重庆南川晚二叠世凝灰岩的元素地球化学特征

田和明 1,2 ,代世峰 2 ,李大华 1,3 ,刘东 1,3 ,邹建华 1,3 ,李甜 1,3)

- 1) 外生成矿与矿山环境重庆市重点实验室(重庆地质矿产研究院),重庆,400042;
 - 2) 中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京,100083;
 - 3) 煤炭资源与安全开采国家重点实验室重庆研究中心,重庆,400042

内容提要:运用电感耦合等离子体质谱(ICP-MS)、X 射线荧光光谱(XRF)、X 射线衍射(XRD)、带能谱的扫描电镜(SEM-EDX)等方法对重庆南川晚二叠世凝灰岩的元素地球化学特征进行了研究。研究发现,凝灰岩中富集 Al、Ti、Li、Cu、V、Cr、Co、Ni、Nb、Ta、Zr、Hf、Ga、Sc、Th、U 和稀土元素(REE),其中 Ti、Nb、Ga 和 REE 异常富集,达到了伴生矿产的工业品位,其综合利用价值值得关注。凝灰岩自底部至顶部微量元素含量有明显增加的趋势,稀土元素(REE)在垂向上分异明显,凝灰岩上部富集轻、中稀土,向下逐渐过渡到富集重稀土类型。凝灰岩中元素的组合特征表明其原始物质可能来源于峨眉山玄武岩岩浆,属于基性火山灰成因。

关键词:凝灰岩;稀土元素;地球化学;重庆南川

煤或含煤岩系中有益金属元素和共(伴)生矿床的研究,是煤地质学研究的一个重要方向,近年来煤或煤系地层中共伴生稀有金属元素的研究越来越受到国内外众多学者重视。例如,Dai Shifeng等(2010)在云南东部晚二叠世煤系地层中发现一种新型火山灰成因的Nb(Ta)—Zr(Hf)—REE—Ga多金属矿床;中国内蒙古准格尔煤中发现的超大型镓一铝矿床(Dai Shifeng et al.,2006;代世峰等,2006),成为煤中稀有分散元素找矿理论的重要补充;Seredin和Dai Shifeng(2012)对煤中镧系元素和钇可能作为潜在的可替代资源进行了研究,并对稀土元素的类型划分及研究方法进行了评述。这些煤系地层共伴生稀有金属矿床的研究,不仅具有重要的经济效益,而且对矿产资源的综合利用具有理论指导意义。

本文以重庆晚二叠世煤系地层中凝灰岩为研究 对象,讨论了凝灰岩中常量和微量元素的含量及赋 存特征,并对部分微量元素的地球化学特征进行了 探讨。

1 地质背景

研究区位于重庆南川区东侧(图1),处于四川盆地东南缘,大地构造属川鄂湘黔隆起褶皱带西侧,

川东褶皱弧与娄山褶皱带交汇地带。总体构造线呈 NNE—SSW 走向,主要位于龙骨溪大背斜西翼及其次级褶皱中,从西向东依次为鲜家坪背斜、丛林沟向斜、南川背斜等(廖太平等,2008)。

重庆南川晚二叠世凝灰岩层发育在龙潭组底部,其顶部与 K1 煤层直接接触,底部与茅口组呈不整合接触,厚度约2~3m,在测井曲线上最显著的特征表现为自然伽马正异常(图1)。该层凝灰岩在我国西南地区分布广泛,Dai Shifeng等(2011)研究重庆松藻地区晚二叠世煤中 Tonsteins 时也有发现。

2 样品采集与测试

在图 1 右侧钻孔柱状中的研究层位,自顶至底完整采集了 14 个凝灰岩样品,编号分别为 zk-1 至 zk-14,每 10~15cm 取一个样,当存在岩性变化时,则按分层取样。用岩芯劈样机 1/2 劈切法取样,按 GB/T474-2008 破碎研磨至 200 目以上。

在中国矿业大学(北京)煤炭资源与安全开采国家重点实验室对凝灰岩样品的矿物组成和元素丰度进行了测试。按 ASTM/D3174 标准测试样品的烧失量;运用 X 射线衍射(XRD, D/Max-2500/PC)对凝灰岩样品进行了矿物分析,20 角度范围为 2.6°~70°,间隔 0.01°,用 Jade5.0 和 Siroquant 软件对矿

注:本文为国家 973 课题(编号 2014CB238902)和国家自然科学基金资助项目(编号 40930420 和 41272182)的成果。

收稿日期:2013-05-24;改回日期:2013-12-15;责任编辑:章雨旭。

作者简介: 田和明, 男, 1986 年生。硕士, 研究方向为煤地球化学。 Email: heming1986824@126. com。

物定性和定量分析,确定样品中矿物的组成及含量。用带能谱的扫描电镜(SEM-EDX, QUANTA FEG650)对矿物特征及目标元素的分布进行了分析,其加速电压为20kV,用EDAX Genesis 软件采集图像。

运用 X 射线荧光光谱仪(XRF, ARL ADVANT' XP⁺)测试样品中常量元素 SiO₂、Al₂O₃、CaO、K₂O、Na₂O、Fe₂O₃、MnO、MgO₂、TiO₂ 和 P₂O₅ 的含量;用电感耦合等离子体质谱(ICP-MS, Xseries II) 对凝灰岩样品中的微量元素进行分析, ICP-MS 测试的样品前处理采用微波消解法:准确称取 50mg 样品,加入 0.5 mL 30% H₂O₂ 浸湿样品 $4 \sim 5h$,再依次加入 0.5 mL 30% H₂O₂,5 mL 65% HNO₃ 和 2 mL 40% HF,向消解仪反应罐中加入约 330 mL 超纯水、30 mL 30% H₂O₂ 和 1 mL 98% H₂SO₄,把装有样品的反应罐放入微波消解仪(Ultra CLAVE)反应腔内,消解仪初始氮气压力设置为 5.0 MPa,最高温度设为 240%,消解时间 2h,标准曲线采用 CCS1、CCS4、CCS5、CCS6系列标准物质。

3 结果

3.1 主量元素

由表 1 中可以看出, 凝灰岩样品的烧失量 (LOI) 变化较大 (0.66% ~ 19.15%), 均值为 12.92%; SiO_2 含量为 36.97% ~ 91.45%, 均值 49.61%; Al_2O_3 含量为 4.03% ~ 33.18%, 均值 26.84%; TiO_2 含量为 0.4% ~ 5.49%, 均值 3.34%; Fe_2O_3 含量为 1.09% ~ 8.49%, 均值 4.33%;其他主量元素含量较低。凝灰岩中 TiO_2 含

量高于金红石砂矿的最低工业品位 2 kg/m³(TiO₂ 百分比约 1%)(砂矿(金属矿产)地质勘查规范, 2002)。

凝灰岩中 SiO_2/Al_2O_3 均值为 1.85,略高于高岭石中 SiO_2/Al_2O_3 理论值 1.18,其下部 SiO_2/Al_2O_3 比值偏高,可达最大值 22.67;凝灰岩中 TiO_2/Al_2O_3 比值介于 $0.08\sim0.17$ 之间,均值为 0.12。

3.2 微量元素

微量元素分析结果见表 1,由表中可见,凝灰岩中钪含量为 2.62 ~40.9 μ g/g,均值 26.28 μ g/g, V、Cr、Co 和 Ni 含量均值分别为 563.36 μ g/g、468.5 μ g/g、19.54 μ g/g 和 113.08 μ g/g,镓含量达到了 6.06 ~64.3 μ g/g,均值为 48.11 μ g/g。

凝灰岩中 Nb 的含量 12.3 ~ 186 μ g/g,均值为 131.2 μ g/g; Ta 的含量 0.795 ~ 14.2 μ g/g,均值 8.31 μ g/g; Zr 的含量 93.7 ~ 1550 μ g/g,均值 969.8 μ g/g; Hf 的含量 2.33 ~ 37.6 μ g/g,均值 23.97 μ g/g。凝灰岩中 Th 的含量为 2.91 ~ 44.6 μ g/g,均值为 28.14 μ g/g; U 的含量为 2.13 ~ 66.1 μ g/g,均值为 21.29 μ g/g。

尤其是凝灰岩中的 Ga、Nb、Ta 异常富集,其含量已经达到了最低工业品位,其工业价值值得关注。

从表 2 中可以看出,凝灰岩中稀土元素(REE) 含量变化较大 84~1202 μ g/g,均值为 788 μ g/g,其稀土氧化物 REO 含量为 88~1293 μ g/g,均值 829 μ g/g。根据 Seredin 和 Dai Shifeng(2011)对稀土元素的三分法,凝灰岩样品中轻稀土(LREE)含量 66.94~1013.1 μ g/g,均值为 638.36 μ g/g;中稀土(MREE)含量为 14.62~178.72 μ g/g,均值为

图 1 重庆南川地理位置及本文凝灰岩采样位置图

Fig. 1 Map showing locations of studied area, Nanchuan, Chongqing, and tuff samples of this paper

123. 90 μg/g; 重稀土(HREE) 含量 2. 92 ~ 34. 69 μg/g, 均值为 25. 37 μg/g。

3.3 矿物学特征

凝灰岩中矿物主要为高岭石、锐钛矿(金红石)、黄铁矿、菱铁矿、石英等(图2),肉眼可以观察 到凝灰岩底部存在大量燧石和隐晶质石英(图3), 在扫描电镜(SEM)下发现凝灰岩底部存在热液成 因的方解石和石英(图4)。

凝灰岩中富集的元素除了 Ti 能发现锐钛矿(金红石)载体外(图 5),其他富集的微量元素未发现独立的矿物,而主要分散在基质中。

4 讨论

4.1 物质来源

峨眉山玄武岩的火山喷溢活动始于早二叠世茅

表 1 重庆南川上二叠统龙潭组底部凝灰岩中元素含量(空气干燥基;氧化物,%;其他,μg/g)
Table1 Concentrations of elemental in tuff samples at the bottom of the Longtan Formation, Upper Permian in
Nanchuan District, Chongqing (on a air dry basis; oxidies in %; others in μg/g)

□ 一														, ,,		
TiO2	元素	ZK-1	ZK-2	ZK-3	ZK-4	ZK-5	ZK-6	ZK-7	ZK-8	ZK-9	ZK-10	ZK-11	ZK-12	ZK-13	ZK-14	均值
ReyO3 30.24 30.46 31.58 28.51 30.26 30.42 31.37 32.32 32.93 33.18 25.2 4.03 14.1 21.1 26.84	SiO ₂	41.01	39.69	42	36.97	39.42	39.48	41.63	42.91	44.49	45.24	56.32	91.45	72.13	61.81	49.61
RegO ₃ 3.38 8.28 4.73 7.64 8.38 8.49 5.47 3.85 1.51 1.09 1.55 1.11 4.01 1.24 4.33 MnO 0.005 0.018 0.013 0.006 0.037 0.017 0.018 0.007 0.001 0.001 0.001 0.007 0.005 0.007 0.012 MgO 0 0.15 0.22 0.22 0.15 0.17 0.18 0.15 0.18 0.18 0.18 0.16 0.17 0.16 0.17 0.58 0.28 0.38 0.21 0.007 0.012 0.012 0.019 0.15 0.22 0.22 0.15 0.17 0.18 0.15 0.18 0.18 0.18 0.16 0.17 0.18 0.18 0.18 0.18 0.16 0.17 0.18 0.15 0.17 0.18 0.18 0.18 0.18 0.18 0.16 0.19 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	${\rm TiO_2}$	3.00	4.04	4.04	2.42	2.98	4.08	3.08	4.78	5.49	5.19	4.09	0.4	1.3	1.85	3.34
MnO 0.005 0.018 0.013 0.006 0.037 0.017 0.018 0.007 0.001 0.001 0.001 0.007 0.005 0.007 0.012 0.006 0.05 0.02	Al_2O_3	30.24	30.46	31.58	28.51	30.26	30.42	31.37	32.32	32.93	33.18	25.2	4.03	14.1	21.1	26.84
MgO 0.15 0.22 0.22 0.15 0.17 0.18 0.15 0.18 0.18 0.16 0.17 0.12 0.58 0.38 0.21 CaO 0.47 0.28 0.19 0.22 0.24 0.3 0.35 0.17 0.1 0.1 0.18 1.6 1.93 3.1 0.71 Nacy O 0.15 0.24 0.25 0.12 0.18 0.2 0.19 0.21 0.25 0.16 0.69 1.36 0.33 Pros 0.05 0.06 0.06 0.06 0.02 0.04 0.03 0.05 0.06 0.02 0.04 0.03 0.05 0.06 0.02 0.03 0.04 0.02 0.05 0.06 0.02 0.03 0.04 0.02 0.03 0.03 0.04 0.02 0.03 0.04 0.02 0.03 0.03 0.04 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	$\mathrm{Fe_2O_3}$	3.38	8.28	4.73	7.64	8.38	8.49	5.47	3.85	1.51	1.09	1.5	1.11	4.01	1.24	4.33
CaO 0.47 0.28 0.19 0.22 0.24 0.3 0.35 0.17 0.1 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.21 0.52 0.18 0.18 0.21 0.52 0.18 0.18 0.18 0.21 0.52 0.16 0.66 0.03 0.03 0.04 0.03 0.05 0.06 0.06 0.06 0.03 0.02 0.04 0.03 0.05 0.06 0.06 0.06 0.03 0.02 0.03 0.05 0.06 0.06 0.06 0.03 0.04 0.03 0.05 0.06 0.05 0.06 0.06 0.02 0.03 0.04 0.03 0.04 0.03 0.05 0.06 0.02 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04	MnO	0.005	0.018	0.013	0.006	0.037	0.017	0.018	0.007	0.001	0.001	0.001	0.007	0.005	0.007	0.012
Na2O 0.12 0.19 0.19 0.11 0.17 0.19 0.15 0.19 0.18 0.18 0.67 0.18 1 0.87 0.31 K_2O 0.15 0.24 0.25 0.12 0.18 0.2 0.19 0.2 0.19 0.21 0.52 0.16 0.69 1.36 0.33 $K_2K_2K_2K_2K_2K_2K_2K_2K_2K_2K_2K_2K_2K$	MgO	0.15	0.22	0.22	0.15	0.17	0.18	0.15	0.18	0.18	0.16	0.17	0.12	0.58	0.38	0.21
K₂O O		0.47	0.28	0.19	0.22	0.24	0.3	0.35	0.17	0.1	0.1	0.83	1.65	1.93	3.1	0.71
P2Os 0.05 0.06 0.06 0.03 0.02 0.04 0.03 0.05 0.06 0.05 0.06 0.02 0.03 0.04 0.04 0.03 0.05 0.06 0.05 0.06 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.06 0.05 0.06 3.67 7.79 0.06 3.67 7.26 12.92 12.92 12.1 12.92 12.5 10.0 10.2 31.3 1.44 4.3 293 31.5 30.0 4.3 5.91 6.04 6.12 3.37 0.308 0.92 3.95 4.35		0.12	0.19	0.19	0.11	0.17	0.19	0.15	0.19	0.18	0.18	0.67	0.18	1	0.87	0.31
接換失数 19.15 15.6 15.41 19.14 16.61 15.73 16.19 14.49 13.89 13.67 9.37 0.66 3.67 7.26 12.92		0.15	0.24	0.25		0.18	0.2	0.19	0.2	0.19	0.21	0.52	0.16	0.69		
Li		0.05	0.06	0.06	0.03	0.02	0.04	0.03	0.05	0.06	0.05	0.06	0.02	0.03	0.04	
Be 3.58 5.54 6.63 4.06 4.28 6.03 4.18 5.91 6.04 6.12 3.37 0.308 0.92 3.95 4.35 Cr 489 661 502 315 348 767 290 864 905 1037 783 126 339 521 563.4 66.5 60 641 749 739 739 235 480 409 468.5 66.5 64 749 739 739 235 480 409 468.5 66.0 641 749 739 739 235 480 409 468.5 66.5 66 56.7 8.01 120 131 154 81.8 21.1 10.7 47.3 19.1 120 131 154 81.8 21.1 10.2 14.7 8.01 120 131 154 81.8 21.1 10.2 14.8 12.2 4.1 10.2 14.8 2.2 10.2 14.8 <td></td> <td>19.15</td> <td>15.6</td> <td>15.41</td> <td>19.14</td> <td>16.61</td> <td>15.73</td> <td>16.19</td> <td>14.49</td> <td>13.89</td> <td>13.67</td> <td>9.37</td> <td>0.66</td> <td>3.67</td> <td>7.26</td> <td>12.92</td>		19.15	15.6	15.41	19.14	16.61	15.73	16.19	14.49	13.89	13.67	9.37	0.66	3.67	7.26	12.92
V 489 661 502 315 348 767 290 804 905 1037 783 126 339 521 563.4 Cr 303 441 480 297 290 456 300 641 749 739 739 235 480 409 468.5 Co 19 31.3 14.4 18.1 17.4 22.7 10.5 16.9 18.7 24.3 18.2 4.1 10.7 47.3 19.54 Cu 92.1 237 157 144 124 255 137 190 211 228 115 31.4 45.4 102 147.3 Zn 42.2 44.3 39.1 49.7 41 42.3 45.2 40 42.4 42.1 31 45.4 45.4 106 103 36.2 6.06 21.5 32.5 48.11 Rb 2.84 4.45 4.3 2.3 3		295	410	443	293	315	390	320	517	532	530	232	15.9	25.2	102	315.7
Cr 303 441 480 297 290 456 300 641 749 739 739 235 480 409 468.5 Co 19 31.3 14.4 18.1 17.4 22.7 10.5 16.9 18.7 24.3 18.2 4.1 10.7 47.3 19.54 Ni 192 146 115 156 98.3 117 80.1 120 131 154 81.8 21.1 97.8 136 113.1 Cu 92.1 237 157 144 124 255 137 190 211 228 115 31.4 45.4 102 147.8 Ca 64.3 63 56.2 56.7 53.9 64 58.8 56.3 50.3 7 4.71 7.97 2.53 11 27.4 6.09 Sr 106 143 155 94.1 85.7 116 102 145 149		3.58	5.54	6.63	4.06	4.28	6.03	4.18	5.91		6.12	3.37	0.308	0.92	3.95	
Co 19 31.3 14.4 18.1 17.4 22.7 10.5 16.9 18.7 24.3 18.2 4.1 10.7 47.3 19.54 Ni 129 146 115 156 98.3 117 80.1 120 131 154 81.8 21.1 97.8 136 113.1 Cu 92.1 237 157 144 124 255 137 190 211 228 115 31.4 45.4 102 147.8 Zn 42.2 24.3 39.1 49.7 41 42.3 45.2 40 42.4 42.1 31.4 47.4 19.6 20 35.9 Ga 64.3 56.2 56.7 53.9 64 58.8 56.3 50.4 53.7 46.2 6.06 21.5 32.5 48.11 Rb 2.89 145 153 186 139 137 183 147 160 157																
Ni 129 146 115 156 98.3 117 80.1 120 131 154 81.8 21.1 97.8 136 113.1 Cu 92.1 237 157 144 124 255 137 190 211 228 115 31.4 45.4 102 147.8 Zn 42.2 44.3 39.1 49.7 41 42.3 45.2 40 42.4 42.1 31 4.74 19.6 20 35.97 Ga 64.3 63 56.2 56.7 53.9 64 58.8 56.3 50.4 53.7 36.2 6.06 21.5 32.5 48.11 Rb 2.84 4.45 4.3 2.3 2.96 3.68 3.32 4.06 37.7 4.71 79.7 2.53 11 2.74 6.09 Sr 106 145 153 186 139 137 183 147 160 1	Cr	303	441					300					235			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
Rb 2.84 4.45 4.3 2.3 2.96 3.68 3.32 4.06 3.77 4.71 7.97 2.53 11 27.4 6.09 Sr 106 143 155 94.1 85.7 116 102 145 149 151 151 59.2 187 200 131.7 Nb 209 145 153 186 139 137 183 147 160 157 110 12.3 37.9 60 131.2 Mo 3.69 1.61 1.23 8.07 1.01 1.3 1.65 0.895 0.665 0.689 0.762 0.626 0.378 0.696 1.66 Cd 0.784 0.642 0.629 0.919 0.588 0.699 0.616 0.572 0.56 0.564 0.386 0.043 0.111 0.224 0.52 In 0.555 0.591 0.511 0.52 0.482 0.665 0.542 0.57				1												
Sr 106 143 155 94.1 85.7 116 102 145 149 151 151 59.2 187 200 131.7 Nb 209 145 153 186 139 137 183 147 160 157 110 12.3 37.9 60 131.2 Mo 3.69 1.61 1.23 8.07 1.01 1.3 1.65 0.895 0.665 0.689 0.762 0.626 0.378 0.696 1.66 Cd 0.784 0.642 0.629 0.919 0.588 0.699 0.616 0.572 0.56 0.564 0.386 0.043 0.111 0.224 0.52 In 0.556 0.591 0.511 0.52 0.482 0.665 0.542 0.579 0.581 0.592 0.255 0.045 0.088 0.184 0.44 Sb 6.28 1.96 2.01 5.72 2.17 2.54 1.88	Ga	64.3	63	56.2		53.9		58.8	56.3		53.7	36.2	6.06	21.5		
Nb 209 145 153 186 139 137 183 147 160 157 110 12.3 37.9 60 131.2 Mo 3.69 1.61 1.23 8.07 1.01 1.3 1.65 0.895 0.665 0.689 0.762 0.626 0.378 0.696 1.66 Cd 0.784 0.642 0.629 0.919 0.588 0.699 0.616 0.572 0.56 0.564 0.386 0.043 0.111 0.224 0.52 In 0.556 0.591 0.511 0.52 0.482 0.665 0.579 0.581 0.592 0.255 0.045 0.088 0.184 0.44 Sb 6.28 1.96 2.01 5.72 2.17 2.54 1.88 3.53 4.78 4.89 2.59 0.304 0.679 2.21 2.97 Gs 0.549 1.05 1.15 0.584 0.796 0.91 0.795 1																
Mo 3.69 1.61 1.23 8.07 1.01 1.3 1.65 0.895 0.665 0.689 0.762 0.626 0.378 0.696 1.66 Cd 0.784 0.642 0.629 0.919 0.588 0.699 0.616 0.572 0.56 0.564 0.386 0.043 0.111 0.224 0.52 In 0.556 0.591 0.511 0.52 0.482 0.665 0.542 0.579 0.581 0.592 0.255 0.045 0.088 0.184 0.44 Sb 6.28 1.96 2.01 5.72 2.17 2.54 1.88 3.53 4.78 4.89 2.59 0.304 0.679 2.21 2.97 Cs 0.549 1.05 1.15 0.584 0.796 0.91 0.795 1.14 1.07 1.24 1.02 0.15 0.544 3.08 1.01 Ba 22.1 26.8 20.4 15.3 18.8 22.6																
Cd 0.784 0.642 0.629 0.919 0.588 0.699 0.616 0.572 0.56 0.564 0.386 0.043 0.111 0.224 0.52 In 0.556 0.591 0.511 0.52 0.482 0.665 0.542 0.579 0.581 0.592 0.255 0.045 0.088 0.184 0.44 Sb 6.28 1.96 2.01 5.72 2.17 2.54 1.88 3.53 4.78 4.89 2.59 0.304 0.679 2.21 2.97 Cs 0.549 1.05 1.15 0.584 0.796 0.91 0.795 1.14 1.07 1.24 1.02 0.15 0.544 3.08 1.01 Ba 22.1 26.1 26.8 20.4 15.3 18.8 22.6 21 20.4 20 19.7 5.47 15.2 35.4 20.60 Ta 14.2 8.95 9.89 12.6 8.61 8.47																
In 0.556 0.591 0.511 0.52 0.482 0.665 0.542 0.579 0.581 0.592 0.255 0.045 0.088 0.184 0.44 Sb 6.28 1.96 2.01 5.72 2.17 2.54 1.88 3.53 4.78 4.89 2.59 0.304 0.679 2.21 2.97 Cs 0.549 1.05 1.15 0.584 0.796 0.91 0.795 1.14 1.07 1.24 1.02 0.15 0.544 3.08 1.01 Ba 22.1 26.1 26.8 20.4 15.3 18.8 22.6 21 20.4 20 19.7 5.47 15.2 35.4 20.66 Ta 14.2 8.95 9.89 12.6 8.61 8.47 11 9.27 9.77 9.84 6.84 0.795 2.19 3.97 8.31 W 2.88 3.51 3.37 4.61 3.31 3.12 4.07																
Sb 6.28 1.96 2.01 5.72 2.17 2.54 1.88 3.53 4.78 4.89 2.59 0.304 0.679 2.21 2.97 Cs 0.549 1.05 1.15 0.584 0.796 0.91 0.795 1.14 1.07 1.24 1.02 0.15 0.544 3.08 1.01 Ba 22.1 26.1 26.8 20.4 15.3 18.8 22.6 21 20.4 20 19.7 5.47 15.2 35.4 20.66 Ta 14.2 8.95 9.89 12.6 8.61 8.47 11 9.27 9.77 9.84 6.84 0.795 2.19 3.97 8.31 W 2.88 3.51 3.37 4.61 3.31 3.12 4.07 3.49 3.77 3.9 6.29 29.2 9.16 11 6.55 Pb 50.5 15.9 14.3 50.2 22.1 15 19.6 11.4 <td></td>																
Cs 0.549 1.05 1.15 0.584 0.796 0.91 0.795 1.14 1.07 1.24 1.02 0.15 0.544 3.08 1.01 Ba 22.1 26.1 26.8 20.4 15.3 18.8 22.6 21 20.4 20 19.7 5.47 15.2 35.4 20.66 Ta 14.2 8.95 9.89 12.6 8.61 8.47 11 9.27 9.77 9.84 6.84 0.795 2.19 3.97 8.31 W 2.88 3.51 3.37 4.61 3.31 3.12 4.07 3.49 3.77 3.9 6.29 29.2 9.16 11 6.55 Pb 50.5 15.9 14.3 50.2 22.1 15 19.6 11.4 16.9 20.1 7.49 0.272 2.49 5.19 17.96 Bi 1.06 1.42 1.23 0.896 0.883 1.46 1.01 1.61<																
Ba 22.1 26.1 26.8 20.4 15.3 18.8 22.6 21 20.4 20 19.7 5.47 15.2 35.4 20.66 Ta 14.2 8.95 9.89 12.6 8.61 8.47 11 9.27 9.77 9.84 6.84 0.795 2.19 3.97 8.31 W 2.88 3.51 3.37 4.61 3.31 3.12 4.07 3.49 3.77 3.9 6.29 29.2 9.16 11 6.55 Pb 50.5 15.9 14.3 50.2 22.1 15 19.6 11.4 16.9 20.1 7.49 0.272 2.49 5.19 17.96 Bi 1.06 1.42 1.23 0.896 0.883 1.46 1.01 1.61 1.65 1.9 1.19 0.164 0.337 1.01 1.13 Th 44.6 30.5 33.9 39.8 27.8 26.9 34.3 31.9																
Ta																
W 2.88 3.51 3.37 4.61 3.31 3.12 4.07 3.49 3.77 3.9 6.29 29.2 9.16 11 6.55 Pb 50.5 15.9 14.3 50.2 22.1 15 19.6 11.4 16.9 20.1 7.49 0.272 2.49 5.19 17.96 Bi 1.06 1.42 1.23 0.896 0.883 1.46 1.01 1.61 1.65 1.9 1.19 0.164 0.337 1.01 1.13 Th 44.6 30.5 33.9 39.8 27.8 26.9 34.3 31.9 35.5 34.9 25.4 2.91 8.88 16.7 28.14 U 66.1 25.1 17.5 34.8 14.4 25 18 21.9 20.5 19.6 18.1 2.13 6.89 8.08 21.29 Zr 1550 1125 1192 1255 1056 1037 1212 1121 <td></td>																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				ŀ												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
Sc 24.2 34.9 30.7 20 23 29.5 27.9 37 39.5 40.9 28.6 2.62 9.04 20 26.28 SiO ₂ /Al ₂ O ₃ 1.36 1.3 1.33 1.3 1.3 1.3 1.33 1.35 1.36 2.23 22.67 5.11 2.93 1.85																
SiO ₂ /Al ₂ O ₃ 1.36 1.3 1.33 1.3 1.3 1.3 1.3 1.33 1.35 1.36 2.23 22.67 5.11 2.93 1.85									l							
$\frac{110_2}{\text{Al}_20_3}$ 0.1 0.13 0.13 0.08 0.1 0.15 0.1 0.15 0.17 0.16 0.16 0.1 0.09 0.09 0.12																
	110 ₂ /Al ₂ 0 ₃	0.1	0.13	0.13	0.08	0.1	0.13	0.1	0.15	0.17	0.16	0.16	0.1	0.09	0.09	0.12

图 2 重庆南川上二叠统龙潭组底部凝灰岩样品 XRD 分析图

Fig. 2 X-ray powder diffraction patterns of the tuff sample from the bottom of the Longtan Formation,

Upper Permian in Nanchuan District, Chongqing

口期,晚二叠世早期达到高潮,局部延续至晚二叠世中期(王小川等,1996),凝灰岩与峨眉山玄武岩形成时代相近,都是不整合于茅口组灰岩之上。

Dai Shifeng 等(2011)在研究重庆松藻地区晚二叠世煤中 Tonsteins 时,在相同层位也发现了该层凝灰岩,他认为该层凝灰岩与峨眉山玄武岩喷发的火山灰有密切联系。Xu 等(2001)划分峨眉山玄武岩时,将其分为低 Ti 和高 Ti 玄武岩,高 Ti 玄武岩富含

图 3 重庆南川上二叠统龙潭组底部 凝灰岩样品中的燧石

Fig. 3 Flint in tuff sample from the bottom of the Longtan Formation, Upper Permian in Nanchuan District, Chongqing

Nb、Ta 等元素,且主要分布在峨眉山大火成岩省的东部。而本次研究区位于峨眉山大火成岩省东部边缘,凝灰岩中 Ti 异常富集,因此凝灰岩的物源可能

图 4 重庆南川上二叠统龙潭组底部凝灰岩中 的方解石和石英(SEM-EDX)

Fig. 4 Quartz, Calcite in tuff sample from the bottom of the Longtan Formation, Upper Permian in Nanchuan District, Chongqing, by SEM-EDX

与高钛玄武岩喷发的火山灰有关。

西南地区晚二叠世煤中广泛发育的 Tonsteins 也属于火山灰成因,其 TiO_2/Al_2O_3 比值可以作为识别 Tonsteins 物源的指示剂(Spears et al.,1979;周义平等,1983;周义平,1999;代世峰等,2007; Dai Shifeng et al.,2011)。Addsion(1983)和 Bueger等(2002)认为酸性火山灰中 TiO_2/Al_2O_3 比值小于0.02,碱性火山灰 TiO_2/Al_2O_3 比值介于0.02~0.08之间,基性火山灰 TiO_2/Al_2O_3 比值大于0.08。凝灰岩中 TiO_2/Al_2O_3 比值均大于0.08(图 6),表明凝灰岩可能属于基性火山灰成因。

4.2 元素地球化学特征

火山灰在蚀变过程中,化学性质不稳定的元素 会发生迁移,化学性质稳定的元素会保留下来而发 生富集。凝灰岩中富集的元素化学性质相对稳定, 或形成稳定矿物(锐钛矿或金红石),或以类质同像 形式进入矿物中,或被粘土矿物吸附,也有可能在后 期地质作用过程中外来混入。而化学性质不太稳定 的元素如 Ca、K、Na 等元素,在风化过程中大量流失或混入,这些元素在凝灰岩中的含量不能真实地反映原始物质的特征。

与上地壳中微量元素 Sc(7μg/g)、V(53μg/g)、Cr(35μg/g)、Co(11.6μg/g)、Ni(18.6μg/g)、Nb(26μg/g)、Ta(1.5μg/g)、Zr(237μg/g)、Hf(5.8μg/g)、Ga(14μg/g)、Th(10.3μg/g)、U(2.5μg/g)、REE(165μg/g)相比(Wedepohl,1995),凝灰岩中明显富集 Sc、V、Cr、Co、Ni、Ga、Nb、Ta、Zr、Hf、Th、U、REE等元素。

4.2.1 钪(Sc)

钪(Sc)是一种典型的分散元素,在地表风化作用和蚀变过程中不易发生迁移,可以作为煤中粘土岩夹矸(Tonsteins)物源的地球化学指示剂(周义平等,1994;Zhou Yiping et al.,2000),凝灰岩样品中钪含量与 Dai Shifeng等(2011)报道的重庆松藻矿区基性凝灰岩中钪(29.8μg/g)均值含量接近。接近中国基性岩浆岩中钪的含量均值 29μg/g(迟清华

表 2 重庆南川上二叠统龙潭组底部凝灰岩中稀土元素含量(μg/g)
Table 2 Concentrations of REE in tuff samples at the bottom of the Longtan Formation,
Upper Permian, in Nanchuan District, Chongqing (μg/g)

La 130 248 215 167 156 187 196 174 136 175 118 13.6 44.7 68 144 Ce 393 327 315 483 436 392 511 296 232 443 252 30.5 88 114 30 Pr 38.6 46.9 41.2 43.2 40.3 44.2 52.4 34.4 24.7 43.3 26.1 3.62 8.41 12.1 32. Nd 167 170 145 177 165 179 215 130 86.6 175 101 16.2 31.2 41.4 128 Sm 36.2 29.5 26.1 34.4 31.2 33.2 38.7 24.4 16.6 32.6 18.4 3.02 5.53 7.53 24.2 Eu 6.54 5.29 4.81 5.76 5.33 5.74 6.54 4.27 3.12 5																
Ce 393 327 315 483 436 392 511 296 232 443 252 30.5 88 114 30 Pr 38.6 46.9 41.2 43.2 40.3 44.2 52.4 34.4 24.7 43.3 26.1 3.62 8.41 12.1 32. Nd 167 170 145 177 165 179 215 130 86.6 175 101 16.2 31.2 41.4 128 Sm 36.2 29.5 26.1 34.4 31.2 33.2 38.7 24.4 16.6 32.6 18.4 3.02 5.53 7.53 24. Eu 6.54 5.29 4.81 5.76 5.33 5.74 6.54 4.27 3.12 5.3 3.2 0.589 0.995 1.52 4.2 Gd 25.7 25.4 22.5 24.3 25.3 29.6 19.7 15.8 23.5	元素	ZK-1	ZK-2	ZK-3	ZK-4	ZK-5	ZK-6	ZK-7	ZK-8	ZK-9	ZK-10	ZK-11	ZK-12	ZK-13	ZK-14	均值
Pr 38.6 46.9 41.2 43.2 40.3 44.2 52.4 34.4 24.7 43.3 26.1 3.62 8.41 12.1 32. Nd 167 170 145 177 165 179 215 130 86.6 175 101 16.2 31.2 41.4 128 Sm 36.2 29.5 26.1 34.4 31.2 33.2 38.7 24.4 16.6 32.6 18.4 3.02 5.53 7.53 24 Eu 6.54 5.29 4.81 5.76 5.33 5.74 6.54 4.27 3.12 5.3 3.2 0.589 0.995 1.52 4.2 Gd 25.7 25.4 22.5 24.3 25.3 29.6 19.7 15.8 23.5 13.9 2.3 4.52 6.63 18. Tb 4.28 4.77 4.24 3.7 4.01 4.38 4.77 3.84 3.45 <t></t>	La	130	248	215	167	156	187	196	174	136	175	118	13.6	44.7	68	144.9
Nd	Ce	393	327	315	483	436	392	511	296	232	443	252	30.5	88	114	308
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pr	38.6	46.9	41.2	43.2	40.3	44.2	52.4	34.4	24.7	43.3	26.1	3.62	8.41	12.1	32.82
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nd	167	170	145	177	165	179	215	130	86.6	175	101	16.2	31.2	41.4	128.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sm	36.2	29.5	26.1	34.4	31.2	33.2	38.7	24.4	16.6	32.6	18.4	3.02	5.53	7.53	24.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eu	6.54	5.29	4.81	5.76	5.33	5.74	6.54	4.27	3.12	5.3	3.2	0.589	0.995	1.52	4.21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gd	25.7	25.4	22.5	24.3	24.3	25.3	29.6	19.7	15.8	23.5	13.9	2.3	4.52	6.63	18.82
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tb	4.28	4.77	4.24	3.7	4.01	4.38	4.77	3.84	3.45	3.99	2.68	0.376	1	1.4	3.35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dy	23.2	25.2	23	18.9	20.3	24.5	23.5	21.7	20.2	21.9	15.4	2.08	6.03	8.67	18.18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y	119	110	100	87.8	85.8	103	96.7	91.3	86.4	89.3	66.8	9.27	27	38.3	79.33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ho	4.4	4.58	4.16	3.16	3.41	4.08	3.88	3.93	3.81	4.04	2.91	0.374	1.2	1.72	3.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbf{Er}	13.5	14	12.7	9.39	9.99	12.8	11.3	12.2	12.4	12.5	9.84	1.19	3.75	5.55	10.08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tm	1.92	2.05	1.79	1.36	1.42	1.74	1.61	1.83	1.9	1.92	1.54	0.182	0.577	0.916	1.48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Yb	11.2	12.3	11.4	7.99	8.43	11.4	9.66	11.4	12.2	12.6	10.2	1.03	3.76	5.82	9.24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lu	1.54	1.76	1.59	1.11	1.22	1.51	1.35	1.58	1.73	1.91	1.43	0.146	0.512	0.897	1.31
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Σ LREE	765	821	742	905	829	835	1013	659	496	869	516	67	178	243	638
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Σ MREE	179	171	155	140	140	163	161	141	129	144	102	15	40	57	124
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Σ HREE	33	35	32	23	24	32	28	31	32	33	26	3	10	15	25
$La_N/Sm_N = 0.54 = 1.26 = 1.24 = 0.73 = 0.75 = 0.84 = 0.76 = 1.07 = 1.23 = 0.81 = 0.96 = 0.68 = 1.21 = 1.35 = 0.96$	Σ REE	976	1027	928	1068	993	1030	1202	831	657	1046	643	84	227	314	788
	La_N/Lu_N	0.84	1.41	1.35	1.5	1.28	1.24	1.45	1.1	0.79	0.92	0.83	0.93	0.87	0.76	1.09
Gd _v /L _{1v} 1 32 1 14 1 12 1 73 1 57 1 32 1 73 0 98 0 72 0 97 0 77 1 24 0 7 0 58 1	La_N/Sm_N	0.54	1.26	1.24	0.73	0.75	0.84	0.76	1.07	1.23	0.81	0.96	0.68	1.21	1.35	0.96
$\frac{3}{3}$ $\frac{3}$	Gd_N/Lu_N	1.32	1.14	1.12	1.73	1.57	1.32	1.73	0.98	0.72	0.97	0.77	1.24	0.7	0.58	1.14
δCe 1.26 0.69 0.76 1.3 1.25 0.98 1.15 0.87 0.9 1.16 1.03 0.99 1.03 0.9 1.0	$\delta \mathrm{Ce}$	1.26	0.69	0.76	1.3	1.25	0.98	1.15	0.87	0.9	1.16	1.03	0.99	1.03	0.9	1.02
δEu 1 0.91 0.93 0.93 0.91 0.93 0.91 0.91 0.91 0.9 0.9 0.9 1.05 0.94 1.05 0.94 1.01 0.9	δEu	1	0.91	0.93	0.93	0.91	0.93	0.91	0.91	0.9	0.9	0.94	1.05	0.94	1.01	0.94

注: " Σ REE"表示 Σ La + Ce + Pr + Nd + Pm + Sm + Eu + Gd + Tb + Dy + Ho + Er + Tm + Yb + Lu + Y; "La $_N$ 、 Sm_N 、 Gd_N 、 Lu_N "表示对应元素

的上地壳标准化值(Wedepohl ,1995); $\delta Ce = Ce_N / \sqrt{La_N \times Pr_N}$; $\delta Eu = Eu_N / \sqrt{Sm_N \times Gd_N}$

图 5 重庆南川上二叠统龙潭组底部凝灰岩中 的高岭石和锐钛矿(SEM-EDX)

Fig. 5 Kaolinite, Anatase in tuff sample from the bottom of the Longtan Formation, Upper Permian in Nanchuan District, Chongqing, by SEM-EDX

等,2007),表明钪在火山灰蚀变过程中能稳定保存下来。

4.2.2 钒(V)、铬(Cr)、钴(Co)和镍(Ni)

凝灰岩样品中 V、Cr、Co 和 Ni 含量与松藻矿区基性凝灰岩中 V、Cr、Co 和 Ni 含量 (576 $\mu g/g$ 、549 $\mu g/g$ 、37.9 $\mu g/g$ 和 164 $\mu g/g$)相近(Dai Shifeng et al.,2011)。二者可能具有相同的原始物质来源,即富含 V、Cr、Co、Ni 的峨眉山玄武岩浆。

4.2.3 镓 (Ga)

凝灰岩样品中镓异常富集,其含量高于铝土矿中 Ga 的工业品位 20 μg/g(稀有金属矿产地质勘查规范,2002),接近 Dai Shifeng 等(2010)报道的滇东晚二叠世煤系地层 Nb(Ta)—Zr(Hf)—REE—Ga 多金属矿层中 Ga 的含量(52.4 μg/g),略高于松藻矿区基性凝灰岩和 Tonsteins 中镓含量(40 μg/g)(Dai Shifeng et al.,2011)。凝灰岩样品中未发现镓的独立矿物,镓与铝的地球化学习性相近,可能以类质同像替代铝存在于含铝矿物中(张勇等,2008)。

4.2.4 铌(Nb)、钽(Ta)、锆(Zr)和铪(Hf)

高场强元素 Nb、Ta、Zr 和 Hf 具有稳定的地球化学性质,在地质作用过程(火山灰蚀变)中能保留下来,可以指示原始成岩物质的性质。在表生作用过程中, Nb 和 Ta 能稳定地存在于碎屑岩中(Dai

图 6 重庆南川上二叠统龙潭组底部凝灰岩中 TiO₂/Al₂O₃ 分布图

Fig. 6 Plot for ${\rm TiO_2}$ vs. ${\rm Al_2O_3}$ in tuff samples from the bottom of the Longtan Formation, Upper Permian in Nanchuan District, Chongqing

Shifeng et al.,2011)

凝灰岩中 Nb、Ta、Zr 和 Hf 的含量与松藻矿区基性凝灰岩中 Nb(118 μg/g)、Ta(9.46 μg/g)、Zr(1377 μg/g)和 Hf(41.5 μg/g)含量接近,但高于松藻矿区基性 Tonsteins 中 Nb(83.2 μg/g)、Ta(6.2 μg/g)、Zr(699 μg/g)和 Hf(19 μg/g)含量(Dai Shifeng et al.,2011)。

凝灰岩中的 $(Nb, Ta)_2O_5$ 含量为 $19 \sim 316 \mu g/g$, 均值 $198 \mu g/g$,高于原生铌矿床最低工业品位 $80 \sim 120 \mu g/g$,达到了风化壳型铌钽矿最低工业品位 $160 \sim 200 \mu g/g$ (稀有金属矿产地质勘查规范,2002)。

4.2.5 钍(Th)和铀(U)

凝灰岩中 Th、U 的含量与松藻矿区基性凝灰岩中 Th(35.3 µg/g)和 U(17.6 µg/g)含量接近, Dai Shifeng等(2011)认为松藻地区基性凝灰岩中富集 Th 和 U 的原因:① Th 和 U 的含量与岩浆的冷凝结晶程度有关,快速冷凝的火山玻璃富集 Th 和 U,并分散在基质中,细小的基质颗粒组成的火山灰形成的凝灰岩富集 Th 和 U;② Th 的地化性质稳定,在

图 7 重庆南川上二叠统龙潭组底部凝灰岩中稀土元素上地壳标准化(据 Wedepohl,1995)分布模式图 Fig. 7 Diagram showing the distribution patterns of REE abundance normalized to UCC (after Wedepohl,1995) for tuff samples from the bottom of the Longtan Formation, Upper Permian in Nanchuan District, Chongqing

表生作用下进一步富集。由于 Th 的富集,凝灰岩层 在测井曲线中自然伽马曲线表现出明显的正异常。

4.2.6 稀土元素(REE)

从稀土富集类型来看:富轻稀土类型(La_N/Lu_N),富中稀土类型(La_N/Sm_N <1, Gd_N/Lu_N >1),富重稀土类型(La_N/Lu_N <1)。凝灰岩顶部至底部,稀土富集类型有富轻稀土—中稀土—重稀土渐变的趋势(表2)。

凝灰岩中铕(Eu)总体呈负异常,而铈(Ce)异常变化较大(0.78~1.32)(表2)。在稀土元素上地壳标准化分布模式图上(图7),可以看出凝灰岩自顶部至底部稀土元素分布曲线从右倾逐渐过渡到左倾,表明富稀土类型逐渐由富轻稀土一中稀土一重稀土类型变化。

稀土元素在表生环境中较稳定,在风化、成岩作

用过程中,不易被淋滤迁移,因此可以富集并保存下来(Dai Shifeng et al.,2011;周义平等,1994)。凝灰岩中的稀土元素可能也是由于火山灰在蚀变过程中不断的富集并保存下来。

4.3 微量元素空间分布规律

由图 8 可以看到凝灰岩中富集的微量元素在剖面上的变化,其含量总体上随深度增加而降低,不同元素由于其地球化学性质的差异略有不同。富集的微量元素在空间上的这种变化,可能与沉积环境变化有关,凝灰岩顶部直接接触煤层,属于泥炭沼泽环境;也可能与凝灰岩底部遭受后期热液活动影响有关。

4.4 后期热液作用

凝灰岩底部存在大量燧石,在扫描电镜下(SEM-DEX)发现了热液成因的方解石和石英。从

评

图 8 重庆南川上二叠统龙潭组底部凝灰岩中微量元素含量剖面变化图

Fig. 8 Vertical variations of trace elements in tuff sample from the bottom of the Longtan Formation, Upper Permian, in Nanchuan District, Chongqing

凝灰岩底部稀土富集类型来看,主要为富重稀土类 型,一般受热液作用影响的稀土配分模式呈富重稀 土类型(Seredin et al., 2008)。因此凝灰岩底部可 能遭受后期热液活动的影响。

5 结论

- (1) 凝灰岩可能是由峨眉山玄武岩喷发的火山 灰,经过沉降、风化、蚀变形成。研究发现凝灰岩中 TiO₂/Al₂O₃比值均大于 0.08,表明凝灰岩可能属于 基性火山灰成因。
- (2) 凝灰岩中明显富集 Al,O,、TiO,、Li、Cu、V、 Cr、Co、Ni、Nb、Ta、Zr、Hf、Ga、Sc、Th、U、REE,其中 TiO₂、Nb、Ta、Ga 和 REE 异常富集,含量已经达到了 共伴生矿产的工业品位,其潜在工业利用价值值得 关注。
- (3)凝灰岩中富集的微量元素含量在剖面上变 化明显,自顶部至底部,总体呈减少的趋势,稀土元 素(REE)由富轻稀土类型逐渐向富重稀土类型过 渡,这种分布规律可能与沉积环境变化有关,凝灰岩 顶部直接接触煤层,属于泥炭沼泽环境;也可能与凝

灰岩底部遭受热液活动影响有关。

(4)凝灰岩底部存在大量燧石、热液成因的方 解石和石英,以及稀十富集类型呈富重稀十类型,表 明其底部可能受后期热液作用的影响。

致谢:感谢王西勃讲师对本文的宝贵建议,感谢 薛卫峰硕士、刘善德硕士在实验过程中提供的帮助。

文 献 References

迟清华,鄢明才.2007.应用地球化学元素丰度数据手册.北京:地质

代世峰,任德贻,李生盛.2006.内蒙古准格尔超大型镓矿床的发现. 科学通报,51(2):177~185.

代世峰,周义平,任德贻,王西勃,李丹,赵蕾. 2007. 重庆松藻矿区晚 二叠世煤的地球化学和矿物学特征及其成因. 中国科学(D 辑),37(3):353~362.

廖太平,胡明.2008. 重庆天府地区地质考察指南. 北京:石油工业出 版社.

王小川,张玉成,潘润群,刘崇荣. 1996. 黔西川南滇东晚二叠世含煤 地层沉积环境与聚煤规律. 重庆:重庆大学出版社.

王中刚,于学元,赵振华. 1989. 稀土元素地球化学. 北京:科学出版

张勇,王西勃,孙莹莹,马玉文,逯雁峰,张贝贝,张丽莉. 2008. 煤灰化 过程中有益元素镓的迁移和变化特征——以内蒙古准格尔富镓

- 煤为例. 矿物岩石地球化学通报,27(2):133~136.
- 中华人民共和国地质矿产行业标准. 2002. DZ/T 0208-2002, 砂矿(金属矿产) 地质勘查规范.
- 中华人民共和国地质矿产行业标准. 2002. DZ/T 0203-2002, 稀有金属矿产地质勘查规范.
- 周义平,任友谅. 1983. 中国西南晚二叠世煤田中 Tonstein 的分布和成因. 煤炭学报.3(1):76~86.
- 周义平,任友谅. 1994. 滇东黔西晚二盛世煤系中火山灰蚀变粘土岩的元素地球化学特征. 沉积学报,12(2):123~130.
- 周义平. 1999. 中国西南龙潭早期碱性火山灰蚀变的 tonstein. 煤田地质与勘探,27(4):5~9.
- Addison R, Harrison R K, Land D H, Young B R, Davis A E, Smith T K. 1983. Volcanogenic tonsteins from tertiary coal measures, East Kalimantan, Indonesia. International Journal of Coal Geology, 3 (1): 1~30.
- Burger K, Zhou Yiping, Ren Deyi. 2002. Petrography and geochemistry of tonsteins from the 4th Member of the Upper Triassic Xujiahe Formation in southern Sichuan Province, China. International Journal of Coal Geology, 49(1):1~17.
- Dai Shifeng, Ren Deyi, Li Shengsheng. 2006. Discovery of the superlarge gallium ore deposit in Jungar, Inner Mongolia, North China. Chinese Science Bulletin, 18(51):2243 ~ 2252.
- Dai Shifeng, Zhou Yiping, Zhang Mingquan, Wang Xibo, Wang Jumin, Song Xiaolin, Jiang Yaofa, Luo Yangbing, Song Zhentao, Ren Deyi. 2010. A new type of Nb (Ta)—Zr (Hf)—REE—Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. International Journal of Coal Geology, 83: 55 ~63.

- Dai Shifeng, Wang Xibo, Zhou Yiping. 2011. Chemical and mineralogical compositions of silicic, mafic and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. International Journal of Coal Geology, 283:29 ~ 44.
- Spears D A, Kanaris-Sotiriou R. 1979. A geochemical and mineralogical investigation of some British and other European tonsteins. Sedimentology, 26:407 ~ 425.
- Seredin V, Finkelman R. 2008. Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76:253 ~ 289.
- Seredin V, Dai Shifeng. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94(1):67~93.
- We depohl K H. 1995. The composition of the continental crust. In gerson lecture, 59 (7);1217 \sim 1232.
- Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magna series and their differentiation products using immobile elements. Chemical Geology, 20: 325 ~ 343.
- Xu Yigang, Chung Sunlin, Jahn B M, Wu Genyao 2001. Petrologic and geochemical constraints on the petrogenesis of Permian—Triassic Emeishan flood basalts in southwestern China. Lithos, 58: 145 ~ 168
- Zhou Yiping, Bohor B F, Ren Youliang. 2000. Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces, China. International Journal of Coal Geology, 44: 305 ~ 324.

Geochemical Features of the Late Permian Tuff in Nanchuan District, Chongqing, Southwestern China

 $TIAN\ Heming^{1,\,2)}\ ,\ DAI\ Shifeng^2)\ ,\ LI\ Dahua^{1,\,3)}\ ,\ LIU\ Dong^{1,\,3)}\ ,\ ZOU\ Jianhua^{1,\,3)}\ ,\ LI\ Tian^{1,\,3)}$

- 1) Chongqing Key Laboratory of Exogenic Mineralization and Mine environment
- (Chongqing Institute of Geology and Mineral Resources), Chongqing, 400042;
- 2) State Key Laboratory of Resources and Safe Mining, China University of Mining and Technology, Beijing, 100083;
 - 3) Chongging Research Center of State Key Laboratory of Coal Resources and Safe Mining, Chongging, 400042

Abstract: The geochemical features of the Late Permian tuff in Nanchuan District, Chongqing, southwestern China, were studied using the methods of inductively coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence(XRF), powder X-ray diffraction(XRD), A scanning electron microscope equipped with an energy dispersive X-ray spectrometer(SEM-EDX). The results show that elements including Al, Ti, Li, Cu, V, Cr, Co, Ni, Nb, Ta, Zr, Hf, Ga, Sc, Th, U and REE are enriched, especially the concentrations of Ti, Nb, Ga and REE, which are higher than cut-off grades of national standards of China, respectively. The potential comprehensive utilization of Ti, Nb, Ga and REE should be paid more attention. The concentrations of trace elements increase from the bottom of tuff to the top, and the rare earth elements (REE) in tuff have obviously differentiation, the upper portion of tuff enriched light rare earth elements (LREE) and medium rare earth elements (MREE), while the lower portion enriched heavy rare earth elements (HREE). The characteristics of elements and its assemblage in the tuff show that the materials of tuff may be originated from Emeishan basalt magma and of the mafic volcanic origin.

Key words: tuff; rare earth element; geochemistry; Nanchuan, Chongqing