西昆仑—喀喇昆仑造山带构造演化及其成矿效应
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

本文为新疆维吾尔自治区科技重大专项项目所属课题“喀喇昆仑构造岩浆演化与稀有金属成矿地质背景研究”(编号:2018A030041)的成果


Tectonic evolution of the Western Kunlun—Karakorum Orogenic Belt and its coupling with the mineralization effect
Author:
Affiliation:

Fund Project:

单位:
  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    位于青藏高原北缘的西昆仑—喀喇昆仑造山带经历了原特提斯—中(新)特提斯阶段长期的构造演化,形成了复杂的岩石组合及结构—构造特征。在长期演化过程中,西昆仑—喀喇昆仑造山带形成了独特的成矿系列。本文对西昆仑—喀喇昆仑造山带基本结构、物质组成及构造演化进行总结,并讨论了不同构造演化阶段的成矿效应。 西昆仑—喀喇昆仑主体分为四个主要构造单元,分别是北昆仑地体、南昆仑地体(包括以布伦阔勒群为主体的塔什库尔干地体)、麻扎尔—甜水海地体及喀喇昆仑地体。北昆仑地体代表了塔里木基底的一部分,记录了从古元古代早期到新元古代的构造演化及其对Columbia、Rodinia超大陆汇聚和裂解的响应。麻扎尔—甜水海地体是由塔什库尔干县南部新太古代变质火山沉积岩系(基底)及甜水海地区南华纪具有被动大陆边缘沉积特征的盖层岩系组成的一个完整的前寒武纪微陆块,这一微陆块和扬子地区的前寒武系具有显著的亲缘性,它与柴达木地块、祁连地块、北阿尔金地块等均是在Rodinia超大陆裂解过程中从扬子地块裂解出来的微地块群;南昆仑地体和塔什库尔干地体内的角闪岩相到麻粒岩相变质火山—沉积岩系形成于早古生代,而不是前寒武纪基底建造,它们共同构成了西昆仑地区早古生代巨型增生杂岩,这一增生杂岩是原特提斯洋长期向麻扎尔—甜水海地体之下俯冲的结果,包含了弧前增生杂岩、洋岛、岛弧火山—沉积岩及蛇绿混杂岩等。原特提斯洋的俯冲结束于440 Ma左右,使南昆仑地体发生角闪岩相变质。原特提斯洋的关闭事件在西昆仑、柴北缘、北祁连、北秦岭以及华夏地区都有记录,这一过程导致了塔里木、柴达木、北祁连、北秦岭、扬子及印支地块汇聚到东冈瓦那北缘。古特提斯洋大约于晚泥盆世—早石炭世打开,与弧后扩张有关,形成了南昆仑及北昆仑地体之间的早石炭世具有裂谷盆地性质的火山岩系。沿甜水海地体南部古特提斯洋的俯冲开始于240 Ma,以西昆仑地区最早的具有I型地球化学特征的花岗岩及花岗闪长岩为代表。古特提斯洋的关闭发生早于200~180 Ma,形成了塔什库尔干地区高压麻粒岩,并在帕米尔—甜水海地区形成了统一的侏罗纪—白垩纪磨拉石建造,代表了塔里木最终汇聚到Pangea大陆。中新特提斯阶段,沿乔尔天山的俯冲,形成了喀喇昆仑造山带侏罗纪—早白垩世岛弧岩浆杂岩及甜水海地区裂陷盆地,与冈底斯岩浆岩带相接。西昆仑—喀喇昆仑发育四期主要的岩浆侵入事件,分别是早古生代、中生代早期(三叠纪)、中生代晚期(侏罗纪—白垩纪)及新生代。岩浆岩演化与构造演化具有显著的耦合关系。 西昆仑—喀喇昆仑的构造演化形成了该地区独特的成矿系列。其中原特提斯阶段的早古生代增生杂岩的发育,形成了塔什库尔干地区与火山岩有关的超大型层状磁铁矿矿床(类似BIF),形成时代为530 Ma左右;古特提斯阶段,由于古特提斯洋沿乔尔天山缝合带向北持续俯冲于甜水海地体之下,使这一地区形成了大量的伟晶岩,形成了超大型稀有金属矿床(时代为220~200 Ma);中新特提斯阶段的演化与该地区超大型铅锌铜成矿作用密切相关。基于区域地球化学测量及构造演化的认识,我们认为,在甜水海地体内,是寻找与岩浆岩有关的斑岩型及浅成低温热液有色金属矿床的最有利靶区。

