河北开滦矿区晚古生代煤对 CH₄/CO₂ 二元气体等温解吸特性

张贝贝²⁾,代世峰^{1,2)},雒洋冰²⁾,宋宪存²⁾

1) 煤炭资源与安全开采国家重点实验室,北京,100083;

2) 中国矿业大学(北京)地球科学与测绘工程学院,北京,100083

内容提要:研究了河北开滦矿区不同变质程度的煤对不同配比 CH₄/CO₂二元气体等温解吸特性,并用扩展 Langmuir 方程的推论计算了 CH₄/CO₂二元气体各组分在吸附相中的浓度,分析了其变化特征。结果表明:在开滦 矿区煤对 CH₄/CO₂二元气体解吸过程中,中等变质程度煤(R_0 = 1.21 %)对混合气体的吸附能力大于低变质程度 煤(R_0 = 0.58%),且混合气体中 CO₂浓度越大,总吸附量越多。吸附相中 CH₄的相对浓度是逐渐降低的,CO₂的相 对浓度是逐渐升高的。开滦矿区中等变质程度煤相对于低变质程度煤,用 CO₂气体置换煤层中 CH₄,可以获得较高 的单位压降 CH₄解吸率,注入 CO₂的量越多、相对浓度越高,其置换效果就越好,更适于往煤层注入 CO₂提高煤层气 产量技术的实施。

关键词:开滦矿区;等温解吸实验;二元气体;吸附相;解吸率

在向煤层中注入 CO₂等气体将 CH₄置换出来 的生产实践中,由于研究思路和研究方法的限制,煤 层气产业界普遍关注的是有关气体等温吸附特征的 研究,而忽略了有关气体解吸特性的研究。随着煤 层气开采实践的深化和煤层气产层类型的复杂化, 对气体等温解吸特性的研究显得越来越重要(张遂 安等,2005)。另一方面,煤层气藏开采是以储存气 的解吸为前提,当预测煤层气在降压解吸过程中的 采收率或可采资源量时,若只考虑气体的等温吸附 特性,则可能存在较大误差,因为多元气体在吸附和 解吸过程中压力与吸附量关系存在"滞后效应" (Greaves et al.,1993),所以进行多元气体的等温 解吸实验,并对煤层气的采收率预测和注气排采过 程模拟,对煤层气开发利用来说更具有重要意义 (Reznik et al.,1984;唐书恒等,2004)。

1 样品的选择与实验

本课题研究选择蓟玉煤田中的林南仓矿 11 号 煤层(简称为 LNC-11)和开平煤田的马家沟矿 9 号 煤层(简称为 MK-9)为研究对象。其中,LNC-11 号 煤层属于下二叠统大苗庄组,MK-9 号煤层属于上 石炭统赵各庄组,样品选择详见文献(代世峰等, 2009),同时对这两个煤样进行了煤的工业分析和镜 质组反射率的测定。

样品实验部分详见文献(代世峰等,2009),在做 完纯 CH₄和纯 CO₂气体吸附实验后,要记下煤样对 它们的 Langmuir 常数。本文只讨论 CH₄/CO₂二元 气体的等温解吸过程。

2 结果与讨论

2.1 煤的工业分析和镜质组反射率

煤的工业分析和镜质组反射率测试结果如表 1 所示。林南仓矿 11 号煤层和马家沟矿 9 号煤层分 别属于低变质程度的长焰煤和中等变质程度的肥焦 煤。林南仓矿 11 号煤层属于低灰低硫煤,而马家沟 矿 9 号煤层为中灰低硫煤。

2.2 解吸特性

二元气体的等温解吸实验是在等温吸附实验的 基础上完成的。林南仓矿 11 号煤和马家沟矿 9 号 煤在降压解吸过程中不同平衡压力下对不同组分 CH₄/CO₂二元气体的吸附量及其 Langmuir 常数如 图 1 和表 2 所示,为了更好地了解解吸特性,图 1 也

注:本文为欧盟第六框架的计划课题和国家 973 课题(编号 2006CB202201)资助的成果。

收稿日期:2009-12-22;改回日期:2010-04-26;责任编辑:章雨旭。

作者简介:张贝贝,女,1983年生。博士研究生。矿产普查与勘探专业,主要从事煤层气勘探开发研究。Email: zhangbeibei0125@gmail. com。

表 1 煤的工业分析和镜质组反射率(%)

 Table 1
 Proximate analysis and vitrinite

random reflectance (%)

煤样	$M_{ m ad}$	$A_{ m d}$	$S_{\rm t,d}$	${V}_{ m daf}$	$R_{ m o, ran}$
LNC-11	3.57	9.23	0.67	38.88	0.58
MK-9	0.66	16.58	0.93	24.35	1.21

M-水分;ad-收到基;A-灰分;d-干燥基;V-挥发分;daf-干燥无灰基;S_t-全硫含量;R_{o,ran}-镜质组随机反射率 M-moisture;ad-as-determined basis;A-ash;d-dry basis;

V—volatile matter; daf—dry ash-free basis; S_t —total sulfur; $R_{\rm o,\ ran}$ —random reflectance of vitrinite

包括了升压吸附过程中相同组分 CH₄/CO₂二元气体的吸附量。从中可以看出:

(1)在 CH₄和 CO₂二元气体的等温解吸实验中,中 等煤化程度的马家沟矿 9 号煤对 CH₄/CO₂二元混 合气体的吸附等温线整体上具有 I 型特征(格雷格 等,1989;程传煊,1995),而低煤化程度的林南仓矿 11 号煤的解吸等温线的类型不明显,它的每个压力 点并不都是随着压力的降低其吸附量也随之降低。 在升压吸附和降压解吸过程中,马家沟矿 9 号煤对 混合气体的吸附能力都大于林南仓矿 11 号煤的吸

表 2 降压解吸过程中煤对 CH₄ / CO₂ 二元气体气体的 Langmuir 吸附常数 Table 2 The Langmuir constants of gasses adsorption on the two coals in decompression desorption process

灾心与休祖武	林南仓矿 11 号	寻煤(LNC-11)	马家沟矿 9 号煤(MK-9)		
头挜【件组成	$V_{\rm L}({ m cm^3/g})$	$P_{\rm L}({\rm MPa})$	$V_{\rm L}({ m cm^3/g})$	$P_{\rm L}({\rm MPa})$	
83. 08% CH ₄ + 16. 92% CO ₂	6.43	0.008	12.86	0.72	
67.61% CH ₄ + 32.39 % CO ₂	8.32	0.14	12.86	0.73	
47.14 $\%$ CH ₄ +52.86 $\%$ CO ₂	10.88	0.41	15.72	0.58	
19. 18% CH ₄ + 80. 82% CO ₂	15.72	0.62	17.69	0.59	

附能力,且混合气体中 CO₂ 浓度越大,总吸附量越多,原 因一方面在于同一煤样对 CO₂的吸附能力大于其对 CH₄的吸附能力,另一方面 在于低煤化程度的林南仓矿 11 号煤的大中孔含量较高, 微孔含量较少,该煤化作用 阶段的煤中亲水官能团如羟

图 1 吸附和解吸过程中林南仓矿 11 号煤和马家沟矿 9 号煤对 CH₄/CO₂ 二元气体吸附量对比图 Fig. 1 Comparison of adsorbed amount of CO₂ and CH₄ binary mixture during adsorption and desorption on the No. 11 coal from Linnancang Mine and the No. 9 coal from Majiagou Mine

基(一OH)丰富,吸附水分能力强(张小东,2005), 而大量水分对吸附点位的占据,势必降低了对气体 的吸附能力。马家沟矿9号煤处于煤化作用肥焦煤 阶段,尽管微孔含量要小于长焰煤,但其对水分的吸 附能力小,因此,水分对气体的吸附影响明显小于前 者(代世峰等,2009)。

(2)两煤样升压吸附与降压解吸过程中吸附等 温线是不可逆的,一方面是由于解吸过程中游离相 中少量水蒸汽在降压放气过程中被释放出,使下一 个压力下煤析出平衡水分重新建立平衡,从而导致 解吸过程中煤中水分比吸附过程中相同平衡压力的 水分偏低,使煤对气体的吸附量偏高(张群和杨锡 禄,1999);另一个方面,由于煤解吸过程中存在煤基 质的收缩(Karacan, 2003)和煤吸附过程中存在煤 基质的膨胀(Harpalani et al.,1990;Seidle et al., 1995),从而使煤在解吸过程的平衡吸附量比其在升 压吸附过程的平衡吸附量高。除此之外,另一个原 因是解吸过程中释放出游离 CH4 的含量要比原料 气或该平衡压力下混合气体中 CH4 的含量高(于洪 观,2005)。解吸过程中平衡水分降低对吸附量的增 加作用、煤基质收缩对吸附量的影响和解吸过程中 游离相组分浓度由于气体的释放而发生变化等的共同影响,使相同平衡压力条件下解吸和吸附过程存在吸附量的差异。

(3) 马家沟矿 9 号煤的 Langmuir 体积常数 $V_{\rm L}$ 大于林南仓矿 11 号煤的 Langmuir 体积常数 $V_{\rm L}$,这 是由于马家沟矿 9 号煤的变质程度高于林南仓矿 11 号煤,因此其吸附能力较强(代世峰等,2009);两 煤样的 Langmuir 体积常数是随着 CO₂的含量增加 而增加,这是因为煤对 CO₂的吸附能力大于对 CH₄ 的吸附能力。两煤样的 Langmuir 压力常数 $P_{\rm L}$ 没有 共同规律可寻,林南仓矿 11 号煤的二元气体的 $P_{\rm L}$ 值随 CO₂含量增加而增加,而这种变化对马家沟矿 9 号煤不明显。造成以上现象的原因可能是由于 $V_{\rm L}$ 和 $P_{\rm L}$ 不但受实验条件的影响,还要受煤的性质、 煤的组成和煤阶等因素的影响,值得深入研究。

2.3 吸附相组分解吸特性

吸附相中二元气体各组分的浓度,可利用扩展 Langmuir 方程的推论(Clarkson et al.,2000)计算, 其理论表示: $\alpha = (x/y)_i/(x/y)_j$

其中: α 为分离因子; x_i 和 x_j 分别是在吸附相中 组分i和j的体积分数, y_i 和 y_j 是在游离相中组分i

图 2 不同配比 CH₄ / CO₂ 二元气体吸附相气体浓度对比图

Fig. 2 Comparison between adsorption-phase gas concentration in different proportion of CH₄ / CO₂ binary mixture

和 i 的体积分数,并且满足:

$$\sum_{i=1}^{2} x_{i} = 100 \%$$
$$\sum_{i=1}^{2} y_{i} = 100 \%$$

经推导(Arri et al., 1991), 分离因子 α 还可以表示: $\alpha = (V_L/P_L)_i / (V_L/P_L)_i$

其中, V_{Li} 和 V_{Lj} 是气体 i 和 j 的 Langmuir 体积, P_{Li} 和 P_{Li} 是气体 i 和 j 的 Langmuir 压力。

根据以上各式计算出二元气体等温解吸实验时 各气体组分在吸附相中的浓度,计算结果如表 3,同 时可绘制出 CH₄/CO₂二元气体吸附相各组分浓度 随压力变化曲线如图 2 所示。从中可以看出:

(1)在 CH₄/CO₂二元气体的等温解吸实验中, 随着压力的降低,马家沟矿 9 号煤和林南仓矿 11 号 煤吸附相中 CH₄的相对浓度是逐渐降低的,而 CO₂ 的相对浓度逐渐升高,这是因为 CO₂的吸附能力大 于 CH₄,在与 CH₄竞争吸附中处于优势,导致在降 压解吸过程中,CH₄的解吸速率相对较快,CO₂的解 吸速率相对较慢,使得吸附相中 CH₄的相对浓度逐 渐减小,而 CO₂的相对浓度逐渐增大,这与 Greaves (1993)、唐书恒(2004)和苏现波(2001)得出的结论 是一致的。

(2)两煤样随着原料气中 CO₂浓度增加,CH₄的 吸附相浓度呈降低的趋势,CO₂的吸附相浓度呈升 高的趋势,这与煤对 CO₂的吸附能力强于对 CH₄的 吸附能力(周世宁等,1997;Scott,1999;马志宏等, 2001)是一致的,CO₂相对于 CH₄,可被煤层优先吸 附;同时也得出 CO₂的存在可以促进 CH₄的解吸, 提高其相对解吸速率。从而得出 CO₂相对于 CH₄ 具有优先吸附、滞后解吸的特征,可以利用此特性, 将 CO₂注入煤层,从而达到既埋存 CO₂又快速产出 CH₄的目的。

(3)不同配比的 CH₄/CO₂ 二元气体的解吸实 验,林南仓矿 11 号煤吸附相 CO₂的浓度小于 CH₄ 的浓度,CO₂的浓度几乎都小于 50%,CH₄的浓度都 大于 50%,而马家沟矿 9 号煤吸附相 CO₂浓度大于 CH₄的浓度,所以可以得出,马家沟矿 9 号煤相对于 林南仓矿 11 号煤,用 CO₂气体对煤层中 CH₄进行 置换,可以获得较高的单位压降 CH₄解吸率,解吸 率和单位压降解吸率的概念和计算见文献(唐书恒 等,2006);注入 CO₂的数量越多、相对浓度越高,其 置换效果就越好。

表 3 两煤样解吸过程中 CH₄/CO₂二元气体吸附相气体浓度(%)

样品	实验气体组分	测试项目	吸附相浓度和平衡压强								
		平衡压(MPa)	5.85	5.14	4.43	3.71	3.01	2.33	1.62	1.07	0.68
	83.08 $\%$ CH ₄ +16.92 $\%$ CO ₂	CH4浓度(%)	97.18	97.02	97.02	96.58	97.26	97.09	96.70	96.09	95.46
		CO2浓度(%)	2.82	2.98	2.98	3.42	2.74	2.91	3.30	3.91	4.54
		平衡压(MPa)	5.91	5.23	4.53	3.85	3.17	2.53	1.87	1.23	0.78
L	67.61%CH ₄ + $32.39%$ CO ₂	CH4浓度(%)	92.10	91.75	91.63	91.31	91.22	90.56	89.37	88.01	86.87
Ν		CO2浓度(%)	7.90	8.25	8.37	8.69	8.78	9.44	10.63	11.99	13.13
С		平衡压(MPa)	4.31	3.87	3.46	3.06	2.64	2.22	1.79	1.41	0.91
-11	$47.14\%\mathrm{CH}_{4}{+}52.86\%\mathrm{CO}_{2}$	CH4浓度(%)	79.86	78.68	80.80	80.43	81.71	81.58	78.43	76.36	73.33
		CO2浓度(%)	20.14	21.32	19.20	19.57	18.29	18.42	21.57	23.64	26.67
		平衡压(MPa)	4.39	3.95	3.55	3.13	2.72	2.3	1.86	1.48	0.97
	19.18 $\%$ CH ₄ +80.82 $\%$ CO ₂	CH4浓度(%)	67.64	64.24	53.15	57.13	57.02	54.80	56.51	52.21	48.33
		CO2浓度(%)	32.36	35.76	46.85	42.87	42.98	45.20	43.49	47.79	51.67
		平衡压(MPa)	6.02	5.25	4.47	3.72	2.99	2.28	1.59	1.04	0.68
	83. 08% CH ₄ + 16. 92% CO ₂	CH ₄ 浓度(%)	80.32	79.78	79.09	77.38	82.13	82.66	78.84	76.33	76.37
		CO2浓度(%)	19.68	20.22	20.91	22.62	17.87	17.34	21.16	23.67	23.63
		平衡压(MPa)	6.07	5.32	4.59	3.86	3.14	2.47	1.8	1.13	0.72
	67.61%CH ₄ +32.39%CO ₂	CH4浓度(%)	58.63	56.58	56.04	55.17	55.42	53.59	51.39	48.26	44.72
М		CO ₂ 浓度(%)	41.37	43.42	43.96	44.83	44.58	46.41	48.61	51.74	55.28
Κ		平衡压(MPa)	4.49	4.02	3.54	3.1	2.63	2.17	1.75	1.36	0.88
-9	47.14% CH ₄ + 52.86% CO ₂	CH ₄ 浓度(%)	31.25	31.38	34.15	32.68	38.22	38.07	29.59	28.02	25.93
		CO2浓度(%)	68.75	68.62	65.85	67.32	61.78	61.93	70.41	71.98	74.07
		平衡压(MPa)	4.47	4.02	3.55	3.11	2.64	2.21	1.77	1.39	0.9
	19.18 $\%$ CH ₄ +80.82 $\%$ CO ₂	CH4浓度(%)	12.16	11.05	10.43	12.87	12.13	12.41	13.75	11.46	9.96
		CO ₂ 浓度(%)	87.84	88.95	89.57	87.13	87.87	87.59	86.25	88.54	90.04

Table 3 Adsorption-phase gases concentration during CH₄/CO₂ binary gas desorption experiment on two coals

为了进一步了解 CH₄/CO₂二元气体的解吸特性,可以绘制出吸附相中 CH₄和 CO₂的吸附等温线 图。由于得到了 CH₄/CO₂二元气体中 CH₄和 CO₂ 气体组分在吸附相中的浓度,从而可以计算出 CH₄ 和 CO₂的吸附量。从 CH₄/CO₂二元气体等温解吸 实验 CH₄和 CO₂的吸附等温线见图 3,可以看出:

(1)在四种配比的 CH₄/CO₂二元气体的解吸实 验中,马家沟矿 9 号煤对 CO₂ 的吸附量量都大于对 CH₄的吸附量,而林南仓矿 11 号煤与此相反,即对 CH₄的吸附量都大于对 CO₂的吸附量。在相同条件 下,随着原料气中 CO₂浓度的增加,两煤样对 CO₂的 吸附量也随之增加,同时马家沟矿 9 号煤对 CH₄的 吸附量随之降低,但林南仓矿 11 号煤对 CH₄的吸 附量总体上随之增加,此现象在煤层气界较为特殊, 原因还需要进一步探讨。

(2)随着压力的降低,两煤样对 CH₄组分的吸 附量相对于对 CO₂组分的吸附量变化相对较快,这 是因为 CO₂的吸附能力大于 CH₄的吸附能力,在竞 争吸附中处于优势,导致 CH₄解吸速率较快,解吸 实验中 CH₄ 的吸附量降低的也较快,也就是说,由 于 CO₂的存在,提高了 CH₄ 解吸的相对速率(唐书 恒等,2004),这和上面的推论是一致的,同时也可以 看出,相对于林南仓矿 11 号煤,马家沟矿 9 号煤这 种变化幅度比较明显,也就是说马家沟矿 9 号煤在 解吸过程中,CO₂的存在对 CH₄的解吸过程中有较 大的影响,可以促进 CH₄的解吸,提高 CH₄解吸的 相对速率,即马家沟矿 9 号煤层更适合 CO₂-ECBM 技术的实施。

根据实验数据,可进一步计算出 CH4和 CO2的 气体解吸量和它们各自的解吸率和单位压降解吸 率,如图 4 和表 4。从中可以看出:

(1) 在降压解吸过程中,林南仓矿 11 号煤和马 家沟矿 9 号煤没有明显的规律可循,它们的解吸量 不是单一下降的过程,原因一方面是由于煤基质收 缩效应引起渗透率的变化,另一方面是煤基质自调 节的控制作用以及空隙压缩性引起的综合效应(叶 欣等,2008)。林南仓矿 11 号煤在配比 67.61% CH₄+32.39%CO₂和高压情况下,解吸量出现了负

图 3 不同配比 CH₄ / CO₂ 二元气体等温解吸实验吸附量对比图

Fig. 3 Comparison between adsorbed amount of different proportion of CH4/ CO2 binary gas

图 4 不同配比 $CH_4 / CO_2 二元气体 CH_4 和 CO_2 解吸量对比图$ Fig. 4 Comparison between desorption amounts in different proportion of CH_4 / CO_2 binary mixture

值,在生产中是没有意义的,只是理论上的意义,即 解吸量出现负值在理论上是不正确的,只当着一个 值存在。随着 CO₂含量增加,CO₂的解吸量增加, CH₄的解吸量是减少的,但随着压力的降低,气体的 解吸量没有规律可循。马家沟矿 9 号煤的解吸量要 比林南仓矿 11 号煤的解吸量大,林南仓矿 11 号煤 更不容易用注 CO₂的方法来生产煤层气。

(2)中等变质程度的马家沟矿 9 号煤对 CH₄和 CO₂的解吸率和单位压降解吸率整体上大于低变质 程度的林南仓矿 11 号煤,马家沟矿 9 号煤对 CH₄的 解吸率在 42%左右,林南仓矿 11 号煤在 25%左右, 比马家沟矿 9 号煤偏低,从而也可以得出马家沟矿 区煤层气开发效果应优于林南仓矿,使用 CO₂气体 对煤层中 CH₄进行置换,可以获得较高的单位压降 CH₄解吸率。同一煤样对 CH₄的解吸率和单位压 降解吸率大于 CO₂,进一步证明了 CH₄比 CO₂在煤 层中更容易解吸出来的结论(唐书恒等,2006)。

(3)随着 CO2含量的增加,马家沟矿 9 号煤和林

Table 4 The desorption rate and unit desorption	on rate of gases ir	n desorption isotherm	experiments
---	---------------------	-----------------------	-------------

			煤样	煤样		
气体			LNC-11	MK-9		
	组分	解吸率	单位压降解吸率	解吸率	单位压降解吸率	
		(%)	$(\% \cdot MPa^{-1})$	(%)	$(\% \cdot MPa^{-1})$	
CH ₄	83.08%CH ₄ +16.92%CO ₂	10.54	2.03	43.66	8.17	
	67.61% CH ₄ + 32.39% CO ₂	20.31	3.96	54.96	10.28	
	47.14 $\%$ CH ₄ +52.86 $\%$ CO ₂	29.79	8.78	41.93	11.62	
	19.18 $\%$ CH ₄ +80.82 $\%$ CO ₂	48.61	14.20	43.19	12.08	
CO ₂	83.08%CH ₄ +16.92%CO ₂	-46.44	-8.97	28.85	5.40	
	67.61% CH ₄ + 32.39% CO ₂	-40.46	-7.88	21.09	3.94	
	47.14% CH ₄ + 52.86% CO ₂	-1.2	-0.35	24.63	6.83	
	19.18 $\%$ CH ₄ +80.82 $\%$ CO ₂	-14.87	-4.34	28.87	8.07	

南仓矿 11 号煤的 CH₄单位压降解吸率是增加的, 这和 CO₂的存在可以促进 CH₄的解吸的结论是一 致的,注入煤层的 CO₂越多,则解吸出来的 CH₄也 越多。

3 结论

(1)在升压吸附和降压解吸过程中,马家沟矿 9 号煤对混合气体的吸附能力大于林南仓矿 11 号煤 的吸附能力,且混合气体中 CO₂浓度越高,总吸附量 越多。在相同的平衡压力下,降压解吸过程的总吸 附量要比升压吸附过程的吸附量高。两煤样在等温 升压吸附与等温降压解吸过程中吸附等温线是不可 逆的。

(2)在四种配比的 CH₄/CO₂二元气体的解吸实 验中,吸附相中 CH₄的相对浓度是逐渐降低的,而 CO₂的相对浓度是逐渐升高的。马家沟矿 9 号煤相 对于林南仓矿 11 号煤,用 CO₂气体置换煤层中 CH₄,可以获得较高的单位压降 CH₄解吸率和单位 压降 CO₂吸附率;注入 CO₂的数量越多、相对浓度越 高,其置换效果就越好。

(3)在四种配比的 CH₄/CO₂二元气体的解吸实 验中,马家沟矿 9 号煤对 CO₂ 的吸附量量都大于对 CH₄的吸附量,而林南仓矿 11 号煤与此相反,即对 CH₄的吸附量都大于对 CO₂的吸附量。马家沟矿 9 号煤在降压解吸过程中,CO₂的存在对 CH₄的解吸 过程中有较大的影响,可以促进 CH₄的解吸,提高 CH₄解吸的相对速率,即马家沟矿 9 号煤层更适合 往煤层注入 CO₂提高煤层气技术的实施。

(4)中等变质程度的马家沟矿 9 号煤对 CH₄和 CO₂的解吸率和单位压降解吸率整体上大于低变质 程度的林南仓矿 11 号煤,马家沟矿 9 号煤对 CH₄的 解吸率在 42%左右,林南仓矿 11 号煤则在 25%左 右,比马家沟矿 9 号煤偏低,从而也可以得出马家沟 矿区煤层气开发效果应优于林南仓矿,使用 CO₂气 体对其煤层中 CH₄进行置换,可以获得较高的单位 压降 CH₄解吸率。

参考文献 / References

- 程传煊.1995.表面物理化学.北京:科学技术文献出版社,1~700. 代世峰,张贝贝,彭苏萍,张小东,Chou Chen-Lin.2009.河北开滦矿
- 区晚古生代煤对 CO₂和 CH₄气体吸附模型探讨. 地质学报. 83 (5):731~736.
- 代世峰,张贝贝,朱长生,曾荣树.2009. 开滦矿区晚古生代煤对 CH₄/CO₂二元气体等温吸附特性.煤炭学报,34(5):578~582.

- 格雷格 SJ,辛 K SW. 1989. 吸附、比面积与孔隙率. 北京:化学工业 出版社.
- 马志宏,郭勇义,吴世跃.2001.注入二氧化碳及氮气驱替煤层气机理 的实验研究.太原理工大学学报,32(4):335~336.
- 苏现波,陈江峰,孙俊民.2001.煤层气地质学与勘探开发.北京:科学 出版社,43~5.
- 唐书恒,汤达祯,杨起.2004.二元气体等温吸附一解吸中气分的变化 规律.中国矿业大学学报,33(4):448~453.
- 唐书恒,马彩霞,叶建平,吴建光.2006.注二氧化碳提高甲烷采收率 的实验模拟.中国矿业大学学报,35(5):608~611.
- 于洪观. 2005. 煤对 CH₄、CO₂、N₂及其二元混合气体吸附特性、预测 和 CO₂驱替 CH₄的研究. 山东科技大学博士学位论文, 3~26, 29~70.
- 叶欣,刘洪林,王勃,樊明珠,姜文利.2008.高低煤阶煤层气解吸机理 差异性分析.天然气技术,2(2):19~22.
- 张小东.2005.煤分级萃取的吸附响应及其地球化学机理.中国矿业 大学博士学位论文,118~126.
- 张遂安,霍永忠,叶建平,唐书恒,马东民.2005.煤层气的置换解吸实 验及机理探索.科学通报,50(1):143~146.
- 张群,杨锡禄.1999.平衡水分条件下煤对甲烷的等温吸附特性研究. 煤炭学报,24(6):566~570.
- 周世宁,林柏泉.1997.煤层瓦斯赋存与流动理论.北京:煤炭工业出版社,95~105.
- Arri L E, Yee Dan, Morgan W D, Jeansonne M W, Amoco Production Co. 1992. Modeling coalbed methane production with binary gas sorption. In: SPE Paper 24363, Presented at the SPE Rocky Mountain Regional Meeting, Casper, Wyoming, 18~21, 459~472.
- Karacan C. O. 2003. Heterogeneous Sorption and Swelling in a Confined and Stressed Coal during CO₂ Injection. Energy &-Fuels, 17(6):1595~1608.
- Clarkson C R, Bustin R M. 2000. Binary gas adsorption/desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane. International Journal of Coal Geology, 42(4): 241~272.
- Greaves K H, Owen L B, Mclenman J D. 1993. Multi-component gas adsorption—desorption behavior of coal. In: Proceedings of the 1993 International Coalbed Methane Symposium, $197 \sim$ 205.
- Harpalani S, Schraufnagel R A. 1990. Influence of Matrix Shrinkage and Compressibility on Gas Production from Coalbed Methane Reservoirs. In: SPE 20729, Presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 23~26 September.
- Reznik A A, Aingh P K, Foley W L. 1984. An analysis of the effect of CO₂ injection on the recovery of in-situ methane from bituminous coal: an experimental simulation. SPE Journal, 24 (5): 521~528.
- Seidle J P, Huitt L G. 1995. Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases. In: SPE 30010, International Meeting on Petroleum Engineering, Beijing, China, l4~17 November.
- Scott H Stevens. 1999. CO₂ injection for enhancing coalbed methane recovery: Project Screening and Design. Proceedings of the 1999 International Coalbed Methane Symposium. Tuscaloosa: University of Alabama.

Isothermal Desorption Chracteristics of CH₄/CO₂ Mixed Gas for the Late Paleozoic Coals from the Kailuan Coalfield of Hebei Province

ZHANG Beibei²⁾, DAI Shifeng^{1, 2)}, LUO Yangbing²⁾, SONG Xiancun²⁾

 State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Beijing, 100083;

2) College of Geosciences and Surveying Engineering, China University of Mining and Technology, Beijing, 100083

Abstract: This paper describes the isothermal desorption chracteristics of mixed CH_4/CO_2 gas for the Late Paleozoic Coals with different ranks from the Kailuan Coalfield, Hebei Province. The abundance and variation of each gas in adsorption phases were analyzed using the extended-Langmuir equation. The results of isothermal desorption experiments show that the medium-rank coal (Ro = 1.21 %) has a stronger adsorption ability of the mixing gas than the low-rank coal (Ro = 0.58%). The quantity of the adsorbed mixed gas by the coal increases with the increasing of the CO_2 quality in the mixed gas. The relative abundance of CH_4 in adsorbed phase decreases and that of CO_2 increases gradually with desorption. As compared to the low-rank coal, the medium-rank has a higher unit desorption rate for CH_4 . The replacement of CH_4 with CO_2 will be more efficient when more quantity and higher relative abundance of CO_2 is injected. The medium-rank coal is more subjected to be used for CO_2 Sequestration and Enhanced Coalbed Methane technique than the low-rank.

Key words: Kailuan Coalfield; desorption isotherm experiment; binary-component gas; adsorption phase; desorption rate

施雅风著.2008. 地理环境与冰川研究(续集).北京: 气象出版社。大16开。本书是1988年科学出版社同名著 作的续集,正文共454页,收录了施雅风院士20世纪90年 代至2007年之间的著述(大多数为第一作者,少数为第二作 者),分为十一部分:乌鲁木齐地区水资源与环境变化、青海 湖环境变化、海平面上升与海岸带灾害、青藏高原隆升与环 境变化、MIS3阶段青藏高原与中国全境气候与环境、第四 纪冰川与气候、现代冰川与未来趋势、现代气候变化、全球变 暖及人类活动对长江洪水的可能影响、综述、怀念杰出师友。 文前附有14页50余幅不同时期的工作、生活照片。文后附 有施雅风院士1936年至2008年的著述目录。

SHI Yafeng(施雅风). 2008. Collectanca of the Studies on Glaciology, Climate and Environmental Changes in China. Beijing: China Meteorogical Press. 全书大 16 开,共 850 页, 收录了施雅风院士 1964 年~2007 年发表的英文著述 50 多 篇。秦大河为该书作序。

赖绍聪,秦江锋.著. 2010. 南秦岭勉略缝合带蛇绿岩 与火山岩.北京:科学出版社.小16开,257页。造山带蛇绿 岩和相关火山岩的岩石学和地球化学研究对反演造山带演 化历史具有重要意义。本书运用现代火成岩成岩理论及岩 石大地构造学的技术方法,对秦岭造山带勉略缝合带的蛇绿 岩和相关火山岩进行了系统研究,对勉略洋盆的发育过程、

新书介绍

发育时限及其与东古特提斯洋的关系提出了新的见解。本 书内容丰富,资料翔实,系统性强,立论有据,富有创新,可供 地质学、地球化学、地球物理学等相关大专院校师生和科研 单位的科技人员参考阅读。

章雨旭,杨占峰,张绮玲,柳建勇,吕洪波,姬志勇,等. 著. 2009. 白云鄂博及北京西山微晶丘地质、地球化学研究. 北京:地质出版社.大大16开,112页,另附图版12页。白 云鄂博矿床是一座集铁、铌、稀土等多金属为一体的超大型 矿床,其成因仍众说纷纭。1997年,包括该书部分作者在内 的研究组根据白云鄂博赋矿白云岩与北京西山寒武系顶部 微晶丘的相似性,提出其也为一微晶丘。十几年来该书的作 者们对白云鄂博矿区的地质构造,赋矿白云岩及上、下岩层 地质特征,碳、氧同位素,主量、微量和稀土元素地球化学,流 体包裹体等进行了研究,并将其与北京西山和黑脑包两地的 微晶丘进行了对比,还对东介勒格勒、菠萝头山、尖山南东碳 酸盐脉群及黑脑包微晶丘进行了磁法勘查。该书为上述工 作的系统总结。该书认为,白云鄂博赋矿白云岩与北京西山 寒武系顶部纯灰岩、黑脑包腮林忽洞群顶部白云岩一样,是 一个微晶丘,其时代更可能是早古生代,而微晶丘的成因是 海底热水沉积。总之,本书对著名的白云鄂博矿床成因和沉 积学难题给出了一个较周全的答案,可供矿床地质学、沉积 地质学、构造地质学、岩石学和地球化学等专家和师生参考。