite 质岩、中北段的弧火山岩,甚至青海玉 树地区的弧火山岩一致,均被认为是此构造背景下 的产物 (Wang Baiqiu et al., 2011, 2013; Zhao Shaoqing et al., 2015)。但较新的研究结果表明, 根 据稻城岩体的岩石地球化学数据显示,该岩体形成 于同碰撞到后碰撞的背景之下(Liu Shuwen et al., 2006; 王全伟等, 2008; He Defeng et al., 2013)。本 文根据 Rb/10—Hf—3 × Ta 构造判别图解(图 12a) 对稻城岩体进行构造判别分类,结果显示稻城岩体 除样品 1007 位于火山弧花岗岩区域内,其余样品均 落入了与碰撞有关的大地构造背景区内,与上述的 后一种认识一致。结合前人研究成果(邓晋福等, 2015a,b),本文认为稻城岩体可能形成于甘孜一理 塘洋向西俯冲、闭合之后的弧一陆碰撞构造背景下。 并且在此地质过程中,在下地壳发生大规模底侵和 减薄作用,幔源镁铁质岩浆为地壳底部提供了持续 地高温,导致古老的镁铁质岩石发生熔融产生了稻 城岩体等晚三叠世的花岗岩,并且因为密度对比的 原因,持续不断地注入到浅部岩浆房并上升成为稻 城岩体。沿甘孜一理塘缝合带分布的大面积的晚三 叠世花岗岩可能是对在下地壳发生大规模底侵和减 薄作用引发的温度升高的响应(侯增谦等,2001;He Defeng et al., 2013)。Reid 等(2005a) 根据稻城岩 体中的角闪石和黑云母的40 Ar/39 Ar 年龄等研究结 果,认为义敦岛弧东部的花岗质岩体侵位深度较浅, 位于中上一上地壳深度,并且侵位后经历了快速的 冷却过程,在侏罗纪之初,义敦岛弧整体冷却至 300℃以下。因此,本文认为稻城岩体可能为与扬子 克拉通有关的晚古元古代至早中元古代的下地壳物 质,在甘孜—理塘洋向西俯冲、闭合后的同碰撞构造 背景下,因幔源岩浆的底侵作用而发生部分熔融,同 时伴有少量的亏损地幔成分加入,因密度上升至地 壳中较浅深度侵位。

A 型花岗岩的成因类型和构造背景较为复杂, Eby(1992)结合世界各地 A 型花岗岩岩石地球化学 和产出的构造背景,提出 A 型花岗岩不仅限于 Loiselle 和 Wones(1979)提出的非造山环境,还应该 包括造山晚期、造山后期等多种与俯冲有关的构造 环境,即可分为A₁型和A₂型。洪大卫等(1995)根 据岩石地球化学特征 Ga/Al 和 R₁将碱性花岗岩分 为了 AA 型和 PA 型,分别对应 A₁型和 A₂型。目前, 白垩纪花岗岩在青藏高原众多地区均有报道,如松 潘--甘孜褶皱带(Roger et al., 2004), 中--东羌塘地 体,和拉萨地体东南部等(李兴振等,1999)。这些 白垩纪的岩浆作用大多数被解释为与安第斯弧型背 景或板片的伸展作用有关。对于义敦岛弧中的白垩 纪 A 型花岗岩,前人虽然在大地构造背景上看法上 不一致,如 Reid 等(2007)认为是特提斯洋向北俯冲 至亚洲大陆下引发的区域伸展作用的结果,李艳军 等(2014)认为与松潘一甘孜褶皱带和义敦岛弧发 生碰撞造山后的伸展背景有关,而 Wang Xinsong 等 (2014a)认为与白垩纪拉萨地体与羌塘地体碰撞事 件有关。但对义敦岛弧中白垩纪 A 型花岗岩产出 于伸展环境下已成为共识,且A1和A2型均有发育。 如连龙岩体为 A₁型非造山花岗岩(侯增谦等, 2001),另外一些白垩纪花岗岩体的地球化学数据 表明形成于与俯冲有关的伸展环境,即A2型,如渣 陇岩体、绒依措岩体、措莫隆岩体夏寒岩体和格聂 (南)岩体等(侯增谦等,2001;李艳军等,2014;马比 阿伟等,2015)。根据 $10^4 \times \text{Ga/Al} - R_1$ 的判别图解 (图 12b),海子山岩体为 PA 型,即造山后花岗岩。 桑隆康和马昌前(2012)在解释超熔线花岗岩与低 熔线花岗岩时提出,超熔线花岗岩形成于伸展构造 环境,在低水压条件下当温度低于熔线时,富钠和富 钾两个长石才会同时出熔并形成条纹长石,一般仅 由碱性长石和石英两种矿物组成,缺乏单粒钠质斜 长石:而低熔线花岗岩一般是在含水条件下陆壳较 深层位结晶形成的,钠长石、钾长石则会同时结晶出 来,并以钾长石和石英颗粒的不连续出现为特征,并 目造山花岗岩多数低熔线型。在野外实地考察和室 内显微镜下观察过程中,稻城岩体和海子山岩体均 出现钠质斜长石颗粒,并且可见钾长石和石英的不 连续出现。因此,两个岩体应均属于低熔线花岗岩, 并且可能是在含水条件下,与造山事件有关的环境 下形成的,这同样证明海子山岩体可能为造山后的 A,型花岗岩。对于区域内 A₁型与 A,型花岗岩共存 的现象,侯增谦等(2001)对此的解释是,尽管义敦

图 12 Rb/10—Hf—3×Ta (a)和 10⁴×Ga/Al— R_1 (b)图解(a,据 Harris et al.,1986;b,据洪大卫等,1995) Fig. 12 Diagrams of Rb/10—Hf—3×Ta (a) and 10⁴×Ga/Al— R_1 (b)

(a, after Harris et al. ,1986; b, after Hong Dawei et al. ,1995&)

岛弧白垩纪花岗岩的岩浆起源条件和演化途径不尽 相同,但总体上具有相似的地球动力学背景。它们 发育在构造演化进程的晚期,经历俯冲一碰撞一隆 升之后,于A型花岗岩活动时,总体处于造山后板 内或陆内环境。此外,Reid等(2005a)根据海子山 岩体中的角闪石和黑云母的⁴⁰Ar/³⁹Ar年龄等研究 结果,认为白垩纪的花岗岩体侵位后的冷却速度同 样较快,表明也是其在地壳中的侵位深度较浅,这与 花岗岩体侵入到低级变质岩石的现象一致。

6 结论

(1)根据矿物分类,稻城岩体和海子山岩体中 斜长石为中酸性斜长石,主要是中长石和更长石;钾 长石主要为正长石;稻城岩体中黑云母为铁叶云母 和铁质黑云母,海子山岩体中黑云母为铁质黑云母, 黑云母的成分表明两个岩体的物质来源均为壳幔混 源,且稻城岩体为I型花岗岩。

(2)根据锆元素饱和浓度温度计和稀土元素饱 和浓度温度计,稻城岩体的平均 $t_{zr} = 765 \degree$,平均 $t_{REE} = 783 \degree$,海子山岩体的平均 $t_{zr} = 802 \degree$,平均 $t_{REE} = 844 \degree$ 。因此,稻城岩体岩浆形成的平均上限 温度为 $783 \degree$,海子山岩体岩浆形成时的平均上限 温度为 $844 \degree$ 。

(3)稻城岩体主要为高钾钙碱性系列,具过铝 质特征的I型花岗岩,可能为与扬子克拉通有关的 晚古元古代至早中元古代的下地壳物质,在甘孜一 理塘洋向西俯冲背景、闭合及之后的同碰撞构造背 景下,因幔源岩浆的底侵作用而发生部分熔融,同时 伴有少量的亏损地幔成分加入,因密度上升至中一 上地壳深度侵位,并且侵位后经历了快速的冷却过 程,在侏罗纪之初冷却至 300℃以下。海子山岩体 为与俯冲有关的造山后伸展环境下形成的白垩纪 A₂型花岗岩,属高钾钙碱性一钾玄岩系列,具过铝 质特征,岩浆来源同样为地壳物质伴有少量地幔物 质混合而成,且在地壳中侵位深度较浅,之后经历快 速的冷却过程。

致谢:两位审稿专家为提高本文质量提出了宝 贵的意见和看法,表示感谢。

参考文献 / References

(The literature whose publishing year followed by a "&" is in Chinese with English abstract; the literature whose publishing year followed by a "#" is in Chinese without English abstract)

- 常丽华,陈曼云,金巍,李世超,于介江.2006.透明矿物薄片鉴定手 册.北京:地质出版社.
- 丁孝石.1988. 西藏中南部花岗岩类中云母矿物标型特征及其地质意 义. 中国地质科学院矿床地质研究所所刊,1:22~50.
- 邓晋福,冯艳芳,狄永军,刘翠,肖庆辉,苏尚国,赵国春,孟斐,马帅, 姚图. 2015a. 岩浆弧火成岩构造组合与洋陆转换. 地质论评, 61(3):473 ~ 484.
- 邓晋福,刘翠,冯艳芳,肖庆辉,狄永军,苏尚国,赵国春,段培新,戴 蒙.2015b.关于火成岩常用图解的正确使用:讨论与建议.地质 论评,61(4):717~734.
- 管士平.1999. 川西若洛隆一措莫隆复式花岗岩体岩石学及其有关锡 矿成矿的物理化学条件. 特提斯地质,23:58 ~72.

洪大卫,王式洸,韩宝福,靳满元.1995.碱性花岗岩的构造环境分类

及其鉴别标志.中国科学(B辑),25(4):418~426.

- 郇伟静,袁万明,李娜.2011. 川西甘孜一理塘金矿带形成条件的矿物 电子探针与裂变径迹研究. 现代地质,25(2):261~270.
- 侯增谦,侯立玮,叶庆同,刘福禄,唐国光.1995. 三江地区义敦岛弧构 造一岩浆演化与火山成因块状硫化物矿床.北京:地震出版社,1 ~220.
- 侯增谦,曲晓明,周继荣,杨岳清,黄典豪,吕庆田,唐绍华,余金杰,王 海平,赵金花.2001.三江地区义敦岛弧碰撞造山过程:花岗岩记 录.地质学报,75(4):484~497.
- 侯增谦,杨岳清,王海平,曲晓明,吕庆田,黄典豪,吴宣志,余今杰,唐 绍华,赵金花.2003.三江义敦岛弧碰撞造山过程与成矿系统.北 京:地质出版社,1~345.
- 侯增谦,杨岳清,曲晓明,黄典豪,吕庆田,王海平,余金杰,唐绍华. 2004.三江地区义敦岛弧造山带演化和成矿系统.地质学报,78 (1):109~120.
- 胡建,邱检生,王汝成,蒋少涌,倪培,于津海.2006.江苏东海片麻状 碱性花岗岩的地球化学及其构造指示意义.地质学报,80(12): 1877~1891.
- 贾小辉,王强,唐功建.2009. A 型花岗岩的研究进展及意义. 大地构造与成矿学,33(3):465~480.
- 雷敏,吴才来,高前明,国和平,刘良根,果祥炎,郜源红,陈其龙,秦海 鹏.2010.铜陵地区中酸性侵入岩及其包体的成因和矿物温压计 的应用.岩石矿物学杂志,29(3):271~288.
- 李兴振,刘文均,王义昭,朱勤文.1999.西南三江地区特提斯构造演 化与成矿(总论).北京:地质出版社.
- 李艳军,魏俊浩,陈华勇,李欢,陈冲,侯本俊.2014.义敦岛弧带夏塞 早白垩世 A 型花岗岩成因:锆石 U-Pb 年代学、地球化学及 Hf 同位素制约.大地构造成矿学,38(4):939~953.
- 刘春花,吴才来,雷敏,秦海鹏,李名则.2013.秦岭东江口和柞水花岗 岩的矿物成分特征及其形成的温压条件.岩石矿物学杂志,32 (3):341~354.
- 刘权.2003.四川夏塞银多金属矿床地质特征及成因.矿床地质,22 (2):121~128.
- 陆丽娜,范宏瑞,胡芳芳,杨奎峰,蓝廷广.2011.胶西北郭家岭花岗闪 长岩侵位深度:来自角闪石温压计和流体包裹体的证据.岩石学 报,27(05):1521~1532.
- 路远发. 2004. GeoKit: 一个用 VBA 构建的地球化学工具软件包. 地 球化学,33(5):459~464.
- 吕伯西,王增,张能德,等.1993.三江地区花岗岩类及其成矿专属性. 北京:地质出版社.
- 马比阿伟,木合塔尔·扎日,文登奎,张明春.2015. 三江造山带义敦 岛弧中段格聂(南)花岗岩体地球化学特征及地质意义. 地质学 报,89(2):305~318.
- 莫宣学,路凤香,沈上越,等.1993. 三江特提斯火山作用与成矿.北 京:地质出版社,1~267.
- 莫宣学,潘桂棠.2006.从特提斯到青藏高原形成:构造一岩浆事件的 约束.地学前缘,13(6):43~52.
- 潘桂棠. 1994. 全球洋一陆转换中的特提斯演化. 沉积与特提斯地质, 18:23~40.
- 曲晓明,侯增谦,周书贵,唐绍华.2002.川西连龙含锡花岗岩的时代 与形成构造环境.地球学报,23(4):223~228.
- 桑隆康,马昌前.2012.岩石学.北京:地质出版社.
- 施俊法,李友枝,金庆花,唐金荣,姚华军.2006.世界矿情.北京:地质 出版社.
- 汪洋.2008.再论南岭侏罗纪"铝质"A型花岗岩的成因及其对古低 温线的制约.大地构造与成矿学,32(3):365~381.
- 汪洋.2009.北京白查 A 型花岗岩的地球化学特征及其成因与构造 指示意义.岩石学报,25(1):13~24.

- 王楠,吴才来,秦海鹏,雷敏,郭文峰,张昕,陈红杰.2016. 川西义敦岛 弧稻城花岗岩体和海子山花岗岩体锆石 U-Pb 年代学、Hf 同位 素特征及地质意义. 地质学报,90(11):3227~3245.
- 王强,赵振华,熊小林.2000.桐柏一大别造山带燕山晚期 A 型花岗 岩的厘定.岩石矿物学杂志,19(4):297~306.
- 王全伟,王康明,阚泽忠,付小方.2008. 川西地区花岗岩及其成矿系 列.北京,地质出版社.
- 王涛,刘燊,胡瑞忠,冯彩霞,齐有强,冯光英,王长华.2009.苏鲁造山带 A 型花岗岩的元素地球化学及其成因.吉林大学学报(地球 科学版),39(4):676~688.
- 应汉龙,王登红,付小方.2006.四川巴塘夏塞花岗岩和银多金属矿床 年龄及硫,铅同位素组成.矿床地质,25(2):135~146.
- 张能德,曹亚文,廖远安,赵勇,张怀举,胡道清,张睿,王林彰.1998. 四川甘孜一理塘裂谷带地质与成矿.北京:地质出版社.
- 赵振华, 增田彰正, Shabani M B. 1992. 稀有金属花岗岩的稀土元素 四分组效应. 地球化学, (3):221~233.
- 赵振华,熊小林,韩小东.1999.花岗岩稀土元素四分组效应形成机理 探讨——以千里山和巴尔哲花岗岩为例.中国科学(D辑),29 (4):331~338.
- 周作侠. 1986. 湖北丰山洞岩体成因探讨. 岩石学报, 2(1):59~70.
- 邹光富,郑荣才,胡世华,陈才金,蒋洪昌,伍洪邦.2008.四川巴塘县 夏塞银多金属矿床特征.成都理工大学学报(自然科学版),35 (1):93~102.
- Chang Lihua, Chen Manyun, Jin Wei, Li Shichao, Yu Jiejiang. 2006#. Manual for identification of transparent mineral thin section. Beijing:Geological Publishing House.
- Deng Jinfu, Feng Yanfang, Di Yongjun, Liu Cui, Xiao Qinghui, Su Shangguo, Meng Fei, Yao Tu. 2015a&. Magmatic arc and Ocean— Continent Transition: discussion. Geological Review, 61 (3): 473 ~484.
- Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Di Yongjun, Su Shangguo, Zhao Guochun, Duan Peixin, Dai Meng. 2015b&. On the correct application in the common igneous petrological diagrams: discussion and suggestion. Geological Review, 61(4):717~734.
- Ding Xiaoshi. 1988 #. Characteristics and geological significance of the mica minerals in the granites in the south central Tibet. Journal of CAGS,1:22 ~ 50.
- Dong Guochen, Mo Xuanxue, Zhao Zhidan, Zhu Dicheng, Robbin C G, Kong Huilei, Wang Shuo. 2013. Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in Western Yunnan, China: Implications for the closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 62:282 ~ 294.
- Eby G N 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology,20:641 ~644.
- Foster M D. 1960. Interpretation of composition of trioctahedral micas. United States Geological Survey Professional Paper, 354 – B:11 ~ 49.
- Guan Shiping. 1999&. The petrology of the rolhorong and Comolong Compound Granite Masses and physicochemical conditions of the formation of associated Sn deposits in western Sichuan. Tethyan Geology, 23:58 ~ 72.
- Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19(1):67~81.
- He Defeng, Zhu Weiguang, Zhong Hong, Ren Tao, Bai Zhongjie, Fan Hongpeng. 2013. Zircon U-Pb geochronology and elemental and Sr-Nd—Hf isotopic geochemistry of the Daocheng granitic pluton from the Yidun Arc, SW China. Journal of Asian Earth Sciences, 67 ~ 68 (2013):1~17.

- Holtz F, Johanne W, Tamic N. 2001. Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications. Lithos, 56(1):1 ~ 14.
- Hong Dawei, Wang Shiguang, Han Baofu, Jin Manyuan. 1995 #. Classification and identification of the tectonic environment of alkaline granite. Science in China (Series B), 25(4):418 ~ 426.
- Hou Zengqian, Hou Liwei, Ye Qingtong, Liu Fulu, Tang Guoguang. 1995
 #. The tectonic—magmatic evolution of Yidun island arc in " Sanjiang" region and volcanogenic massive sulfide deposit. Beijing: Seismological Press, 1 ~ 220.
- Hou Zengqian, Qu Xiaoming, Zhou Jirong, Yang Yueqing, Huang Dianhao, Lü Qingtian, Tang Shaohua, Yu Jinjie, Wang Haiping, Zhao Jinhua. 2001 &. Collision—orogenic processes of the Yidun Arc in the Sanjiang region: Record of granites. Acta Geologica Sinica, 75 (4):484~497.
- Hou Zengqian, Yang Yueqing, Wang Haiping, Qu Xiaoming, Lv Qingtian, Huang Dianhao, Wu Xuanzhi, Yu Jinjie, Tang Shaohua, Zhao Jinhua. 2003 #. Yidun arc collision orogenic process and metallogenic system in Sanjiang. Beijing: Geological Publishing House, 1 ~ 345.
- Hou Zengqian, Yang Yueqing, Qu Xiaoming, Huang Dianhao, Lv Qingtian, Wang Haiping, Yu Jinjie, Tang Shaohua. 2004&. Tectonic evolution and mineralization systems of the Yidun Arc Orogen in Sanjiang region, China. Acta Geologica Sinica, 78 (1): 109 ~ 120.
- Hu Jian, Qiu Jiansheng, Wang Rucheng, Jiang Shaoyong, Ni Pei, Yu Jinhai. 2006&. Geochemistry of gneissic alkaline granites in Donghai County, Jiangsu Province, and its tectonic significances. Acta Geologica Sinica, 80(12):1877 ~ 1891.
- Huan Weijing, Yuan Wanming, Li Na. 2011 &. Study on the mineral electron microprobe evidence of the formation conditions and fission track of gold deposits in Ganzi—Litang Gold Belt, western Sichuan Province. Geoscience, 25(2):261 ~ 270.
- Jia Xiaohui, Wang Qiang, Tang Gongjian. 2009 & A-type granites: Research progress and implications. Geotectonica et Metallogenia, 33 (3):465~480.
- Klimm K, Holtz F, Johannes W and King P L. 2003. Fractionation of metaluminous A-type granites: An experimental study of Wangrah Suite, Lachlan Fold Belt, Australia. Precam. Brian. Res., 124:327 ~341.
- Lei Min, Wu Cailai, Gao Qianming, Guo Heping, Liu Lianggen, Guo Xiangyan, Gao Yuanhong, Chen Qilong, Qin Haipeng. 2010&. Petrogenisis of intermediate—acid intrusive rocks and enclaves in Tongling area and the application of mineral thermobarometry. Acta petrologica et Mineralogica, 29(3):271~288.
- Leng Chengbiao, Zhang Xingchun, Hu Ruizhong, Wang Shouxu, Zhong Hong, Wang Waiquan, Bi Xianwu. 2012. Zircon U-Pb and molybdenite Re-Os geochronology and Sr—Nd—Pb—Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China. Journal of Asian Earth Sciences. 60,31~48.
- Li Xingzhen, Liu Wenjun, Wang Yizhao, Zhu Qinwen. 1999 #. Tethys tectonic evolution and mineralization in Sanjiang area, southwestern China(general). Beijing; Geological Publishing House.
- Li Yanjun, Wei Junhao, Chen Huayong, Li Huan, Chen Chong, Hou Benjun. 2014 &. Petrogenisis of the Xiasai early Cretaceous A-type granite from the Yidun Island Arc Belt, SW China: Constraints from zircon U-Pb age, geochemistry and Hf isotope. Geotectonica et Metallogenia, 38(4):939 ~ 953.
- Liu Chunhua, Wu Cailai, Lei Min, Qin Haipeng, Li Mingze. 2013&.

Mineral composition and temperature— pressure conditions of Dongjiangkou and Zhashui granites in the Qinling mountain. Acta Petrologica et Mineralgica, 32(3):341 ~ 354.

- Liu Quan. 2003 &. Geological characteristics and genesis of Xiasai silver_ polymetallic seposit in western Sichuan Province. Mineral deposits, 22(2):121 ~ 128.
- Liu Shuwen, Wang Zongqi, Yan Quanren, Li Qiugen, Zhang Dehui, Wang Jianguo, Yang Bin, Gu Libing, Zhao Fengshan. 2006. Indosinian tectonic setting of the Southern Yidun Arc: constraints from SHRIMP zircon chronology and geochemistry of dioritic porphyries and granites. Acta Geologica Sinica(English Edition), 80: 387 ~ 399.
- Loiselle M and Wones D. 1979. Characteristics and origin of anorogenic granites. Geological of Society of America, 1979, 11(7):468.
- Lu Lina, Fan Hongrui, Hong Fangfang, Yang Kuifeng, Lan Tingguang. 2011& Emplacement depth of the Guojialing granodiorites from the northwestern Jiaodong Peninsula, eastern China: Evidences from hornblende thermometry and fluid inclusions. Acta Petrologica Sinica, 27 (05):1521 ~ 1532.
- Lu Yuanfa. 2004&. Geokit: A geochemical toolkit for Microsoft Excel. Geochimica, 33(5):459~464.
- Mabi Awei, Zari Muhetaer, Wen Dengkui, Zhang Mingchun. 2015&. Geochemical characteristics of sourthern Genie granite in the eastern Tibet and its geological significance. Acta Geologica Sinica,89(2): 305 ~ 318.
- Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids: Geological Society of America Bulletin, 101:635 ~ 643.
- Martin H, Smiithies R H, Rapp R, Moyen J F and Champion D. 2005. An overview of adakite, tonalite—trondhjemite—granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79 (1 ~ 2): 1 ~ 24.
- Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 74: 193 ~ 227.
- Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31:529 ~ 532.
- Mo Xuanxue, Lu Fengxiang, Shen Shangyue, et al. 1993 #. Volcano and mineralization of Sanjiang Tethyan. Beijing: Geological Publishing House, 1 ~ 267.
- Mo Xuanxue, Pan Guitang. 2006 &. From the Tethys to the formation of the Qinghai—Tibet Plateau: Constrained by tectono—magmatic events. Earth Science Frontiers, 13(6):43 ~ 52.
- Montel J M. 1993. A model for monazite/melt equilibrium and the application to the generation of granitic magma. Chemical Geology, 110:127 ~ 146.
- Peng Touping, Zhao Guochun, Fan Weiming, Peng Bingxia, Mao Yongsheng. 2014. Zircon geochronology and Hf isotopes of Mesozoic intrusive rocks from the Yidun terrane, eastern Tibetan Plateau: Petrogenesis and their bearings with Cu mineralization. Journal of Asian Earth Sciences, 80:18 ~ 33.
- Peppard D F, Mason G W, Lewey S. 1969. A tetrad effect in the liquid liquid extraction ordering of lanthanides. J Inorg Nucl. Chem. ,31: 2271 ~ 2272.
- Pan Guitang. 1994&. An evolution of Tethys in global ocean—continent transformation. Tethyan Geology, 18:23 ~ 40.
- Qu Xiaoming, Hou Zengqian, Zhou Shugui. 2002. Geochemical and Nd, Sr isotopic study of the post-orogenic granites in the Yidun Arc Belt of Northern Sanjiang Region, Southwestern China. Resource Geology, 52(2):163 ~ 172.
- Qu Xiaoming, Hou Zengqian, Zhou Shugui, Tang Shaohua. 2002 &. The age and tectonic setting of Lianlong Sn-bearing granite in western

Sichuan Province. Acta Geoscientia Sinica, 23(3):223 ~ 228.

- Rapp R P, Watson E B. 1986. Monazite solubility and dissolution kinetics: implication for the Th and light rare-earth chemistry of felsic magmas. Contributions to Mineralogy and Petrology,94:304 ~ 316.
- Reid A J, Wilson C J L, Phillips D and Liu Shun. 2005a. Mesozoic cooling across the Yidun Arc, central-eastern Tibetan plateau; A reconnaissance ⁴⁰ Ar/³⁹ Ar study. Tectonophysics, 398;45 ~ 66.
- Reid A J, Wilson C J L, Liu Shun. 2005b. Structural evidence for the Permo—Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau. Journal of Structural Geology, 27:119 ~ 137.
- Reid A J, Wilson C J L, Liu Shun, Pearson N and Belousova E. 2007. Mesozoic plutons of the Yidun Arc, SW China: U/Pb geochronology and Hf isotopic signature. Ore Geology Reviews, 31:88 ~ 106.
- Roger F, Malavieille M, Leloup P H, Calassou S and Xu Z. 2004. Timing of granite emplacement and cooling in the Songpan Garzê Fold Belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Sciences, 22: 465 ~481.
- Sang Longkang, Ma Changqian. 2012 #. Petrology. Beijing: Geological Publishing House.
- Shi Junfa, Li Youzhi, Jin Qinghua, Tang Jinrong, Yao Huajun. 2006#. The world situation of mine. Beijing: Geological Publishing House. Smith J V. 1974. Feldspar minerals: 2 Chemical and Textural Properties. New York: Springer.
- Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42:313 ~ 345.
- Wang E and Burchfiel B C. 2000. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geological Society of America(GSA), 112(3):413 ~423.
- Wang Baiqiu, Zhou Meifu, Li Jianwei, Yan Danping. 2011. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization. Lithos, 127:24 ~ 38.
- Wang Baiqiu, Zhou Meifu, Chen Wei Terry, Gao Jianfeng, Yan Danping. 2013. Petrogenesis and tectonic implications of the Triassic volcanic rocks in the northern Yidun Terrane, Eastern Tibet. Lithos, 175 ~ 176:285 ~ 301.
- Wang Nan, Wu Cailai, Qin Haipeng, Lei Min, Guo Wenfeng, Zhang Xin, Chen Hongjie. 2016 &. Zircon U-Pb geochronology and Hf isotopic characteristics of the Daocheng granite and Haizishan granite in the Yidun Arc, western Sichuan, and their geological significance. Acta geological Sinica, 90(11):3227 ~ 3245.
- Wang Qiang, Zhao Zhenhua, Xiong Xiaolin. 2000 &. The ascertainment of Late-Yanshanian A-type granite in Tongbai—Dabie Orogenic Belt. Acta Petrologica et Mineralogica, 19(4):297 ~ 306.
- Wang Quanwei, Wang Kangming, Gan Zezhong, Fu Xiaofang. 2008 #. Granite and its metallogenic series in West Sichuan. Beijing: Geological Publishing House.
- Wang Tao, Liu Jie, Hu Ruizhong, Feng Caixia, Qi Youqiang, Feng Guangying, Wang Changhua. 2009&. Elemental geochemistry and petrogenesis of A-type granites in the Sulu Orogen. Journal of Jilin University(Earth Science Edition), 39(4):676~688.
- Wang Xinsong, Bi Xianwu, Leng Chengbiao, Zhang Hong, Tang Hongfeng, Chen Youwei, Yin Guanghou, Huang Dingzhu, Zhou Meifu. 2014a. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo—Cu—(W) mineralization in the southern Yidun Arc, SW China: Implications for metallogenesis and

geodynamic setting. Ore Geology Reviews , 61 :73 $\sim 95.$

- Wang Xinsong, Hu Ruizhong, Bi Xianwu, Leng Chengbiao, Pan Lichuan, Zhu Jingjing, Chen Youwei, 2014b. Petrogenesis of late Cretaceous Itype granites in the southern Yidun Terrane: New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos, 208 ~ 209:202 ~ 219.
- Wang Yang. 2008 &. Petrogenesis of the Jurassic aluminous A-type granites in the Nanling area, South China and its constraint on the paleo-gemtherm. Geotectonica et Metallogenia, 32(3):365 ~ 381.
- Wang Yang. 2009 &. Geochemistry of the Baicha A-type granite in Beijing municipality: Petrogenetic and tectonic implications. Acta Petrologica Sinica,25(1):13 ~ 24.
- Wang Yuejun, Xing Xiaowan, Cawoodd P A, Lai Shaocong, Xia Xiaoping, Fan Weiming, Liu Huichuan, Zhang Feifei. 2013. Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana. Lithos, (182 ~ 183):67 ~ 85.
- Watson E B and Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64:295 ~ 304.
- Whalen J B, Currie K L, Chappel B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions Mineralogy Petrology,95:407 ~419.
- Whalen J B and Chappell B W 1988. Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of Lachlan fold belt, southeast Australia. American Mineralogist, 73(3):281 ~296.
- Ying Hanlong, Wang Denghong, Fu Xiaofang. 2006 &. Timing and lead and sulfur isotope composition of Xiasai granite and silver polymetallic deposit in Batang, Sichuan Province. Mineral Deposits, 25(2):135 ~ 146.
- Zhang Nengde, Cao Yawen, Liao Yuanan, Zhao Yong, Zhang Huaiju, Hu Daoqing, Zhang Rui, Wang Linzhang. 1988 #. Geology and mineralization Sichuan Ganzi Litang rift zone. Beijing: Geological Publishing House.
- Zhao Shaoqing, Tan Jun, Wei Junhao, Tian Ning, Zhang Danhan, Liang Shengnan, Chen Jiajie. 2015. Late Triassic Batang Group arc volcanic rocks in the northeastern margin of Qiangtang terrane, northern Tibet; partial melting of juvenile crust and implications for Paleo? Tethys ocean subduction. International Journal of Earth Sciences, 104; 369 ~ 387.
- Zhao Zhenhua, Zeng Tianzhangzheng, Shabani M B. 1992 &. Tetrad effects of rare-earth elements in rare-metal granites. Geochimica, (3):221 ~233.
- Zhao Zhenhua, Xiong Xiaolin, Han Xiaodong. 1999. Exploration for formation mechanism of tetrad effects of rare earth elements in granite:Take Qianlishan and barze granites as examples. Science in China(SeriesD),29(4):331~338.
- Zhu Jingjing, Hu Ruizhong, Bi Xianwu, Zhong Hong, Chen Heng. 2011. Zircon U-Pb ages, Hf—O isotopes and whole-rock Sr—Nd—Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos, 126:248 ~ 264.
- Zhou Zuoxia. 1986&. The origin of intrusive mass in Fengshandong, Hubei Province. Acta Petrologica Sinica,2(1):59~70.
- Zou Guangfu, Zheng Rongcai, Hu Shihua, Chen Caijin, Jiang Hongchang, Wu Hongbang. 2008 &. Geological features of the Xiasai silver polymetallic deposit in West Sichuan, China. Journal of Chengdu University of Technology (Science&Technology Edition), 35 (1): 93 ~ 102.

Mineralogical, Geochemical Features of Typical Mesozoic Granites in the Yidun Arc, Western Sichuan and a Discussion on the Magma Origin

WANG Nan^{1,2)}, WU Cailai²⁾, QIN Haipeng²⁾

 Ministry of Land and Resources Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037;
 Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037

Objectives: The Yidun Arc is a Triassic volcanic arc located between the Songpan Garzê Fold Belt and the Qiangtang Block, southwestern China. Daocheng Pluton and Haizishan Pluton which outcroped in the Yidun Arc are late Triassic and Cretaceous granitic plutons, respectively.

Methods: In this paper, we combine petrogeochemistry with systematic mineralogical characteristics of the plutons mentioned above by means of petrological observation, electron microprobe analysis and scanned eletron microscope.

Results: The results show that: the two granitic plutons are mainly composed of plagioclase (andesine oligoclase), K-feldspar(orthoclase), quartz and biotite(siderophyllite—iron biotite), and the accessory minerals include zircon, sphene, magnetite and apatite; the chemical composition of biotites shows that the parental magma for the two granitic plutons was a hybrid melt possessed depleted mantle and typical crustal source. Daocheng Pluton shows the features of high-K calc-alkaline with peraluminous characteristics, whereas Haizishan Pluton belongs to high-K calc-alkaline to shoshonite series with peraluminous feature. The temperature of the two plutons were limited according to two geothermometers. The average upper limit temperature of Daocheng Pluton were 783° , and the average upper limit formed temperature of magma of Haizishan Pluton was 844° C.

Conclusions: In combination with previous studies on magmatism in the Yidun Arc, we think that Daocheng pluton belongs to high fractionated I-type granite, and we propose that the source for the Daocheng granite which probably derived from a Late Paleoproterozoic to Early Mesoproterozoic lower crust material related to Yangtze Craton, underwent the partial melting of the lower crust triggered by the underplating of large-scale mantle-derived magma under the syn-collisional tectonic setting following the westward subduction and closure of the Garz —Litang paleo-ocean. The generated hybrid melts which including lower crustal magma and minor depleted mantle-derived magma intruded in middle—upper crust and gave rise to the Daocheng granite because of the density. Daocheng granite then underwent rapid cooling and had cooled to below 300° C by the beginning of the Jurassic. Haizishan pluton was an A₂-type granitic pluton and likely to form under post-collisional ectonic setting related to arc—continent collision during the Early Cretaceous. As same as Daocheng granite, the source melt of Haizishan granite also included crustal magma and minor mantle-derived magma, these hybrid melts thereafter were continuously injected into a shallow-level chamber and experienced rapid cooling, suggesting they were emplaced at shallow crustal depths.

Acknowledgements: This work was financially supported by two China Geological Survey Projects (Grant No. 121201103000150004, 12120114061701 and 12120115027001). The authors would like to thank the anonymous reviewers for the comments and suggestions significantly improved the quality of this manuscript.

Keywords: Yidun Arc; Granitic pluton; Mineralogy; Geochemistry; Temperature condition; Geological significance

Introduction to Author: WANG Nan, Male; born in 1988; assistant research fellow; his major research interests include mineralogy, petrology and ore deposits.

Corresponding author: WU Cailai, Male; born in 1960; professor of Institute of Geology, Chinese Academy of Geological Sciences; specialization in the evolution of orogenic granite. Email: wucailai@126.com

Manuscript received on: 2015-11-03; Accepted on: 2017-04-06; Edited by: ZHANG Yuxu.

Doi: 10.16509/j.georeview.2017.04.010