    Abstract:

    Objectives: The Western Kunlun—Karakorum Orogenic Belt (WKOB), located the most northern margin of the Qinghia—Xizang(Tibet) Plateau, underwent the timeintegrated Tethys evolution process and exhibits distinct rock packages and tectonic signatures. Particularly, several key metallogenic series were formed during its long evolution history. The aims of this study include ① having a sketch on its texture, rock packages and tectonic evolution process and ② decoding the coupling between its tectonic evolution and domino mineralization effect. Methods: Synthesizing the recent studies on the regional geology, deposit exploration results. Results: The WKOB could be divided into four main units, i.e., the Northern Kunlun terrane (NKT), the Southern Kunlun terrance (SKT), the Mazar—Tianshuihai terrane (MZTT) and the Karakorum terrane (KAT). The NKT, as a member of the Tarim Precambrian basement, had undergone the assemblage and breakup of the late Paleoproterozoic Columbia and the early Neoproterozoic Rodinia supercontinents. The MZTT is composed by the Neoarchean metamorphic bimodal volcanic sequences (the basement) in southern Tashikorgan and the Nanhuaian clastic sedimentary sequences (the cover sequences). It shows significant affinity with the Yangtze and, together with the Qaidam, Qilian and Northern Althyn terranes, could be continental fragments drifted from Yangtze during the breakup of the Rodinia. The amphibolite to granulite facies metamorphic volcanic—sedimentary sequences in SKT deposited during late Sinian to early Ordovician during the southward subdution of the ProtoTethys Ocean under the MZTT. They exhibit features of typical accretionary complex composing of forearc accretion sequences, intraocean arc, arc and ophiolites. The ProtoTethys Ocean closed at ca. 440~430 Ma and this process induced the MZTT, Qaidam, Qilian and Northern Qinling terranes docking at the northern margin of the Eastern Gondwana. The opening of the PaleoTethys Ocean took place at early Carboniferous as demonstrated by the Carboniferous rifting volcanic rocks distributed between NKT and SKT. The initial northward subduction of the PaleoTethys Ocean along the Qiaoertian zone (to south of MZTT) began at ca. 260 Ma according to the voluminous 260~200 Ma Itype granites distributed along the MZTT and even in SKT. In line with the metamorphic ages of the granulitefacies metamorphic rocks we deduce that the closure of the PaleoTethys Ocean took place at 200~180 Ma, indicating the final formation the Pangea. This conclusion was also evidenced by the Jurassic—Cretaceous molass in Pamir and the MZTT. During the Meso—NeoTethys evolution stage, the northward subduction along the Bangong —Nujjiang suture zone induced voluminous Jurassic—Cretaceous arc——signature magmatism and the coeval rifting basins in MZTT. The four stages of magmatism in WKOB were well coupled with the four main tectonic evolution stages. The mineralization of the WKOB was intimately related to its tectonic evolution. Among those large—super large deposits, the supper large iron deposits in Tashikorgan was genetically related the evolution of the early Paleozoic huge accretionary complex. In PaleoTethys evolution process, the northward subdction of the PaleoTethys Ocean along the Qiaoertianshan under the MZTT, coevally with the Triassic granites, voluminous pegmatite emplaced at this time, which contains super large rare metal deposits. The Meso—NeoTethys evolution was intimately related to the formation of the supper large lead—zinc deposits. Conclusions:The mineralization in WKOB is intimately related to the Tethys evolution. Integrating the regional geology, geophysical and geochemical fields, we suggest that the Tianshuihai terrane is a potential area for prospecting nonferrous deposits.

    参考文献
    相似文献
    引证文献
引用本文

张传林,马华东,朱炳玉,叶现韬,邱林,赵海香,刘晓强,丁腾,王倩,郝晓姝.2019.西昆仑—喀喇昆仑造山带构造演化及其成矿效应[J].地质论评,65(5):1077-1102,[DOI].
ZHANG Chuanlin, MA Huadong, ZHU Bingyu, YE Xiantao, QIU Lin, ZHAO Haixiang, LIU Xiaoqiang, DING Teng, WANG Qian, HAO Xiaoshu.2019. Tectonic evolution of the Western Kunlun—Karakorum Orogenic Belt and its coupling with the mineralization effect[J]. Geological Review,65(5):1077-1102.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-14
  • 最后修改日期:2019-08-12
  • 录用日期:
  • 在线发布日期: 2019-09-19
  • 出版日期: